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Abstract

Biochemical demands constrain the range of amino acids acceptable

at specific sites resulting in across-site compositional heterogeneity of the

amino acid replacement process. Phylogenetic models that disregard this

heterogeneity are prone to systematic errors, which can lead to severe

long branch attraction artifacts. State-of-the-art models accounting for

across-site compositional heterogeneity include the CAT model, which is

computationally expensive, and empirical distribution mixture models es-

timated via maximum likelihood (C10 to C60 models). Here, we present a

new, scalable method EDCluster for finding empirical distribution mixture

models involving a simple cluster analysis. The cluster analysis utilizes

specific coordinate transformations which allow the detection of special-

ized amino acid distributions either from curated databases, or from the

alignment at hand. We apply EDCluster to the HOGENOM and HSSP

databases in order to provide universal distribution mixture (UDM) mod-

els comprising up to 4096 components. Detailed analyses of the UDM
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models demonstrate the removal of various long branch attraction ar-

tifacts and improved performance compared to the C10 to C60 models.

Ready-to-use implementations of the UDM models are provided for three

established software packages (IQ-TREE, Phylobayes, and RevBayes).

1 Introduction

Statistical uncertainty of phylogenetic analyses can be arbitrarily reduced by

including more sequence data, which is today readily available given modern

sequencing technologies. As a result, phylogenomic analyses based on complete

genomes routinely provide very strong statistical support even for deep phy-

logenetic relationships. Statistical support, however, measures uncertainty in

estimates assuming a specific evolutionary model and not accuracy of inferred

phylogenetic inferences. Analyzing more sequence data alone cannot mitigate

systematic biases that result from model misspecification or model inadequacy.

In fact, more data can lead to arbitrary strong support for erroneous relation-

ships under the wrong model (Philippe et al., 2011).

Long branch attraction (LBA) is a systematic bias in phylogenetic inference

where branches are estimated to be shorter than they actually are (Felsenstein,

1978; Philippe et al., 1998). LBA may result in topological errors, and dis-

tantly related species may appear to be closer related. LBA artifacts are espe-

cially abundant, when inferring phylogenies using maximum parsimony, where

multiple character changes are disregarded. The development of substitution

models (Jukes et al., 1969) accounting for the possibility of multiple character

changes has decreased the severity of LBA artifacts, especially when accounting

for rate heterogeneity, for example with a discrete Gamma probability distribu-

tion (Yang, 1994b). In the following, the term distribution is used to refer to

probability distributions.

Classical substitution models assume that sites in the sequence alignment

of interest evolve according to a transition rate matrix describing the rates

of change between different pairs of characters. The transition rate matrix

is parametrized by a set of exchangeabilities between characters and a station-

ary distribution of characters. Usually, a single transition rate matrix is used

for the entire alignment, and exchangeabilities and the stationary distribution
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are shared across all sites. Most often, the stationary distribution is set to the

distribution of observed characters in the analyzed alignment. For alignments

of amino acid sequences of real-life proteins, however, a shared stationary dis-

tribution across sites is clearly not adequate, because biochemical constraints

limit the range of amino acids acceptable at specific sites reducing amino acid

diversity in a site-specific manner (Pál et al., 2006; Goldstein, 2008; Franzosa

et al., 2008). For example, at a specific site, an amino acid with a specific hy-

drophobicity, size, or mass may be required.

Phylogenetic inferences with models that disregard heterogeneity in the sta-

tionary distribution across sites (across-site compositional heterogeneity), have

led to strongly supported LBA artifacts (Williams et al., 2013; Simion et al.,

2017; Feuda et al., 2017). One reason for the underestimation of the lengths of

long branches is that when only a reduced set of amino acids is used, the substi-

tution process becomes saturated earlier than when the full set of amino acids

is employed. This happens, because the probability of observing the same amino

acid increases if the stationary distribution is constrained to a strict subset of all

amino acids. Models that ignore a variation in the stationary distribution across

sites, and instead use an averaged stationary distribution, will systematically un-

derestimate the probability of observing the same amino acid, and consequently

underestimate the branch length between two evolutionary distant observations.

In phylogenetic terms this corresponds to a systematic underestimation of the

probability of homoplasy (independent substitution events leading to the same

amino acid) which can result in long branches being attracted because identi-

cal amino acid characters are erroneously interpreted as synapomorphies (i.e.,

resulting from a single substitution on an ancestral branch).

Across-site compositional heterogeneity has been modeled using partition

models (e.g., Lanfear et al., 2016), and mixture models, the focal point of this

contribution. In addition, mixture models of full transition rate matrices have

been examined (Le et al., 2008b; Le et al., 2010; Le et al., 2012). Mixtures of full

transition rate matrices allow different sites not only to exhibit specific amino

acid compositions, but also to evolve with different exchangeabilities according

to solvent exposure, protein structure or protein function.

In contrast to the above, the CAT model (Lartillot et al., 2004) uses one set
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of exchangeabilities for all mixture model components and a Dirichlet process

prior over the stationary distributions and their weights in a Bayesian Markov

chain Monte Carlo framework. The CAT model is widely used, and greatly

improves model fit. However, computational requirements are high, such that

convergence times are long, and convergence may be beyond reach, especially

for larger data sets (Whelan et al., 2016).

Inspired by the CAT model, and consistent with the derivation of widely

used empirical transition rate matrices from curated databases, empirical sta-

tionary distribution mixture (EDM) models, which use a fixed set of stationary

distributions, have been developed. The rationale is that site-specific amino acid

constraints may be caused by universal biochemical constraints (e.g., Jimenez

et al., 2018). In particular, composition heterogeneity and site-specific amino

acid constraints have already been used to estimate protein structure (Goldman

et al., 1996) and the association of protein structure with evolution (Goldman

et al., 1998).

Previously, Quang et al. (2008) used an expectation maximization algorithm

to find EDM models with 10, 20, up to 60 components, which we collectively call

CXX models, from alignments of the HSSP database (Schneider et al., 1997).

Each mixture model component is defined by the used stationary distribution

and weight. Accordingly, we use the term component to refer to a stationary

distribution with corresponding weight. For computational reasons, the Poisson

model (Felsenstein, 1981), which exhibits uniform exchangeabilities, was used

when searching for the components. The phylogeny for each alignment was es-

timated beforehand using the WAG model. In contrast, Wang et al. (2008) use

principal component analysis to detect four stationary distributions of amino

acids from alignments of the Pfam data base (Sonnhammer et al., 1997). Infer-

ences with EDM models such as the CXX models are much less computationally

expansive than with the CAT model because they can be used in a maximum

likelihood framework, where they exhibit good statistical fit.

Recently, a composite likelihood approach was developed that estimates sta-

tionary distributions of amino acids directly from the data at hand (Susko et

al., 2018). Special strategies to estimate the stationary distributions need to

be used, because if species are closely related, the observed amino acids are
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expected to be more similar. These strategies include (1) restricting the anal-

ysis to sites with high rate, (2) penalizing low frequencies of amino acids, (3)

down-weighing contributions from species-rich clades, and (4) phylogeny-based

estimation.

