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Abstract

Motivation: Solutions to stochastic Boolean models
are usually estimated by Monte Carlo simulations,
but as the state space of these models can be
enormous, there is an inherent uncertainty about
the accuracy of Monte Carlo estimates and whether
simulations have reached all asymptotic solutions.
Moreover, these models have timescale parameters
(transition rates) that the probability values of
stationary solutions depend on in complex ways
that have not been analyzed yet in the literature.
These two fundamental uncertainties call for an exact
calculation method for this class of models.
Results: We show that the stationary probability
values of the attractors of stochastic (asynchronous)
continuous time Boolean models can be exactly
calculated. The calculation does not require Monte
Carlo simulations, instead it uses an exact matrix
calculation method previously applied in the context
of chemical kinetics. Using this approach, we also
analyze the under-explored question of the effect of
transition rates on the stationary solutions and show
the latter can be sensitive to parameter changes. The
analysis distinguishes processes that are robust or,
alternatively, sensitive to parameter values, providing
both methodological and biological insights.
Contact: mihaly.koltai@curie.fr or
emmanuel.barillot@curie.fr
Supplementary information: Supplementary
data available at bioRxiv online.
Availability and implementation: The cal-

culation method described in the article is avail-
able as the ExaStoLog MATLAB package on
GitHub at https://github.com/sysbio-curie/

exact-stoch-log-mod

1 Introduction

One of the principle aims of systems biology is to
describe and understand the complex molecular net-
works that regulate the functioning of a cell (Alon,
2006) by quantitative models. To do so numer-
ous mathematical and computational formalisms have
been used in the past decades (Le Novere, 2015).
These range from quantitative and mechanistic mod-
els (stochastic or deterministic chemical kinetics, spa-
tial models such as reaction-diffusion models) that
require the knowledge of numerous biophysical con-
stants (Calzone et al., 2018) to higher level, more qual-
itative models such as fuzzy logic (Morris et al., 2011;
Aldridge et al., 2009) and Boolean models (Wynn
et al., 2012; Morris et al., 2010) that describe func-
tional dependencies, but not the details of the bio-
physical mechanisms. Boolean models have the ad-
vantage that interactions between a model’s variables
(typically genes and/or proteins) only need to be qual-
itatively defined and that calculations for this class
of models are generally much faster than with con-
tinuous models (Naldi et al., 2018), such as ordinary
differential equations (ODE). Traditionally, Boolean
modeling has been mainly used as a more qualitative
approach, for quickly identifying the stationary states
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(attractors) of a particular model and test their ro-
bustness to initial conditions and/or perturbations. In
most Boolean modeling platforms (Naldi et al., 2018;
Müssel et al., 2010; Terfve et al., 2012), time is de-
scribed in discrete steps and the output of calculations
are binary.

In recent years, efforts were made to bridge the gap
between qualitative and quantitative modeling by a
continuous time stochastic version of Boolean mod-
eling (Stoll et al., 2012, 2017). With this approach,
the temporal evolution of a system is described as a
continuous time Markov process on a Boolean state
space. Mathematically, this is equivalent to a master
equation that is a set of ODEs on the probability of
the model’s space. In the MaBoSS modeling tool and
its applications (Montagud et al., 2017; Letort et al.,
2018; Béal et al., 2019), this master equation is sim-
ulated by a kinetic Monte Carlo (Gillespie) algorithm
(Rao and Arkin, 2003), as in chemical kinetics.

With this hybrid approach, we obtain continuous
values for the transient and stationary probabilities
of the states of a Boolean model, while still specifying
only logical rules instead of chemical reactions with
kinetic parameters. However, for the model’s contin-
uous treatment, it is necessary to define transition
rates for each of the model’s variables (nodes) that
determine the probability of that variable being up-
dated from 0 to 1 or vice versa at a given updating
step of the Gillespie algorithm. Using the Gillespie al-
gorithm enables the simulation of large logical models
(Béal et al., 2019), up to 200 or even more nodes.

With an increasing model size, the number of sam-
ple trajectories from which the probabilities are calcu-
lated is typically decreased in the interest of compu-
tation speed. Besides compromising the accuracy of
probability estimates, this raises the issue of attractor
reachability. As the state space of a Boolean model of
n variables has a dimension of 2n, a limited number of
stochastic simulations might not reach all attractors,
leaving an uncertainty if the model’s behavior is fully
explored with a given number of sample trajectories
and simulation length.

Another question that needs to be addressed is pa-
rameter dependence, i.e., the dependence of the prob-
ability values of attractors on the transition rates.
The probability value of an attractor state depends
in complex ways on the transition rates along its
path within the model’s state transition graph (STG),
which is a directed graph of all model states with edges

representing the possible transitions among them, as
defined by the logical rules.

In the studies using the continuous time stochas-
tic Boolean formalism, transition rates are usually as-
signed a default value (typically 1) for the sake of
simplicity and minimizing parameter-dependent bias.
However, transition rates are not neutral parameters:
as shown in (Béal et al., 2019), setting the value of
transition rates based on expression data can improve
a model’s predictive performance. This suggests that
systematic parameter sensitivity analysis, similar to
what is done for ODE models (Zi, 2011; Fröhlich et al.,
2017), can provide valuable insights on what the key
variables and corresponding transition rates of a par-
ticular model are with regard to the probability of its
output (phenotype) variables or its attractor states.
For instance, we might ask the question in the case of
a model with the outputs of proliferation versus cell
death if there are transition rates that dominate the
decision point between these two outcomes.

