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ABSTRACT 

Memories of previous experiences can be used to guide future 

decisions in similar situations. Recent evidence suggests that the 

hippocampus might support decision-making by forming representations that 

capture common elements across different events (e.g., “cognitive maps” or 

“schemas”). Here, we used functional magnetic resonance imaging (fMRI) to 

test how the human hippocampus represents decision relevant information 

extracted from previous experiences. Participants performed a task in which 

they learned to predict a customer preference for foods in four different store 

contexts. The task was structured such that we could examine the degree to 

which hippocampal representations reflected generalized information about 

the store contexts, food items, and also the kind of information that was 

relevant to decisions on a given trial. Results showed that hippocampal 

activity patterns carried information about the kind of information that was 

currently relevant to a decision. Across different store contexts, hippocampal 

representations differentiated between context-determined (deterministic) 

decisions and context-invariant (probabilistic) decisions. Results also showed 

that information about store contexts was represented by the hippocampus, 

but contrary to what might be expected, similar contexts were hyper-

differentiated from one another. These results suggest that the hippocampus 

may support decision-making by systematically mapping relationships 

between task relevant information, decisions, and outcomes.  
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INTRODUCTION 

Our decisions often rely on what we remember from previous 

experiences. For instance, in your local grocery store, you might skip the 

produce section because previously the produce did not live up to your 

expectations. Episodic memory — the ability to remember past events — 

enables us to build links between previous experiences and future decisions. 

Humans are very good at extracting regularities across experiences to make 

adaptive decisions (i.e. not buying the produce) and often benefit from using 

information derived from previous experiences (i.e. produce not being 

satisfactory). Recent findings are consistent with this idea (e.g., Bornstein, 

Khaw, Shohamy, & Daw, 2017; Bornstein & Norman, 2017; Duncan, Doll, Daw, 

& Shohamy, 2018; Santoro, Frankland, & Richards, 2016), and they suggest a 

key role for the hippocampus in memory-guided decision-making (see Doll, 

Shohamy, & Daw, 2015; Mizumori & Tryon, 2015 for review). Little is known, 

however, about what type of information is extracted from past experiences 

and how hippocampus organizes this information to guide future decisions.  

There are at least three ways to explain how the hippocampus 

represents experiences that are relevant to decisions. One possibility is that the 

hippocampus forms a systematic cognitive map of a specific environment 

(O’Keefe & Nadel, 1978), in which information about an event is encoded 

relative to a representation of the spatiotemporal context in which the event 

took place. Others have argued that the hippocampus forms a cognitive map 

that is more general and schematic (McKenzie et al., 2016; Preston & 

Eichenbaum, 2013). A more general, schema like-map could be adaptive in 

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted October 8, 2019. ; https://doi.org/10.1101/794305doi: bioRxiv preprint 

https://doi.org/10.1101/794305


	 	 	
	

4	
	

making decisions, as one might want to generalize across experiences that 

occurred in similar places. For instance, when planning a trip to the grocery 

store, one might rely on the hippocampus to pull up a generalized 

representation of overlapping experiences at SafewayÔ grocery store chain. A 

hippocampal schema might also be useful to apply to specific items 

encountered across overlapping experiences, such as a specific kind of candy 

bar. This idea is supported by findings showing that the hippocampus organizes 

experiences with overlapping features to form schema-like knowledge 

representation and more broadly, with studies indicating that the hippocampus 

integrates new experiences with overlapping memories for past experiences 

(Mack, Love, & Preston, 2018; Morton, Sherrill, & Preston, 2017). Another 

possibility is that the hippocampus maps experiences in a manner that is both 

flexible (Eichenbaum, 2017; Ekstrom & Ranganath, 2018; Schiller et al., 2015) 

and goal-directed (Bornstein et al., 2017; Duncan et al., 2018; Santoro et al., 

2016). For instance, some have proposed that the hippocampus encodes an 

internal model of tasks and situations, systematically mapping relationships 

between task relevant information, decisions, and outcomes (Behrens et al., 

2018; Doll et al., 2015; Kaplan, Schuck, & Doeller, 2017; Wikenheiser & 

Schoenbaum, 2016). Representation of potential outcomes is also consistent 

with a growing body of evidence suggesting a role for the hippocampus in 

“model-based” decision making (Hampton, Bossaerts, & O’Doherty, 2006; Lee, 

Shimojo, & O’Doherty, 2014; Miller, Botvinick, & Brody, 2017).  

A strong version of the latter view would suggest that the hippocampus 

represents potential decisions in a manner that cuts across contexts. Because 
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contexts do not always provide useful information for decision-making, it could 

be adaptive for the hippocampus to represent contexts according to how 

relevant or predictive they are for a particular decision. For instance, when 

deciding to buy a fruit at the grocery store, it can be useful to know whether 

the store generally carries fresh produce, whereas you would probably not use 

information about the specific store context when deciding to buy a candy bar. 