Here, we describe EDCluster, a new method for obtaining stationary distri-

butions that can be used to construct EDM models. EDCluster can be used

on any set of alignments ranging from large databases of homologous genes

to more specific data sets. We employ the CAT model implemented in Phy-

lobayes (Lartillot et al., 2013) to estimate site-specific posterior distributions

of the stationary distributions of amino acids. In this way, specialized treat-

ment of the expected variation in the divergence between the sequences is not

required. The site distributions are analyzed as is, or transformed using linear

transformations developed specifically for compositional data. The transforma-

tions aid the clustering method in finding stationary distributions of amino acids

with different specialized features. The use of a clustering algorithm seemed

natural because clustering is a simple machine learning approach for feature

discovery. Although EDCluster does not directly use biochemical information,

the inferred components are found to correspond to specific biochemical traits

of amino acids, such as hydrophobicity, size, or mass.

Using EDCluster, we provide sets of 4, 8, 16, . . . , 4096 components estimated

from subsets of the HOGENOM database (Dufayard et al., 2005), the HSSP

database, and the union of both. We present extensive analyses of EDM models

based on these sets of components which we collectively call universal distribu-

tion mixture (UDM) models. For the same number of components, we demon-

strate that the UDM models outperform the CXX models not only in terms of

likelihood but also in parametric bootstrap analyses, were they exhibit improved

amino acid compositions and branch lengths. Moreover, EDCluster allows con-

struction of EDM models with a large number of components. In particular, the

UDM models with more components show even further increases in accuracy.

However, the number of components is still limited by the associated linear in-

crease of computational requirements during inference. In conclusion, the UDM

models minimize systematic errors caused by constraints in amino acid usage in

a fraction of the run time of CAT. We provide ready-to-use implementations for
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several established phylogenetic software packages such as IQ-TREE (Nguyen

et al., 2015), Phylobayes, or RevBayes (Höhna et al., 2016). Further, we pro-

vide user-friendly scripts implementing EDCluster to construct EDM models

specific to the data set at hand. Finally, we employ a simulation study to re-

produce a well known LBA artifact of classical substitution models, and show

that application of EDM models successfully recovers the correct topology.

2 New Approaches

EDM models assume that evolution occurs along a phylogeny according to a

mixture of N amino acid substitution models. The transition rate matrices of

the different components share a single set of exchangeabilities. In this contribu-

tion, Poisson exchangeabilities were used exclusively although the method could

in principle be generalized directly to any other set of exchangeabilities. In con-

trast, the stationary distributions (or equilibrium frequencies over the 20 amino

acids) differ between each component of the mixture model. Here, the station-

ary distributions are inferred from alignments obtained from curated databases.

Each alignment was analyzed with Phylobayes under the CAT model with Pois-

son exchangeabilities. For each alignment and each site, the expectation of the

posterior distribution of the stationary distribution of amino acids (site distri-

bution), was calculated. Each site distribution is a point in 20-dimensional space

with elements summing up to 1.0. For each database, the site distributions of all

sites were used as is or transformed before further analysis. Application of lin-

ear transformations is a standard procedure in analyses of compositional data.

The two employed transformations were: (1) the centered log ratio transforma-

tion (CLR; Aitchison, 1982), and (2) the log centered log ratio transformation

(LCLR; Godichon-Baggioni et al., 2018). In our case, the transformations ensure

that site distributions exhibiting specific different features are moved further

apart from each other, so that they fall into different groups in the subsequent

analysis. K-means clustering was used to group the prepared site distributions

into N ∈ {4, 8, 16, . . . , 4096} clusters. The stationary distributions and weights

of the different components to be used in the UDM models were set to the de-

termined cluster centers and their relative weights, respectively.
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We combine the components obtained from a subset of the HOGENOM

database with Poisson exchangeabilities and refer to the mixture model result-

ing from a specific set of components as UDM-XXX-Trans, where XXX is the

number of components, and Trans is the used transformation (None, CLR, or

LCLR). The usage of Poisson exchangeabilities is implicitly assumed and not

mentioned specifically. For example, the UDM model with four components

obtained from the LCLR transformed site distributions is referred to as UDM-

004-LCLR model. Although the presented analyses exclusively focus on com-

ponents estimated from the HOGENOM database, components estimated from

the HSSP database, and the union of both databases are provided for further

reference.

3 Results

Analysis of UDM model components. EDM models differ by their used set of

stationary distributions and weights (components). The effective number of

amino acids (Keff, see Material and Methods) measures the diversity of discrete

distributions. For stationary distributions of amino acids, Keff values range from

1 for highly constrained stationary distributions with only one used amino acid

to 20 for the uniform stationary distribution of amino acids which is used by the

Poisson model. Most often, the empirical distribution of amino acids observed in

the analyzed alignment is used for inference. Usually, these empirical stationary

distributions exhibit a high effective number of amino acids of 15 < Keff < 20. In

particular, the default stationary distribution of the LG model (Le et al., 2008a)

has Keff = 18.04.

The performance of an EDM model is strongly characterized by the com-

position of effective number of amino acids of the used stationary distributions

together with their weights. In general, UDM models with more components

employ more specialized, constrained stationary distributions with lower Keff

values, and also put more weight on these constrained distributions (Figure 1).

Accordingly, the mean Keff value decreases with the number of components. In

particular, a general, “catch-all” stationary distribution exhibiting Keff ≈ 17 is

retained. The weight of the most general stationary distribution decreases with
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Figure 1: Distributions of effective number of amino acids of the stationary
distributions used by universal distribution mixture models with different
numbers of components. Violin plots of the effective number of amino acids of
the stationary distributions obtained from the log center log ratio transformed site
distributions (Godichon-Baggioni et al., 2018) of the HOGENOM database (Dufayard
et al., 2005) are shown. On the far right, the distribution of the effective number of
amino acids of the site distributions obtained with the CAT model (Lartillot et al.,
2004) using Poisson exchangeabilities (Felsenstein, 1981) is displayed. The width of
the violin plots was normalized such that all areas are equal. Horizontal bars display
the means of the distributions.
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the number of components. Additional components exhibit stationary distribu-

tions with Keff values usually well below 10. UDM models with more than 128

components tend to include more than one general stationary distribution with

Keff > 10. The results for the stationary distributions obtained from untrans-

formed, and CLR transformed site distributions are almost identical (Figure S1

and Figure S3).

Further, the distribution of Keff values of the site distributions inferred from

the HOGENOM database using the CAT model with Poisson exchangeabilities

and the corresponding mean value are shown. As expected, the more compo-

nents are used, the closer the distribution of Keff values of the stationary distri-

butions of the UDM components to the distribution estimated directly from the

HOGENOM database (see also Figures S2, S4, and S5). The mean Keff values

exhibit the same tendency. Exact Keff values for UDM models up to 16 compo-

nents including all three transformations are available in Section S3. Strikingly,

in most cases components with higher weight also have higher Keff values.