We provide here an exact method adopting math-
ematical techniques previously applied in the context
of deterministic chemical kinetics (ODEs) (Gunawar-
dena, 2012; Karp et al., 2012; Mirzaev and Gunawar-
dena, 2013) to calculate the stationary solutions of
stochastic continuous time Boolean models. We make
use of the fact that the kinetic matrix of logical mod-
els is typically very sparse, so that the calculation is
as fast as or faster than stochastic simulations up to
an intermediate size of around 20 nodes, while being
exact.

Because of the exact nature of the calculation, it
is guaranteed to find all states of the stationary solu-
tions and their probability values after convergence,
eliminating the issue of choosing a sufficient amount
of time and number of sample trajectories to reach
convergence and all attractors of a model. We per-
form parameter sensitivity analysis and visualization
of solutions and their dependence on parameters on a
number of published Boolean models (Traynard et al.,
2016; Zañudo et al., 2017; Sahin et al., 2009; Cohen
et al., 2015) to explore how sensitive these models are
to variations in transition rates.

In some cases, parameter sensitivity analysis re-
veals that a model’s behavior is controlled by the
transition rates of only a few variables, reducing the
model’s effective dimension, enabling model reduction
and/or reducing the parameter space for more exten-
sive (global) sensitivity analysis and parameter fitting.
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Based on these results, we suggest that parameter sen-
sitivity analysis should be a part of the construction
of a stochastic Boolean model of intermediate size if a
detailed mechanistic understanding is important. We
provide our MATLAB toolbox ExaStoLog as a tool to
carry out such analysis for user-defined logical mod-
els. The toolbox contains the core calculation method
along with various visualization and sensitivity anal-
ysis tools and is available on GitHub with a detailed
tutorial.

2 Materials and Methods

2.1 Mathematical derivation

The master equation of a stochastic logical model is a
first-order homogeneous system of linear ODEs (Stoll
et al., 2012). The state variables of the master equa-
tion are the time-dependent probabilities of the 2n

states of a Boolean model of n variables. The solution
of such a system could, in theory, be directly calcu-
lated by exponentiation of its transition matrix, but
since the dimension of the matrix grows exponentially
with the number of variables, this is possible only for
very small systems.

However, this is not the only possible path of an
exact calculation, and the sparsity of the transition
matrix (typically less than 0.1% of matrix entries are
non-zero) can be exploited to push the limits of an
exact calculation in terms of model size. In determin-
istic chemical kinetics, it was shown (Gunawardena,
2012; Mirzaev and Gunawardena, 2013) that after us-
ing timescale separation to eliminate non-linearities,
biochemical systems in the mass-action approxima-
tion can be described as linear systems of a labeled,
directed graph G and the linear differential equation

dx/dt = Kx(t) (1)

where x(t) is the concentration of chemical species and
K the kinetic matrix (called the Laplacian matrix of
the directed graph G in (Mirzaev and Gunawardena,
2013)).

For such a linear system, as proved in (Mirzaev and
Gunawardena, 2013), for any graph G and any initial
conditions x(0), the system always converges to a sta-
ble steady state (stationary solution) and this solu-
tion can be exactly calculated from the kinetic matrix
K and the initial condition x(0). Mathematically, the
master equation of a continuous-time Markov process,

of which stochastic Boolean models are examples, is
identical to Equation 1, having no non-linearities and
guaranteed to have a stable solution, therefore its ex-
act solution can also be obtained. While the dimen-
sion of the kinetic matrix K grows exponentially with
the model’s n variables as 2n, this problem is miti-
gated by the fact that K is very sparse, as shown in
Fig. 2A, therefore it does not need to be stored in its
full matrix form.

Below we summarize the derivation of the station-
ary solution.

Linear dynamics is completely determined by the
eigenvalues and eigenvectors of the kinetic matrix
K, and the general solution (Gorban and Radulescu,
2008) to the homogeneous linear equations in 1 is

x(t) =

n∑
k=1

rk(lk, x(0))exp(λkt) (2)

where λk, rk, lk are respectively the eigenvalues,
the right eigenvectors and the left eigenvectors of the
kinetic matrix K, with the normalization condition
(lirj) = δij , where δij is Kronecker’s delta.

Since here, as usually for Boolean models, only the
stationary solution of the model is computed, we do
not need to calculate all eigenvectors, but only the ker-
nel (alternatively called the nullspace) of the kinetic
matrix. We denote the right kernel matrix R, and the
left kernel matrix of corresponding left eigenvectors
(row vectors) as L. R contains those right eigenvec-
tors (column vectors) rk for which Krk = 0, which
also means that dx(t)/dt = Krk = 0. In other words,
the right kernel of K contains the terminal vertices
of the STG, ie. the attractors of the logical model.
This means that the right kernel has nonzero elements
only in the rows corresponding to states in terminal
strongly connected components (SCCs) of the STG.
Attractors of a logical model can be individual stable
states (alternatively called fixed points), correspond-
ing to single columns of R. In terms of the STG, these
states are terminal vertices that have only incoming
edges but no outgoing ones: once the model reaches
one of these states it cannot escape it. Alternatively,
attractors can be cyclic attractors comprised of mul-
tiple states, appearing as cycles of multiple vertices
in the STG with edges within the cycle but no edges
leaving it.