Research has generally been consistent with the idea that, within a particular 

context, the hippocampus represents task-relevant information (Aronov, 

Nevers, & Tank, 2017; Theves, Fernandez, & Doeller, 2019), though it is 

unclear whether the hippocampus represents decision-relevant information or 

task structure in a manner that generalizes across different contexts.  

In the present study, we used representational similarity analysis of 

functional magnetic resonance imaging (fMRI) data to investigate how the 

hippocampus represents information about contexts, items, and relationships 

between items and contexts to guide decisions (see Fig. 1 and 2). We 

developed a novel paradigm in which participants were trained to learn about 

customer preferences for eight food items in four different grocery stores. After 

learning the customer preferences in each store, participants were scanned 

while they decided whether a food was liked or disliked by customers based on 

previous learning for each food in each store context. The task was designed 

such that, half of the foods were always “liked” or “disliked” depending on the 

specific store context. These foods are referred to as “context-determined” 

(CD) foods, because information about the context was needed in order to 

make accurate decisions about the customer’s preference (i.e., probability of 
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being “liked” = 1.0 or 0 depending on the store). The other foods had customer 

preferences that were probabilistic, and this probability was constant across all 

stores (i.e., probability of being “liked” = 0.75 or 0.25 in every store). These 

foods are referred to as context-invariant (CI) because the context was 

irrelevant to decisions about the preferences. Participants were not explicitly 

informed about the relationship about the stores and foods, and they could 

therefore only acquire the task structure about the different food types (CD vs. 

CI) over the course of learning. 

In addition to the CD/CI differentiation between foods, we manipulated 

the shared properties of foods across the stores (item similarity) and shared 

properties of stores across the foods (context similarity); see Figure 2. 

Regarding item similarity, apple and muffin share the same customer 

preference across all stores which makes these two items similar to each other. 

In contrast, apple and carrot have different customer preferences across all 

stores, which makes these two items different from each other. Regarding 

context similarity, store A and B had the same customer preferences for all the 

foods which make these two stores similar to each other. In contrast, store A 

and C had different customer preferences for all the foods which made them 

different from each other.  

If the hippocampus forms schematic representations of shared 

information between items or contexts, we would expect that hippocampal 

activity patterns would be more similar across foods or across stores that are 

similar to each other (e.g., across two different foods that were both liked or 

disliked in different store contexts or across two different stores where the 
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same foods were liked or disliked). Finally, if goal-relevant information is 

prioritized in hippocampal representations, we would expect hippocampal 

activity patterns to reflect the task structure in a manner that generalizes across 

contexts (i.e., high pattern similarity between pairs of trials that involved both 

CD foods or between pairs of trials that involved both CI foods compared to 

pairs of trials that consisted of a CD food and a CI food). In addition to 

examining representation of task-relevant information in the hippocampus, we 

also investigated neural pattern similarity in the orbitofrontal cortex, another 

region that has been proposed to represent cognitive maps that support goal-

directed decision making (Wikenheiser & Schoenbaum, 2016; Wilson, 

Takahashi, Schoenbaum, & Niv, 2014). 

 

 

Figure 1. Example Stimuli. Illustration of two mini-blocks from a run in the 

decision task that took place on Day 2 (fMRI). Participants completed two 
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runs of the decision task and each run consisted of eight mini-blocks (e.g. 

participants visited all four stores twice in every full run, each store was a 

mini-block). Each mini-block started with presentation of one of the store 

contexts for 6 seconds. Following this, participants were presented with 8 

different foods (2 seconds) and predicted the customer preference of the food 

in the store context by making like/dislike judgments. No feedback was given 

for decisions. Each food item was shown once in each mini-block which made 

8 trials in a mini-block. The time between mini-blocks were jittered (mean = 4 

secs). The next mini-block consisted of another 8 trials in another store 

context. Same eight foods were shown in each mini-block in a different store 

context but in a randomized order. 

 

Figure 2. Task Structure. During the training phase, participants made 

decisions about food preferences, and then they received feedback about the 

actual outcome for that trial. The matrix illustrates the distribution of 

outcomes for eight different foods (columns) in each of the four stores 

(rows). Context-Determined foods are defined as those with outcomes that 
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are determined by the store context (left side of the matrix) and Context-

Invariant foods are those with probabilities that are the same across stores 

(right side of the matrix). The task was designed so that there were pairs of 

similar contexts for which the same foods were liked and disliked in both 

stores. Additionally, pairs of similar food items shared the same distribution of 

outcomes across the four store contexts.   

 

RESULTS 

Behavioral Results 

Prior to scanning, participants completed 12 runs of trial-and-error 

learning with feedback until they had learned customer preferences for eight 

foods in four different store contexts up to at least 60% accuracy (see 

Supplemental Materials for detailed description of the learning phase). 