Further, the Keff values of the site distributions associated with the compo-

nents with the most general stationary distributions are usually much lower than

the Keff value of the stationary distribution of the respective component. In

particular, the first component sorted by weight of the UDM-016-LCLR model

exhibits a stationary distribution with Keff = 17.1, but the median of the Keff

values of the associated site distributions is 12.2 (Figure 2, left; see Figure S6

for more details). Even for the UDM-256-LCLR model the first components

exhibit a striking discrepancy between Keff values (Figures S7 and S8). The

substantial difference between the Keff values of the site distributions and the

stationary distribution of the corresponding component is only apparent for the

first few components when sorting them according to weight. For example,

the Keff value of the stationary distribution of the fourth component (purple

in Figure 2) is already very close to the median of the Keff values of the site

distributions. The components with lower weight show even higher agreement

between the median Keff value and the Keff value of the cluster center. A more

detailed analysis shows that the mean of the differences between the Keff values

of the site distributions and their associated cluster centers, which represents

the loss in amino-acid specificity resulting from using a finite mixture of a given
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Figure 2: Analysis of the components of a universal distribution mixture
(UDM) model. (Left) Violin plot of the effective number of amino acids of the
site distributions associated with the first six components sorted by weight of the
UDM model with a total number of 16 components obtained from clustering the log
center log ratio (LCLR; Godichon-Baggioni et al., 2018) transformed site distributions
(UDM-016-LCLR model). The effective numbers of amino acids of the stationary
distribution of the components themselves are shown by vertical lines. The respective
differences to the medians of the associated site distributions are also given (∆ values).
(Right) Customized WebLogos (Crooks, 2004) visualize general features of the amino
acid distributions of the components. The heights of the amino acid letter codes
correspond to their probabilities; the total height of each logo is 0.5. The amino acids
are colored according to their hydrophobicity. Hydrophilic amino acids D, E, H, K,
N, Q, and R, with hydrophobicity indices below −1.9 are colored in red. Hydrophobic
amino acids C, F, I, L, M, and V, with hydrophobicity indices above 1.9 are colored
in blue. Finally, amino acids A, G, P, S, T, W, and Y, with hydrophobicity indices
between −1.9 and 1.9 are colored in green. The weights of the components are shown
to the right of the logos.

10

.CC-BY-NC 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted March 31, 2020. ; https://doi.org/10.1101/794263doi: bioRxiv preprint 

https://doi.org/10.1101/794263
http://creativecommons.org/licenses/by-nc/4.0/


number of components, decreases monotonically with the number of components

(Figure S9).

Observe that the stationary distribution of the component with highest

weight is very general (Figure 2), the second component is enriched for neu-

tral amino acids with hydrophobicity indices close to zero, and the third and

fourth component select for hydrophobic and hydrophilic amino acids, respec-

tively. Also note that the weight of the first component differs significantly from

the weight of the other five shown components. Altogether, the stationary distri-

butions of the different first components of the UDM-016-LCLR model exhibit

limited overlap and no apparent redundancy.

Performance of UDM models. The performance of the UDM models was as-

sayed on three empirical data sets that exhibit well characterized LBA artifacts

when applying classical substitution models such as the LG model. The first

data set encompasses eukaryotes including the fast evolving microsporidia and

a distant archaeal outgroup. Microsporidia are a group of spore-forming unicel-

lular parasites, which notably lack mitochondria (Cavalier-Smith, 1987). The

lack of mitochondria and phylogenetic placement as the first emerging eukary-

otic group (Vossbrinck et al., 1987; Kamaishi et al., 1996) marked them as a

candidate for an ancient eukaryotic lineage predating the acquisition of mito-

chondria. However, more sophisticated phylogenetic analyses have recovered mi-

crosporidia being relatives of fungi, rather than being basal eukaryotes (Hirt et

al., 1999; Keeling et al., 2000; Van de Peer et al., 2000; Keeling et al., 2002) and

subsequently remnants of mitochondria were found experimentally (Williams et

al., 2002). Here, as an illustration, we consider the data set of Brinkmann et

al. (2005, referred to as microsporidia data set), which spans 40 sequences, and

comprises 133 genes corresponding to 24294 amino acid sites. We show anal-

yses of the concatenated alignment, as well as of the separate genes. For the

concatenated alignment of the microsporidia data set, site homogeneous sub-

stitution models such as the LG model favor the former topology in terms of

likelihood. Models accounting for across-site compositional heterogeneity such

as the CAT model exhibit higher posterior probabilities for the latter topology,

which is now widely accepted. Note that we use the term topology when refer-
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Figure 3: Performance of universal distribution mixture models (UDM;
blue), and CXX models (orange; Quang et al., 2008) for an increasing num-
ber of components for the three empirical data sets. Results for UDM models
are shown for the untransformed (None), center log ratio transformed (CLR; Aitchison,
1982), and log center log ratio transformed (LCLR; Godichon-Baggioni et al., 2018)
site distributions. Results for WAG (purple; Whelan et al., 2001), and LG (red; Le
et al., 2008a) are indicated by dashed horizontal lines. The rows from top to bot-
tom show: (1) the maximum log-likelihoods, (2) the sum of all branch lengths (total
branch length) of the maximum likelihood phylogenies measured in average number of
substitutions, (3) the log likelihood differences between the two topologies presented
below with a positive value indicating support for topology T2, (4) historical topology
T1 affected by long branch attraction artifacts, and (5) currently accepted topology
T2. In the topologies, outgroup, clade of interest, and ingroups are colored gray, red,
and in shades of blue, respectively.
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ring to the order of branching events, and the term phylogeny, when referring

to the topology together with branch lengths.

Further two data sets involving the positioning of nematodes and platy-

helminths were analyzed (referred to as the nematode data set and the platy-

helminth data set, respectively; Philippe et al., 2005). These data sets contain

a total of 37, and 32 taxa with 35371 amino acid sites, respectively. The LBA

artifacts, observed when using classical substitution models such as the LG

model, are: nematodes and platyhelminths branching with a clade contain-

ing both, deuterostomes and arthropodes. Current phylogenetic consensus has

nematodes and platyhelminths branching with arthropodes — a result strongly

supported by the CAT model. In the following, we refer to the three topologies

most likely exhibiting LBA artifacts as T1, and to the topologies in agreement

with current phylogenetic consensus as T2 (Figure 3).

Maximum likelihood analyses were performed with IQ-TREE using UDM

and CXX models with Poisson exchangeabilities, as well as the WAG and the

LG model (Figure 3). Indeed, traditional substitution models favor the topolo-

gies T1 exhibiting the discussed LBA artifacts, whereas sufficiently component-

rich UDM models reject T1 in favor of the currently accepted topologies T2

(Figures S10, S18, and S20). In general, the results agree very well across the

three data sets. In terms of maximum log-likelihood, the WAG model performs

slightly worse than the LG model. When using the same number of compo-

nents, the maximum log-likelihood under the UDM and CXX models are sim-

ilar. Eight and 16 components are needed to approximately achieve maximum

log-likelihood values equivalent to the ones the WAG and LG models, respec-

tively. Usage of more components further improves the maximum log-likelihood

of the UDM and CXX models to the extent that they outperform classical sub-

stitution models, even-though they use Poisson exchangeabilities. The UDM

models outperform the CXX models when using 64 components or more, be-

cause CXX models are not available with more than 60 components. Bayesian

information criterion (BIC, Schwarz, 1978) scores are monotonically decreasing

with the number of components, and component-rich models are clearly favored

(Figures S11, S19, and S21).

For the UDM and CXX models, the total branch length of the maximum
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likelihood phylogenies increases with the number of used components. When

increasing the number of components, the total branch lengths do not approach

a limit but exhibit logarithmic increase. The total branch lengths of the max-

imum likelihood phylogenies of the WAG model are lower than the ones of the

UDM model with four components. The total branch lengths of the phylogenies

obtained by the LG model are surpassed when using eight to 16 components,

approximately. The total branch lengths of the maximum likelihood phyloge-

nies of the UDM models tend to be larger than the ones of the CXX models.

