1	Disontangling Sources of Cone Tree Discordance in Phylotransprintenic Datasets: A Case
	Disentangling Sources of Gene Tree Discordance in Phylotranscriptomic Datasets: A Case
2	Study from Amaranthaceae s.l.
3	
4	Diego F. Morales-Briones ^{1*} , Gudrun Kadereit ² , Delphine T. Tefarikis ² , Michael J. Moore ³ ,
5	Stephen A. Smith ⁴ , Samuel F. Brockington ⁵ , Alfonso Timoneda ⁵ , Won C. Yim ⁶ , John C.
6	Cushman ⁶ , Ya Yang ^{1*}
7	
8	¹ Department of Plant and Microbial Biology, University of Minnesota-Twin Cities, 1445
9	Gortner Avenue, St. Paul, MN 55108, USA
10	² Institut für Molekulare Physiologie, Johannes Gutenberg-Universität Mainz, D-55099, Mainz,
11	Germany
12	³ Department of Biology, Oberlin College, Science Center K111, 119 Woodland Street, Oberlin,
13	OH 44074-1097, USA
14	⁴ Department of Ecology & Evolutionary Biology, University of Michigan, 830 North University
15	Avenue, Ann Arbor, MI 48109-1048, USA
16	⁵ Department of Plant Sciences, University of Cambridge, Tennis Court Road, Cambridge, CB2
17	3EA, United Kingdom
18	⁶ Department of Biochemistry and Molecular Biology, University of Nevada, Reno, NV, 89577,
19	USA
20	
21	*Correspondence to be sent to: Diego F. Morales-Briones and Ya Yang. Department of Plant and

- 22 Microbial Biology, University of Minnesota, 1445 Gortner Avenue, St. Paul, MN 55108, USA,
- 23 Telephone: +1 612-625-6292 (YY) Email: <u>dfmoralesb@gmail.com</u>; <u>yangya@umn.edu</u>

2

24 Abstract.— Phylogenomic datasets have become common and fundamental to understanding the 25 phylogenetic relationships of recalcitrant groups across the Tree of Life. At the same time, 26 working with large genomic or transcriptomic datasets requires special attention to the processes 27 that generate gene tree discordance, such as data processing and orthology inference, incomplete lineage sorting, hybridization, model violation, and uninformative gene trees. Methods to 28 29 estimate species trees from phylogenomic datasets while accounting for all sources of conflict 30 are not available, but a combination of multiple approaches can be a powerful tool to tease apart 31 alternative sources of conflict. Here using a phylotranscriptomic analysis in combination with 32 reference genomes, we explore sources of gene tree discordance in the backbone phylogeny of the plant family Amaranthaceae s.l. The dataset was analyzed using multiple phylogenetic 33 34 approaches, including coalescent-based species trees and network inference, gene tree 35 discordance analyses, site pattern test of introgression, topology test, synteny analyses, and 36 simulations. We found that a combination of processes might have acted, simultaneously and/or 37 cumulatively, to generate the high levels of gene tree discordance in the backbone of 38 Amaranthaceae s.l. Furthermore, other analytical shortcomings like uninformative genes as well 39 as misspecification of the model of molecular evolution seem to contribute to tree discordance 40 signal in this family. Despite the comprehensive phylogenomic dataset and detailed analyses 41 presented here, no single source can confidently be pointed out to account for the strong signal of 42 gene tree discordance, suggesting that the backbone of Amaranthaceae s.l. might be a product of 43 an ancient and rapid lineage diversification, and remains --- and probably will remain---44 unresolved even with genome-scale data. Our work highlights the need to test for multiple 45 sources of conflict in phylogenomic analyses and provide a set of recommendations moving 46 forward in disentangling ancient and rapid diversification.

- **Keywords:** Amaranthaceae; gene tree discordance; hybridization; incomplete lineage sorting;
- 48 phylogenomics; transcriptomics; species tree; species network.

- .

- 0,

- .

- ...

MORALES-BRIONES ET AL.

4

70 The detection of gene tree discordance is ubiquitous in the phylogenomic era. As large 71 phylogenomic datasets are becoming more common (e.g. Jarvis et al. 2014; Misof et al. 2014; 72 Wickett et al. 2014; Hughes et al. 2018; Walker et al. 2018; Laumer et al. 2019; Varga et al. 73 2019), exploring gene tree heterogeneity in such datasets (e.g. Salichos et al. 2014; Smith et al. 2015; Huang et al. 2016; Arcila et al. 2017; Pease et al. 2018, is essential for inferring 74 phylogenetic relationships while accommodating and understanding the underlying processes 75 76 that produce gene tree conflict. 77 Discordance among gene trees can be the product of multiple sources. These include 78 errors and noise in data assembly and filtering, hidden paralogy, incomplete lineage sorting (ILS), gene duplication/loss (Pamilo and Nei 1988; Doyle 1992; Maddison 1997; Galtier and 79 80 Daubin 2008), random noise from uninformative genes, as well as misspecified model 81 parameters of molecular evolution such as substitutional saturation, codon usage bias, or 82 compositional heterogeneity (Foster 2004; Cooper 2014; Cox et al. 2014; Li et al. 2014; Liu et 83 al. 2014). Among these potential sources of gene tree discordance, ILS is the most studied in the 84 systematics literature (Edwards 2009), and a number of phylogenetic inference methods have 85 been developed that accommodate ILS as the source of discordance (reviewed in Edwards et al. 86 2016; Mirarab et al. 2016; Xu and Yang 2016). More recently, methods that account for 87 additional processes such as hybridization or introgression have gained attention. These include 88 methods that estimate phylogenetic networks while accounting for ILS and hybridization 89 simultaneously (Yu et al. 2014; Yu and Nakhleh 2015; Solís-Lemus and Ané 2016; Wen et al. 90 2016b; Wen and Nakhleh 2018; Zhang et al. 2018a; Zhu et al. 2018; Zhu et al. 2019), and

91 methods that detect introgression based on site patterns or phylogenetic invariants (Green et al.

GENE TREE DISCORDANCE IN PHYLOTRANSCRIPTOMICS

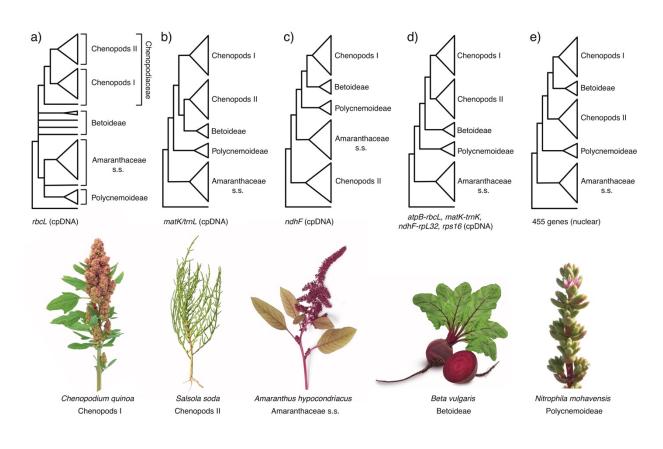
5

92	2010; Durand et al. 2011; Patterson et al. 2012; Eaton and Ree 2013; Pease and Hahn 2015;

Elworth et al. 2018; Glémin et al. 2019; Kubatko and Chifman 2019). 93

94 The above sources of gene tree discordance can act alone, but most often multiple 95 sources may contribute to gene tree heterogeneity (Holder et al. 2001; Buckley et al. 2006; Maureira-Butler et al. 2008; Joly et al. 2009; Meyer et al. 2017; Knowles et al. 2018; Glémin et 96 97 al. 2019). However, at present no method can estimate species trees from phylogenomic data 98 while modeling multiple sources of conflict and molecular substitution simultaneously. To 99 overcome these limitations, the use of multiple phylogenetic tools and data partitioning schemes 100 in phylogenomic datasets have become a common practice in order to disentangle sources of 101 gene tree heterogeneity and resolve recalcitrant relationships at deep and shallow nodes of the 102 Tree of Life (e.g. Duchêne et al. 2018; Prasanna et al. 2019; Alda et al. 2019; Roycroft et al. 103 2019; Widhelm et al. 2019).

104 Here we explore these issues in the plant family Amaranthaceae s.l., including the 105 previously segregated family Chenopodiaceae (Hernández-Ledesma et al. 2015; The 106 Angiosperm Phylogeny Group et al. 2016). With c. 2050 to 2500 species in 181 genera and a 107 worldwide distribution (Hernández-Ledesma et al. 2015), Amaranthaceae s.l. are iconic for the 108 repeated evolution of complex traits representing adaptations to extreme environments such as 109 C₄ photosynthesis in hot and often dry environments (e.g. Kadereit et al. 2012; Bena et al. 2017), 110 various modes of extreme salt tolerance (e.g. Flowers and Colmer 2015; Piirainen et al. 2017) 111 that in several species are coupled with heavy metal tolerance (Moray et al. 2016), and very fast 112 seed germination and production of multiple diaspore types on one individual (Kadereit et al. 2017). Amaranthaceae s.l. contains a number of crops, some of them with a long cultivation 113 114 history, such as the pseudocereals guinoa and amaranth (Jarvis et al. 2017), and some that have


MORALES-BRIONES ET AL.

	,		
l	-		
١	L.	,	

115	been taken under cultivation more recently, such as sugar beet (Dohm et al. 2014), spinach,
116	glassworts, and Salsola soda. Many species of the family are important fodder plants in arid
117	regions and several are currently being investigated for their soil ameliorating and desalinating
118	effects. Reference genomes are available for Beta vulgaris (sugar beet, subfamily Betoideae;
119	Dohm et al. 2014), Chenopodium quinoa (quinoa, Chenopodioideae; Jarvis et al. 2017), Spinacia
120	oleracea (spinach; Chenopodioideae; Xu et al. 2017) and Amaranthus hypochondriacus
121	(amaranth; Amaranthoideae; Lightfoot et al. 2017), representing three of the 13 currently
122	recognized subfamilies (sensu Kadereit et al. 2003; Kadereit et al. 2017).
123	Within the core Caryophyllales the previously recognized families Amaranthaceae s.s.
124	and Chenopodiaceae have always been regarded as closely related and their separate family
125	status has been subjected to phylogenetic and taxonomic debate repeatedly (see Kadereit et al.
126	2003; Masson and Kadereit 2013; Hernández-Ledesma et al. 2015; Walker et al. 2018; Fig. 1).
127	Their common ancestry was first concluded from a number of shared morphological, anatomical
128	and phytochemical synapomorphies and later substantiated by molecular phylogenetic studies
129	with the Achatocarpaceae as sister group (see Kadereit et al. 2003 and references therein).
130	Amaranthaceae s.s. has a predominant tropical and subtropical distribution with the highest
131	diversity found in the Neotropics, eastern and southern Africa and Australia (Müller and Borsch
132	2005), while the previously segregated family Chenopodiaceae predominantly occurs in
133	temperate regions and semi-arid or arid environments of subtropical regions (Kadereit et al.
134	2003). The key problem has always been the species-poor and heterogeneous subfamilies
135	Polycnemoideae and Betoideae, which do not fit comfortably morphologically in either the
136	Chenopodiaceae or Amaranthaceae s.s. (cf. Table 5 in Kadereit et al. 2003). Polycnemoideae are
137	similar in ecology and distribution to Chenopodiaceae but share important floral traits such as

GENE TREE DISCORDANCE IN PHYLOTRANSCRIPTOMICS

7

138

140 FIGURE 1. Phylogenetic hypothesis of Amaranthaceae s.l. from previous studies. a) Kadereit et al. (2003) using the chloroplast (cpDNA) *rbcL* coding region. b) Müller and Borsch (2005); 141 using the chloroplast *matK* coding region and partial *trnL* intron. c) Hohmann et al. (2006) using 142 the chloroplast *ndhF* coding region. d) Kadereit et al. (2017) using the chloroplast *atpB-rbcL* 143 spacer, matK with trnL intron, ndhF-rpL32 spacer, and rps16 intron e) Walker et al. (2018) using 144 455 nuclear genes from transcriptome data. Major clades of Amaranthaceae s.l. named following 145 the results of this study. Image credits: Amaranthus hypochondriacus by Picture Partners, Beta 146 147 vulgaris by Olha Huchek, Chenopodium quinoa by Diana Mower, Nitrophila mohavensis by 148 James M. André, and Salsola soda by Homeydesign.

149

150 petaloid tepals, filament tubes and 2-locular anthers with Amaranthaceae s.s. Morphologically,

151 Betoideae fit into either of the two traditionally circumscribed families but have a unique fruit

152 type—a capsule that opens with a circumscissile lid (Kadereit et al. 2006). Both Betoideae and

MORALES-BRIONES ET AL.

c		
	c	

153	Polycnemoideae show strongly disjunct distribution patterns, occurring each with only a few
154	species on three different continents. Furthermore, the genera of both subfamilies display a
155	number of morphologically dissociating features. Both intercontinental disjunctions of species-
156	poor genera and unique morphological traits led to the hypothesis that Betoideae and
157	Polycnemoideae might be relicts of, or from hybridization among early-branching lineages in
158	Amaranthaceae s.l. (Hohmann et al. 2006; Masson and Kadereit 2013).
159	Previous molecular phylogenetic analyses struggled to resolve the relationships among
160	Betoideae, Polycnemoideae and the rest of the Amaranthaceae s.l. (Kadereit et al. 2003; Müller
161	and Borsch 2005; Kadereit et al. 2012; Masson and Kadereit 2013; Walker et al. 2018). The first
162	phylogenomic study of Amaranthaceae s.l. by Walker et al. (2018) revealed that gene tree
163	discordance mainly occurred at deeper nodes of the phylogeny involving Betoideae.
164	Polycnemoideae was resolved as sister to Chenopodiaceae in Walker et al. (2018), albeit with
165	low (17%) gene tree concordance, which contradicted previous analyses based on chloroplast
166	data (Masson and Kadereit 2013). However, only a single species of Betoideae (the cultivated
167	beet and its wild relative) was sampled in Walker et al. (2018). In addition, sources of conflicting
168	signals among species trees remained unexplored.
169	In this study, we leverage 71 publicly available transcriptomes, 17 newly sequenced
170	transcriptomes, and 4 reference genomes that span all 13 subfamilies of Amaranthaceae s.l. and
171	include increased taxon sampling in Betoideae. Consistent with previous analyses, we identified
172	high levels of gene tree discordance in the backbone phylogeny of Amaranthaceae s.l. Using a
173	combination of phylogenetic approaches, we explored multiple sources that can explain such

174 conflict. We tested for 1) ancient hybridization, focusing on the hypothesis of the hybrid origin

175 of Polycnemoideae and Betoideae, between Amaranthaceae s.s. and Chenopodioideae, 2)

GENE TREE DISCORDANCE IN PHYLOTRANSCRIPTOMICS

	,

176	discordance produced by misspecifications of model of molecular evolution, and 3) discordance
177	due to ILS as a result of short internal branches in the backbone phylogeny of Amaranthaceae s.l.
178	In addition, we comprehensively updated the phylotranscriptomic pipeline of Yang and Smith
179	(2014) with additional features of filtering isoforms and spurious tips. Our results showed that
180	both species network and site pattern methods that model gene flow while accounting for ILS
181	detected signals of multiple hybridization events in Amaranthaceae s.l. However, when these
182	hybridization events were analyzed individually, most of the gene tree discordance could be
183	explained by uninformative gene trees. In addition, the high level of gene tree discordance in
184	Amaranthaceae s.l. could also be explained by three consecutive short branches that produce
185	anomalous gene trees. Combined, our results showed that multiple processes might have
186	contributed to the gene tree discordance in Amaranthaceae s.l., and that we might not be able to
187	distinguish among these processes even with genomic-scale sampling and synteny information.
188	Finally, we make recommendations on strategies for disentangling multiple sources of gene tree
189	discordance in phylogenomic datasets.
190	
191	MATERIALS AND METHODS
192	
193	An overview of all dataset and phylogenetic analyses can be found in Figure S1. Scripts for raw
194	data processing, assembly, translation, and homology and orthology search can be found at
195	https://bitbucket.org/yanglab/phylogenomic_dataset_construction/ as part of an updated
196	'phylogenomic dataset construction' pipeline (Yang and Smith 2014).
197	
198	

MORALES-BRIONES ET AL.