We also know that the corresponding eigenvalues
for the columns of the right kernel are 0, since there

3

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted October 7, 2019. ; https://doi.org/10.1101/794230doi: bioRxiv preprint 

https://doi.org/10.1101/794230
http://creativecommons.org/licenses/by/4.0/


  

B)

K= K'=

K
13

=K'
32

K
58

=K'
15

...

T

0

B

N

{A=~B, 
B=~A&C, 
C=B|C}

A

B

C

A)

L
11

=u
C
/(d

A
 + d

B
 + u

C
) L

22
=u

C
/(d

B
 + u

C
)

L
24

=u
B
/(u

A
 + u

B
)

L
31

=d
B
/(d

B
 + u

C
)

L
32

=d
B
/(d

B
 + u

C
)

C)

L
14

=u
A
/(u

A
 + u

B
)

L
21

=(d
A
u

C
)/[(d

B
+u

C
)(d

A
+d

B
+u

C
)]

(  )

Figure 1: Graphical illustration of the exact calculation method for a 3-node logical model. (A) Influence graph and
logical rules of the model (B) Reordering of the state transition graph by topological sorting and the kinetic matrix,
moving terminal (attractor) states (2,6,7) in the lower right block of K. The colors of the nonzero entries of the kinetic
matrix correspond to the transition rates of the model, with the diagonal elements of K equal to the sum of the off-diagonal
entries in the given column (represented by the smaller squares), taken with negative sign. The red-white heatmap between
the two directed graphs (state transition graphs, STG) shows the 8 states of the model with their original and topologically
sorted ordering. Terminal vertices corresponding to attractors are in gray. K is the original kinetic matrix, K ′ is the
reordered one corresponding to the STG above. K ′ has a block structure as described in Eq. 5, with terminal vertices
moved to the right. (C) Construction of the right and left kernels from the reordered kinetic matrix. R has a number
of columns equal to the number of states in terminal SCCs, in this case 3 terminal vertices corresponding to 3 separate
stable states. In each column the nonzero element (block V ) is in the row of the terminal vertices, after reordering these
are the last rows 6,7,8. The left kernel L is constructed by transposing V of the right kernel and then calculating the
block X from the blocks B and N of the reordered kinetic matrix as X = −U ·B ·N−1. The nonzero terms of X, Lij are
rational functions in the transition rates of the model, encoding the conservation laws between attractor states and the
rest of the state space.
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is no further transient dynamics once the system has
reached a stable state. Therefore, with the exponen-
tial terms being 1, it follows from Equation 2 that the
stationary solution of the system, x∗ as t → ∞, for
any initial condition x(0) is:

x∗ = R L x(0) (3)

In practice, when obtaining the stationary solution,
we do not calculate eigenvectors by standard meth-
ods for two reasons. One is the dimension of the ki-
netic matrix, making these calculations too time con-
suming. Second, eigenvectors calculated by standard
methods from K would satisfy the criteria Krk = 0
and lkK = 0, but not the normalization condition of
δij = (li, rj) and therefore yield numerically incorrect
values for x∗.

We can instead build L and R from the directed
graph of the STG, by decomposing its kinetic matrix
as follows, described in (Mirzaev and Gunawardena,
2013), a method faster then eigenvector calculations
and yielding the numerically correct values for x∗.

If K is an n×n matrix and the dimension of its right
nullspace (kernel) has q columns, then let us define R
as a n × q matrix whose columns are a basis for the
column nullspace. Correspondingly, L is defined as
a q × n matrix whose rows form a basis for the row
nullspace. We do not yet have L and R, but we know
we need to choose them in a way that they satisfy the
following conditions:

K ·R = 0, L ·K = 0, L ·R = Iq (4)

where Iq is an identity matrix of dimension q × q.
If the conditions in Equation 4 hold then the sta-

tionary solution is as in Equation 3, x∗ = R L x(0).
The R and L matrices satisfying the conditions in

Equation 4 can be built by decomposing the kinetic
matrix K, as graphically illustrated in Fig. 1.

First, as shown in Fig. 1B for a 3-node logi-
cal model, the vertices (states) of the STG need to
be topologically sorted and the kinetic matrix K re-
ordered accordingly. After topological sorting, the in-
dex of a strongly connected component i (SCC) is al-
ways smaller than that of j if there is a directed path
from i to j. The mapping between indices (row and
column in the kinetic matrix) and the corresponding
logical states (see Fig. 1A) needs to be retained to
eventually have the correct assignment of the prob-
ability values to model states. The ordering of ver-
tices within rings (SCCs of more than one vertex) is

of no consequence, therefore the topological sorting
is done on the metagraph of the STG, with multi-
vertex SCCs treated as single vertices. After sorting
the metagraph, the constituent vertices of the multi-
vertex SCCs are again unmerged, with their indices
having values between the indices of the directly up-
stream and downstream vertices and their intra-SCC
ordering following the initial ordering of the binary
states of the logical model. Usually the graph of the
STG of logical models has many irreversible transi-
tions, therefore many SCCs are single vertices (as in
Fig. 1 where each SCC is a single vertex).