The transformation affects total branch lengths more than the other presented

results. Components obtained from the LCLR transformed site distributions

exhibit highest total branch lengths.

Next, the power to discriminate between topologies T1 and T2 was exam-

ined. To this end, the maximum log-likelihoods of analyses constrained to

the two different topologies T1 and T2 were compared. The topologies were

fixed during the analyses, but the branch lengths and other model parameters

were inferred. The difference of the maximum log-likelihood values acquired

from topologies T2 and topologies T1 indicates whether the LBA artifacts are

supported (negative values), or rejected (positive values). The WAG and LG

models both strongly support the topology exhibiting the LBA artifacts in all

three cases with large differences in maximum log-likelihood. In contrast, if the

number of components is large enough, the UDM and CXX models reject the

topology exhibiting the LBA artifacts in all three data sets. For the data set in-

volving microsporidia, compared to the CXX models the UDM models require

a higher number of components to reject the topology with LBA artifacts. For

the data sets involving nematodes and platyhelminths, the situation is reversed

in that the differences of the maximum log-likelihoods of the UDM models are

more positive than the ones of the CXX models. Also, the difference in max-

imum log-likelihood does not increase substantially for the CXX models when

applied to the data set involving nematodes.

The performance of the UDM models on shorter alignments compared to the

LG model, and the CAT model with Poisson exchangeabilities was tested on the

separate genes of the microsporidia data set. The inferred trees were compared

to the historical topology T1 (Figures S12–S14) and the more recent topology
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T2 (Figures S15–S17). The lengths of the alignments range from 40 to 600

amino acid columns. Consequently, we observe high variance between the re-

sults from different genes. The means of the symmetric (Robinson et al., 1981)

and branch score (Kuhner et al., 1994) distances to the T1 topology do not im-

prove when using models accounting for across-site composition heterogeneity

compared to the LG model. However, the means of the symmetric and branch

score distances do decrease with the number of components for the T2 topology.

The branch score distance of the CAT model is larger than for the UDM-128-

LCLR. We stress that there is no strong consensus of the current phylogenetic

literature about the branch lengths of the discussed tree. In general, the dif-

ference between the results of the UDM models and the CAT model decreases

with the number of components. The results of the UDM-128-LCLR model and

the CAT model are nearly identical. The incompatible split distance, which is a

distance measure accounting for the uncertainty in the inferred topology, shows

a consistent decrease of the distance with the number of components.

Model adequacy in recovering across-site compositional heterogeneity. Finally,

we assayed the potential of the UDM, and CXX models, as well as of the WAG

and the LG models to reproduce the across-site compositional heterogeneity of

empirical alignments. For this reason, we preformed parametric bootstrap in

a manner similar to posterior predictive analyses in Bayesian statistics. We

estimated model parameters using maximum likelihood for the microsporidia,

nematode, and platyhelminth data sets and used these to simulate alignments

comprising 25 000 sites, which is close to the length of the original data sets.

Subsequently, summary statistics for the original alignments, and the simulated

alignments were compared. It is desirable that the simulated alignments repro-

duce characteristics of the original alignments.

Here, we compared the distribution of effective number of amino acids ob-

served at each site of the alignment. It is difficult to judge differences in the

actual distributions of effective number of amino acids by eye (Figures S22, S23,

and S24). Therefore, we present the Wasserstein distance (also known as earth

mover’s distance) between the distributions of effective number of amino acids

of the original and the simulated alignments.
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Figure 4: Across-site compositional heterogeneity of classical substitution
models and empirical distribution mixture models. Similarity between the
across-site compositional heterogeneity of the microsporidia data set (Brinkmann et
al., 2005), and simulated alignments for the maximum likelihood parameter estimates
of the WAG (Whelan et al., 2001), LG (Le et al., 2008a), CXX (Quang et al., 2008),
and universal distribution mixture (UDM) models. Results of UDM models obtained
from untransformed (None), center log ratio (CLR; Aitchison, 1982) transformed,
and log center log ratio (LCLR; Godichon-Baggioni et al., 2018) transformed site
distributions are shown. Similarity is measured by the Wasserstein distance between
the distributions of effective number of amino acids per site between empirical data
and the sequences simulated using parametric bootstrap.

For all three data sets, the WAG and LG models with a single amino

acid transition rate matrix produce alignments with inflated diversity measured

in effective number of amino acids (Figure 4 for the microsporidia data set;

Figures S25, and S26 for the nematode and platyhelminth data sets, respec-

tively). Numeric values of the average effective number of amino acids per

site in the alignment, as well as the Wasserstein distances are given in Table S1.

Component-rich UDM and CXX models typically exhibit lower Wasserstein dis-

tances than UDM or CXX models with fewer components. The UDM models

consistently outperform the CXX models. The C50 model exhibits large devia-

tions in all three data sets. UDM models with 256 components sometimes ex-

hibit higher Wasserstein distances than their equivalents with 128 components.

For example, compare the UDM-256-LCLR model with the UDM-128-LCLR

model in the microsporidia data set (Figure 4). The reason for the increase of
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Figure 5: Reproduction of microsporidia long branch attraction artifact in
simulation study. (Left) Phylogeny used for simulation using Poisson exchangeabil-
ities (Felsenstein, 1981), and stationary distributions of amino acids obtained from
analyses of the HOGENOM database (Dufayard et al., 2005). (Middle) Maximum
likelihood phylogeny of the Poisson model. (Right) Maximum likelihood phylogeny of
the universal distribution mixture model with 32 components obtained from log cen-
ter log ratio transformed (Godichon-Baggioni et al., 2018) site distributions (UDM-
032-LCLR model). For both inferred phylogenies, bootstrap values below 100 % are
shown.

the Wasserstein distance is that the average number of used amino acids of the

UDM-256-LCLR model is actually lower than the one of the original data.

Phylogenetic artifact can be reproduced in simulation study. The results pre-

sented above rely on assumptions about the correct topology (Whelan et al.,

2016). As an alternative, we can experiment with simulations, for which we

know the true phylogeny. Interestingly, the LBA artifact observed in the mi-

crosporidia data set could be reproduced in a simple simulation study. We used

the 175 330 site distributions obtained from the HOGENOM database to simu-

late an alignment along a phylogeny exhibiting the currently accepted topology

T2 where microsporidia branch within fungi (left phylogeny in Figure 5). Then,

maximum-likelihood phylogenies were inferred with the Poisson model, and the
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LG model, as well as the CXX models, and the UDM models which account

for across-site compositional heterogeneity. The maximum-likelihood phyloge-

nies of the Poisson and LG models exhibit the incorrect topology T1 where

microsporidia are positioned at the eukaryotic root (Figures 5 and S27). In

addition, the ciliates are also moved outside their clade. All branches are sup-

ported with bootstrap values of 100 %.

The maximum likelihood phylogenies inferred by UDM models with 4, 8

and 16 components still exhibit the LBA artifact involving microsporidia (Fig-

ure S28). In contrast, the UDM-032-LCLR model correctly supports micro-

sporidia branching from within fungi. The correct phylogeny has much higher

statistical support with an improvement in BIC score of 2591445 units compared

to the results of the Poisson model. The position of microsporidia, holozoa,

and conosa still has poor branch support in form of a bootstrap value of 50 %.