10

199

Taxon sampling, transcriptome sequencing

200 We sampled 92 species (88 transcriptomes and four genomes) representing all 13 currently 201 recognized subfamilies and 16 out of 17 tribes of Amaranthaceae s.l. (sensu [Kadereit et al. 202 2003; Kadereit et al. 2017]). In addition, 13 outgroups across the Caryophyllales were included (ten transcriptomes and three genomes; Table S1). We generated 17 new transcriptomes for this 203 204 study (Table S2). For *Tidestromia oblongifolia*, tissue collection, RNA isolation, library 205 preparation was carried out using the KAPA Stranded mRNA-Seq Kits (KAPA Biosystems, 206 Wilmington, Massachusetts, USA). The library was multiplexed with 10 other samples from a 207 different project on an Illumina HiSeq2500 platform with V4 chemistry at the University of 208 Michigan Sequencing Core (Yang et al. 2017). For the remaining 16 samples total RNA was 209 isolated from c. 70-125 mg leaf tissue collected in liquid nitrogen using the RNeasy Plant Mini 210 Kit (Qiagen) following the manufacturer's protocol (June 2012). A DNase digestion step was 211 included with the RNase-Free DNase Set (Qiagen). Quality and quantity of RNA were checked 212 on the NanoDrop (Thermo Fisher Scientific) and the 2100 Bioanalyzer (Agilent Technologies). 213 Library preparation was carried out using the TruSeq® Stranded Total RNA Library Prep Plant 214 with RiboZero probes (96 Samples. Illumina, #20020611). Indexed libraries were normalized, 215 pooled and size selected to 320bp +/- 5% using the Pippin Prep HT instrument to generate libraries with mean inserts of 200 bp, and sequenced on the Illumina HiSeq2500 platform with 216 217 V4 chemistry at the University of Minnesota Genomics Center. Reads from all 17 libraries were 218 paired-end 125 bp. 219

- 215
- 220
- 221

GENE TREE DISCORDANCE IN PHYLOTRANSCRIPTOMICS

Transcriptome data processing and assembly
We processed raw reads for all 98 transcriptome datasets (except Bienertia sinuspersici) used in
this study (88 ingroups + 10 outgroups; Table S1). Sequencing errors in raw reads were corrected
with Rcorrector (Song and Florea 2015) and reads flagged as uncorrectable were removed.
Sequencing adapters and low-quality bases were removed with Trimmomatic v0.36
(SLIDINGWINDOW:4:5 LEADING:5 TRAILING:5 MINLEN:25; Bolger et al. 2014).
Additionally, reads were filtered for chloroplast and mitochondrial reads with Bowtie2 v 2.3.2
(Langmead and Salzberg 2012) using publicly available Caryophyllales organelle genomes from
the Organelle Genome Resources database (RefSeq; [Pruitt et al. 2007]; last accessed on October
17, 2018) as references. Read quality was assessed with FastQC v 0.11.7
(https://www.bioinformatics.babraham.ac.uk/projects/fastqc/). Finally, overrepresented
sequences detected with FastQC were discarded. De novo assembly was carried out with Trinity
v 2.5.1 (Haas et al. 2013) with default settings, but without in silico normalization. Assembly
quality was assessed with Transrate v 1.0.3 (Smith-Unna et al. 2016). Low quality and poorly
supported transcripts were removed using individual cut-off values for three contig score
components of Transrate: 1) proportion of nucleotides in a contig that agrees in identity with the
aligned read, $s(Cnuc) \le 0.25$; 2) proportion of nucleotides in a contig that have one or more
mapped reads, $s(\text{Ccov}) \leq 0.25$; and 3) proportion of reads that map to the contig in correct
orientation, $s(Cord) \le 0.5$. Furthermore, chimeric transcripts (<i>trans</i> -self and <i>trans</i> -multi-gene)
were removed following the approach described in Yang and Smith (2013) using Beta vulgaris
as the reference proteome, and percentage similarity and length cutoffs of 30 and 100,

respectively. In order to remove isoforms and assembly artifacts, filtered reads were remapped to

filtered transcripts with Salmon v 0.9.1 (Patro et al. 2017) and putative genes were clustered with

MORALES-BRIONES ET AL.

1	2
I	2

245	Corset v 1.07 (Davidson and Oshlack 2014) using default settings, except that we used a minimal
246	of five reads as threshold to remove transcripts with low coverage (-m 5). Only the longest
247	transcript of each putative gene inferred by Corset was retained. Our previous benchmark study
248	have shown that Corset followed by selecting the longest transcript for each putative gene
249	performed well in reducing isoforms and assembly artifacts, especially in polyploid species
250	(Chen et al. 2019). Filtered transcripts were translated with TransDecoder v 5.0.2 (Haas et al.
251	2013) with default settings and the proteome of Beta vulgaris and Arabidopsis thaliana to
252	identify open reading frames. Finally, translated amino acid sequences were further reduced with
253	CD-HIT v 4.7 (-c 0.99; [Fu et al. 2012]) to remove near-identical amino acid sequences.
254	
255	Homology and orthology inference
256	Initial homology inference was carried out following Yang and Smith (2014) with some
257	modification. First, an all-by-all BLASTN search was performed on coding sequences (CDS)
258	using an <i>E</i> value cutoff of 10 and max_target_seqs set to 100. Raw BLAST output was filtered
259	with a hit fraction of 0.4. Then putative homologs groups were clustered using MCL v 14-137
260	(van Dongen 2000) with a minimal minus log-transformed E value cutoff of 5 and an inflation
261	value of 1.4. Finally, only clusters with a minimum of 25 taxa were retained. Individual clusters
262	were aligned using MAFFT v 7.307 (Katoh and Standley 2013) with settings '-genafpair -
263	maxiterate 1000'. Aligned columns with more than 90% missing data were removed using Phyx
264	(Brown et al. 2017). Homolog trees were built using RAxML v 8.2.11 (Stamatakis 2014) with a
265	GTR-CAT model and clade support assessed with 200 rapid bootstrap (BS) replicates. Spurious
266	or outlier long tips were detected and removed with TreeShrink v 1.0.0 (Mai and Mirarab 2018).
267	Monophyletic and paraphyletic tips that belonged to the same taxon were removed keeping the

GENE TREE DISCORDANCE IN PHYLOTRANSCRIPTOMICS

268	tip with the highest number of characters in the trimmed alignment. After visual inspection of ca.
269	50 homolog trees, internal branches longer than 0.25 were likely representing deep paralogs.
270	These branches were cut apart, keeping resulting subclades with a minimum of 25 taxa.
271	Homolog tree inference, tip masking, outlier removal, and deep paralog cutting was carried out
272	for a second time using the same settings to obtain final homologs. Orthology inference was
273	carried out following the 'monophyletic outgroup' approach from Yang and Smith (2014),
274	keeping only ortholog groups with at least 25 ingroup taxa. The 'monophyletic outgroup'
275	approach filters for clusters that have outgroup taxa being monophyletic and single-copy, and
276	therefore filters for single- and low-copy genes. It then roots the gene tree by the outgroups,
277	traverses the rooted tree from root to tip, and removes the side with less taxa when gene
278	duplication is detected at any given node.
279	
280	Chloroplast assembly
281	Although DNase treatment is carried out to remove genomic DNA, due to its high copy number,
282	chloroplast sequences are often carried over in RNA-seq libraries. In addition, as young leaf
283	tissue was used for RNA-seq, RNA from chloroplast genes are expected to be represented,
284	especially in libraries prepared using a RiboZero approach. To investigate phylogenetic signal
285	from plastome sequences, de novo assemblies were carried out with the Fast-Plast v.1.2.6
286	pipeline (https://github.com/mrmckain/Fast-Plast) using the organelle reads from the filtering
287	step.lNo complete or single-contig plastomes were obtained. Filtered contigs produced by
288	Spades v 3.9.0 (Bankevich et al. 2012) were mapped to the closest available reference plastome

289 (with an Inverted Repeat removed; Table S3) and manually edited in Geneious v.11.1.5 (Kearse

et al. 2012) to produce final oriented contigs.

MORALES-BRIONES ET AL.

14

201	1
74	
~	

292

Assessment of recombination

293	Coalescent species tree methods assume that there is no recombination within loci and free
294	recombination between loci. To determine the presence of recombination in our dataset, we used
295	the Φ (pairwise homoplasy index) test for recombination, as implemented in PhiPack (Bruen et
296	al. 2006). We tested recombination on the final set of ortholog alignments (with a minimum of
297	25 taxa) with the default sliding window size of 100 bp.
298	
299	Nuclear phylogenetic analysis
300	We used concatenation and coalescent-based methods to reconstruct the phylogeny of
301	Amaranthaceae s.l. Sequences from final orthologs were aligned with MAFFT, columns were
302	trimmed with Phyx requiring a minimal occupancy of 30%, and alignments with at least 1,000
303	characters and 99 out of 105 taxa were retained. We first estimated a maximum likelihood (ML)
304	tree of the concatenated matrix with RAxML using a partition-by-gene scheme with GTR-CAT
305	model for each partition and clade support assessed with 200 rapid bootstrap (BS) replicates. To
306	estimate a coalescent-based species tree, first we inferred individual ML gene trees using
307	RAxML with a GTR-CAT model and 200 BS replicates to assess clade support. Individual gene
308	trees were then used to estimate a species tree with ASTRAL-III v5.6.3 (Zhang et al. 2018b)
309	using local posterior probabilities (LPP; Sayyari and Mirarab 2016) to assess clade support.
310	
311	Detecting and visualizing nuclear gene tree discordance
312	To explore discordance among gene trees, we first calculated the internode certainty all (ICA)
313	value to quantify the degree of conflict on each node of a target tree (i.e. species tree) given

15

GENE TREE DISCORDANCE IN PHYLOTRANSCRIPTOMICS

314 individual gene trees (Salichos et al. 2014). In addition, we calculated the number of conflicting 315 and concordant bipartitions on each node of the species trees. We calculated both the ICA scores 316 and the number of conflicting/concordant bipartitions with Phyparts (Smith et al. 2015), mapping 317 against the estimated ASTRAL species trees, using individual gene trees with BS support of at 318 least 50% for the corresponding node. Additionally, in order to distinguish strong conflict from 319 weakly supported branches, we evaluated tree conflict and branch support with Quartet Sampling 320 (QS; Pease et al. 2018) using 100 replicates. Quartet Sampling subsamples quartets from the 321 input tree and alignment and assess the confidence, consistency, and informativeness of each 322 internal branch by the relative frequency of the three possible quartet topologies (Pease et al. 323 2018) Furthermore, in order to visualize conflict, we built a cloudogram using DensiTree v2.2.6 324 325 (Bouckaert and Heled 2014). We filtered the final ortholog alignments to include only 41 species 326 (38 ingroup and 3 outgroups) in order to include as many orthologs as possible while 327 representing all main clades of Amaranthaceae s.l. (see results). Individual gene trees were 328 inferred as previously described. Trees were time-calibrated with TreePL v1.0 (Smith and 329 O'Meara 2012) by fixing the crown age of Amaranthaceae s.l. to 66–72.1 based on a pollen 330 record of *Polyporina cribraria* from the late Cretaceous (Maastrichtian; Srivastava 1969), and 331 the root for the reduced 41-species dataset (most common recent ancestor of Achatocarpaceae 332 and Aizoaceae) was set to 95 Ma based on the time-calibrated plastome phylogeny of 333 Caryophyllales from Yao et al. (2019).

334

335

MORALES-BRIONES ET AL.

16

2	γ	7
ు	.5	1
-	-	•

Chloroplast phylogenetic analysis

338	Assembled contigs (excluding one inverted repeat region) were aligned with MAFFT with the
339	setting 'auto'. Two samples (Dysphania schraderiana and Spinacia turkestanica) were
340	removed due to low sequence occupancy. Using the annotations of the reference genomes (Table
341	S3), the coding regions of 78 genes were extracted and each gene alignment was visually
342	inspected in Geneious to check for potential misassemblies. From each gene alignment taxa with
343	short sequences (i.e. < 50% of the aligned length) were removed and realigned with MAFFT.
344	The genes <i>rpl32</i> and <i>ycf2</i> were excluded from downstream analyses due to low taxon occupancy
345	(Table S4). For each individual gene we performed extended model selection (Kalyaanamoorthy
346	et al. 2017) followed by ML gene tree inference and 1,000 ultrafast bootstrap replicates for
347	branch support (Hoang and Chernomor 2018) in IQ-Tree v.1.6.1 (Nguyen et al. 2015). For the
348	concatenated matrix we searched for the best partition scheme (Lanfear et al. 2012) followed by
349	ML gene tree inference and 1,000 ultrafast bootstrap replicates for branch support in IQ-Tree.
350	Additionally, we evaluated branch support with QS using 1,000 replicates and gene tree
351	discordance with PhyParts in the ML and species tree. Finally, to identify the origin of the
352	chloroplast reads (i.e. genomic or RNA), we predicted RNA editing from CDS alignments using
353	PREP (Mower 2009) with the alignment mode (PREP-aln), and a cutoff value of 0.8.
354	

- 355

Species network analysis using a reduced 11-taxon dataset

356 We inferred species networks that model ILS and gene flow using a maximum pseudo-likelihood 357 approach (Yu and Nakhleh 2015). Species network searches were carried out with PhyloNet 358 v.3.6.9 (Than et al. 2008) with the command 'InferNetwork MPL' and using the individual gene 359 trees as input. Due to computational restrictions, and given our main focus was to search for

GENE TREE DISCORDANCE IN PHYLOTRANSCRIPTOMICS

360	potential reticulating events among major clades of Amaranthaceae s.l., we reduced our taxon
361	sampling to one outgroup and ten ingroup taxa including two representative species from each of
362	the five well-supported major lineages in Amaranthaceae s.l. (see results). We filtered the final
363	105-taxon ortholog alignments to include genes that have all 11 taxa [referred herein as 11-
364	taxon(net) dataset]. After realignment and trimming we kept genes with a minimum of 1,000
365	aligned base pairs and individual ML gene trees were inferred with RAxML with a GTR-
366	GAMMA model and 200 bootstrap replicates. We carried out 10 independent network searches
367	allowing for up to five hybridization events for each search. To estimate the optimum number of
368	hybridizations, first we optimized the branch lengths and inheritance probabilities and computed
369	the likelihood of the best scored network from each of the five maximum hybridization events
370	searches. Network likelihoods were estimated given the individual gene trees, as implemented in
371	Yu et al. (2012), using the command 'CalGTProb' in PhyloNet. Then, we performed model
372	selection using the bias-corrected Akaike information criterion (AICc; Sugiura 1978), and the
373	Bayesian information criterion (BIC; Schwarz 1978). The number of parameters was set to the
374	number of branch lengths being estimated plus the number of hybridization probabilities being
375	estimated. The number of gene trees used to estimate the likelihood was used to correct for finite
376	sample size. To compare network models to bifurcating trees, we also estimated ML and
377	coalescent-based species trees as well as a chloroplast tree with the same taxon sampling used in
378	the network searches. Tree inferences were carried out as previously described for the ML,
379	coalescent-based, and chloroplast trees, respectively.
380	

- 381
- 382

MORALES-BRIONES ET AL.