Once this reordering is done (performed in ExaS-
toLog by the built-in MATLAB function toposort),
the reordered kinetic matrix (denotedK ′ in Fig. 1(B))
will have a block structure. The n - u columns corre-
sponding to the terminal SCCs are on the right of the
kinetic matrix, u being the total number of vertices
in non-terminal SCCs.

The block structure of K will be the following, as
also shown in Fig. 1(B):

K =

(
N

B

|
|

0

T

)
(5)

Here and in Eq. 6 horizontal and vertical lines show
the borders between blocks and the parentheses the
limits of the matrix. In the case of the model in Fig.
1(A), we have 3 terminal vertices, which are all stable
states (fixed points), so T and the block above it are
all zeros, since there are no connecting edges between
these vertices or outgoing edges from them.

In the case of cyclic attractors, there are nonzero
elements within T , representing the edges between the
states of the terminal cycle(s), but the block above T
contains again zeros only.

Now we can construct the right and left kernels from
K ′, which will have the block structure:

L = (X|U), R =

(
Y

V

)
(6)

In the right kernel R, any row of R whose index is
not in a terminal SCC contains only zeros, so Y = 0
and each column of V has nonzero components only
for the rows of the terminal SCCs, which are the last
rows. In the case of cyclic attractors, a column-wise
normalization needs to be applied to respect conser-
vations using the spanning trees of the SCCs as de-
scribed in (Mirzaev and Gunawardena, 2013), also im-
plemented in the ExaStoLog toolbox. In the case of a
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model with only stable states as attractors, as in Fig.
1 (C), the nonzero elements of V are simply ones.

To build the left kernel, since L · R = In, by block
multiplication this requires U · V = Iq. To build the
block U , we transpose V , as the left kernel is made up
of row vectors, and replace all nonzero elements by 1.
In our case, in Fig. 1 (C), these are ones in the right
kernel too. U · V = Iq is therefore satisfied.

The columns of the kinetic matrix sum to zero, 1 ·
K = 0 (with 1 a row vector of ones) and this applies
also for its block containing terminal SCCs, and so
U · T = 0. The remaining block of the left kernel,
X can finally be determined from the fact that L ·
K = 0, which requires by block multiplication that
X · N + U · B = 0 and since N is always invertible
after reordering K, we obtain X = −U ·B ·N−1.
N is a lower triangular matrix if the STG contains

no cycles, and contains very few elements in its up-
per triangular section if there are small non-terminal
cycles. Therefore, its inversion is a fast calculation.
If the STG of a model contains large (more than a
thousand vertices) non-terminal cycles, this inversion
can set a limit to our calculation. In the models we
have analyzed (Table 1) we have not confronted this
problem and we expect most biologically relevant log-
ical models not to have such SCCs in their STG. The
calculation of X is shown graphically in Fig. 1 (C),
with the nonzero terms of X in symbolic form.

The nonzero elements of X of L are rational func-
tions in the model’s transition rates, and it is these
terms of the left kernel that encode the conserva-
tion laws between the model’s attractors and its non-
terminal states. Mathematically they are ratios of
polynomials with (only) positive coefficients, originat-
ing from the forks and cycles of the STG that dis-
tribute the initial probabilities on the vertices of the
STG into the attractor states. As shown by Fig. 1
(C), even for a 3-node model, the denominators con-
tain quadratic terms, and for larger models contain
polynomials of high order. In other words, the depen-
dence of stationary solutions on transition rates is a
complex mathematical expression.

In summary, up to the limit that we can store the
transitions of a logical model its stationary solution
can always be obtained by topological sorting of its
state transition graph and matrix calculations on its
reordered kinetic matrix. Using our ExaStoLog tool-
box for biological models of around 20 variables the
calculation of the stationary solution is of the order

of seconds, and the memory requirement is well below
1GB, so the calculations are feasible on a personal
computer.

2.2 ExaStoLog toolbox: calculation of so-
lutions, visualization and parameter
sensitivity analysis

We implemented the above steps of calculating the
stationary solution of a logical model in the ExaS-
toLog MATLAB toolbox, available on GitHub. The
user first needs to input a logical model in BoolNet
(Müssel et al., 2010) format using standard logical no-
tation. The generation and topological sorting of the
STG and the identification of its cycles are steps in-
dependent of the values of the transition rates, there-
fore these are performed only once for a given model.
This is done by the functions fcn build stg table and
fcn scc subgraphs. Because the existence of large cy-
cles in the STG is the main limiting factor in the sub-
sequent matrix calculations, fcn scc subgraphs out-
puts the size and number of cycles in the STG. The
matrix calculations that depend on the numerical val-
ues of the transition rates and the initial values are
encoded in the function split calc inverse. The time of
calculation and the memory requirement for the STG
are shown for four different models that we analyzed
in Table 1.