However, when using the UDM-064-LCLR model, the mentioned bootstrap val-

ues rise to 100 % (see supplementary data). Also, the C10, C20, to C50 models

infer the incorrect topology T1, albeit with decreasing branch support values.

Only the maximum likelihood topology of the C60 model is in agreement with

the original topology used for simulating the alignment (Figure S28), and has

high branch support with bootstrap values of 100 % (see supplementary data).

The improvement in model fit with increasing number of components can

also be seen when examining the branch lengths. First, the sum of all branch

lengths (total branch length) of the original phylogeny used for the simulation is

15.6 average number of substitutions per site. The total branch lengths of the

phylogenies estimated by the Poisson, the LG, the UDM-032-LCLR, and the

UDM-064-LCLR models are 11.98, 14.14, 14.38, and 14.72 units, respectively.

Second, the branch score distance between the original phylogeny used to sim-

ulate the alignment and the inferred phylogenies was calculated (Figure S29).

The branch score distances of the Poisson and LG model are highest, and the

branch score distances of the EDM models decrease with the number of com-

ponents. For the same number of components the UDM models exhibit lower

branch score distances than the CXX models. Ignoring across-site composi-

tional heterogeneity therefore leads to a substantial underestimation of branch

lengths because multiple substitution events occurring among a restricted sub-
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set of amino-acids are missed by site-homogeneous models.

Also for the simulated data, performance of the UDM models on individual

genes was assayed and compared to results of the Poisson and LG models. To

this aim, trees were inferred from simulated alignments ranging from 100 to

1000 amino acid columns (see Material and Methods). In general, we observe

a decrease of symmetric as well as branch score distance with alignment length

(Figures S30, and S31). For short alignments with 100 to 200 columns, an

increase of the number of components does not improve the symmetric distance.

However, the branch score distance decreases with the number of components,

even for such short alignments. For longer alignments, the UDM models with

many components consistently outperform the Poisson and LG models, as well

as UDM models with fewer components. Strikingly, this trend continues even

for UDM models with as many as 1024 components.

4 Discussion

The importance of accounting for across-site compositional heterogeneity has

been demonstrated by a series of phylogenetic studies where models accounting

for across-site compositional heterogeneity, such as the CAT model, were able

to overcome artifacts caused by LBA (e.g., Brinkmann et al., 2005; Philippe

et al., 2005; Lartillot et al., 2007; Pisani et al., 2015). The reproduction of

an LBA artifact and its resolution in a simulation study (Figure 5) provides

further evidence for the claim that across-site compositional heterogeneity is

a fundamental cause of the phylogenetic artifact observed in the microsporidia

data set, and potentially many others.

The simulation study on the microsporidia phylogeny demonstrates that ac-

counting for across-site compositional heterogeneity affects not only the topol-

ogy (Figures 5 and S28) but also the branch lengths of the inferred phylogeny.

In the simulation study, we observe a remarkable downward bias of the total

branch length of the phylogeny estimated by the classical Poisson and LG mod-

els. The length of long branches, in particular, is severely underestimated.

Additionally, the branch score distance between the inferred phylogenies and

the original phylogeny used for simulating the alignments improves significantly
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with the number of EDM model components (Figure S29). Also, we observe su-

perior branch score distances for the UDM models obtained from LCLR trans-

formed site distributions when comparing them to the CXX models. This effect

of inadequate modeling of across-site compositional heterogeneity has been over-

looked in most previous analyses. With respect to the simulation study, the

downward bias of the branch lengths estimated by the Poisson model causes

a wrong topology to have higher likelihood than the original topology. This

classic LBA attraction artifact is eliminated when accounting for across-site

compositional heterogeneity.

In order to provide robust and accurate models that account for across-site

compositional heterogeneity, we developed a new method EDCluster to find em-

pirical stationary distributions of amino acids with corresponding weights. ED-

Cluster was used to provide universal stationary distributions estimated from

curated databases, but also allows construction of EDM models with a large

number of components directly from the data set at hand. The CAT model is

employed to infer site distributions, that is, the expectations of the posterior dis-

tributions of the stationary distributions of amino acids per site. Subsequently

we use a clustering algorithm to explore the structure of the hundred thousands

of site distributions. The choice of using a cluster algorithm seemed natural

because clustering is a simple machine learning approach for feature discovery.

Additionally, to enhance the ability to resolve specialized site distributions we

employ coordinate transformations developed specifically for analysis of compo-

sitional data. The inference of site distributions with CAT enables our method

to deal with the fact that the amino acids of closely related species are expected

to be more similar than the ones of distantly related species. Hence, when using

our method on an alignment of closely related species the inferred stationary

distributions will not necessarily have a low effective number of amino acids. In

contrast, methods inferring stationary distributions and weights directly from

the alignment (e.g., Susko et al., 2018) require other means to compensate for

the expected variation of divergence between the sequences.

From the perspective of potential phylogenetic artifacts caused by inade-

quate modeling of across-site heterogeneity the effective number of amino acids

Keff and its distribution provide useful summary statistics for analyzing dif-
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ferent models and their stationary distributions. The lower Keff is, the higher

the potential to underestimate the frequency of multiple substitutions and the

probability of homoplasy, with corresponding negative effects on phylogenetic

inferences, in terms of recovering accurate branch lengths and avoiding LBA.

Consequently, a clustering preceded by a transformation separating stationary

distributions with low Keff, such as the LCLR transformation, can be expected

to lead to mixture models less prone to biases in branch length estimation and

LBA artifacts. In order to provide sets of universal stationary distributions and

weights available for general use we have applied our method, which implements

these steps to subsets of databases spanning the whole tree of life. Analysis

of the distributions of Keff for these universal stationary distributions indicate

that a large number of stationary distributions is necessary to adequately model

the diversity of site distributions present in empirical alignments. For exam-

ple, a set of 16 stationary distributions of amino acids is by far not sufficient to

describe the observed variety of site distributions (Figure 1). When the num-

ber of clusters is too low, we notice that many site distributions are assigned to

overly general stationary distributions, because they do not fit in any particular

stationary distribution, and not because they are general themselves (Figure 2).

In spite of the apparent need for many stationary distributions, analysis of

the WebLogos of the sets of stationary distributions with more than 64 elements

reveals an unexpected level of redundancy (see Section S4). It seems reason-

able that the number of needed stationary distributions could be reduced by

conglomerating stationary distributions exhibiting a certain level of similarity.

We attempted to reduce the redundancy within sets comprising many station-

ary distributions by employing different clustering methods. For example, we

tried a form of divisive clustering, where the cluster with the center exhibiting

the highest effective number of amino acids is repeatedly divided (Figures S32,

and S33), and also density based clustering with DBSCAN (Ester et al., 1996).

Both clustering methods failed to improve the redundancy compared to standard

K-means clustering. However, sets of stationary distributions with a moder-

ate number of elements do not exhibit significant redundancy. For example,

the first six elements of the set of 16 stationary distributions obtained from

the LCLR transformed site distributions exhibit very little, if any, overlap (Fig-
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ure 2). Finally, stationary distributions with similar WebLogos may still exhibit

specialized features that are not apparent by visual inspection.