Participants were scanned during the decision phase—on each trial, they were 

presented with a food image overlaid on a store context and were asked to 

judge the customer preference (either like or dislike) for the presented food 

in the given store (Figure 1). During this phase, no feedback was given, so 

participants needed to rely on what they learned previously on Day 1 in order 

to choose the correct customer preferences for each food. To assess whether 

participants accurately learned the customer preferences in the experiment, 

we scored participants’ performance on each trial according to whether they 

selected “like” for a food item that was liked more than 50 % of the time in 

that particular store, and selecting “dislike” for a food item that was liked less 

than 50 % of the time in that particular store.  
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Although participants were not explicitly informed about the distinction 

between CD and CI trials (and were not given feedback for their responses 

during the decision phase), we expected their decisions to reflect their past 

experiences in a way that was consistent with the implicit task structure. We 

predicted that, for CD trials, optimal decisions about the food outcome would 

rely on previous experience in the current store context (i.e., whether the 

food was previously liked in that context). For example, with the information 

depicted in Figure 2, it would be optimal to predict that the apple would be 

liked in Stores A and B, and disliked for the apple in Stores C and D. For CI 

trials, optimal decisions about the food outcome instead might rely on a 

generalization across past experiences, irrespective of the current store 

context. For example, it would be optimal to choose “Dislike” for the banana 

and “Like” for the donut, regardless of the current store context.  

Consistent with this reasoning, we found that participants made 

optimal decisions on 90% (SD = 9%) of CD trials and 82% (SD = 14%) of CI 

trials. A direct comparison between the two conditions showed that the 

proportion of optimal decisions (as defined above) was higher for CD than CI 

trials (F(1,21) = 4.48, p = .049). The difference in decisions across CD and CI 

trials suggests that participants understood the task structure well enough to 

make different kinds of decisions for CD and CI trials. Detailed behavioral 

results from each phase (learning Day 1 and decision Day 2) are presented in 

the Supplemental Material.  

 

Task structure is represented in Hippocampus 
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Although the difference between CD and CI trials was no explicitly 

stated, the behavioral data described above indicate that participants 

successfully learned and differentiated between the two types of trials during 

the decision phase. If the hippocampus represents task structure in a manner 

that generalizes across contexts, we would predict higher pattern similarity 

between pairs of CD trials (e.g., a correct decision about the apple in Store A 

& a correct decision about the carrot in Store C) and between pairs of CI trials 

(e.g., a correct decision about the banana in Store A & a correct decision 

about the donut in Store D), compared to the similarity between CD and CI 

trials (e.g., a correct decision about the apple in Store A & a correct decision 

about the donut in Store D).  

To test whether decision-relevant information was represented in a 

manner that generalized across contexts, we computed voxelwise 

hippocampal pattern similarity (PS) (collapsed across hemispheres) between 

trials where the food-store relationship implied with the task structure was 

the same (CD-CD or CI-CI) and trials where the food-store relationship was 

different (CD-CI). Importantly, we excluded pairs of trials with the same store 

context and the same food in order to make sure that any effects observed 

could not be due to visual similarity (see Methods section for exclusion criteria 

for pattern similarity analyses). We conducted a one-way ANOVA on the 

hippocampal PS with Food-Store relationship as a factor (same vs. different). 

This analysis revealed a significant effect of  Food-Store relationship [F(1,21) 

= 7.06, p = .01: same (CD/CD or CI/CI) > different (CD/CI)], consistent with 
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the hypothesis that the hippocampus represents information that is task-

relevant, even when the store contexts differ (see Figure 3).   

Figure 3. Hippocampal representations reflect decision relevant 

information. Pattern similarity values for pairs of trials that had same (pink) 

or different (green) food-store relationship. Trial pairs that shared the same 

food-store relationship (i.e., CD/CD or CI/CI) had higher similarity than pairs 

with different relationship (i.e., CD/CI).  

 

Representation of Context Similarity in Hippocampus  
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Thus far, our results suggest that, during decision-making, the 

hippocampus represents information that is relevant to the decision that will 

be made. We next tested whether hippocampal activity patterns also carry 

information about the contexts in which the decisions were made. As shown 

in Figure 2, Stores A and B have the same customer preferences for all of the 

food items, and the same is also true of Stores C and D. There are at least 

two ways in which the hippocampus might represent these contexts. One 

possibility is that the hippocampus generalizes across similar contexts. That 

is, overlap between the food-preference mappings between stores could 

result in overlapping hippocampal patterns. Another possibility is that the 

hippocampus might exaggerate differences between two stores that have the 

same customer preferences for all eight foods, creating dissimilar patterns 

between the two stores.  

To investigate how context similarity is represented in the 

hippocampus, we computed neural PS between trial pairs that shared similar 

contexts (same context-food preference: e.g., the apple in Store A and the 

muffin in Store B) and trial pairs that did not share similar contexts (different 

context-food preference: e.g., the apple in Store A and the carrot in Store C). 