383	Hypothesis testing and detecting introgression using four-taxon datasets
384	Given the signal of multiple clades potentially involved in hybridization events detected by
385	PhyloNet (see results), we next conducted quartet analyses to explore a single event at a time.
386	First, we further reduced the 11-taxon(net) dataset to six taxa that included one outgroup genome
387	(Mesembryanthemum crystallinum) and one ingroup from each of the five major ingroup clades:
388	Amaranthus hypochondriacus (genome), Beta vulgaris (genome), Chenopodium quinoa
389	(genome), Caroxylon vermiculatum (transcriptome), and Polycnemum majus (transcriptome) to
390	represent Amaranthaceae s.s., Betoideae, 'Chenopods I', 'Chenopods II' and Polycnemoideae,
391	respectively. We carried out a total of ten quartet analyses using all ten four-taxon combinations
392	that included three out of five ingroup species and one outgroup. We filtered the final set of 105-
393	taxon ortholog alignments for genes with all four taxa for each combination and inferred
394	individual gene trees as described before. For each quartet we carried out the following analyses.
395	We first estimated a species tree with ASTRAL and explored gene tree conflict with PhyParts.
396	We then explored individual gene tree resolution by calculating the Tree Certainty (TC) score
397	(Salichos et al. 2014) in RAxML using the majority rule consensus tree across the 200 bootstrap
398	replicates. Next, we explored potential correlation between TC score and alignment length, GC
399	content and alignment gap proportion using a linear regression model in R v.3.6.1 (R Core Team
400	2019). Finally, we tested for the fit of gene trees to the three possible rooted quartet topologies
401	for each gene using the approximately unbiased (AU) tests (Shimodaira 2002). We carried out
402	ten constraint searches for each of three topologies in RAxML with the GTR-GAMMA model,
403	then calculated site-wise log-likelihood scores for the three constraint topologies in RAxML
404	using the GTR-GAMMA and carried out the AU test using Consel v.1.20 (Shimodaira and
405	Hasegawa 2001). In order to detect possible introgression among species of each quartet, first we

19

GENE TREE DISCORDANCE IN PHYLOTRANSCRIPTOMICS

406	estimated a species network with PhyloNet using a full maximum likelihood approach (Yu et al.
407	2014) with 100 independent searches while optimizing the likelihood of the branch lengths and
408	inheritance probabilities for every proposed species network. Furthermore, we also carried out
409	the ABBA/BABA test to detect introgression (Green et al. 2010); Durand et al. 2011; Patterson
410	et al. 2012) in each quartet. We calculated the <i>D</i> -statistic and associated <i>z</i> score for the null
411	hypothesis of no introgression ($D = 0$) following each quartet ASTRAL species tree for taxon
412	order assignment using 100 jackknife replicates and a block size of 10,000 bp with evobiR v1.2
413	(Blackmon and Adams) in R.
414	Additionally, to visualize any genomic patterns of the phylogenetic history of Beta
415	vulgaris regarding its relationship with Amaranthaceae s.s. and Chenopodiaceae, we first
416	identified syntenic regions between the genomes of Beta vulgaris and the outgroup
417	Mesembryanthemum crystallinum using the SynNet pipeline
418	(https://github.com/zhaotao1987/SynNet-Pipeline; Zhao and Schranz 2019). We used
419	DIAMOND v.0.9.24.125 (Buchfink et al. 2015) to perform all-by-all inter- and intra-pairwise
420	protein searches with default parameters, and MCScanX (Wang et al. 2012) for pairwise synteny
421	block detection with default parameters, except match score (-k) that was set to five. Then, we
422	plot the nine chromosomes of Beta vulgaris by assigning each of the 8,258 orthologs of the
423	quartet composed of Mesembryanthemum crystallinum (outgroup), Amaranthus
424	hypochondriacus, Beta vulgaris, and Chenopodium quinoa (BC1A) to synteny blocks and to one
425	of the three possible quartet topologies based on best likelihood score.
426	

MORALES-BRIONES ET AL.

20

Assessment of substitutional saturation, codon usage bias, compositional heterogeneity, and
 model of sequence evolution misspecification

430 We refiltered the final 105-taxon ortholog alignments to again include genes that have the same 431 11 taxa (referred herein as 11-taxon(tree) dataset used for the species network analyses. We realigned individual genes using MACSE v.2.03 (Ranwez et al. 2018) to account for codon 432 433 structure and frameshifts. Codons with frameshifts were replaced with gaps, and ambiguous 434 alignment sites were removed using GBLOCKS v0.9b (Castresana 2000) while accounting for codon alignment (-t=c -b1=6 -b2=6 -b3=2 -b4=2 -b5=h). After realignment and removal of 435 436 ambiguous sites, we kept genes with a minimum of 300 aligned base pairs. To detect potential 437 saturation, we plotted the uncorrected genetic distances against the inferred distances as 438 described in Philippe and Forterre (1999). The level of saturation was determined by the slope of 439 the linear regression between the two distances where a shallow slope (i.e < 1) indicates 440 saturation. We estimated the level of saturation by concatenating all genes and dividing the first 441 and second codon positions from the third codon positions. We calculated uncorrected, and inferred distances with the TN93 substitution model using APE v5.3 (Paradis and Schliep 2019) 442 443 in R. To determine the effect of saturation in the phylogenetic inferences we estimated individual 444 gene trees using three partition schemes. We inferred ML trees with an unpartitioned alignment, 445 a partition by first and second codon positions, and the third codon positions, and by removing 446 all third codon positions. All tree searches were carried out in RAxML with a GTR+GAMMA 447 model and 200 bootstrap replicates. A species tree for each of the three data schemes was 448 estimated with ASTRAL and gene tree discordance was examined with PhyParts. 449 Codon usage bias was evaluated using a correspondence analysis of the Relative 450 Synonymous Codon Usage (RSCU), which is defined as the number of times a particular codon

GENE TREE DISCORDANCE IN PHYLOTRANSCRIPTOMICS

2	1

451	is observed relative to the number of times that the codon would be observed in the absence of
452	any codon usage bias (Sharp and Li 1986). RSCU for each codon in the 11-taxon concatenated
453	alignment was estimated with CodonW v.1.4.4 (Peden 1999). Correspondence analysis was
454	carried out using FactoMineR v1.4.1(Lê et al. 2008) in R. To determine the effect of codon usage
455	bias in the phylogenetic inferences we estimated individual gene trees using codon-degenerated
456	alignments. Alignments were recoded to eliminate signals associated with synonymous
457	substitutions by degenerating the first and third codon positions using ambiguity coding using
458	DEGEN v1.4 (Regier et al. 2010; Zwick et al. 2012). Gene tree inference and discordance
459	analyses were carried out on the same three data schemes as previously described.
460	To examine the presence of among-lineage compositional heterogeneity, individual genes
460 461	To examine the presence of among-lineage compositional heterogeneity, individual genes were evaluated using the compositional homogeneity test that uses a null distribution from
461	were evaluated using the compositional homogeneity test that uses a null distribution from
461 462	were evaluated using the compositional homogeneity test that uses a null distribution from simulations as proposed by Foster (2004). We performed the compositional homogeneity test by
461 462 463	were evaluated using the compositional homogeneity test that uses a null distribution from simulations as proposed by Foster (2004). We performed the compositional homogeneity test by optimizing individual gene trees with a GTR-GAMMA model and 1,000 simulations in P4
461 462 463 464	were evaluated using the compositional homogeneity test that uses a null distribution from simulations as proposed by Foster (2004). We performed the compositional homogeneity test by optimizing individual gene trees with a GTR-GAMMA model and 1,000 simulations in P4 (Foster 2004). To assess if compositional heterogeneity had an effect in species tree inference
461 462 463 464 465	were evaluated using the compositional homogeneity test that uses a null distribution from simulations as proposed by Foster (2004). We performed the compositional homogeneity test by optimizing individual gene trees with a GTR-GAMMA model and 1,000 simulations in P4 (Foster 2004). To assess if compositional heterogeneity had an effect in species tree inference and gene tree discordance, gene trees that showed the signal of compositional heterogeneity were

469 datasets from the saturation and codon usage analyses using inferred gene trees that accounted 470 for model selection. We performed extended model selection followed by ML gene tree 471 inference and 1,000 ultrafast bootstrap replicates for branch support in IQ-Tree. Species tree 472 inference, conflict analysis and removal of genes with compositional heterogeneity were carried 473 out as previously described.

MORALES-BRIONES ET AL.

าา
<u> </u>

474	Finally, we also used amino acid alignments from MACSE to account for substitutional
475	saturation. Amino acid positions with frameshifts were replaced with gaps, and ambiguous
476	alignment sites were removed with Phyx requiring a minimal occupancy of 30%. We inferred
477	individual gene trees with IQ-tree to account for a model of sequence evolution and carried out
478	species tree inference, conflict analysis, and removal of genes with compositional heterogeneity
479	as described for the nucleotide alignments.
480	
481	Polytomy test
482	To explore if the gene tree discordance among the main clades of Amaranthaceae s.l. could be
483	explained by polytomies instead of bifurcating nodes, we carried out the polytomy test by
484	Sayyari and Mirarab (2018) as implemented in ASTRAL. This test uses quartet frequencies to
485	assess whether a branch should be replaced with a polytomy while accounting for ILS. We
486	performed the polytomy test using the gene trees inferred from the saturation and codon usage
487	analyses [11-taxon(tree) dataset]. Because this test can be sensitive to gene tree error (Syyari and
488	Mirarab 2018), we ran the analyses using the original gene trees and also using gene trees where
489	branches with less than 75% of bootstrap support were collapsed.
490	
491	Coalescent simulations
492	To investigate if gene tree discordance can be explained by ILS alone, we carried out coalescent
493	simulations similar to Cloutier et al. (2019) An ultrametric species tree with branch lengths in
494	mutational units (μ T) was estimated by constraining an ML tree search of the 11-taxon(net)
495	concatenated alignment (from individual MAFFT gene alignment) to the ASTRAL species tree
496	topology with a GTR+GAMMA model while enforcing a strict molecular clock in PAUP v4.0a

GENE TREE DISCORDANCE IN PHYLOTRANSCRIPTOMICS

23

497	(build 165; Swofford 2002). The mutational branch lengths from the constrained tree and branch
498	lengths in coalescent units (τ = T/4N _e) from the ASTRAL species trees were used to estimate the
499	population size parameter theta ($\Theta = \mu T/\tau$; Degnan and Rosenberg 2009) for internal branches.
500	Terminal branches were set with a population size parameter theta of one. We used the R
501	package Phybase v. 1.4 (Liu and Yu 2010) which uses the formula from Rannala and Yang
502	(2003) to simulate 10,000 gene trees using the constraint tree and the estimated theta values.
503	Then the tree-to-tree distances using the Robinson and Foulds (1981) metric was calculated
504	between the species tree and each gene tree and compared with the distribution of tree-to-tree
505	distances between the species tree and the simulated gene tree. Tree-to-tree distances were
506	calculated using the R package Phangorn v2.5.3 (Schliep 2011). We ran simulations in seven
507	species trees and associated gene tree distribution to represent the trees and gene tree
508	distributions from the saturation, codon usage and model selection analyses that accounted for
509	branch length variation in the species trees and individual gene tree inference. Following
510	Maureira-Butler et al. (2008), if the tree-to-tree distances between the species trees and gene
511	trees were larger than 95% of the distribution of tree-to-tree distances of the species trees and the
512	simulated gene trees then ILS alone is considered unlikely to explain the gene tree heterogeneity.
513	
514	Test of anomaly zone
515	Anomaly zone occurs where a set of short internal branches in the species tree produces gene
516	trees that differ from the species tree more frequently than those that are concordant $[a(x); as$

517 defined in equation 4 of Degnan and Rosenberg (2006)]. To explore if gene tree discordance

518 observed in Amaranthaceae s.l. is a product of the anomaly zone, we estimated the boundaries of

519 the anomaly zone [a(x); as defined in equation 4 of Degnan and Rosenberg (2006)] for the

MORALES-BRIONES ET AL.

520	internal nodes of the species tree. Here, x is the branch length (coalescent units) in the species
521	tree that has a descendant internal branch. If the length of the descendant internal branch (y) is
522	smaller than $a(x)$, then the internode pair is in the anomaly zone and is likely to produce anomaly
523	gene trees (AGTs). We carried out the calculation of a(x) following Linkem et al. (2016) in the
524	same 11-taxon(tree) ASTRAL species trees used for coalescent simulations to account for branch
525	length variation. Additionally, to establish the frequency of gene trees that were concordant with
526	the estimated species trees, we quantified the frequency of all 105 possible rooted gene trees
527	(when clades of Amaranthaceae sl. are monophyletic). We calculated tree-to-tree distances
528	between the 105 possible topologies and all 5,936 gene trees and counted how many times a
529	topology had a distance of zero among the set of gene trees.
530	
531	RESULTS
532	
533	Transcriptome sequencing, assembly, translation, and quality control
534	We generated 17 new transcriptomes of Amaranthaceae s.l. for this study. Raw reads are
535	available from the NCBI Sequence Read Archive (BioProject: XXXX; Table S2). The number of
536	raw read pairs ranged from 17 to 27 million. For the 16 samples processed using RiboZero
537	organelle reads accounted for 15% to 52% of read pairs (Table S2). For Tidestromia oblongifolia
538	that poly-A enrichment was carried out in library prep with \sim 5% of raw reads were from
539	organelle (Table S2). Number of final CDS (after quality control and redundancy reduction) used
540	for all-by-all homology search can be found in Table S5. The final number of orthologs from the
541	'monophyletic outgroup' approach was 13,024 with a mean of 9,813 orthologs per species
542	(Table S6).

GENE TREE DISCORDANCE IN PHYLOTRANSCRIPTOMICS

25

543	
544	Assessment of recombination
545	The test for recombination, Φ , identified 82 out of the 13,024 genes from the final set of
546	orthologs (with a minimum of 25 taxa) with a strong signal of recombination ($p \le 0.05$; Table
547	S7). Alignments that showed signal of recombination were removed from all subsequent
548	phylogenetic analyses.
549	
550	Analysis of the nuclear dataset of Amaranthaceae s.l.
551	The final set of nuclear orthologous genes included 936 genes with at least 99 out of 105 taxa
552	and 1,000 bp in aligned length after removal of low occupancy columns (the 105-taxon dataset,
553	Fig. S1). The concatenated matrix consisted of 1,712,054 columns with a gene and character
554	occupancy of 96% and 82%, respectively. The species tree from ASTRAL and the concatenated
555	ML tree from RAxML recovered the exact same topology with most clades with the highest
556	support [i.e. bootstrap percentage (BS) = 100, local posterior probabilities (LPP) = 1; Fig. 2; Figs
557	S2–S3]. Our phylogenetic analyses recovered Chenopodiaceae as monophyletic with the
558	subfamilies and relationships among them similar to Kadereit et al. (2017). Betoideae was placed
559	as sister of Chenopodiaceae, while Polycnemoideae was placed as sister (BS = 97, LPP = 0.98)
560	to the clade composed of Chenopodiaceae and Betoideae. Finally, we recovered Amaranthaceae
561	s.s. with an overall topology concordant to Kadereit et al. (2017), with the exception of Iresine
562	that is placed among the Aervoids (Fig. 2; Figs S2-S3).
563	
564	

MORALES-BRIONES ET AL.