The STG of the (Zañudo et al., 2017) model con-
tains no cycles, therefore its solutions are particularly
fast to calculate. The model of (Traynard et al., 2016)
has one (terminal) cycle of 270 states, the (Cohen
et al., 2015) model a few dozen cycles of 64 to 256
vertices, and the (Sahin et al., 2009) model 32 cycles
of 192 vertices and one cycle of 1536 vertices. The
calculation times mainly reflect these constraints.

Biological models often have input nodes that are
not dynamic, representing environmental conditions
such as the presence of a drug or extracellular ligand.
Such models have STGs made up of disconnected sub-
graphs. In this case, the time of calculation depends
on whether the states having a nonzero initial prob-
ability are in a single or in multiple subgraphs, as
shown by the lower and upper bounds in column 4
(calculation time) in Table 1.

Besides the calculation of the stationary solution for
an individual set of parameters and initial conditions,
ExaStoLog contains 16 other functions to visualize the
results and to perform parameter sensitivity analysis
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Model nodes (dynamic) STG (Mb, density) calculation time

Traynard et al. (2016) 13 (12) 1.4Mb, 7e-4 0.35-0.6 sec

Zañudo et al. (2017) 20 (16) 237Mb, 7e-6 0.4-3 sec

Cohen et al. (2015) 20 (18) 297Mb, 8e-6 2.5-25sec

Sahin et al. (2009) 20 (19) 318Mb, 9e-6 2-19 sec

Table 1: Boolean models analyzed in manuscript. Calculation time is for a single solution of one set of initial
conditions and parameters, on a CENTOS computer with 8 cores (Intel(R) Xeon(R) CPU X5472 3.00GHz), without
parallelization. Besides overall model size, the calculation time depends on the existence of cycles in the STG, as well as
the chosen initial conditions, in particular how many of the disconnected subgraphs (due to non-dynamic input nodes) of
the STG have states with nonzero initial probability. In parenthesis in the column ’nodes’ are the numbers of dynamic
nodes, excluding input nodes.
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Figure 2: Transition matrix and stationary solution of the mammalian cell cycle model from (Traynard et al., 2016),
influence graph shown on SI Fig. 3. (A) Transition matrix A. Each axis represents the 213 logical states of the model.
Nonzero elements in blue are the transitions between model states. A has 226 ≈ 6.7e7 entries with only 5.3e4 of them
nonzero. The relationship between the transition matrix A and the kinetic matrix K is A = ( K∑

r + I)T , where r are

the transition rates and I is the identity matrix. The element Aij of the transition matrix is therefore the (normalized)
transition rate between states i and j. (B) Stationary probability values of the model’s attractor states with a probability
higher than 3%. The two states at the bottom are the fixed points in one of the two subgraphs of the STG, the other
states are part of the cyclic attractor in the other subgraph. (C) Initial and stationary probabilities of model variables.

and parameter fitting. All figures in the main text
except Figure 1 and all figures of the SI except SI
Fig. 1, 3-4 and 6-7 were generated by the functions
of ExaStoLog. A detailed tutorial showing the use
of these functions with examples is available in the
GitHub repository.

To ensure reproducibility and correctness of the re-
sults, we first compared the results of multiple models
to MaBoSS (Monte Carlo) simulations. We checked
models both with separate stable states and cyclic at-
tractors and verified that the results are identical to

stochastic simulations, as shown on SI Figure 1 and 2,
the latter model of the mammalian cell cycle (Tray-
nard et al., 2016) having a large (270 states) cyclic
attractor.
Below we discuss the results obtained by ExaStoLog’s
functions for parameter sensitivity analysis for four
published Boolean models of different biological pro-
cesses, listed in Table 1.
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Figure 3: Attractors and their stationary probabilities for
two logical models with different types of attractors. Plots
by ExaStoLog function fcn plot statsol bin hmap. The
value to the left of each row is the probability of the given
state, with the nodes of the model on the x-axis, red color
standing for a variable having the value of 1 (activated).
The number in parenthesis is the index of the STG’s sub-
graph that the attractor state is located in. (A) Attractors
of the mammalian cell cycle model from (Traynard et al.,
2016). Initial conditions were defined so that the 2 sub-
graphs of the STG both contain states with nonzero initial
probabilities. The two states at the top are separate stable
states in subgraph 1 of the STG with CycD=0 (Cyclin D).
The lower 13 states, with CycD=1, are part of a cyclic at-
tractor of 270 states (in subgraph 2), of which only those
with more than 1% probability are shown. Stable states
are automatically plotted with a small gap between them,
whereas states in a cyclic attractor are plotted as one block.
(B) Attractors of the EMT (epithelial-mesenchymal tran-
sition) model from (Cohen et al., 2015). All attractors are
separate stable states.