Store context has a stronger predictive relationship with customer preferences 

for CD foods but not CI foods, therefore it is possible that similarity between 

contexts might have different effects depending on the food type. Therefore, 

we included Food Type (context-determined vs. context-invariant) as a factor 

in our analysis.  
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A repeated measures ANOVA on the PS values with factors for Food 

Type (CD vs. CI), and Context Similarity (similar vs. different) revealed a main 

effect of context similarity [F(1,21) = 6.04, p = .02], such that PS was lower 

for trial pairs with similar contexts than for pairs that had different contexts 

(Figure 4A). There were no other main effects and no interactions between 

the factors (smallest p = .12). This suggests that the hippocampus hyper-

differentiates similar contexts, as compared with different contexts, 

regardless of the food-store relationship that was evaluated on a given trial. 

 

 

 

 

Figure 4. The Hippocampus hyperdifferentiates between similar 

contexts. A) Pattern similarity across pairs of trials that had similar vs. 

different contexts in the hippocampus. B) Pattern similarity across pairs of 

trials that had similar vs. different item types in the hippocampus.  
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Hippocampal activity patterns do not carry significant information 

about Item Similarity 

 

 We next tested whether hippocampal activity patterns carry 

information generalized across food items. The task was designed such that 

pairs of food items had identical distribution of outcomes across the four store 

contexts. As shown in Figure 2, the apple and the muffin had the same 

customer preferences in each store context, and the same is also true of the 

carrot and the bread. Likewise, the donut and the onion were generally liked, 

and the banana and the cookie were generally disliked. If the shared 

outcomes across items are represented in the hippocampus, we might expect 

hippocampal pattern similarity values to be higher for foods with similar 

outcomes (i.e., similar customer preferences) than for foods with different 

outcomes (i.e., different customer preferences).  

To test for pattern similarity effects driven by item-outcome similarity, 

neural PS values were calculated for trial pairs that shared the same outcome 

probability of being liked/disliked (e.g., apple and muffin, banana and cookie, 

etc.) and trial pairs that had different probability of being liked/disliked (e.g., 

apple and carrot, donut and banana). We computed PS for CD and CI foods 

separately. We conducted a repeated measures ANOVA with factors Item 

Similarity (similar vs. different), and Food Type (CD vs. CI). Results, 
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summarized in Figure 4B, revealed no significant effect of item similarity on 

hippocampal PS [main effect of item similarity: F(1,21) = 0.03, p = 0.87]. 

There were no other main effects of or interactions (all p’s bigger than .10).  

 

Orbitofrontal cortex also represents task relevant information but 

not context similarity 

Orbitofrontal cortex (OFC) has been implicated in many studies as an 

important region in goal-directed decision making (see reviews by Rushworth, 

Noonan, Boorman, Walton, & Behrens, 2011; Wallis, 2007) and in 

representing the current task state in a cognitive map of the task space for 

both learning and decision making (Schuck, Cai, Wilson, & Niv, 2016; Wilson 

et al., 2014). The aim of this study was to examine hippocampal patterns for 

different information types related to decisions. However, given the recent 

literature implicating the OFC in representing the one’s current position in a 

task space (Wilson et al., 2014), it is important to compare representations of 

task-relevant information between these regions. Therefore, we employed the 

same type of analyses presented above, this time within the OFC and 

examined a) food-store relationship, b) context similarity, c) item similarity. 

The detailed results from these analyses can be found in Supplemental 

Material. In brief, we found that food-store relationship was also represented 

in OFC such that pattern similarity values were higher for same relationship 

trial pairs compared to the different ones as shown in Figure 5 (main effect of 

food-store relationship: F(1,21) = 5.84, p =.02, same (CD/CD and CI/CI) > 

different (CD/CI))). Additionally, OFC activity patterns were also affected by 
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the context similarity such that pattern similarity was also higher for OFC for 

similar contexts, but this effect was only apparent for CI foods and not for CD 

foods. Beyond this effect, OFC activity patterns were not sensitive to item 

similarity (smallest p = .53).  

 

Figure 5. OFC represents task structure. Pattern similarity values for 

trials that had same (pink) or different (green) food-store relationship in 

different panels for Lateral and Medial parts of OFC. Trial pairs that shared 

the same food-store relationship (i.e., CD/CD or CI/CI) had higher similarity 

than pairs with different relationship (i.e., CD/CI) for both OFC parts.  

 

 

DISCUSSION 

 The goal of the present study was to investigate how the hippocampus 

represents decision relevant information during memory guided decision 
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making. In our experiment, participants needed to integrate information 

about items (i.e., foods), contexts (i.e., stores), and task structure (context- 

determined vs. context invariant probabilistic) that could help making 

accurate decisions. Our key findings can effectively be summarized as: Across 

contexts, activity patterns in the hippocampus reflected the task structure. 

Decisions for which the context predicted the customer preference were 

grouped together and these trials were differentiated from decisions for which 

the context was irrelevant. The second key finding is that activity patterns 

depended on the store context similarity. PS during decisions made in stores 

that had the same food preferences was lower than PS for decisions made in 

stores that predicted different food preferences. Interestingly, we saw no 

evidence that the hippocampus was sensitive to item-outcome similarity.  