Discordant (main alte ernative) # concordant / # discordant Concordant (remaining uaeda ifniensis Suaeda aralo QS/QD/Q ICA alternatives) Suaeda vera Suaeda glauca Suaedoideae uaeda maritima uaeda salsa uaeda linearis Uninformati enertia sinuspersio —Salicornia pacifica —Salicornia europae ecticornia pergranulata rthrocaulon macrostach Kalidium cuspidatum alostachys caspica 1/0.89 Salicornioideae Chenopods II alostachys caspica rolfea sp. Halogeton glomeratus Salsola oppositifolia Haloxylon ammodendron Hammada scoparia Salsola soda Anabasis articulata Salsoloidae Chenopodiaceae 916/14 🕒 1/-/1 Camphorosmoideae 231/401 irayia brandegeei rayia spinosa -Stritpiex californica -Stutzia covillei roatripiex pleiantha -Chenopodium suecicum henopodium suecicum henopodium suecicum 96/1 96/0.79 126/453 Chenopodioideae Chenopods I Amaranthaceae s.l -Chenopodium palli enopodium vulvaria sis rubra inacia oleracea 870/24 1/-/* oinacia turkestanica Spinacia tetrandra — Spinacia tetrandra m bonus-henricus — Dysphania schraderiana — Dysphania ambrosioides Suckleya suckleyana — Krascheninnikovia lanata 116/435 🌑 0.3/0.81/0.99 0.29 Corispermoideae 97/0.98 896/20 Betoideae 1/-/1 Hablitzia tan Polycnemu amnoides um majus Polycnemoideae Gomphrena celosoides Blutaparon vermiculare Blutaparon vermiculare Gossypianthus lanuginosus Guilleminea densa Froelichia latifolia 917/8 Froelichia latifolia Plaffia tuberosa Gomphrena elegans Ouaternella ephedroides Alternanthera prasiliana Alternanthera sessilis Alternanthera sessilis Alternanthera tenella Urderternanta denella Gomphrenoids 922/8 cacan Tidestromia oblongifolia
 Tidestromia lanuginosa Amaranthaceae s.s. Achyranthes bidentat Nelsia quadrangula Aerva javanica Aerva lanata lestromia i s bidentata 775/54 Achyranthoids Aervoids Iresine rhizomatosa Amaranthus retroflexus Amaranthus hyponchondriacus Amaranthus palmeri Amaranthus tuberculatus 100/0.99 Amaranthoids -CAmaranthus tricolor Amaranthus cruentus Deeringia amaranthoid Celosioids Hermbštaedtia g Achatocarpus gracilis Phaulothamnus spinescens dtia glauca Dianthus caryophyllus Dianthus caryophyllus Herniaria lattolia Gorrigiola litoral Mesembryanthemum crystallinum Delosperma echinalur Moliugo pentaphylla Microtea debilis Fagopyrum tataricum 0.04

566

substitution per site

567 **FIGURE 2.** Maximum likelihood phylogeny of Amaranthaceae s.l. inferred from RAxML

analysis of the concatenated 936-nuclear gene supermatrix. All nodes have full support

569 (Bootstrap = 100/Local posterior probability = 100) unless noted next to nodes. Boxes contain

570 gene tree conflict and Quartet Sampling (QS) scores for major clades (see Figs S2–S3 for all

571 node scores). In each box, numbers on the upper left indicate the number of gene trees

572 concordant/conflicting with that node in the species tree, and the number on the lower left

GENE TREE DISCORDANCE IN PHYLOTRANSCRIPTOMICS

27

573 indicate the Internode Certainty All (ICA) score. Pie charts present the proportion of gene trees 574 that support that clade (blue), the proportion that support the main alternative bifurcation (green), 575 the proportion that support the remaining alternatives (red), and the proportion (conflict or 576 support) that have < 50% bootstrap support (gray). Number on the right of the pie chart indicates 577 QS scores: Quartet concordance/Quartet differential/Quartet informativeness. QS scores in blue 578 indicate support for individual major clades of Amaranthaceae s.l., while red scores indicate 579 strong support for alternative relationships among them. Branch lengths are in number of 580 substitutions per site (scale bar on the bottom).

581

582 The conflict analyses confirmed the monophyly of Amaranthaceae s.l. with most gene 583 trees being concordant (922; ICA= 0.94) and full QS support (1/-/1); i.e. all sampled quartets 584 supported that branch), but also recovered significant discordance in the backbone of the family 585 (Fig. 2; Figs S2–S3). The monophyly of Chenopodiaceae s.s. was supported only by 231 out of 586 632 informative gene trees (ICA = 0.42) and the QS score (0.25/0.19/0.99) suggested weak 587 quartet support with a skewed frequency for an alternative placement of two well-defined clades 588 within Chenopodiaceae s.s., herein referred to as 'Chenopods I' and 'Chenopods II' (Fig. 2; Figs S2–S3). 'Chenopods I' and 'Chenopods II' were each supported by the majority of gene trees, 589 590 870 (ICA = 0.89) and 916 (ICA = 0.91), respectively and full QS support. The placement of 591 Betoideae and Polycnemoideae as successive sisters of Chenopodiaceae also showed significant 592 conflict (Fig. 2; Figs S2–S3). The placement of Betoideae was supported only by 126 out of 579 593 informative gene trees (ICA = 0.28) and the QS score (0.31/0.57/1) also showed low support 594 with the presence of supported alternative placements close to the same frequency. Similarly, the 595 placement of Polycnemoideae was supported by only 116 out of 511 informative gene trees (ICA 596 = 0.29) and low QS support (0.3/0.81/0.99) with alternative topologies close to equal 597 frequencies. The monophyly of Amaranthaceae s.s. was highly supported by 755 gene trees (ICA

MORALES-BRIONES ET AL.

28

=0.85) and the QS score (0.92/0/1) also indicated high quartet support and no support for a single
alternative topology.

600 Congruent with the overall low support in the backbone of Amaranthaceae s.l. from BS, 601 LPP, ICA, QS, and PhyParts, the cloudogram of 41 species using 1,242 gene trees also showed significant conflict in the backbone of Amaranthaceae s.l. where no clear pattern can be 602 603 identified regarding the relationships of the five main clades of Amaranthaceae s.l. (Fig. 3). In 604 summary, analysis of nuclear genes recovered five well-supported clades in Amaranthaceae s.l.: 605 Amaranthaceae s.s., Betoideae, 'Chenopods I', 'Chenopods II', and Polycnemoideae. However, 606 relationships among these five clades showed a high level of conflict among genes (ICA scores 607 and gene counts [pie charts]) and among subsampled quartets (QS scores), despite having high 608 support from both BS and LPP scores.

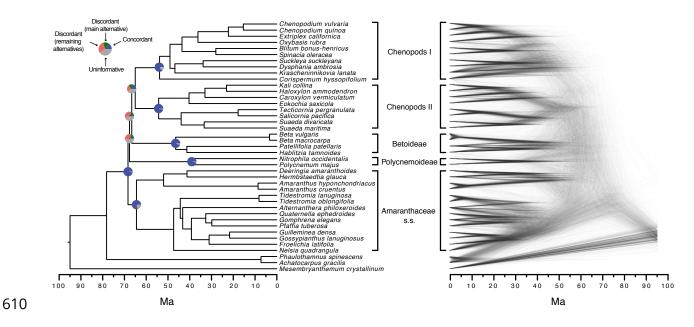


FIGURE 3. ASTRAL species tree (left) and cloudogram (right) inferred from 1,242 nuclear genes for the 41-taxon dataset of Amaranthaceae s.l. Pie charts on nodes present the proportion of gene trees that support that clade (blue), the proportion that support the main alternative bifurcation

GENE TREE DISCORDANCE IN PHYLOTRANSCRIPTOMICS

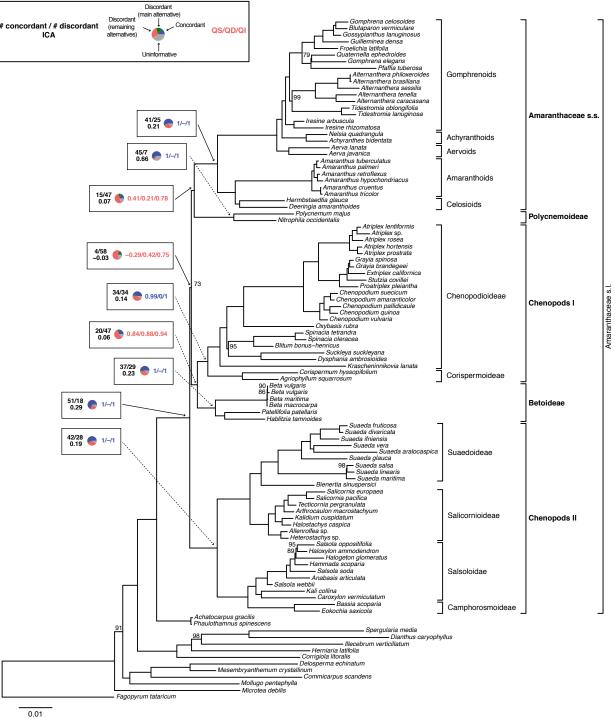
29

614 (green), the proportion that support the remaining alternatives (red), and the proportion (conflict
615 or support) that have < 50% bootstrap support (gray).

- 616
- 617

Chloroplast phylogenetic analysis of Amaranthaceae s.l.

618 The final alignment from 76 genes included 103 taxa and 55,517 bp in aligned length. The ML 619 tree recovered the same five main clades within Amaranthaceae s.l. with the highest support (BS 620 = 100; Fig. 4; Figs S4–S5). Within each main clade, relationships were fully congruent with 621 (Kadereit et al. 2017) and mostly congruent with our nuclear analyses. However, the relationship among the five main clades differed from the nuclear tree. Here, Betoideae was retrieved as 622 sister (BS = 100) of 'Chenopods I', while Amaranthaceae s.s. and Polycnemoideae were also 623 624 recovered as sister clades (BS =100). Furthermore, the clade formed by Betoideae and 625 'Chenopods I', and Amaranthaceae s.s. and Polycnemoideae were recovered as sister groups (BS 626 = 73), leaving 'Chenopods II' as sister to the former two. Conflict analysis confirmed the 627 monophyly of Amaranthaceae s.l. with 51 out of 76 gene trees supporting this clade (ICA = 0.29) 628 and full QS support (1/-/1). On the other hand, and similar to the nuclear phylogeny, conflict and 629 OS analyses showed significant discordance in the backbone of the family (Fig. 4; Figs S4–S5). 630 The sister relationship of Betoideae and 'Chenopods I' was supported by only 20 gene trees (ICA 631 = 0.06), but it had a strong support from OS (0.84/0.88/0/94). The relationship between 632 Amaranthaceae s.s. and Polycnemoideae was supported only by 15 gene trees (ICA = 0.07), 633 while QS showed weak support (0.41/0.21.0.78) with signals of a supported secondary 634 evolutionary history. The clade uniting Betoideae, 'Chenopods I', Amaranthaceae s.s., and 635 Polycnemoideae was supported by only four-gene trees, with counter-support from both OS (-0.29/0.42/0.75) and ICA (-0.03), suggesting that most gene trees and sampled quartets supported 636 637 alternative topologies. RNA editing prediction analysis revealed editing sites only on CDS


MORALES-BRIONES ET AL.

30

638 sequences of reference plastome genomes (Table S3), suggesting that cpDNA reads in RNA-seq

639 libraries come from RNA rather than DNA contamination from incomplete DNase digestion

- 640 during sample processing.
- 641

GENE TREE DISCORDANCE IN PHYLOTRANSCRIPTOMICS

643	FIGURE 4. Maximum likelihood phylogeny of Amaranthaceae s.l. inferred from IQ-tree analysis
644	of concatenated 76-chloroplast gene supermatrix. All nodes have full support (Bootstrap =
645	100/Local posterior probability = 100) unless noted next to nodes. Boxes contain gene tree
646	conflict and Quartet Sampling (QS) scores for major clades (see Figs S2–S3 for all node scores).
647	In each box, numbers on the upper left indicate the number of gene trees concordant/conflicting
648	with that node in the species tree, and the number on the lower left indicate the Internode
649	Certainty All (ICA) score. Pie charts present the proportion of gene trees that support that clade
650	(blue), the proportion that support the main alternative bifurcation (green), the proportion that
651	support the remaining alternatives (red), and the proportion (conflict or support) that have $< 50\%$
652	bootstrap support (gray). Numbers on the right of the pie chart indicate QS scores: Quartet
653	concordance/Quartet differential/Quartet informativeness. QS scores in blue indicate support for
654	individual major clades of Amaranthaceae s.l., while red scores indicate strong support for
655	alternative relationships among them. Branch lengths are in number of substitutions per site
656	(scale bar on the bottom).
657	
658	Species network analysis of Amaranthaceae s.l.
659	Due to the computational limit of species network analyses, we reduced our full 105-taxon
660	dataset to ten ingroup taxa plus one outgroup taxon. In this reduced dataset two taxa were used to
661	represent the diversity for each of the five well-supported ingroup clades within Amaranthaceae
662	s.l. The reduced 11-taxon(net) dataset included 4,138 orthologous gene alignments with no
663	missing taxon and a minimum of 1,000 bp (aligned length after removal of low occupancy
CCA	achiming) The 11 tower (not) ACTDAL encodes tree was construct with the 105 tower tree while

columns). The 11-taxon(net) ASTRAL species tree was congruent with the 105-taxon tree, while

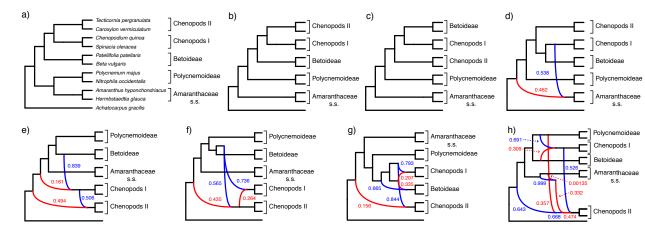
both the nuclear and chloroplast ML trees from concatenated supermatrices both had different

topologies than their corresponding 105-taxon trees (Fig. 5). PhyloNet identified up to five

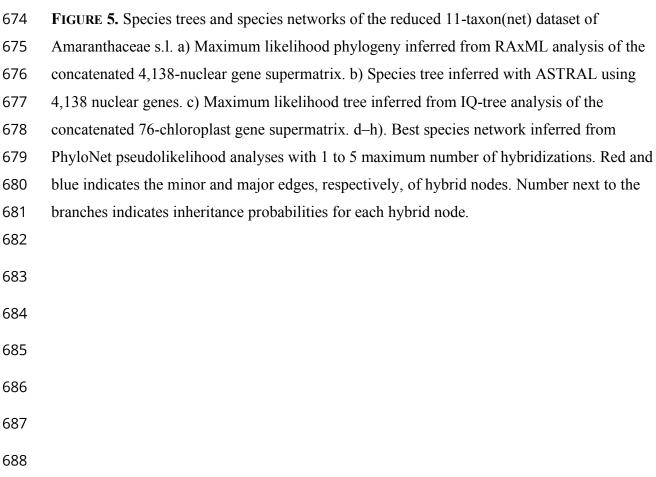
hybridization events among the clades of Amaranthaceae s.l. (Fig. 5), with the best model having

668 five hybridization events involving all five clades (Table 1). 'Chenopods II' was involved in

669 hybridization events in all networks with one to five hybridization events. Model selection


MORALES-BRIONES ET AL.

32


670 indicated that any species network was a better model than the bifurcating nuclear or chloroplast

671 trees (Table 1).

672

673

TABLE 1. Model selection between maximum number of hybridizations in species networks searches.

	Maximum								
	number of	Number of							
	hybridizations	inferred			Number				
Topology	allowed	hybridizations	$\ln(L)$	Parameters	of loci	AICc	∆ AICc	BIC	∆ BIC
RAxML ML tree	NA	NA	-24486.33124	19	4138	49048.84703	20589.66354	49130.89387	20546.62287
ASTRAL species tree	NA	NA	-23448.39741	19	4138	46972.97939	18513.79589	47055.02622	18470.75522
Chloroplast ML tree	NA	NA	-24568.33287	19	4138	49212.8503	20753.66681	49294.89713	20710.62614
Network 1	1	1	-21177.79113	21	4138	42439.80675	13980.62326	42530.46958	13946.19859
Network 2	2	2	-17275.62523	23	4138	34643.51881	6184.335324	34742.79372	6158.522728
Network 3	3	2	-16741.99114	23	4138	33576.25064	5117.067147	33675.52555	5091.254551
Network 4	4	3	-15415.80012	25	4138	30931.91638	2472.73289	31039.79943	2455.528435
Network 5	5	5	-14171.37996	29	4138	28459.18349	0	28584.27099	0

MORALES-BRIONES ET AL.

34

698	
699	Four-taxon analyses
700	To test for hybridization events one at a time, we further reduced the 11-taxon(net) dataset to 10
701	four-taxon combinations that each included one outgroup and one representative each from three
702	out of the five major ingroup clades. Between 7,756 and 8,793 genes were used for each quartet
703	analysis (Table 2) and each quartet topology can be found in Figure 6. Only five out of the ten
704	bifurcating quartet species trees (H0 and more frequent gene tree) were compatible with the
705	nuclear species tree inferred from the complete 105-taxon dataset. The other five quartets
706	compatible with the complete-taxon species tree corresponded to the second most frequent
707	quartet gene trees, except for the quartet of Betoideae, 'Chenopods II' and Polycnemoideae
708	(PBC2, which correspond to the least frequent gene tree).