3 Results

The exact method described above is best-suited to
study the stationary solutions and identify the key pa-
rameters (transition rates) of logical models of inter-
mediate size, up to 20-25 nodes, depending on mem-
ory. We show results with 4 biological models of
this size that we selected from the literature to il-
lustrate our exact method and the features of ExaS-
toLog in terms of sensitivity analysis and parameter
fitting. We describe the models in more detail in the
SI Section 2, here we give only a very brief summary:
(Traynard et al., 2016) presents a discrete model of
the mammalian cell cycle. The (Zañudo et al., 2017)
model describes the signaling pathways involved in
breast cancer and focuses on resistance mechanisms.
The (Cohen et al., 2015) model explores the dynamics
of the early steps of the metastatic process. Finally,
(Sahin et al., 2009) is a Boolean model of breast can-
cer with an emphasis on ERBB2 overexpression. The
model of mammalian cell cycle is known to have a
cyclic attractor, testing ExaStoLog’s ability to deal
with multi-state attractors, whereas the others are ex-
pected to have attractors that are fixed points.

We pose the question to what extent the behavior
of these models are parameter-dependent and if pa-
rameter sensitivity analysis can aid model reduction,
similarly to chemical kinetics (Radulescu et al., 2008).

First, we visualize the model’s attractors (Fig. 2B
and Fig. 3), that can be either separate stable
states (fixed points) or multi-state cyclic attractors,
and their corresponding probabilities. The station-
ary probabilities of the model variables are simply the
probability-weighted sums of these attractor states.
These values can be interpreted as the probability that
a variable of the logical model is activated. For some
models, there are many attractor states. For example,
in the case of the breast cancer model (Zañudo et al.,
2017), if the model is initiated with uniform initial
conditions across all states, so that all the subgraphs
of its STG contain states with positive initial proba-
bility, there are 39 fixed points, as shown on SI Fig.
5. Others, such as the mammalian cell cycle model
(Traynard et al., 2016) have a large cyclic attractor
made up of many states. For these cases, looking
at the stationary probability value of model variables
and how these change from their initial value is more
biologically informative. The stationary solution by
model variables is shown in Fig. 2C for (Traynard
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et al., 2016) and SI Fig. 5 for (Zañudo et al., 2017).

The method allows the identification of the tran-
sition rates that are more important in defining the
model’s behavior than others. The behavior of in-
terest can be for instance the stationary probability
of model variables representing biomarkers or pheno-
types. We first gauge parameter sensitivity by one-
dimensional parameter scans. After having scanned
all transition rates, those where model variables show
significant variation can be selected.

In the case of the (Zañudo et al., 2017) model of
drug effects in breast cancer, the sensitivity analysis
showed that transition rates have differential effects as
a function of the initial value of input nodes. Specifi-
cally, as shown in Fig. 4, in the presence of one of the
two drugs (and deactivation of PIM), it is the activa-
tion (0→ 1) rate of alternatively AKT or SGK1 that
has the most potent effect on the stationary probabil-
ity value of the Apoptosis node. The presence of both
drugs, in contrast, invariably leads to 100% Apopto-
sis, a robust feature of this model.

Alternatively, we can look at the probability of
given attractor states corresponding to phenotypes,
as in Fig. 5 for the (Cohen et al., 2015) model of the
early steps of metastasis. For this model, the analy-
sis shows that the decision point between the model’s
proliferative-invasive and apoptotic behavior mainly
depends on the transition rates of the nodes p53,
p63 73, AKT1, AKT2, Notch pathway and miRNA.

For the cell cycle model, the same analysis shows
(SI Fig. 9) that the distribution of probabilities be-
tween the two fixed points of this model is determined
only by the transition rates u Rb b2 (Rb b2 stands for
the higher activation level of the retinoblastoma gene)
and d p27 b2 (similarly for the p27 gene). Here, of
the large number (270) of states of the cyclic attrac-
tor, only 13 show a significant sensitivity to parame-
ters. The others have low probabilities that cannot be
significantly amplified by parametric changes. Inter-
estingly, each of these parameter-sensitive states has
a single transition rate that can increase their proba-
bility up to 40%.

We also found an example of a model’s behavior
being robust to relative changes in transition rates:
the breast cancer model of (Sahin et al., 2009) has
only one attractor state (a fixed point) if all transition
rates are nonzero. It is only knockdowns of the model
nodes CDK6, CyclinD1 or CDK4, where the initial
value and the 1→0 transition rate of the node are set

to 0, that make it possible to access the model’s other
fixed point, where pRB=0, meaning that cell cycle
progression (G1/S transition) is blocked. The effects
of the different knockdowns for this model is shown
on SI Fig. 8.
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Figure 4: One-dimensional parameter scan of the 20-node
Zanudo breast cancer model, with the stationary proba-
bility value of the Apoptosis variable (y-axis) shown as a
function of the transition rates in the legends. Only the
transition rates where the variation in at least one vari-
able’s value is larger than 0.1 are shown. The three panels
show the model’s behavior under 3 different initial condi-
tions defined by the value of the input nodes: the drugs
Alpelisib and Everolimus and the node PIM (representing
members of the PIM protein family). Under double inhibi-
tion (and PIM=0), shown on the top panel, the model has
a single attractor state with Apoptosis=1, irrespective of
the value of transition rates.