 

Representation of decision-relevant information in the hippocampus  

As noted earlier, one of the major questions guiding this study was 

how decision-relevant information is represented by the hippocampus. Many 

researchers have endorsed the idea that the hippocampus uses a map-like 

coding strategy to generalize across past experiences (O’Keefe & Nadel, 

1978). A related idea is that the hippocampus might form schemas that 

provide a scaffold for learning and integrating new information.  

Schemas (Bartlett, 1932) and cognitive maps (Tolman, 1948) are 

theoretical constructs that were proposed to explain how people can capture 

systematic regularities across experiences in a manner that organizes 

knowledge about individual elements. For a schema or map to be useful, 
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however, it should enable one to generalize across some experiences. It could 

be very useful to generalize across contexts that are similar. For instance, you 

might develop a schema based on repeated visits to a particular Italian 

restaurant. This schema would provide a scaffold for integrating overlapping 

information, such as the use of parmesan cheese on different menu items. 

The schema could also be used to make inferences and predictions when you 

dine at a new Italian restaurant in a new location. Given considerable 

evidence for the role of the hippocampus in coding of spatial locations (Moser 

& Moser, 2008; O’Keefe & Nadel, 1978) and contexts (Maren, Phan, & 

Liberzon, 2013), is reasonable to think that the hippocampus might support 

such a representation.  

Recent work has also supported the idea that the hippocampus maps 

experiences that in a way that is optimized towards goal-directed behavior. 

For instance, in mice trained to do an auditory discrimination task, 

hippocampal neurons represented specific sound frequencies as well as other 

task-relevant information, but responses to auditory stimuli were only evident 

when the animal was performing the task (Aronov et al., 2017). Using fMRI, 

Theves et al. (2019) found that activity in the human hippocampus reflected 

distances in an abstract space that involved characteristics of a visual 

stimulus, and Tavares et al. (2015) found that hippocampal activity reflected 

information about social relationships in a task that required tracking of social 

relationships over time. These findings are consistent with the idea that, over 

the course of experience, hippocampus comes to represent the structural 
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aspects of tasks as well as environments, in the service of goal-directed 

behavior (Behrens et al., 2018).  

The present results add to this idea by suggesting that the 

hippocampus can generalize across experiences in different contexts 

according to the structure of the task. Over the course of training, 

participants learned that some food preferences could be predicted perfectly 

from the store context, whereas others were probabilistic and independent of 

the context. Hippocampal activity patterns reflected this fundamental aspect 

of the task structure. The results suggest that, across different store contexts, 

the hippocampus assigned similar representations to context-dependent, 

deterministic decisions, and that these experiences were differentiated from 

representations of probabilistic, context-independent decisions. The design of 

our experiment did not permit us to definitively conclude whether the 

hippocampus represents context relevance per se, as this cannot be 

disentangled from the uncertainty of events, or the interaction of these 

variables. These factors could be separately tested in future studies, but the 

key point of the present study is that hippocampal activity patterns carried 

this task-relevant information in a manner that generalized across different 

contexts. 

Our findings align well with results from a recent study that examined 

representation of goal-relevant information in the monkey hippocampus 

(Baraduc, Duhamel, & Wirth, 2019). In this study, monkeys were trained to 

find a hidden reward in a virtual maze, and the reward location was 

systematically related to visual landmarks in the maze. After learning the 
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reward maps in one maze, monkeys were able to transfer their knowledge to 

a novel maze that had different landmarks but similar reward maps. Over 

time, a subset of hippocampal neurons (“schema cells”) developed a firing 

map integrating goal-relevant information learned in one maze to the novel 

maze. The findings of Baraduc et al. (2019) converge with results from the 

present study to suggest that the hippocampus is able to capture goal-

relevant information in a manner that can generalize across different 

contexts. 

 

The hippocampus hyperdifferentiates between similar contexts 

Our task was also set up in such a way that participants could 

potentially form a schema (McKenzie et al., 2014) or cognitive map (Behrens 

et al., 2018) that generalized across similar contexts (see food-preference 

matrix in Figure 2). If the hippocampus indeed incorporates multiple 

experiences into a schema-like representation, we would have expected 

hippocampal pattern similarity to be higher across stores that predicted the 

same food outcomes (e.g., Stores A and B) than across stores that predicted 

opposite food outcomes (e.g., Stores B and D). Surprisingly, we found the 

opposite result -- contexts associated with identical preferences were more 

differentiated from one another than were contexts associated with opposing 

preferences. In other words, our results are consistent with the idea that 

contextual information is represented by the hippocampus, but contrary to 

what might be expected, similar contexts were hyper-differentiated from one 

another.  
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Although this result is counterintuitive, it fits with a growing body of 

evidence from fMRI studies showing that hippocampal representations of 

similar experiences are differentiated over the course of learning (Chanales, 

Oza, Favila, & Kuhl, 2017; Favila, Chanales, & Kuhl, 2016; Hulbert & Norman, 

2015). For instance, Chanales et al. (2017) showed that when two spatial 

routes have overlapping segments, hippocampal representations of these 

overlapping segments diverged with learning, and they became less similar 

compared to two non-overlapping routes. Another study found a learning-

induced reduction in hippocampal similarity between representations with 

overlapping information even when the events predicted the same outcome 

(Favila et al., 2016). Their results suggested that pairing multiple stimuli with 

a common associate might have increased the probability of simultaneous 

activation of multiple stimuli when the common associate was presented.  