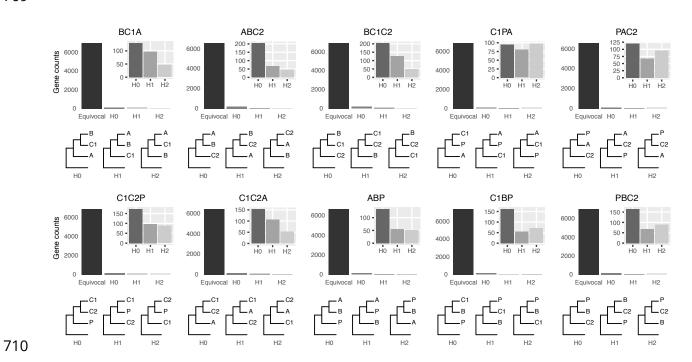


FIGURE 6. Gene counts from Approximate-Unbiased (AU) topology test of the 10 quartets from
the five main clades of Amaranthaceae s.l. AU tests were carried out between the three possible
topologies of each quartet. H0 represents the ASTRAL species tree of each quartet. Equivocal

GENE TREE DISCORDANCE IN PHYLOTRANSCRIPTOMICS

714	indicates gene trees that fail to reject all three alternative topologies for a quartet with $p \le 0.05$.
715	Gene counts for each of the three alternative topologies represent gene trees supporting
716	unequivocally one topology by rejecting the other two alternatives with $p \le 0.05$. Insets represent
717	gene count only for unequivocally topology support. Each quartet is named following the species
718	tree topology, where the first two species are sister to each other (all topologies can be found in
719	Figure S1). A = Amaranthaceae s.s. (represented by <i>Amarantus hypocondriacus</i>), B = Betoideae
720	(Beta vulgaris), C1 = Chenopods I (Chenopodium quinoa), C2 = Chenopods II (Caroxylum
721	vermiculatum), P = Polycnemoideae (Polycnemum majus). All quartets are rooted with
722	Mesembryanthemum crystallinum.
723	
704	Similar to the 105 tower and the 11 tower(not) detects the conflict analyzes recovered

724 Similar to the 105-taxon and the 11-taxon(net) datasets, the conflict analyses recovered 725 significant conflict among all three possible rooted quartet topologies in all ten quartets. In each 726 of the ten quartets, the ASTRAL species tree topology (H0) was the most frequent among 727 individual gene trees (raw counts) but only with 35%-41% of occurrences while the other two 728 topologies varied between similar or slightly skewed frequencies (Fig. S6a; Table S8). Gene 729 counts based on the raw likelihood scores from the constraint analyses showed similar patterns 730 (Fig. S6b; Table S8). Furthermore, when gene counts were filtered by significant likelihood 731 support (i.e. \triangle AICc > 2), the number of trees supporting each of the three possible topologies 732 dropped between 34% and 45%, but the species tree remained to be the most frequent topology 733 for all quartets (Fig. S6b; Table S8). The AU topology tests failed to reject ($p \le 0.05$) 734 approximately 85% of the gene trees for any of the three possible quartet topologies and rejected 735 all but a single topology in only 3%-4.5% of cases. Among the unequivocally selected gene 736 trees, the frequencies among the three alternative topologies were similar to ones based on raw 737 likelihood scores and overall the species tree was the most common topology for each quartet

MORALES-BRIONES ET AL.

2	6
J	υ

738	(Fig 6; Table S8). Furthermore, the topology test clearly showed that most genes were
739	uninformative for resolving the relationships among the major groups of Amaranthaceae s.l.
740	Across all ten quartets we found that most genes had very low TC scores (for any single
741	node the maximum TC value is 1; Supplemental Fig. S7), showing that individual gene trees had
742	also large conflict among bootstrap replicates, which is also a signal of uninformative genes and
743	is concordant with the AU topology test results. Additionally, the linear models did not show any
744	significant correlation between TC scores and alignment length, GC content or alignment gapless
745	(Table S9), suggesting that filtering genes by any of these criteria are unlikely to increase the
746	information content of the dataset.
747	Species network analyses followed by model selection using each of the four-taxon
748	datasets showed that in seven out of the ten total quartets, the network with one hybridization
749	event was a better model than any bifurcating tree topology. However, each of the best three
750	networks from PhyloNet had very close likelihood scores and no significant ∆ AICc among them.
751	For the remaining three quartets the most common bifurcating tree (H0; C1PA, C1BP, PBC2)
752	was the best model (Table 2; Figs 6, S6, S8).
753	
754	
755	
756	
757	
758	
759	
760	

- 761 TABLE 2. Model selection between quartet tree topologies and species networks. Trees correspond to each of the three possible quartet
- topologies where H0 is the ASTRAL quartet species tree. Networks correspond to the best three networks for searches with one

763 hybridization event allowed.

Ouartet ^a	Topology ^b	ln(<i>L</i>)	Parameters	Number of loci	AICc	▲AICc	BIC	∆ BIC
BC1A	Topology	-	1 ul ullitetter 5	1001	ince		Die	
2011	H0	9014.809786	5	8258	18049.62684	24.73436754	18074.71426	14.70279692
	H1	9072.456373	5	8258	18164.92002	140.0275408	18190.00743	129.9959702
	H2	- 9073.888783	5	8258	18167.78484	142.8923611	18192.87225	132.8607905
	Net 1	-8998.43945	7	8258	18024.89248	0	18060.01146	0
	Net 2	- 8998.439526	7	8258	18024.89263	0.000151947	18060.01162	0.000151947
	Net 3	- 8998.441478	7	8258	18024.89653	0.004056302	18060.01552	0.004056302
ABC2	H0	- 8516.854413	5	7811	17053.71651	12.87079823	17078.52527	2.950887757
	H1	8581.563051	5	7811	17183.13379	142.2880731	17207.94254	132.3681626
	H2	- 8582.670875	5	7811	17185.34944	144.5037223	17210.15819	134.5838118
	Net 1	- 8506.415681	7	7811	17040.84572	0	17075.57438	0
	Net 2	- 8506.415769	7	7811	17040.84589	0.000176519	17075.57456	0.000176519
	Net 3	-8506.42071	7	7811	17040.85577	0.010057548	17075.58444	0.010057548
BC1C2	H0	- 9140.191425	5	8385	18300.39001	156.347016	18325.55385	146.2848258
	H1	9201.981045	5	8385	18423.96925	279.9262567	18449.13309	269.8640665
	H2	9214.405292	5	8385	18448.81775	304.7747517	18473.98158	294.7125615

	Net 1	9058.014812	7	8385	18144.04299	0	18179.26902	0
	Net 2	9058.019338	7	8385	18144.05205	0.009052497	18179.27807	0.009052497
	Net 3	9058.024046	7	8385	18144.06146	0.018468011	18179.28749	0.018468011
C1PA	HO	- 8932.927759	5	8134	17885.8629	0	17910.87456	0
	H1	8936.145955	5	8134	17892.29929	6.436391285	17917.31095	6.436391285
	H2	8936.481125	5	8134	17892.96963	7.106730999	17917.98129	7.106730999
	Net 1	8932.077808	7	8134	17892.1694	6.306498884	17927.18227	16.30771403
	Net 2	8932.078011	7	8134	17892.16981	6.306905172	17927.18268	16.30812032
	Net 3	8932.078714	7	8134	17892.17121	6.308310587	17927.18408	16.30952573
PAC2	H0	- 8530.661274	5	7784	17081.33026	40.10000797	17106.12168	30.18704595
	H1	-8552.9448	5	7784	17125.89731	84.66706025	17150.68873	74.75409823
	H2	8548.291438	5	7784	17116.59059	75.36033576	17141.382	65.44737374
	Net 1	8506.607925	7	7784	17041.23025	0	17075.93463	0
	Net 2	- 8506.609795	7	7784	17041.23399	0.00373969	17075.93837	0.00373969
	Net 3	- 8506.618966	7	7784	17041.25233	0.02208072	17075.95671	0.02208072
C1C2P	H0	9119.250871	5	8341	18258.50894	12.50997925	18283.64643	2.458344441
	H1	- 9163.685997	5	8341	18347.37919	101.38023	18372.51669	91.32859519
	H2	-9164.83263	5	8341	18349.67246	103.6734974	18374.80995	93.62186263
	Net 1	- 9108.992761	7	8341	18245.99896	0	18281.18809	0
	Net 2	9108.994383	7	8341	18246.00221	0.003244509	18281.19133	0.003244509

-

GENE TREE DISCORDANCE IN PHYLOTRANSCRIPTOMICS

	Net 2 Net 3	9556.243036 9556.246261	7 7	8793 8793	19140.49882 19140.50527	4.670955519 4.677405326	19176.05805 19176.0645	14.82845724 14.83490705
	H2 Net 1	9661.009687 -9556.24034	5 7	8793 8793	19342.0262 19140.49343	206.1983365 4.665563813	19367.42793 19176.05266	206.1983365 14.82306554
	H1	9661.475396	5	8793	19342.95762	207.1297559	19368.35935	207.1297559
C1BP	HO	- 9557.910518	5	8793	19135.82787	0	19161.22959	0
	Net 3	9002.464397	7	8206	18032.94246	0.011102577	18068.01714	0.011102577
	Net 2	9002.460142	7	8206	18032.93395	0.002592568	18068.00863	0.002592568
	Net 1	- 9002.458846	7	8206	18032.93135	0	18068.00604	(
	H2	9014.738462	5	8206	18049.48424	16.55288764	18074.54003	6.53399068
	H1	9015.941176	5	8206	18051.88967	18.95831519	18076.94546	8.93941823
ABP	H0	9008.115816	5	8206	18036.23895	3.307596079	18061.29474	6.711300872
ADD	Net 3	8411.820308	7	7756	16851.65507	0.007573446	16886.33417	0.00757344
	Net 2	8411.819912	7	7756	16851.65428	0.006781956	16886.33338	0.00678195
	Net 1	8411.816521	7	7756	16851.6475	0	16886.3266	(
	H2	8522.764578	5	7756	17065.5369	213.889401	17090.31027	203.9836704
	H1	8520.509174	5	7756	17061.02609	209.378593	17085.79946	199.4728624
010211	H0	8447.623029	5	7756	16915.2538	63.6063012	16940.02717	53.7005705
C1C2A	Net 3	9108.994843	7	8341	18246.00313	0.0041636	18281.19225	0.004163

		H1	9206.127177	5	8379	18432.26152	95.63542753	18457.42177	95.63542753
		H2	9205.933131	5	8379	18431.87343	95.24733612	18457.03368	95.24733612
		Net 1	9158.016519	7	8379	18344.04642	7.42032489	18379.26742	17.48107897
		Net 2	9158.017286	7	8379	18344.04795	7.421858749	18379.26896	17.48261282
		Net 3	9158.017377	7	8379		7.422042036		17.48279611
764	^a Each quar	tet 1s name	d following the specie	s tree topolo	ogy, w	here the first f	two are sister.	A = Amaran	thaceae. s.s. (Amaranthus
765	hypochond	riacus), B	= Betoideae (<i>Beta vul</i>	garis), C1 =	Cheno	opods I (Chen	opodium qui	noa), C2 = Cl	nenopods II (Caroxylum
766	vermiculati	um), P = Po	olycnemoideae (Polyc	nemum maji	us).				
767	^b All quarte	t tree topol	logies can be found in	Figure 6 and	d quart	et network to	pologies in F	igure S8.	
768	-	-	-	-	•			-	
700									
769									
770									
771									
772									
773									
774									
775									
776									

GENE TREE DISCORDANCE IN PHYLOTRANSCRIPTOMICS

41

777

The ABBA/BABA test results showed a significant signal of introgression within each of
the ten quartets (Table 3). The possible introgression was detected between six out of the ten
possible pairs of taxa. Potential introgression between Betoideae and Amaranthaceae s.s.,
'Chenopods I' or 'Chenopods II', and between 'Chenopods I' and Polycnemoideae was not
detected.

783

TABLE 3. ABBA/BABA test results of Amaranthaceae s.l. five main groups quartets.

	Number	Sites in			Raw D-			Introgression
Quartet (H0) ^a	of loci	alignment	ABBA	BABA	statistic	Z-score	P-value	direction
BC1A ^b	8258	12778649	287226	254617	0.06018164	41.1085	≤ 0.001	A⇔C1
ABC2	7811	12105324	252772	376755	-0.1969463	124.4161	≤ 0.001	A⇔C2
BC1C2	8385	13192317	306570	258349	0.08535914	54.59751	≤ 0.001	C1⇔C2
C1PA ^b	8134	12635201	342350	286813	0.08827124	64.62297	≤ 0.001	A⇔P
PAC2	7784	12049734	344726	405627	-0.08116313	42.88069	≤ 0.001	C2⇔P
C1C2P ^b	8341	13127397	445384	276652	0.2336892	136.0151	≤ 0.001	C2⇔P
C1C2A ^b	7756	12114778	396219	292561	0.1504951	101.3243	≤ 0.001	A⇔C2
ABP	8206	12622625	276319	312060	-0.06074486	36.64264	≤ 0.001	A⇔P
C1BP ^b	8793	13712853	273286	261620	0.02180944	18.08364	≤ 0.001	B⇔P
PBC2	8379	13074019	217549	415616	-0.3128205	196.8972	≤ 0.001	C2⇔P

^aEach quartet is named following the species tree topology, where the first two are sister. A =

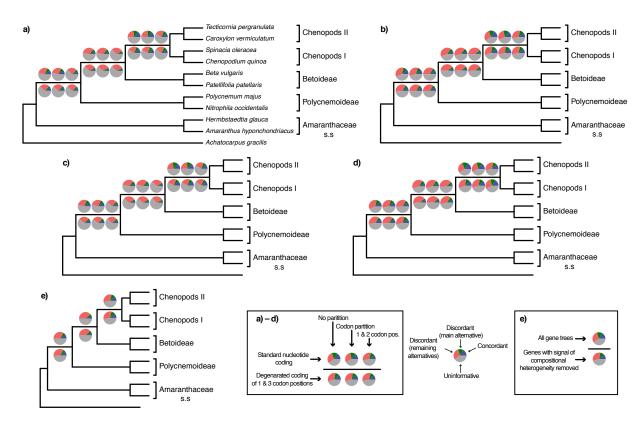
786 Amaranthaceae. s.s. (Amaranthus hypochondriacus), B = Betoideae (Beta vulgaris), C1 =

787 Chenopods I (Chenopodium quinoa), C2 = Chenopods II (Caroxylum vermiculatum), P =

788 Polycnemoideae (*Polycnemum majus*). H0 topologies can be found in Figure 6

^bQuartet compatible with the complete 105-taxon species trees

MORALES-BRIONES ET AL.