A set of stationary distributions and weights together with Poisson exchange-

abilities composes an EDM model. We refer to the models composed of the

universal stationary distributions and weights discussed above as UDM models.

Using the UDM models, we demonstrate the removal of several known LBA as-

sociated phylogenetic artifacts from three example analyses: (1) the branching

of microsporidia from within fungi and (2) the branching of nematodes and (3)

flatworms with arthropodes (Figure 3). For the analysis of the microsporidia

data set, the performance of the UDM models was comparable to that of CXX

models when using the same number of components. The UDM models outper-

formed the CXX models in analyses of the data sets including nematodes and

platyhelminths. Assaying the ability of different EDM models to adequately

recover across-site heterogeneity we found that UDM models outperform CXX

models. In fact, the maximum number of components of the CXX models is

currently limited to 60 due to the computational cost of the expectation max-

imization algorithm. In contrast, our method allows for mixture models with

many more components. As a proof of concept, we show results for UDM mod-

els with 128 and 256 components. All presented analyses support that these

component-rich UDM models outperform the C60 model. Another issue with

the CXX models is the lack of reproducibility of the expectation maximization

estimations in a context characterized by a rugged likelihood surface with a very

large number of local maxima (Quang et al., 2008). In particular, the large

deviations in the parametric bootstrap results of the C50 model (e.g., Figure 4)

reiterate that there may be a problem with respect to local maxima during es-

timation of the components. The EDCluster approach presented here, however,

returns reproducible results, even for rich mixtures.

When examining the total branch lengths of the maximum likelihood phy-

logenies, we observe that the UDM models obtained from LCLR transformed

site distributions exhibit highest total branch lengths. As discussed above, the

LCLR transformation facilitates the discovery of more specialized stationary dis-

tributions that exhibit lower effective numbers of amino acids. In turn, the lower

effective numbers of amino acids lead to inferences exhibiting longer branches.
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The logarithmic increase of the total branch length with the number of com-

ponents is striking because it demonstrates that a high number of components

may be required. In contrast, the results of the parametric bootstrap analysis

indicate that inferences with the UDM-256-LCLR model already overshoot in

terms of effective number of amino acids (Figure 4). This observation can be

attributed to the LCLR transformation which favors low Keff values. In this

sense, the LCLR transformation is more eager to catch specific site distributions

for moderate numbers of components than the other two transformations but

may be too eager for large mixtures of 256 components or more.

The optimal number of components can be determined by established sta-

tistical tests, for example, using the AIC or BIC scores. In fact, the maximum

log-likelihood as well as the difference in log-likelihood between the tested hy-

potheses still seem to be far from saturation (Figure 3) for all three trans-

formations. Accordingly, the BIC or AIC scores favor component-rich UDM

models, because adding a component only increases the number of model pa-

rameters by one (if the weights are inferred). Furthermore, the analyses of the

simulated alignments with 100 to 1000 columns show reduced symmetric and

branch score distances for component rich UDM models (Figures S30 and S31).

These results suggest that the complexity of the composition of site distribu-

tions exceeds what can be captured by even the richest mixtures considered

here. Consequently, especially for challenging cases, the alleviation of LBA

due to site-specific amino-acid preferences may require richer mixtures than the

currently available ones such as the CXX models. In summary, for long align-

ments with thousands of columns, we recommend using UDM models with as

many components as permitted by the available computational resources. If the

tractable number of components is 256 or lower, we recommend using stationary

distributions obtained from the LCLR transformed data, otherwise stationary

distributions directly obtained from the data without transformation.

For alignments with 1000 columns or fewer, maximum likelihood estimation

of the component weights may be unstable for component rich mixture mod-

els, and we recommend Bayesian estimation with UDM models having up to

128 components (Figures S12–S17). If the distribution of component weights

is known — for example, from an analysis of the concatenated alignment —
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maximum likelihood analysis employing component rich UDM models is recom-

mended as it showed high accuracy (Figures S30 and S31).

The results presented above use sets of stationary distributions and weights

estimated from a subset of the HOGENOM database. A parallel analysis of

a subset of the HSSP database was performed and corresponding components

were collected. However, the stationary distributions obtained from the HSSP

database were mostly outperformed by the ones obtained from the HOGENOM

database. Analysis of the taxonomic composition of the databases (see Materials

and Methods) revealed that the taxonomic composition of the subset of the

HOGENOM database is enriched for eukaryotes with an approximate value

of 70 %, which is in agreement with the taxonomic compositions of the three

analyzed data sets. For completeness, the stationary distributions obtained

from the HSSP database as well as universal stationary distributions obtained

from the union of both databases are also provided, and may exhibit better

performance on data sets enriched for bacteria or with a balanced distribution

of eukaryotes, archaea, and bacteria, respectively.

We used Poisson exchangeabilities for this first presentation of the UDM

models in order to allow comparison with existing models, in particular the CXX

models, which were also estimated using Poisson exchangeabilities. In practice,

the CXX models are now widely used together with non-uniform exchangeabil-

ities, for example, with the ones of the LG model (a Google scholar search for

phylogenetics "LG+C60" returned 59 results on August 22, 2019). However, it

may be problematic to use LG exchangeabilities with sets of stationary dis-

tributions estimated employing Poisson exchangeabilities, because the effect of

across-site compositional heterogeneity might be overfitted. Our method allows

estimation of UDM models suitable for a specific set of non-uniform exchange-

abilities such as the ones of the LG model by using these exchangeabilities during

the inference of the site distributions with the CAT model. Doing so, however,

would still raise the question that LG exchangeabilities, originally estimated in

a site-homogeneous context, have already captured part of what is in fact a re-

sult of site-specific amino-acid preferences. A more principled alternative would

be to use the present clustering approach in the context of mutation-selection

models (Rodrigue et al., 2010), to estimate universal mixtures of amino-acid fit-
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ness profiles.

Although in this contribution we seek to provide a set of models available

for universal use, data set specific stationary distributions and weights can be

estimated. First, the alignment has to be analyzed with CAT. For this purpose,

it is sufficient to fix the topology; a measure greatly reducing computational

requirements. If the alignment is still too computationally demanding, it is

possibly to split the alignment, or randomly sub-sample a given number of

shorter alignments which can be analyzed appropriately (jackknifing). Overall,

the computational requirements are much less than a complete analysis with

CAT. Second, the site distributions can be analyzed using the provided script

(Section S2). Finally, phylogenetic inference can be performed using an EDM

model specific to the data set. We tested this procedure on the three discussed

data sets and the LBA artifacts were removed in all three cases (see supplemen-

tary data).

Before closing the discussion, we would like to examine the relation of EDM

models with other available methods. For example, transition rate matrix re-

coding methods split the amino acids into separate groups representing different

physicochemical properties (e.g., Kosiol et al., 2004; Susko et al., 2007). Amino

acids within the same group are frequently exchanged whereas there is hardly

any exchange between amino acids of different groups. In our opinion, EDM

models are very similar in that they differentiate between amino acids exhibiting

frequent exchange and amino acids exhibiting no or very limited exchange. How-

ever, EDM models seem to be more flexible, because they allow specific amino

acids to be member of more than one group, such that the final estimations are

superpositions of the individual groupings.