Ritvo et al. (2019) proposed that overlapping experiences might 

become differentiated in the hippocampus through an unsupervised learning 

mechanism. In their framework, there can be different consequences of 

representational overlap depending on how learning takes place. They 

proposed that if a retrieval cue strongly activates two overlapping memory 

representations, then these representations can become integrated, as one 

might expect of Hebbian learning. If, however, one representation is strongly 

activated, and another is moderately activated, then the overlapping elements 

will be weakened such that differences between the two representations will 

become exaggerated. In our study, it is possible that, during learning, 

presentation of an item in one store could have activated memories for prior 
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decisions made for the same item in other stores. For instance, discovering 

that an apple was liked in Store A might moderately activate a prior memory 

of seeing a liked apple in Store B, whereas memories of apples in stores C 

and D might only be weakly activated. Moderate activation of store B could 

start a differentiation process such that hippocampal representations of stores 

A and B would be pushed apart. Because participants were scanned one day 

after initial learning, we cannot test whether this occurred, but this could be 

easily tested in a future study focused on the learning phase in this paradigm. 

 

Representation of decision relevant information in OFC 

In addition to the hippocampus, researchers have recently proposed 

that the OFC might also form cognitive maps that are used for decision 

making. Consistent with this idea, several findings suggest that the OFC 

represents the space of information that is used to make decisions (Farovik et 

al., 2015; Schuck et al., 2016). Farovik et al. (2015), for instance, examined 

how decision relevant task dimensions were represented in OFC of rats as 

they performed a context-guided object discrimination task. Results showed 

that OFC neurons sharply differentiated between events associated with 

reward outcomes and those that were not. Within each category of rewarded 

and nonrewarded outcomes, hippocampal neurons generalized across 

encounters with the same object in the same context.   

We did not find evidence to support the idea that the OFC formed 

generalized representations of foods based on their probability of preference 

(item similarity) and instead, we found that OFC carried information about 
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whether participants were making CD or CI decisions. There are several 

important differences between the study of Farovik et al. (2015) and the 

present study. Farovik et al. (2015) provided explicit rewards for correct 

performance, whereas we examined activity during trials in which participants 

judged customer preferences, in which participants were not presented with 

any feedback about the accuracy of their judgments. Another key difference 

is that, in Farovik et al. (2015), the correct decision was entirely dependent 

on the context, whereas, in our study, context only was relevant for CD trials 

and not for CI trials. Putting these factors together, it is likely that our task-

oriented participants to focus more on task structure, rather than item 

specific preferences per se.  

Medial portions of OFC receive direct inputs from the hippocampus, 

and available evidence suggests that the hippocampus might be a source of 

context information for the OFC (Eichenbaum, 2017; Navawongse & 

Eichenbaum, 2013). Wikenheiser and Schoenbaum (2016) suggested that it is 

possible hippocampus and OFC encode variables in parallel but interact with 

each other during making of cognitive maps, a unified representation of an 

environment to guide future behavior. These cognitive maps consist of 

various information from the environment such as cues, behaviors, and their 

outcomes that are used to support goal-directed decision making. These 

findings collectively suggest that hippocampus and OFC play a crucial role in 

memory-guided decision-making by representing information about relevance 

of contextual information to future outcomes. 
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General Conclusions 

In summary, the results suggest that hippocampus represents 

information related to experiences in ways that are both specific and 

integrative. On one hand, it appears to separate experiences in different 

contexts, but it also generalizes across experiences in different contexts 

depending on information that is relevant to a decision. This conclusion fits 

within a larger body of literature showing that goal- and decision-relevant 

information is extensively represented in the hippocampus (Doll et al., 2015; 

Mizumori & Tryon, 2015; Palombo, Keane, & Verfaellie, 2015). Given that 

many of our experiences are encoded during temporally-extended, goal-

directed behavior, these findings highlight the promise of integrative theories 

of hippocampal function to explain episodic memory and the use of past 

experiences in the service of decision-making (Gershman & Daw, 2017; 

Wang, Cohen, & Voss, 2015; Wikenheiser & Schoenbaum, 2016). 

 

MATERIALS AND METHODS 

Participants 

Thirty-five healthy young adults (female=20; mean age = 22. 18 

years, SD = 3.85 years) without any neurological or psychiatric disorders 

were recruited from the University of California, Davis Psychology Department 

subject pool. All thirty-five participants completed the behavioral learning 

session, however, eight participants performed below the set criteria for 

learning (60 % performance) and did not participate in the second session. 