Λ	2
4	7

791	The synteny analysis between the diploid ingroup reference genome Beta vulgaris and
792	the diploid outgroup reference genome Mesembryanthemum crystallinum recovered 22,179 (out
793	of 52,357) collinear genes in 516 syntenic blocks. With the collinear ortholog pair information,
794	we found that of the 8,258 orthologs of the BC1A quartet 6,941 contained orthologous genes
795	within 383 syntenic blocks. The distribution of the BC1A quartet topologies along the
796	chromosomes of Beta vulgaris did not reveal any spatial clustering along the chromosomes (Fig.
797	S9).
798	
799	Assessment of substitutional saturation, codon usage bias, compositional heterogeneity,
800	and sequence evolution model misspecification
801	We assembled a second 11-taxon(tree) dataset that included 5,936 genes and a minimum of 300
802	bp (aligned length after removal of low occupancy columns) and no missing taxon. The
803	saturation plots of uncorrected and predicted genetic distances showed that the first and second
804	codon position are unsaturated ($y = 0.8841002x$), while the slope of the third codon positions (y
805	= 0.5710071x) showed a clear signal of saturation (Fig. S10). The correspondence analyses of
806	RSCU show that some codons are more frequently used in different species, but overall the
807	codon usage seems to be randomly dispersed among all species and not clustered by clade (Fig.
808	S11). This suggests that the phylogenetic signal is unlikely to be driven by differences in codon
809	usage bias among clades. Furthermore, 549 (~9%) genes showed signal of compositional
810	heterogeneity (p < 0.05) (Table S10). The topology and support (LPP = 1.0) for all branches was
811	the same for the ASTRAL species trees obtained from the different data schemes while
812	accounting for saturation, codon usage, compositional heterogeneity, and model of sequence
813	evolution, and was also congruent with the ASTRAL species tree and concatenated ML from the

43

GENE TREE DISCORDANCE IN PHYLOTRANSCRIPTOMICS

- full-taxon analyses (Fig. 7). In general, the proportion of gene trees supporting each bipartition
 remained the same in every analysis and showed high levels of conflict among the main clades of
 Amaranthaceae s.l. (Fig 7). Gene trees inferred accounting for selection of model of sequence
 evolution had higher bootstrap support resulting in higher proportion of both concordant and
 discordant trees (Fig 7b, 7d, 7e), but the proportion among them is the same as in the gene trees
 that used a single model of sequence evolution (Fig 7a–7c).
- 820

821

FIGURE 7. ASTRAL species trees from the 11-taxon(net) dataset estimated from gene trees
inferred using multiple data schemes. a) Gene trees inferred with RAxML with a GTR-GAMMA
model. b) Gene trees inferred with IQ-tree allowing for automatic model selection of sequence
evolution. c) Gene trees inferred with RAxML with a GTR-GAMMA model and removal of
genes that had signal of compositional heterogeneity. d) Gene trees inferred with IQ-tree
allowing for automatic model selection of sequence evolution and removal of genes that had

MORALES-BRIONES ET AL.

44

828	signal of compositional heterogeneity. a-d) Gene trees were inferred with no partition, codon
829	partition (first and second codon, and third codon) and, only first and second codon positions
830	(third codon position removed and no partition). Gene trees were inferred using codon
831	alignments with standard nucleotide coding, and alignments with degenerated coding of the first
832	and third codon positions. e) All gene trees and gene trees after removal of genes that had signal
833	of compositional heterogeneity, inferred with IQ-tree using amino acid sequences allowing for
834	automatic model selection of sequence evolution. Pie charts on nodes present the proportion of
835	gene trees that support that clade (blue), the proportion that support the main alternative
836	bifurcation (green), the proportion that support the remaining alternatives (red), and the
837	proportion (conflict or support) that have < 50% bootstrap support (gray).
838	
839	Polytomy test
840	The ASTRAL polytomy test resulted in the same bifurcating species tree for the 11-taxon(tree)
841	dataset and rejected the null hypothesis that any branch is a polytomy ($p < 0.01$ in all cases).
842	These results were identical when using gene trees with collapsed branches.
843	
844	Coalescent simulations
845	The distribution of tree-to-tree distances of the empirical and simulated gene trees to the species
846	tree largely overlapped in all seven partition schemes tested (Fig. 8), suggesting that ILS alone
847	was able to largely account for the gene tree heterogeneity seen in the 11-taxon(tree) dataset. The
848	least overlap between empirical vs. simulated gene trees was observed in the dataset that only
849	included the first and second codon positions in CDS, and in the amino acid dataset. This can be
850	attributed to higher gene tree inference error due to removal of informative sites from the third
851	codon position.

GENE TREE DISCORDANCE IN PHYLOTRANSCRIPTOMICS

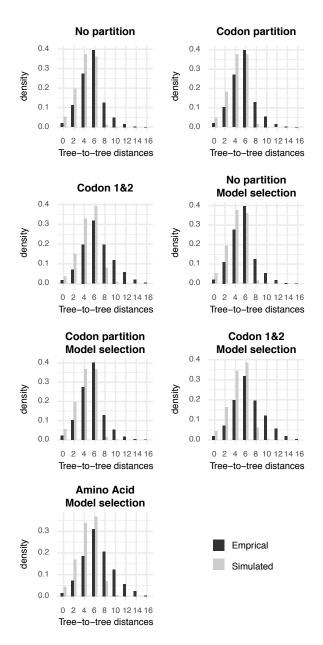


FIGURE 8. Distribution of tree-to-tree distances from empirical gene trees and species tree versus
coalescent simulation. Simulations were carried out using the ASTRAL species trees from the
11-taxon(tree) dataset estimated from gene trees inferred using seven data schemes. Species trees
used for the coalescent simulation can be seen in Figure 9.

Test of anomaly zone

MORALES-BRIONES ET AL.

46

862	The anomaly zone limit calculations using species trees from the 11-taxon(tree) dataset revealed
863	that two pairs of internodes in the Amaranthaceae s.l. species tree fell into the anomaly zone.
864	These internodes are characterized by having very short branches relative to the rest of the tree.
865	The branch lengths among species trees from the seven different data schemes varied among the
866	trees, but the same internodes were identified under the anomaly zone in all cases. The first pair
867	of internodes is located between the clade comprised of all Amaranthaceae s.l. and the clade that
868	includes Chenopods I, Chenopods II, and Betoideae. The second pair of internodes is located
869	between the clade that includes Chenopods I, Chenopods II, and Betoideae and the clade
870	composed of Chenopods I and Chenopods II (Table 4, Fig. 9).
871	

872 **TABLE 4.** Anomaly zone limit calculations in 11-taxon species trees. Bold rows show pair of 873 internodes in the anomaly zone when y < a(x)

Species tree ^a	Clade (x) ^b	Clade (y) ^b	X	у	a(x)
	(C1, C2)	(C1)	0.1467	2.722	0.1799
	(C1, C2)	(C2)	0.1467	2.1102	0.1799
No partition	((C1, C2), B)	(C1, C2)	0.1045	0.1467	0.3084
No partition	((C1, C2), B)	(B)	0.1045	2.6081	0.3084
	(((C1, C2), B), P)	((C1, C2), B)	0.0846	0.1045	0.4003
	(((C1, C2), B), P)	(P)	0.0846	3.5424	0.4003
	(C1, C2)	(C1)	0.1433	2.6766	0.1882
Color nortic	(C1, C2)	(C2)	0.1433	2.0655	0.1882
Codon partition	((C1, C2), B)	(C1, C2)	0.0931	0.1433	0.3572
Codon partition	((C1, C2), B)	(B)	0.0931	2.5862	0.3572
	(((C1, C2), B), P)	((C1, C2), B)	0.0734	0.0931	0.4669
	(((C1, C2), B), P)	(P)	0.0734	3.5366	0.4669
	(C1, C2)	(C1)	0.118	1.3092	0.26
	(C1, C2)	(C2)	0.118	1.7645	0.26
Codon 1&2	((C1, C2), B)	(C1, C2)	0.1009	0.118	0.3231
	((C1, C2), B)	(B)	0.1009	1.6229	0.3231
	(((C1, C2), B), P)	((C1, C2), B)	0.0673	0.1009	0.5102

873 i	nternodes	in the	anomal	y zone	when	y < a	(x).
-------	-----------	--------	--------	--------	------	-------	------

47

GENE TREE DISCORDANCE IN PHYLOTRANSCRIPTOMICS

	(((C1, C2), B), P)	(P)	0.0673	2.3625	0.5102
	(C1, C2)	(C1)	0.1439	2.1199	0.1865
Model selection Codon partition - Model selection Codon 1&2 -	(C1, C2)	(C2)	0.1439	2.7013	0.1865
No partition -	((C1, C2), B)	(C1) 0.1439 2.1199 (C2) 0.1439 2.7013 (C1, C2) 0.1079 0.1439 (B) 0.1079 0.1439 (B) 0.1079 0.1439 (C1, C2), B) 0.0803 0.1079 (C1) 0.1427 2.6398 (C2) 0.1427 2.6398 (C2) 0.1427 2.0911 (C1, C2) 0.0945 0.1427 (B) 0.0945 0.1427 (B) 0.0945 0.1427 (C1, C2), B) 0.0721 0.0945 (C1) 0.1232 1.9043 (C2) 0.1232 1.415 (C1, C2) 0.1024 0.1232 (B) 0.1024 1.7399 (C1, C2), B) 0.07 0.1024 (C1, C2), B) 0.07 0.1024 (C1) 0.115 1.887 (C2) 0.115 1.317 (C1, C2) 0.122 0.115 (B) 0.122 1.744 (), P)((C1, C2), B) 0.077 (D122 0.122	0.2951		
Model selection	((C1, C2), B)	(B)	0.1079	2.5846	0.2951
	(((C1, C2), B), P)	((C1, C2), B)	0.0803	0.1079	0.4242
	(((C1, C2), B), P)	(P)	0.0803	3.58	0.4242
	(C1, C2)	(C1)	0.1427	2.6398	0.1896
Codon partition	(C1, C2)	(C2)	0.1427	2.0911	0.1896
	((C1, C2), B)	(C1, C2)	0.0945	0.1427	0.351
	((C1, C2), B)	(B)	0.0945	2.6252	0.351
	(((C1, C2), B), P)	((C1, C2), B)	0.0721	0.0945	0.4758
	(((C1, C2), B), P)	(P)	0.0721	3.5978	0.4758
	(C1, C2)	(C1)	0.1232	1.9043	0.2432
	(C1, C2)	(C2)	0.1232	1.415	0.2432
	((C1, C2), B)	(C1, C2)	0.1024	0.1232	0.317
Model selection	((C1, C2), B)	(B)	0.1024	1.7399	0.317
	(((C1, C2), B), P)	((C1, C2), B)	0.07	0.1024	0.4906
	(((C1, C2), B), P)	(P)	0.07	2.5666	0.4906
	(C1, C2)	(C1)	0.115	1.887	0.269
	(C1, C2)	(C2)	0.115	1.317	0.269
Amino Acid -	((C1, C2), B)	(C1, C2)	0.122	0.115	0.247
Model selection	((C1, C2), B)	(B)	0.122	1.744	0.247
	(((C1, C2), B), P)	((C1, C2), B)	0.077	0.122	0.444
	(((C1, C2), B), P)	(P)	0.077	2 471	0.444

^aSpecies tree topologies can be found in Figure 7.

^b B = Betoideae (*Beta vulgaris*), C1 = Chenopods I (*Chenopodium quinoa*), C2 = Chenopods II

876 (*Caroxylum vermiculatum*), P = Polycnemoideae (*Polycnemum majus*).

877

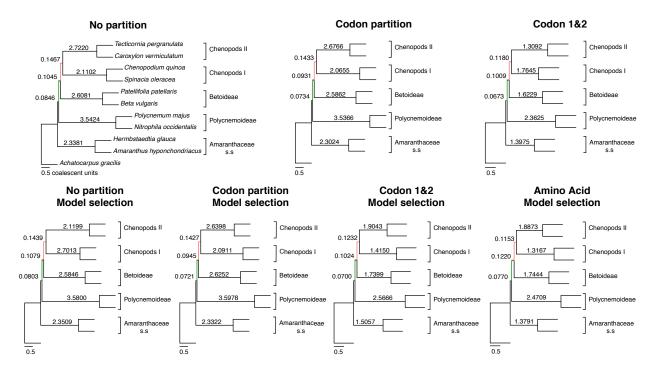
878

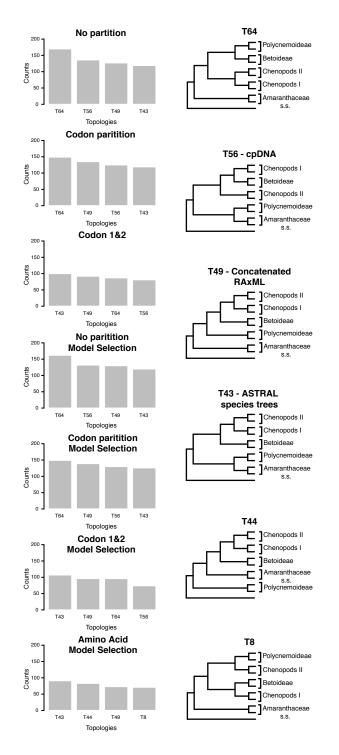
879

880

881

MORALES-BRIONES ET AL.




FIGURE 9. ASTRAL species trees from the 11-taxon(tree) dataset estimated from individual
gene trees inferred with seven data schemes. Number next or above branches represent branch
length in coalescent units. Colored branches represent pairs of internodes that fall in the anomaly
zone (see Table 4 for anomaly zone limits).

888

883

889 The gene tree counts showed that the species tree was not the most common gene tree topology in four of the seven data schemes analyzed, as expected for the anomaly zone (Fig. 890 891 S12). When gene trees were inferred with no partition or partitioned by codon, the species tree was the fourth most common gene tree topology (119 out of 5,936 gene trees), while the most 892 893 common gene tree topologies occurred between 170 and 149 times (Fig. 10). Similar patterns 894 were identified for gene trees inferred while accounting from model of sequence evolution selection (Fig. 10). Interestingly, for the gene tree sets inferred using only the first and second 895 896 codons, and amino acids, the species tree was the most common topology.

GENE TREE DISCORDANCE IN PHYLOTRANSCRIPTOMICS

897

FIGURE 10. Gene tree counts (left) of the four most common topologies (right) of 11-taxon(tree)

dataset inferred with seven data schemes. Gene trees that do not support the monophyly of any of

900 the five major clades were ignored.

MORALES-BRIONES ET AL.

50

a	n	2
)	v	~

DISCUSSION

903 Using a phylotranscriptomic dataset in combination with reference genomes representing major 904 clades, we have shown the prevalence of gene tree discordance in the backbone phylogeny of 905 Amaranthaceae s.l. Interestingly, we found that this discordance is also present within the 906 chloroplast dataset. Despite the strong signal of gene tree discordance, we were able to identify 907 five well-supported major clades within Amaranthaceae s.l. that are congruent with morphology 908 and previous taxonomic treatments of the group. Using multiple phylogenetic tools and 909 simulations we comprehensively tested for processes that might have contributed to the gene tree 910 discordance in Amaranthaceae s.l. Phylogenetic network analyses and ABBA-BABA tests both 911 supported multiple reticulation events among the five major clades in Amaranthaceae s.l. At the 912 same time, the patterns of gene tree discordance among these clades can also largely be 913 explained by uninformative gene trees and ILS. We found evidence that three consecutive short 914 internal branches produce anomalous trees contributing to the discordance. Molecular evolution 915 model misspecification (i.e. substitutional saturation, codon usage bias, or compositional 916 heterogeneity) was less likely to account for the gene tree discordance. Taken together, no single 917 source can confidently be pointed out to account for the strong signal of gene tree discordance, 918 suggesting that the discordance results primarily from ancient and rapid lineage diversification. 919 Furthermore, the backbone of Amaranthaceae s.l. and remains —and probably will remain— 920 unresolved even with genome-scale data. Our work highlights the need to test for multiple 921 sources of conflict in phylogenomic analyses and provide a set of recommendations moving 922 forward in resolving ancient and rapid diversification.

- 923
- 924

Five well-supported major clades in Amaranthaceae s.l.

GENE TREE DISCORDANCE IN PHYLOTRANSCRIPTOMICS

925

51

	11 5
926	Both our nuclear and chloroplast datasets strongly supported five major clades within
927	Amaranthaceae s.l.: Amaranthaceae s.s, 'Chenopods I', 'Chenopods II', Betoideae, and
928	Polycnemoideae (Figs. 2 & 4). We recovered Amaranthaceae s.s., Betoideae, and
929	Polycnemoideae as monophyletic, which is consistent with morphology and the most recent
930	molecular analyses of these lineages (Hohmann et al. 2006; Masson and Kadereit 2013; Di
931	Vincenzo et al. 2018). In the case of Chenopodiaceae s.s., the nuclear analyses (Fig. 2) suggested
932	the monophyly of this previously segregated family, but gene tree discordance analyses revealed
933	high levels of conflict among two well-defined clades (Fig. 2), 'Chenopods I' and 'Chenopods
934	II'. Moreover, the chloroplast analyses did not support the monophyly of Chenopodiaceae s.s.
935	While we also find evidence of gene tree discordance in the backbone cpDNA phylogeny (see
936	below), a sister relationship between 'Chenopods I' and Betoideae had strong QS support
937	(0.84/0.88/0.94; Fig. 4). Weak support and/or conflicting topologies along the backbone on the
938	Amaranthaceae s.l. characterize all previous molecular studies of the lineage (Fig. 1), even with
939	hundreds of loci (Walker et al. 2018). On the other hand, all studies support the five major clades
940	found in our analysis.
941	For the sake of taxonomic stability, we therefore suggest retaining Amaranthaceae s.l.

sensu APG IV (The Angiosperm Phylogeny Group et al. 2016), which includes the previously
recognized Chenopodiaceae. Here we recognize five subfamilies within Amaranthaceae s.l.:
Amaranthoideae representing Amaranthaceae s.s. (incl. Gomphrenoideae Schinz), Betoideae
Ulbr., Chenopodioideae represented as 'Chenopods I' here (incl. Corispermoideae Ulbr.),
Polycnemoideae Ulbr., and Salicornioideae Ulbr. represented by 'Chenopods II' (incl.
Salsoloideae Ulbr., Suaedoideae Ulbr. and Camphorosmoideae A.J. Scott). The stem ages of

MORALES-BRIONES ET AL.