Besides the stationary values of states or model
variables, the local sensitivity (see SI section 3.1.2) to
the transition rates can also be visualized. In the case
of the EMT model, shown on SI Fig. 10, this anal-
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ysis reiterates the importance of the transition rates
for p53, p63 73 and the node representing the Notch
pathway.

One-dimensional parameter scanning only covers a
small subspace of a multidimensional parameter space
along its axes. To extend our analysis, based on the re-
sults of one-dimensional parameter analysis, the tran-
sition rates that have a significant effect on station-
ary solutions are selected and the multidimensional
parameter space of these rates is explored using the
Latin Hypercube Sampling (LHS) (Zi, 2011; Constan-
tine and Diaz, 2017) function of ExaStoLog.

The results of LHS are first visualized on scatter-
plots as shown on SI Fig. 12 with a trendline show-
ing if a variable’s (state’s) stationary probability has a
clear trend as a function of particular transition rates.
Beyond this visual intuition, the effect of transition
rates are statistically analyzed by performing linear
regression on the stationary values by the rates (see
SI section 3.3.3), calculating and visualizing the co-
efficient of determination R2, shown in Fig. 6 (right
panel) for the EMT model’s (Cohen et al., 2015) at-
tractor states. For this model, the transition rates of
p53, and of the nodes representing EMT pathway reg-
ulators (EMT reg) and regulatory miRNAs (miRNA)
have the strongest explanatory value for the station-
ary solutions.

Furthermore, calculating correlations between the
model’s variables shows (SI Fig. 13) that some vari-
ables always have identical values. In this case, these
nodes could be merged, reducing the model size. In
the case of the EMT model (Cohen et al., 2015), the
dominant upstream variables of the Apoptosis pheno-
type seem to be p53, p63 73, miRNA and Ecadh.

Performing linear regression on the stationary val-
ues by the transition rates assumes a monotonic re-
lationship between them, which is not necessarily the
case. Sobol sensitivity index (Constantine and Diaz,
2017) is a global sensitivity measure without this lim-
itation that quantifies the relative amount of variance
in a variable’s value due to variation of the individ-
ual parameters. Calculation of the Sobol sensitivity
index, described in SI section 3.3.4, requires recalcu-
lating the solutions by individually replacing columns
of the matrix of parameters generated by LHS. In the
case of the EMT model (Cohen et al., 2015), shown
in Fig. 6 (left panel) the Sobol sensitivity indices
show a similar pattern as R2, since there are no non-
monotonic effects.
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Figure 6: Relative importance of transition rates (y-axis)
on the stationary probability values of attractor states (see
Fig. 3B) of the EMT model (Cohen et al., 2015), calcu-
lated from Latin Hypercube Sampling with 2000 parameter
sets. The left panel shows the Sobol sensitivity indices for
the transition rates, the sample size was 1000 parameter
sets for each resampling. The right panel shows the coef-
ficient of determination (R2) between transition rates and
the probability values of the three states.
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Finally, if quantitative data is available for a
model’s variables or states it is possible with ExaS-
toLog to perform parameter fitting of the model’s
transition rates. If a model’s nodes are proteins, quan-
titative phosphoprotein data is an ideal data type,
often used in another semi-mechanistic modeling ap-
proach, modular response analysis (Dorel et al., 2018;
Klinger et al., 2013). As described above, the station-
ary solutions are complex rational functions (ratios of
polynomials) of transition rates (Fig. 1C), therefore it
is not computationally practical to calculate gradients
for parameter fitting for any model larger than a few
variables. For this reason, we integrated a gradient-
free simulated annealing (Ashyraliyev et al., 2009) al-
gorithm into our toolbox, so that ExaStoLog can be
used to directly connect models to experimental data
(see SI section 4).
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Figure 7: Simulated annealing with 9 transition rates for
the Cohen et al. (2015) EMT model. The panel on the
left shows the convergence process, the panel on the right
the data, the initial and optimized values for the model’s
variables.

Fitting with simulated annealing of the 20-node
EMT model is shown in Fig. 7. Certain models us-
ing the initial numerical gradient of the error with
respect to the fitted transition rates can be sufficient
to perform parameter fitting, with less iterations and
therefore lower computation time than for simulated
annealing. However neither finding a global minimum
nor convergence is guaranteed with this method. The
convergence process for the two methods in the case
of the EMT model Cohen et al. (2015) is shown on
Fig. 7 and SI Fig. 16.

With this exact method, it is therefore possible to
use stochastic logical models for quantitative model-
ing and connect models to experimental data directly.

4 Discussion

We have shown above that it is possible to calculate
the stationary solutions of continuous time stochastic
Boolean models by an exact method without resort-
ing to Monte Carlo approximations. Moreover, this
exact-continuous calculation method made it easier
to explore the question of parameter dependence of
this class of models. The examples of Boolean models
from the literature have shown that transition rates
can indeed have a significant effect on a model’s be-
havior and typically it is a small subset of all the rates
that dominate a model’s behavior, providing a mech-
anistic understanding of the model.