One participant did not complete the second session due to a technical issue 
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and another participant who achieved criterion level performance was unable 

to take part in the second session. The remaining 25 participants completed 

the second MRI scanning session which included a learning, decision, and a 

choice phase. Participants with head motion greater than 3 mm from origin 

(N=3) were excluded from the analysis, leaving 22 participants (female = 12) 

who completed both sessions and were included in the analyses reported 

here. Participants were compensated with either a check or an amazon gift 

card. All procedures were approved by the University of California, Davis 

Institutional Review Board. 

Stimuli and materials 

Stimuli consisted of 8 food categories and 4 unique grocery store 

scenes. Grocery store images were the same across all participants. 

Participants were presented with one food item from each of the 8 categories 

(apple, muffin, carrot, bread, donut, onion, banana, cookie), which was 

randomly selected from a pool of 16 different exemplars of that food 

category. All participants, therefore, saw an exemplar from each of the 8 food 

categories, however the exact food images were different (e.g., every 

participant saw a banana but not every participant saw the same banana 

picture). Additionally, food items were randomly assigned to either “like” or 

“dislike” preferences in each of the four stores. This food-preference mapping 

was consistent within each participant but randomized across participants.  

Procedure 
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 The experiment consisted of two sessions that took place across two 

consecutive days (see Figure 1 and Figure S1). During session 1, participants 

completed the learning task outside of the scanner, where they learned which 

foods were preferred in which stores through repeated trials of cycles of 

decisions and feedback. Participants returned the next day to complete 

session 2 and were scanned while they completed two additional runs of the 

learning phase (to ensure that the associations were well learned), two runs 

of the decision task, and four runs of a choice task. The fMRI analyses 

presented in this paper focused on the decision phase which included 

participants deciding whether customers preferred presented foods in a given 

store or not based on previous learning (See Supplemental Material for more 

details on the other phases).  

 During the decision phase, participants completed trials where a 

grocery store appeared on the screen followed by a food item, which was 

overlaid on top of the store. Using what they had learned the previous day, 

participants had 2 seconds to predict what the customer reactions were to 

that food item in that store by selecting either "like" or "dislike" using the j 

and k keys. Participants were not given any feedback about their answer 

(they did receive feedback in the learning trials). Participants completed two 

runs of the decision phase, where each run consisted of 8 mini-blocks. Each 

mini-block had 8 trials (so every run had 64 trials). During the mini-blocks, 

the background image of the store remained on the screen for the entire 

mini-block and changed to a new store after each mini-block (e.g. participants 

visited all four stores twice in every full run, each store was a mini-block). 
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Participants made like/dislike judgments on all 8 foods in each mini-block. The 

time between each mini-block was jittered (mean = 4 seconds). Each mini-

block started with the presentation of the store for 6 seconds, followed by the 

eight foods. The order of the foods was randomized within each mini-block. 

The mini-blocks following each other always presented a different store.  

"Like" probabilities. The food item and store context pairs varied in their "like" 

probability so that there were context-determined (CD) and context-invariant 

(CI) foods. Foods with "like" probability of 1 or 0 depending on the store they 

were presented in are considered CD, while the foods whose "like" probability 

are .75 or .25 across all stores are CI. There are also two stores that share 

the same "like" preference across all 8 foods, so these are considered as 

“similar contexts.” The food preference probability matrix is shown in Figure 

2. The mean like preference of all foods presented within a store was .5 such 

that no store had more favorable preferences (probability of a row in the 

matrix) than another store. CI foods had the same “like” preference 

probability across all stores and the average probability of them was either 

.75 or .25 (mean probability of a CI food column). CD foods on the other 

hand were 100% liked in half of the stores and 0% liked in the other half of 

the stores. In order to predict the like preference of the CD foods, 

participants had to understand the relationship between the store and food 

preference. The overall average like probability of CD foods was .5 (mean 

probability of a CD food column). This probability did not provide any 

information about the likeability of that food across all the stores.  

Image Acquisition and Preprocessing 

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted October 8, 2019. ; https://doi.org/10.1101/794305doi: bioRxiv preprint 

https://doi.org/10.1101/794305


	 	 	
	

29	
	

Scanning was performed on a Siemens Skyra 3T scanner system with a 

32-channel head coil at the UC Davis Facility for Integrative Neuroscience. 

High-resolution T1-weighted structural images were acquired using a 

magnetization-prepared rapid acquisition gradient echo (MPRAGE) pulse 

sequence (1 mm3 voxels; matrix size=256 x 256; 208 slices). An additional 

T1-weighted image with only sagittal oriented slices was used for aligning the 

field of view box in the subsequent functional scans (i.e., the box was 

adjusted for each participant to make sure that the temporal lobes were not 

cut off and as much of the brain as possible was in the box). Functional 

images were acquired over eight runs using a whole-brain multiband gradient 

echo planar imaging (EPI) sequence (TR = 1220 ms; TE = 24 ms; flip angle 

= 67°; FOV = 192 mm; multi-band factor = 2; 38 interleaved slices; voxel 

size = 3 mm3; image matrix = 64 × 64).  