52

these five subfamilies date back to the early Tertiary (Paleocene, Fig. 3) which agrees with dates
based on chloroplast markers (Kadereit et al. 2012; Di Vincenzo et al. 2018; Yao et al. 2019).
Due to the gene tree discordance along the backbone, the geographic origin of Amaranthaceae
s.l. remains ambiguous.

- 952
- 953

Gene tree discordance detected among chloroplast genes

954 Our concatenation-based chloroplast phylogeny (Fig. 4) retrieved the same five major clades of 955 Amaranthaceae s.l. as in the nuclear phylogeny, but the relationships among the major clades are 956 incongruent with the nuclear phylogeny (Fig. 2). Cytonuclear discordance is a well-known 957 process in plants and it has been traditionally attributed to reticulate evolution (Rieseberg and 958 Soltis 1991; Sang et al. 1995; Soltis and Kuzoff 1995). Such discordance continues to be treated 959 as evidence in support of hybridization in more recent phylogenomic studies that assume the 960 chloroplast to be a single, linked locus (e.g. Folk et al. 2017; Vargas et al. 2017; Morales-Briones 961 et al. 2018b; Lee-Yaw et al. 2019). However, cytonuclear discordance can also be attributed to other processes like ILS (Doyle 1992; Ballard and Whitlock 2004). Recent work shows that 962 963 chloroplast protein-coding genes may not necessarily act as a single locus, and high levels of tree 964 conflict has been detected (Gonçalves et al. 2019; Walker et al. 2019).

In Amaranthaceae s.l., previous studies based on chloroplast protein-coding genes or
introns (Kadereit et al. 2003; Müller and Borsch 2005; Hohmann et al. 2006; Kadereit et al.
2017) resulted in different relationships among the five main clades and none in agreement with
our 76-gene phylogeny. Our conflict and QS analyses of the chloroplast dataset (Fig. 4; Figs S4–
S5) revealed strong signals of gene tree discordance among the five major clades of
Amaranthaceae s.l. The strong conflicting signal in the chloroplast genome may be attributed to

GENE TREE DISCORDANCE IN PHYLOTRANSCRIPTOMICS

971	heteroplasmy and difference in individual gene phylogenetic information (Walker et al. 2019),
972	although the exact sources of conflict are yet to be clarified (Gonçalves et al. 2019). Unlike the
973	results found by Walker et al. (2019), nodes showing conflicting signals in individual gene trees
974	in our dataset were mostly highly supported (i.e. $BS \ge 70$, Fig S4), suggesting that low
975	phylogenetic information is not the source of conflict in our chloroplast dataset.
976	Our results support previous studies showing RNA-seq data can be a reliable source for
977	plastome assembly (Smith 2013; Osuna-Mascaró et al. 2018). While the approach has been used
978	for deep-scale phylogenomic reconstruction in green plants (Gitzendanner et al. 2018), at present
979	extracting plastome data is not part of routine phylotranscriptomic pipelines. RNA-seq libraries
980	can contain some genomic DNA due to incomplete digestion during RNA purification (Smith
981	2013) and given the AT-rich nature of plastomes, this allows plastome DNA to survive the poly-
982	A selection during mRNA enrichment (Schliesky et al. 2012). However, our results showed that
983	Amaranthaceae s.l. cpDNA assemblies came from RNA rather than DNA contamination
984	regardless of library preparation strategies. Similarly, Osuna-Mascaró et al. (2018) also found
985	highly similar plastome assemblies (i.e. general genome structure, and gene number and
986	composition) from RNA-seq and genomic libraries, supports the idea that plastome genomes are
987	fully transcribed in photosynthetic eukaryotes (Shi et al. 2016). Here we implemented additional
988	steps to the Yang and Smith (2014) pipeline to filter chloroplast and mitochondrial reads prior to
989	de novo transcriptome assembly, which allowed us to assemble plastome sequences from RNA-
990	seq libraries, build a plastome phylogeny, and compare it to gene trees constructed from nuclear
991	genes. Furthermore, the backbone topology of our cpDNA tree built mainly from RNA-seq data
992	(97 out of 105 samples) was consistent with a recent complete plastome phylogeny of
993	Caryophyllales (Yao et al. 2019), showing the potential value of using cpDNA from RNA-seq

MORALES-BRIONES ET AL.

54

data. Nonetheless, RNA editing might be problematic when combining samples from RNA and
DNA, especially when trying to resolve phylogenetic relationships among closely related
species.

- 997
- 998

Hybridization

999 Rapid advances have been made in recent years in developing methods to infer species networks 1000 in the presence of ILS (reviewed in Elworth et al. 2019). These methods have been increasingly 1001 used in phylogenetic studies (e.g. Marcussen et al. 2014; Wen et al. 2016a; Copetti et al. 2017); 1002 Morales-Briones et al. 2018a; Crowl et al. 2019). To date, however, species network inference is 1003 still computationally intensive and limited to a small number of species and a few hybridization 1004 events (Hejase and Liu 2016; but see Hejase et al. 2018 and Zhu et al. 2019). Furthermore, 1005 studies evaluating the performance of different phylogenetic network inference approaches are 1006 scarce and restricted to simple hybridization scenarios. (Kamneva and Rosenberg 2017) showed 1007 that likelihood methods like Yu et al. (2014) are often robust to ILS and gene tree error when 1008 symmetric hybridization (equal genetic contribution of both parents) events are considered, and 1009 while it usually does not overestimate hybridization events, it fails to detect skewed 1010 hybridization (unequal genetic contribution of both parents) events in the presence of significant 1011 ILS. Methods developed to scale to larger numbers of species and hybridizations like the ones 1012 using pseudo-likelihood approximations (i.e. Solís-Lemus and Ané 2016; Yu and Nakhleh 2015) 1013 are yet to be evaluated independently, but in the case of Yu and Nakhleh (2015), a method based 1014 on rooted triples, it has been shown that this method cannot distinguish the correct network when 1015 other networks can produce the same set of triples (Yu and Nakhleh 2015). The result of our 11-1016 taxon(net) phylogenetic analysis using a pseudo-likelihood approach detected up to five

55

GENE TREE DISCORDANCE IN PHYLOTRANSCRIPTOMICS

1017	hybridization events involving all five major clades of Amaranthaceae s.l. (Fig. 5). Model
1018	selection, after calculating the full likelihood of the obtained networks, chose the 5-reticulation
1019	species as the best model. Also, any species network had a better score than a bifurcating tree
1020	(Table 1). However, a further look of these hybridization events by breaking the 11-taxon dataset
1021	into ten quartets showed that full likelihood networks searches with up to one hybridization event
1022	are indistinguishable from each other (Table 2), resembling a random gene tree distribution. This
1023	pattern can probably be explained by the high levels of gene tree discordance and lack of
1024	phylogenetic signal in the inferred quartet gene trees (Fig. 6), suggesting that the 11-taxon(net)
1025	network searches can potentially overestimate reticulation events due to high levels of gene tree
1026	error or ILS.
1027	Using the D-Statistic (Green et al. 2010; Durand et al. 2011) we also found signals of

1028 introgression in seven possible directions among the five main groups of Amaranthaceae s.l. 1029 (Table 3). The inferred introgression events agreed with at least one of the reticulation scenarios 1030 from the phylogenetic network analysis. However, the *D*-Statistic did not detect any 1031 introgression that involves Betoideae, which was detected in the phylogenetic network analysis 1032 with either four or five reticulations events. The D-Statistic has been shown to be robust to a 1033 wide range of divergence times, but it is sensitive to relative population size (Zheng and Janke 1034 2018), which agrees with the notion that large effective population sizes and short branches 1035 increase the chances of ILS (Pamilo and Nei 1988) and in turn can dilute the signal for the D-1036 Statistic (Zheng and Janke 2018). Recently, Elworth et al. (2018) found that multiple or 'hidden' 1037 reticulations can cause the signal of the D-statistic to be lost or distorted. Furthermore, when 1038 multiple reticulations are present, the traditional approach of subsetting datasets into quartets can 1039 be problematic as it largely underestimates D values (Elworth et al. 2018). Given short internal

MORALES-BRIONES ET AL.

56

branches in the backbone of Amaranthaceae s.l. and the phylogenetic network results showing
multiple hybridizations, it is plausible that our *D*-statistic may be affected by these issues. Our
analysis highlights the uncertainty of relying *D*-statistic as the only test for detecting reticulation
events, especially in cases of ancient and rapid diversification.

- 1044
- 1045

ILS and the Anomaly Zone

1046 Incomplete Lineage Sorting, or ILS, is ubiquitous in multi-locus phylogenetic datasets. In its 1047 most severe cases ILS produces the 'anomaly zone', defined as a set of short internal branches in 1048 the species tree that produce anomalous gene trees (AGTs) that are more likely than the gene tree 1049 that matches the species tree (Degnan and Rosenberg 2006). Rosenberg (2013) expanded the 1050 definition of the anomaly zone to require that a species tree contain two consecutive internal 1051 branches in an ancestor-descendant relationship in order to produce AGTs. To date, only a few 1052 examples of an empirical anomaly zone have been reported (Linkem et al. 2016; Cloutier et al. 1053 2019). Furthermore, Huang and Knowles (2009) have pointed out that the gene tree discordance 1054 produced from the anomaly zone can also be produced by uninformative gene trees and that for 1055 species trees with short branches the most probable gene tree topology is a polytomy rather than 1056 an AGT. Our results show that the species tree of Amaranthaceae s.l. have three consecutive 1057 short internal branches that lay within the limits of the anomaly zone (i.e. y < a(x); Fig. 9; Table 1058 4). While this is clear evidence that gene tree discordance in Amaranthaceae s.l may be product 1059 of AGTs, it is important to point out that our quartet analysis showed that most quartet gene trees 1060 were equivocal (94–96%; Fig. 6), and were therefore uninformative gene trees. Nonetheless, the 1061 ASTRAL polytomy test rejected a polytomy along the backbone of Amaranthaceae s.l. in any of 1062 the gene tree sets used. While we did not test for polytomies in individual gene trees, our

57

GENE TREE DISCORDANCE IN PHYLOTRANSCRIPTOMICS

1063	ASTRAL polytomy test was also carried using gene trees with branches collapsed if they had
1064	<75% bootstrap support, and obtained the same species tree with polytomy being rejected.
1065	Furthermore, we found that for most of the partition schemes tested, the species tree is not the
1066	most frequent gene tree (Fig. 10). The distribution of gene tree frequency in combination with
1067	short internal branches in the species tree supports the presence of an anomaly zone in
1068	Amaranthaceae s.l.
1069	
1070	Considerations in distinguishing sources of gene tree discordance
1071	With the frequent generation of phylogenomic datasets, the need to explore and disentangle gene
1072	tree discordance has become a fundamental step to understand the phylogenetic relationships of
1073	recalcitrant groups across the Tree of Life. Recently, development of tools to identify and
1074	visualize gene tree discordance has received great attention (e.g. Salichos et al. 2014; Smith et al.
1075	2015; Huang et al. 2016; Pease et al. 2018). New tools have facilitated the detection of conflict,
1076	which has led to the development of downstream phylogenetic analyses to attempt to
1077	characterize it. Although exploring sources of conflicting signal in phylogenomic data is now
1078	common, this is typically focused on data filtering approaches and its effect on concatenation-
1079	based vs. coalescent-based tree inference methods (e.g. Alda et al. 2019; Mclean et al. 2019;
1080	Roycroft et al. 2019). Methods to estimate species trees from phylogenomic dataset while
1081	accounting for multiple sources of conflict and molecular substitution simultaneously are not
1082	available, but by combining transcriptomes and genomes, we were able to create a rich and dense
1083	dataset to start to tease apart alternative hypotheses concerning the sources of conflict in the
1084	backbone phylogeny of Amaranthaceae s.l. Nonetheless, we could not attribute the strong gene
1085	tree discordance signal to a single main source. Instead, we found that gene tree heterogeneity

observed in Amaranthaceae s.l. is likely to be explained by a combination of processes, including

MORALES-BRIONES ET AL.

1086

58

1087 ILS, hybridization, uninformative genes, and molecular evolution model misspecification, that 1088 might have acted simultaneously and/or cumulatively. Our results highlight the need to test for multiple sources of conflict in phylogenomic 1089 analyses, especially when trying to resolve phylogenetic relationships in groups with a long 1090 1091 history of phylogenetic conflict. We consider that special attention should be put in data 1092 processing, orthology inference, as well as the informativeness of individual gene trees. 1093 Furthermore, we need to be aware of the strengths and limitations of different phylogenetic 1094 methods and be cautious against relying on a single analysis, for example in the usage of 1095 phylogenetics species networks over coalescent-based species trees (also see Blair and Ané 1096 2019). While the backbone phylogeny of Amaranthaceae s.l. remains difficult to resolve despite 1097 employing genome-scale data, a question emerges whether this is an atypical case, or as we 1098 leverage more phylogenomic datasets and explore gene tree discordance in more detail, we could 1099 find similar patterns in other groups, especially in those that are products of ancient and rapid lineage diversification (Widhelm et al. 2019). Ultimately, such endeavor will be instrumental in 1100 1101 our fundamental understanding of the biology of the organisms. 1102 1103 SUPPLEMENTARY MATERIAL 1104 Data available from the Dryad Digital Repository: http://dx.doi.org/10.5061/.[NNNN] 1105 1106 ACKNOWLEDGMENTS 1107 The authors thank H. Freitag, J.M. Bena and the Millennium Seed Bank for providing seeds;

1108 Ursula Martiné for assisting with RNA extraction; Alexandra Crum for help revising the

GENE TREE DISCORDANCE IN PHYLOTRANSCRIPTOMICS

- 1109 manuscript; X anonymous reviewers for providing helpful comments; the Minnesota
- 1110 Supercomputing Institute (MSI) at the University of Minnesota for providing access to
- 1111 computational resources. This work was supported by the University of Minnesota, University of
- 1112 Michigan, and the US National Science Foundation (DEB 1354048).

-

-

MORALES-BRIONES ET AL.