Next, phylogenetic mixture models require a significant amount of computa-

tional resources, in particular computer memory. For this reason, the posterior

mean site frequency (PMSF, Wang et al., 2018) method has been developed. For

each site in the alignment, the PMSF method condenses the stationary distri-

butions of the mixture model components into a single stationary distributions.

The single stationary distribution is a weighted superposition of the stationary

distributions of all mixture model components. The weights are the posterior

probabilities of the site belonging to the respective mixture model components.
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These posterior probabilities are calculated using a so-called guide tree, which

has to be given. The PMSF method speeds up calculations with EDM models

and, as such, can be perfectly used with the UDM models.

Similarly, EDM models can be combined with partition models. While, there

might be significant evidence justifying the use of specific phylogenetic models

for different partitions of the data, this is not in general the case. A canonical

way of performing phylogenetic analysis could be: the same EDM model is used

across all partitions of the data but a separate set of parameters is inferred

for each partition. When using CXX or UDM models, one could only infer a

separate set of mixture weights per partition, whereas all other parameters are

shared across all partitions.

Finally, usage of an additional mixture model component representing in-

variable sites (usually +I flag) is possible, but not recommended. First, we did

not analyze the effect of this measure. Second, highly constrained stationary

distributions with an effective number of amino acids close to 1.0 may already

imitate this feature because a very limited availability of amino acids increases

the probability of a constant site in the alignment when compared to more gen-

eral stationary distributions. Additionally, slowly evolving sites are modeled

when accounting for across-site rate heterogeneity, for example by a discrete

Gamma distribution, which is highly recommended.

Finally, the UDM models can help resolve open phylogenetic problems in-

volving large data sets and distantly related species (e.g., Simion et al., 2017;

Philippe et al., 2019). Further, dissimilarities in compositional heterogeneity

may be detected by applying EDCluster to specific species groups. Also, the

ideal number of EDM model components is still an open question. Statistical

tests may not be the best guidance in developing appropriate methods because

they favor component-rich EDM models. Albeit, parametric bootstrap analy-

ses, and posterior predictive analyses with Bayesian methods can be used. For

EDCluster, automatic clustering algorithms could be used. In conclusion, the

presented UDM models constitute a valuable alternative to the widely used CXX

models, and can be used for comparisons against the CAT or the CXX models.

EDCluster allows estimation of stationary distributions that are specific to the

data set at hand and suitable for use with non-uniform exchangeabilities.
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5 Supplementary material

A supplement to this manuscript is distributed online together with the main

text. Supplementary data is available on GitHub at

https://github.com/dschrempf/edm-models-data.
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7 Material and Methods

Empirical distribution mixture models. Evolution of hereditary characters is

assumed to occur according to a mixture of N stationary, irreducible, time-

continuous Markov processes along a phylogeny T . We solely use the state

space of amino acids, but the concept of empirical distribution mixture (EDM)

models can be applied to arbitrary state spaces of finite cardinality. Let Qn be

the 20×20 transition rate matrix of component n with weight wn. Non-diagonal

entries qnij (1 ≤ i, j ≤ 20, i 6= j) of Qn can be decomposed into qnij = rijπ
n
j . The

rij are the exchangeabilities which are shared across all components, and πn is

the stationary distribution of component n. In this contribution, the Poisson

model (Felsenstein, 1981) which exhibits uniform exchangeabilities, was used

exclusively. The stationary distributions, which differ between each component,

are obtained from curated databases (see below). The diagonal entries qnii are set

such that the row sums are zero. The transition rate matrices are normalized to

ensure that one transition of the Markov process is expected to happen per unit

length. Additionally, across-site rate heterogeneity can be modeled, for example,
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by using a discretized Gamma distribution (Yang, 1994a) with parameter α.

Then, the complete set of EDM model parameters is (T , wn, α). Excluding

the phylogeny, EDM models with N components have N parameters, because∑
n w

n = 1.0.

HOGENOM and HSSP databases. Subsets of the HOGENOM (Dufayard et

al., 2005) and HSSP (Schneider et al., 1997) databases consisting of 1005, and

1236 randomly selected alignments were obtained (Quang et al., 2008). For the

HOGENOM database, the 1005 alignments contain 15 to 50 sequences and a

total number of 175330 amino acid sites. For the HSSP database, the 1236

alignments contain 10 to 100 sequences and a total number of 260961 amino

acid sites. Table 1 shows summary statistics of both databases. The summary

statistics include the number of sequences and the number sites of the complete

databases, and of the analyzed subsets. Further, the percentage of analyzed

sites falling into each domain of life provides a rough idea about the taxonomic

composition of the analyzed data. First, the analyzed number of sites is slightly

larger in the HSSP database compared to the HOGENOM database. Second,

and more importantly, the proportion of eukaryotes and bacteria differs largely.

The analyzed subset of the HOGENOM database contains a substantially higher

proportion of eukaryotes compared to the HSSP database, which comprises a

higher proportion of bacteria.
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HOGENOM HSSP

Number of sequences 153 818 42 999

Number of sites 40 835 577 9 305 643

Number of analyzed sequences 1005 1236

Number of analyzed sites 175 330 260 961

Distribution across domains in analyzed subsets

Archaea 1.6 % 1.8 %

Bacteria 27.4 % 59.3 %

Eukaryotes 71.0 % 35.1 %

Viridiae 0.0 % 3.8 %

Table 1: Size of the HOGENOM and HSSP databases and the analyzed subsets.
A rough measure of the taxonomic composition is given in form of the percentage of
analyzed sites falling into each domain of life.

Site distributions. For each alignment, a separate Bayesian analysis was con-

ducted using the CAT model (Lartillot et al., 2004) with Poisson exchangeabili-

ties. Phylobayes (Lartillot et al., 2013) was used for the Bayesian analyses. The

phylogenies were fixed to the ones estimated by Quang et al. (2008) who had

used the WAG model (Whelan et al., 2001) and PhyML (Guindon et al., 2010).

Command lines are stated in Section S1. For each alignment and each site, the

posterior distribution of the stationary distribution of amino acids is a mapping

from the 20-dimensional simplex to the unit interval p : S20 → [0, 1]. The cor-

responding site distribution, which is the expectation E (p), is a point on the

20-dimensional simplex S20. The site distributions of all sites were collected

and used as a basis for all further analysis.

Transformations of site distributions. The site distributions were analyzed as

is, or after transformation from the Aitchison (1982) simplex to real space,

which is a standard procedure when analyzing compositional data. First, the

well-characterized centered log ratio transformation CLR : Sd → Rd (Aitchison,

1982) was used. The CLR transformation of a point x = (x1, . . . , xd) is defined
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as

CLR(xi) = ln( xi

g(x)
), (1)

where g(x) : Rd
+ → R+ is the geometric mean. Basically, the coordinates of

x are fanned out from [0, 1]
d to (−∞,∞)

d, with the origin (0, . . . , 0) being

CLR ((g(x), . . . , g(x))). Recently, Godichon-Baggioni et al. (2018) reported a

novel log centered log ratio transformation LCLR : Sd → Rd derived from the

CLR transformation

LCLR(xi) =

−
{

ln[1− ln( xi

g(x) )]
}2

if xi

g(x) < 1,[
ln( xi

g(x) )
]2

otherwise.
(2)

The LCLR transformation moves points that are close to the boundary of the

simplex even further away from points that are more in the interior than the

CLR transformation. Hence, after the LCLR transformation, points with a low

effective number of amino acids (see below) have high Euclidean distances to

points with high effective number of amino acids, which is a desired feature.