Processing of the fMRI data was carried out using FEAT (FMRI Expert 

Analysis Tool) Version 6.00, part of FSL (FMRIB's Software Library, 

www.fmrib.ox.ac.uk/fsl). The two functional scans from the decision phase 

underwent the following preprocessing steps: (1) Skull stripping of the 

anatomical images was carried out using FSL’s BET function (Smith, 2002). 

(2) Motion correction was carried out using FSL’s MCFLIRT function 

(Jenkinson, Bannister, Brady, & Smith, 2002), whereby volumes in the 

functional scans were aligned to the center volume of each scan with rigid 

body registration. (3) Spatial smoothing was carried out using a Gaussian 

kernel of 6.0 mm FWHM. (4) Grand-mean intensity normalization of the entire 

4D dataset by a single multiplicative factor. (5) A high pass filter cut off was 
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set at 100 and a high pass temporal filter was applied to remove low 

frequency noise from the signal (Gaussian-weighted least-squares straight 

line fitting, with sigma=50.0s). (6) Functional scans were coregistered to each 

subject’s native space anatomical scan using the boundary-based registration 

(BBR) (Jenkinson et al., 2002; Jenkinson & Smith, 2001) cost function with 

FLIRT.  

 

ROI definition and masks 

Bilateral ROI masks for the hippocampus were manually segmented on 

the high-resolution anatomical using the guidelines supplied by Frankó et al. 

(2014). Masks for the OFC were labeled with FreeSurfer (Desikan et al., 2006; 

Fischl, 2004).  

All ROIs were co-registered to the example functional image of the 

participant in FSL by using the FLIRT function and applxfm option applying 

the same parameters that were used to co-register their anatomical image 

with the functional images and pattern similarity analyses were done with the 

co-registered ROI masks.  

 

fMRI data analysis 

Pattern similarity analysis 

Multivoxel pattern similarity analyses was performed on the fMRI data 

from the decision task runs. The analyses were conducted on unsmoothed 

functional images in the native space and the EPI timeseries underwent 
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motion correction and high-pass filtering (0.01 Hz) in FMRIB’s Software 

Library (FSL).  

For each trial, a single beta image was estimated by single trial models 

for event-related blood oxygenation level-dependent (BOLD) signal change, 

controlling for signal change due to all other trials and motion artifact, using 

ordinary least squares regression, resulting in 128 single-trial beta images 

(Mumford, Turner, Ashby, & Poldrack, 2012). Parameter estimates for each 

trial were computed using a general linear model, with the first regressor as a 

stick function placed at the onset of each trial and a second regressor 

containing all the other trials. 

Single-trial beta images from run 2 were coregistered with single-trial 

beta images from run 1 using FSL’s FLIRT linear registration software (6 

degrees of freedom). Coregistered single-trial beta images with atypically high 

mean absolute z-score (based on the distribution of beta estimates for each 

grey matter voxel across all trials) were excluded from further analysis. Based 

on a mean absolute z threshold of 1.5, between 0 and 10 trials were excluded 

per subject with a median of 4. Beta images went through a second visual 

inspection to make sure all the deviant trials were excluded. This noise trial 

exclusion procedure is adopted from the previous pattern similarity studies in 

the lab (Libby, Reagh, Bouffard, Ragland, & Ranganath, 2019).  

The representational similarity analyses were then conducted using the 

RSA toolbox by Nili et al.(2014). For each region of interest (HP and OFC), all 

trial patterns were correlated with each other using Pearson's r resulting in a 

128 * 128 pattern similarity matrix. This matrix was then masked with binary 
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masks of pairwise combinations of trials of interest that were created 

specifically for each analysis.  

 Our PS analysis included trial pairs that consisted of trials from the 

same run (within run analysis). We excluded trial pairs if the two trials: a) 

shared the same store as background image, b) had the same food image, c) 

if the trials were proximally close in time (in order to control for adjacent trial 

similarity – 8 trial distance was required), or if the trials had global signal 

values that were outliers based on the global average of absolute 

standardized values calculated for each within-brain voxel. These exclusions 

assured that the trial pairs from the same mini-block were not correlated as 

well. After the exclusion process, the remaining trial pairs were correlated 

with each other that resulted in a number of correlation values for each ROI, 

participant, and condition of interest. These values were then averaged 

across trial pairs and resulted in one value for each participant per ROI per 

condition. These values were then passed to repeated measures of ANOVAs 

for each ROI.  

 We performed an additional PS analyses to examine whether the 

similarity between trials that required same motor response was a source of 

pattern similarity in hippocampus. We did not find any evidence for the motor 

response similarity resulting in higher pattern similarity in hippocampus. The 

detailed results from these analyses are presented in the Supplemental 

Material Pattern Similarity Results section.  
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