These findings can be used in several ways. One
is the parameterization (instantiation) of models by
data, as done in (Béal et al., 2019) to improve the
clinically relevant predictive power of Boolean mod-
els. In this approach, transition rates can be set to 0
for knockout mutants or their values adjusted based
on continuous, such as omics data. Subsequently the
phenotypic changes in model behavior can be com-
pared to clinical data to validate the model. Vice
versa, if data is available on the relative activation
level of a model’s variables (or relative frequency of
its states (phenotypes)) it can be used to fit transi-
tion rates directly.

For example, phosphoprotein measurements with
perturbations (Klinger et al., 2013; Dorel et al., 2018;
Morris et al., 2011, 2010) can be used to fit transition
rates, the same way as it was done with simulated data
in Fig. 7. While transition rates are not biochemi-
cal constants, they have a plausible biological inter-
pretation as proxies for the timescale of activation-
deactivation processes. Similarly, differences in their
values across different cell lines or other biological
samples can be interpreted as indications for corre-
sponding differences in expression or activity levels of
genes, proteins or higher level cellular processes.

5 Conclusion

Stochastic logical models represent a powerful frame-
work to study the behavior of cellular networks in
terms of their steady state (attractor) behavior and
their sensitivity to perturbations. This modeling
framework does not require the knowledge of bio-
chemical constants that are often unavailable for most
cellular processes. An extension of asynchronously
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(stochastically) updated, discrete time logical models
emerged in recent years (Stoll et al., 2017, 2012) using
timescale parameters (transition rates) for the model’s
variables to generate continuous time Monte Carlo
simulations. This approach produces continuous val-
ues (probabilities of activation) for a model’s vari-
ables, enabling more quantitative analysis and com-
parison with continuous biological data.

We took this framework of analysis but imple-
mented it with an exact method adopted from chem-
ical kinetics to perform robustness analysis of several
published models. Our analysis confirmed the pos-
sibility of efficiently applying exact methods in the
context of stochastic logical models, as well as the im-
portance of their parametric analysis, two questions
so far neglected in the literature.

This analysis raised several questions that need fur-
ther investigation. First, for parameter fitting to be
more efficient and to ascertain if a global minimum
was identified, we need to mathematically analyze the
dependence of the stationary solution on transition
rates and if its monotonicity can be proved, in which
case fitting is a convex problem.

Second, currently our method has a limit in terms
of model size due to the memory requirement of ex-
plicitly storing the entire state transition graph as a
sparse matrix. The first way to mitigate this prob-
lem is to store only those states of the STG that are
accessible from the states defined by the initial con-
dition and perform the matrix calculations with this
reduced transition matrix. This is partially already
implemented in ExaStoLog in as much as the sub-
graphs of the STG containing no states with positive
initial probability are not used for calculations. How-
ever the transition matrix is currently not reduced by
eliminating inaccessible individual states.
More fundamentally, the indices of nonzero elements
of the transition matrix are compositions of arithmetic
series defined by the logical rules. This fact could be
exploited to avoid simultaneously storing all transi-
tions individually. We are exploring how already ex-
isting methods (Bérenguier et al., 2013) to simplify
the STG, such as hierarchical transition graphs, can
be used in our exact framework. These are again
parameter-independent steps therefore they need to
be performed only once for a given model, after which
individual solutions with different parameter values
can be calculated more efficiently.

By making use of some or all of these simplifica-

tions we hope to push the limits of our exact method
to encompass larger logical models in the future.

6 Funding

This work was part of the COLOSYS project, sup-
ported by Agence Nationale de la Recherche under the
frame of ERACoSysMed-1, the ERA-Net for Systems
Medicine in clinical research and medical practice.

7 Contributions

M.K. conceived and implemented the method.
M.K. wrote the manuscript with input from A.Z., L.C.
and E.B.
V.N. worked on translating the toolbox into Python
(ongoing).

8 Acknowledgements

We thank our partners Christine Sers, Markus Morkel
and Natalie Bublitz at Charité - Universitätsmedizin
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N. (2018). Modelling signalling networks from per-
turbation data. Bioinformatics, 34(23), 4079–4086.
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Burmester, S., Majety, M., Mattern, J., Schupp,
I., Chaouiya, C., Thieffry, D., et al. (2009). Model-
ing erbb receptor-regulated g1/s transition to find
novel targets for de novo trastuzumab resistance.
BMC systems biology , 3(1), 1.

Stoll, G., Viara, E., Barillot, E., and Calzone, L.
(2012). Continuous time boolean modeling for bio-
logical signaling: application of gillespie algorithm.
BMC systems biology , 6(1), 116.

Stoll, G., Caron, B., Viara, E., Dugourd, A., Zi-
novyev, A., Naldi, A., Kroemer, G., Barillot, E.,
and Calzone, L. (2017). Maboss 2.0: an environ-
ment for stochastic boolean modeling. Bioinfor-
matics, 33(14), 2226–2228.

Terfve, C., Cokelaer, T., Henriques, D., MacNa-
mara, A., Goncalves, E., Morris, M. K., van Iersel,
M., Lauffenburger, D. A., and Saez-Rodriguez, J.
(2012). Cellnoptr: a flexible toolkit to train pro-
tein signaling networks to data using multiple logic
formalisms. BMC systems biology , 6(1), 133.
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