Clustering procedure. K-means clustering with K ∈ {4, 8, 16, . . . , 256}, was

performed on untransformed, CLR-transformed, and LCLR-transformed site

distributions with scikit-learn (Pedregosa et al., 2011). A maximum number

of 500 iterations and a tolerance of 5 × 10−5 were used. The stationary distribu-

tions of the components of the UDM models are assigned to the obtained cluster

centers. The weight of each component is set to the proportion of sites be-

longing to the respective cluster. During phylogenetic inference, the proposed

mixture model weights can be employed without change, or estimated during

maximization of the likelihood. In fact, all analyses presented in this manuscript

use variable weights estimated during maximization of the likelihood. For de-

tails on the EDCluster script used for transforming and clustering the site dis-

tributions, please refer to Section S2. In total, we distinguish UDM models

with seven different numbers of components, three different types of transfor-

mations, and three different databases (HOGENOM, HSSP, and their union).

EDCluster, and the obtained stationary distributions and weights are available
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at https://github.com/dschrempf/edcluster. Sections S3 and S4 present addi-

tional analyses of the stationary distributions and weights, and usage instruc-

tions for IQ-TREE (Nguyen et al., 2015), Phylobayes, and RevBayes (Höhna

et al., 2016), respectively.

Effective number of amino acids. Metaphorically speaking, entropy is a mea-

sure of disorder of a probability distribution. The entropy of a given site distri-

bution π is defined as

S(π) = −
∑

1≤i≤20

πi logπi. (3)

Here, we use the entropy to measure the diversity of a site distribution in the

following way

Keff(π) = eS(π) ∈ [1, 20]. (4)

For readability, the explicit dependency on π is mostly omitted. We term Keff

the effective number of amino acids, and stationary distributions with high (low)

Keff general (constrained). An effective number of amino acids of Keff = 1

corresponds to a highly constrained stationary distribution where a single amino

acid has probability 1.0, whereas all other amino acids have zero probability.

The uniform stationary distribution with Keff = 20 is the most general.

Analyses of data sets. The alignments of the microsporidia, nematode and

platyhelminth data sets were obtained from Brinkmann et al. (2005), and from

Philippe et al. (2005), respectively. The microsporidia data set contains 40 se-

quences with a length of 24294 sites. The percentage of gaps is 24.1 % and the

average effective number of amino acids is 2.569. The nematode data set con-

tains 37 sequences with a length of 35371 sites. The percentage of gaps is 28.7 %

and the average effective number of amino acids is 2.116. The platyhelminth

data set contains 32 sequences with a length of 35371 sites. The percentage of

gaps is 30.7 % and the average effective number of amino acids is 2.069. The

IQ-TREE software package was used for all analyses of the three data sets.

Phylogenetic inference was performed using the WAG, and the LG (Le et al.,
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2008a) substitution models, the C10 to C60 models (collectively called CXX

models; Quang et al., 2008), and the UDM models with 4, 8, 16, A . . . , 256 com-

ponents. For all analyses, a discrete Gamma distribution with four bins was

used to deal with across-site rate heterogeneity (+G4 model string). For the

WAG and LG models, the stationary distribution of amino acids was set to

the one observed in the respective alignment. We refrained from adding the

stationary distribution of amino acids observed in the data as an additional

component to the CXX and UDM models. The weights of the mixture model

components of the CXX and UDM models was inferred during maximization of

the likelihood. Detailed instruction about how to perform phylogenetic infer-

ence with UDM models in IQ-TREE is given in Section S4. For each data set

and model, three maximum likelihood analyses were conducted. First, a max-

imum likelihood analysis inferring the model parameters as well as the topol-

ogy and the branch lengths of the phylogeny. Further, two analyses with fixed

topologies (T1, and T2, see Figure 3) were conducted (-t option in IQ-TREE).

The branch lengths were inferred without exception.

The analyses of the separated microsporidia genes was performed with Phy-

lobayes. Results for the LG model, the CAT model with Poisson exchangeabil-

ities, and UDM models with four, up to 128 components also with Poisson

exchangeabilities were obtained. A burn in of 100 steps, and a total of 1100

steps were used. Rate heterogeneity was accounted for with a discrete gamma

distribution with four categories. The inferred trees were compared to two the

trees T1, and T2 (Brinkmann et al., 2005). If a gene only contained a subset of

all species, the trees T1 and T2 were pruned before comparison such that they

contained the same set of species as the respective gene. The symmetric dis-

tance (Robinson et al., 1981), the branch score distance Kuhner et al., 1994,

and the incompatible split distance were computed. The incompatible split

distance is similar to the symmetric distance in that it only accounts for topo-

logical differences. However, topological uncertainties do not contribute to the

incompatible split distance. Briefly, let us compare two topologies P1 and P2,

and let B1 be the only bipartition induced by P1 not induced by P2. Then, the

symmetric distance between P1 and P2 is strictly larger than zero. For the in-

compatible split distance however, additionally all multifurcations of P2 have to
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be examined. If a multifurcation of P2 can be resolved such that the resolved

order of splits induces B1, the incompatible split distance is zero.

Parametric bootstrap analyses. For each data set and phylogenetic model, the

maximum likelihood phylogeny and model parameters were used to simulate an

alignment with 25 000 sites. For the CXX and UDM models, the stationary

distribution at each site is determined randomly from the stationary distribu-

tions of the mixture model components using the weights from the respective

maximum likelihood inferences. A custom simulator written in Haskell (elynx,

Section S8) was used for this purpose. Subsequently, the effective number of

amino acids Keff was calculated per site in the alignment. The obtained distri-

bution of Keff values was compared to the one of the original data set using the

Wasserstein distance as it is implemented in SciPy (Jones et al., 2001).

Phylogenetic artifact can be reproduced in simulation study. The phylogeny

used to simulate the alignment was chosen from an analysis of the microsporidia

data set (Brinkmann et al., 2005) with the UDM model with 64 components

obtained from clustering the LCLR transformed site distributions. elynx (Sec-

tion S8) was used to simulate 25 000 sites using Poisson exchangeabilities. Each

site was randomly assigned a stationary distribution sampled with replacement

from the site distributions of the HOGENOM database which had been obtained

by the Bayesian CAT analyses described above. The simulated alignment was

analyzed with IQ-TREE using the Poisson model with the empirical distribu-

tion observed in the alignment (Poisson+F model string), and the UDM models

with four up to 64 components obtained from clustering the LCLR transformed

site distributions. Ultra fast bootstrap (Hoang et al., 2018) with 1000 samples

was used with all models (-bb 1000 option).

The simulated alignment with 25 000 columns was used to randomly sub-

sample short alignments of length 100, 200, 400, 800, and 1000 columns with

replacement. For each length, 25 replicate alignments were sub-sampled. Trees

were inferred with IQ-TREE using the Poisson model, the LG model, and UDM

models with up to 256 components with fixed component weights. Symmetric

and the branch score distances were calculated between the inferred trees and

the original tree used for the simulation.
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