1132	References
1133	
1134	Alda F., Tagliacollo V.A., Bernt M.J., Waltz B.T., Ludt W.B., Faircloth B.C., Alfaro M.E.,
1135	Albert J.S., Chakrabarty P. 2019. Resolving Deep Nodes in an Ancient Radiation of
1136	Neotropical Fishes in the Presence of Conflicting Signals from Incomplete Lineage
1137	Sorting. Syst. Biol. 68:573–593.
1138	Arcila D., Ortí G., Vari R., Armbruster J.W., Stiassny M.L.J., Ko K.D., Sabaj M.H., Lundberg J.,
1139	Revell L.J., Betancur-R. R. 2017. Genome-wide interrogation advances resolution of
1140	recalcitrant groups in the tree of life. Nat. Ecol. Evol. 1:0020.
1141	Ballard J.W.O., Whitlock M.C. 2004. The incomplete natural history of mitochondria. Mol. Ecol.
1142	13:729–744.
1143	Bankevich A., Nurk S., Antipov D., Gurevich A.A., Dvorkin M., Kulikov A.S., Lesin V.M.,
1144	Nikolenko S.I., Pham S., Prjibelski A.D., Pyshkin A.V., Sirotkin A.V., Vyahhi N., Tesler
1145	G., Alekseyev M.A., Pevzner P.A. 2012. SPAdes: A New Genome Assembly Algorithm
1146	and Its Applications to Single-Cell Sequencing. J. Comput. Biol. 19:455-477.
1147	Bena M.J., Acosta J.M., Aagesen L. 2017. Macroclimatic niche limits and the evolution of C4
1148	photosynthesis in Gomphrenoideae (Amaranthaceae). Bot. J. Linn. Soc. 184:283-297.
1149	Blackmon H., Adams R.A. 2015 EvobiR: Tools for comparative analyses and teaching
1150	evolutionary biology. doi:10.5281/zenodo.30938

GENE TREE DISCORDANCE IN PHYLOTRANSCRIPTOMICS

- 1151 Blair C., Ané C. 2019. Phylogenetic Trees and Networks Can Serve as Powerful and
- 1152 Complementary Approaches for Analysis of Genomic Data. Syst. Biol. syz056,
- 1153 https://doi.org/10.1093/sysbio/syz056
- 1154 Bolger A.M., Lohse M., Usadel B. 2014. Trimmomatic a flexible trimmer for Illumina
- sequence data. Bioinformatics. 30:2112–2120.
- 1156 Bouckaert R., Heled J. 2014. DensiTree 2: Seeing Trees Through the Forest. BioRxiv. 012401.
- 1157 Brown J.W., Walker J.F., Smith S.A. 2017. Phyx phylogenetic tools for unix. Bioinformatics.
- 1158 33:1886–1888.
- 1159 Bruen T.C., Philippe H., Bryant D. 2006. A Simple and Robust Statistical Test for Detecting the
- 1160 Presence of Recombination. Genetics. 172:2665–2681.
- Buchfink B., Xie C., Huson D.H. 2015. Fast and sensitive protein alignment using DIAMOND.
 Nat. Methods. 12:59–60.
- 1163 Buckley T.R., Cordeiro M., Marshall D.C., Simon C. 2006. Differentiating between Hypotheses
- of Lineage Sorting and Introgression in New Zealand Alpine Cicadas (Maoricicada
 Dugdale). Syst. Biol. 55:411–425.
- Castresana J. 2000. Selection of Conserved Blocks from Multiple Alignments for Their Use in
 Phylogenetic Analysis. Mol. Biol. Evol. 17:540–552.
- 1168 Chen L.-Y., Morales-Briones D.F., Passow C.N., Yang Y. 2019. Performance of gene expression
- analyses using de novo assembled transcripts in polyploid species. Bioinformatics.
- 1170 btz620, https://doi.org/10.1093/bioinformatics/btz620

MORALES-BRIONES ET AL.

- 1171 Cloutier A., Sackton T.B., Grayson P., Clamp M., Baker A.J., Edwards S.V. 2019. Whole-
- 1172 Genome Analyses Resolve the Phylogeny of Flightless Birds (Palaeognathae) in the
- 1173 Presence of an Empirical Anomaly Zone. Syst. Biol. syz019,
- 1174 https://doi.org/10.1093/sysbio/syz019
- 1175 Cooper E.D. 2014. Overly simplistic substitution models obscure green plant phylogeny. Trends
- 1176 Plant Sci. 19:576–582.
- 1177 Copetti D., Búrquez A., Bustamante E., Charboneau J.L.M., Childs K.L., Eguiarte L.E., Lee S.,
- 1178 Liu T.L., McMahon M.M., Whiteman N.K., Wing R.A., Wojciechowski M.F., Sanderson
- 1179 M.J. 2017. Extensive gene tree discordance and hemiplasy shaped the genomes of North
- 1180 American columnar cacti. Proc. Natl. Acad. Sci. 114:12003–12008.
- 1181 Cox C.J., Li B., Foster P.G., Embley T.M., Civáň P. 2014. Conflicting Phylogenies for Early
- 1182 Land Plants are Caused by Composition Biases among Synonymous Substitutions. Syst.1183 Biol. 63:272–279.
- 1184 Crowl A.A., Manos P.S., McVay J.D., Lemmon A.R., Lemmon E.M., Hipp A.L. 2019.
- Uncovering the genomic signature of ancient introgression between white oak lineages
 (*Quercus*). New Phytol. nph.15842, https://doi.org/10.1111/nph.15842
- Davidson N.M., Oshlack A. 2014. Corset: enabling differential gene expression analysis for de
 novo assembled transcriptomes. Genome Biol. 15:57.
- Degnan J.H., Rosenberg N.A. 2006. Discordance of Species Trees with Their Most Likely Gene
 Trees. PLoS Genet. 2:e68.

GENE TREE DISCORDANCE IN PHYLOTRANSCRIPTOMICS

- 1191 Degnan J.H., Rosenberg N.A. 2009. Gene tree discordance, phylogenetic inference and the
- 1192 multispecies coalescent. Trends Ecol. Evol. 24:332–340.
- 1193 Di Vincenzo V., Gruenstaeudl M., Nauheimer L., Wondafrash M., Kamau P., Demissew S.,
- 1194 Borsch T. 2018. Evolutionary diversification of the African achyranthoid clade
- 1195 (Amaranthaceae) in the context of sterile flower evolution and epizoochory. Ann. Bot.
- 1196 122:69–85.
- 1197 Dohm J.C., Minoche A.E., Holtgräwe D., Capella-Gutiérrez S., Zakrzewski F., Tafer H., Rupp
- 1198 O., Sörensen T.R., Stracke R., Reinhardt R., Goesmann A., Kraft T., Schulz B., Stadler
- 1199 P.F., Schmidt T., Gabaldón T., Lehrach H., Weisshaar B., Himmelbauer H. 2014. The
- 1200 genome of the recently domesticated crop plant sugar beet (Beta vulgaris). Nature.
- 1201 505:546–549.
- 1202 van Dongen S.M. 2000. Graph Clustering by Flow Simulation. PhD diss., Ultrecht University.
- Doyle J.J. 1992. Gene Trees and Species Trees: Molecular Systematics as One-Character
 Taxonomy. Syst. Bot. 17:144.
- 1205 Duchêne D.A., Bragg J.G., Duchêne S., Neaves L.E., Potter S., Moritz C., Johnson R.N., Ho
- S.Y.W., Eldridge M.D.B. 2018. Analysis of Phylogenomic Tree Space Resolves
 Relationships Among Marsupial Families. Syst. Biol. 67:400–412.
- Durand E.Y., Patterson N., Reich D., Slatkin M. 2011. Testing for Ancient Admixture between
 Closely Related Populations. Mol. Biol. Evol. 28:2239–2252.

MORALES-BRIONES ET AL.

- 1210 Eaton D.A.R., Ree R.H. 2013. Inferring Phylogeny and Introgression using RADseq Data: An
- 1211 Example from Flowering Plants (Pedicularis: Orobanchaceae). Syst. Biol. 62:689–706.
- 1212 Edwards S.V. 2009. Is A New and General Theory of Molecular Systematics Emerging?
- 1213 Evolution. 63:1–19.
- 1214 Edwards S.V., Xi Z., Janke A., Faircloth B.C., McCormack J.E., Glenn T.C., Zhong B., Wu S.,
- 1215 Lemmon E.M., Lemmon A.R., Leaché A.D., Liu L., Davis C.C. 2016. Implementing and
- 1216 testing the multispecies coalescent model: A valuable paradigm for phylogenomics. Mol.
- 1217 Phylogenet. Evol. 94:447–462.
- 1218 Elworth R.A.L., Allen C., Benedict T., Dulworth P., Nakhleh L.K. 2018. DGEN: A Test Statistic
- 1219 for Detection of General Introgression Scenarios. WABI.
- 1220 Elworth R.A.L., Ogilvie H.A., Zhu J., Nakhleh L. 2019. Advances in Computational Methods for
- 1221 Phylogenetic Networks in the Presence of Hybridization. In: Warnow T., editor.
- 1222 Bioinformatics and Phylogenetics: Seminal Contributions of Bernard Moret. Cham:
- 1223 Springer International Publishing. p. 317–360.
- 1224 Erfan Sayyari, Siavash Mirarab. 2018. Testing for Polytomies in Phylogenetic Species Trees
 1225 Using Quartet Frequencies. Genes. 9:132.
- 1226 Flowers T.J., Colmer T.D. 2015. Plant salt tolerance: adaptations in halophytes. Ann. Bot.
- 1227 115:327–331.

GENE TREE DISCORDANCE IN PHYLOTRANSCRIPTOMICS

- 1228 Folk R.A., Mandel J.R., Freudenstein J.V. 2017. Ancestral Gene Flow and Parallel Organellar
- Genome Capture Result in Extreme Phylogenomic Discord in a Lineage of Angiosperms.Syst. Biol. 66:320-337.
- 1231 Foster P.G. 2004. Modeling Compositional Heterogeneity. Syst. Biol. 53:485–495.
- 1232 Fu L., Niu B., Zhu Z., Wu S., Li W. 2012. CD-HIT: accelerated for clustering the next-
- 1233 generation sequencing data. Bioinformatics. 28:3150–3152.
- Galtier N., Daubin V. 2008. Dealing with incongruence in phylogenomic analyses. Philos. Trans.
 R. Soc. B Biol. Sci. 363:4023–4029.
- Gitzendanner M.A., Soltis P.S., Yi T.-S., Li D.-Z., Soltis D.E. 2018. Plastome Phylogenetics: 30
 Years of Inferences Into Plant Evolution. Plastid Genome Evolution. Elsevier. p. 293–
 313.
- Glémin S., Scornavacca C., Dainat J., Burgarella C., Viader V., Ardisson M., Sarah G., Santoni
 S., David J., Ranwez V. 2019. Pervasive hybridizations in the history of wheat relatives.
 Sci. Adv. 5:eaav9188.
- Gonçalves D.J.P., Simpson B.B., Ortiz E.M., Shimizu G.H., Jansen R.K. 2019. Incongruence
 between gene trees and species trees and phylogenetic signal variation in plastid genes.
 Mol. Phylogenet. Evol. 138:219–232.
- 1245 Green R.E., Krause J., Briggs A.W., Maricic T., Stenzel U., Kircher M., Patterson N., Li H., Zhai
- 1246 W., Fritz M.H.Y., Hansen N.F., Durand E.Y., Malaspinas A.S., Jensen J.D., Marques-
- 1247 Bonet T., Alkan C., Prufer K., Meyer M., Burbano H.A., Good J.M., Schultz R., Aximu-

MORALES-BRIONES ET AL.

66

1248	Petri A., Butthof A., Hober B., Hoffner B., Siegemund M., Weihmann A., Nusbaum C.,
1249	Lander E.S., Russ C., Novod N., Affourtit J., Egholm M., Verna C., Rudan P., Brajkovic
1250	D., Kucan Z., Gusic I., Doronichev V.B., Golovanova L.V., Lalueza-Fox C., de la Rasilla
1251	M., Fortea J., Rosas A., Schmitz R.W., Johnson P.L.F., Eichler E.E., Falush D., Birney
1252	E., Mullikin J.C., Slatkin M., Nielsen R., Kelso J., Lachmann M., Reich D., Paabo S.
1253	2010. A Draft Sequence of the Neandertal Genome. Science. 328:710-722.
1254	Haas B.J., Papanicolaou A., Yassour M., Grabherr M., Blood P.D., Bowden J., Couger M.B.,
1255	Eccles D., Li B., Lieber M., MacManes M.D., Ott M., Orvis J., Pochet N., Strozzi F.,
1256	Weeks N., Westerman R., William T., Dewey C.N., Henschel R., LeDuc R.D., Friedman
1257	N., Regev A. 2013. De novo transcript sequence reconstruction from RNA-seq using the
1258	Trinity platform for reference generation and analysis. Nat. Protoc. 8:1494–1512.
1259	Hejase H.A., Liu K.J. 2016. A scalability study of phylogenetic network inference methods using
1260	empirical datasets and simulations involving a single reticulation. BMC Bioinformatics.
1261	
1201	17:422.
1262	17:422. Hejase H.A., VandePol N., Bonito G.M., Liu K.J. 2018. FastNet: Fast and Accurate Statistical
1262	Hejase H.A., VandePol N., Bonito G.M., Liu K.J. 2018. FastNet: Fast and Accurate Statistical
1262 1263	Hejase H.A., VandePol N., Bonito G.M., Liu K.J. 2018. FastNet: Fast and Accurate Statistical Inference of Phylogenetic Networks Using Large-Scale Genomic Sequence Data. Comp.
1262 1263 1264	Hejase H.A., VandePol N., Bonito G.M., Liu K.J. 2018. FastNet: Fast and Accurate Statistical Inference of Phylogenetic Networks Using Large-Scale Genomic Sequence Data. Comp. Genomics.:242–259.
1262 1263 1264 1265	 Hejase H.A., VandePol N., Bonito G.M., Liu K.J. 2018. FastNet: Fast and Accurate Statistical Inference of Phylogenetic Networks Using Large-Scale Genomic Sequence Data. Comp. Genomics.:242–259. Hernández-Ledesma P., Berendsohn W.G., Borsch T., Mering S.V., Akhani H., Arias S.,

GENE TREE DISCORDANCE IN PHYLOTRANSCRIPTOMICS

- 1269 for the global synthesis of species diversity in the angiosperm order Caryophyllales.
- 1270 Willdenowia. 45:281.
- Hoang D.T., Chernomor O. 2018. UFBoot2: Improving the Ultrafast Bootstrap Approximation.
 Mol. Biol. Evol. 35:518–522.
- 1273 Hohmann S., Kadereit J.W., Kadereit G. 2006. Understanding Mediterranean-Californian
- 1274 disjunctions: molecular evidence from Chenopodiaceae-Betoideae. TAXON. 55:67–78.
- Holder M.T., Anderson J.A., Holloway A.K. 2001. Difficulties in Detecting Hybridization. Syst.
 Biol. 50:978–982.
- Huang H., Knowles L.L. 2009. What Is the Danger of the Anomaly Zone for Empirical
 Phylogenetics? Syst. Biol. 58:527–536.
- 1279 Huang W., Zhou G., Marchand M., Ash J.R., Morris D., Van Dooren P., Brown J.M., Gallivan
- 1280 K.A., Wilgenbusch J.C. 2016. TreeScaper: Visualizing and Extracting Phylogenetic
 1281 Signal from Sets of Trees. Mol. Biol. Evol. 33:3314–3316.
- 1282 Hughes L.C., Ortí G., Huang Y., Sun Y., Baldwin C.C., Thompson A.W., Arcila D., Betancur-R.
- 1283 R., Li C., Becker L., Bellora N., Zhao X., Li X., Wang M., Fang C., Xie B., Zhou Z.,
- 1284 Huang H., Chen S., Venkatesh B., Shi Q. 2018. Comprehensive phylogeny of ray-finned
- 1285 fishes (Actinopterygii) based on transcriptomic and genomic data. Proc. Natl. Acad. Sci.
- 1286 115:6249–6254.
- 1287 Jarvis D.E., Ho Y.S., Lightfoot D.J., Schmöckel S.M., Li B., Borm T.J.A., Ohyanagi H., Mineta
- 1288 K., Michell C.T., Saber N., Kharbatia N.M., Rupper R.R., Sharp A.R., Dally N.,

MORALES-BRIONES ET AL.

1289	Boughton B.A., Woo Y.H., Gao G., Schijlen E.G.W.M., Guo X., Momin A.A., Negrão
1290	S., Al-Babili S., Gehring C., Roessner U., Jung C., Murphy K., Arold S.T., Gojobori T.,
1291	Linden C.G.V.D., van Loo E.N., Jellen E.N., Maughan P.J., Tester M. 2017. The genome
1292	of Chenopodium quinoa. Nature. 542:307–312.
1293	Jarvis E.D., Mirarab S., Aberer A.J., Li B., Houde P., Li C., Ho S.Y.W., Faircloth B.C., Nabholz
1294	B., Howard J.T., Suh A., Weber C.C., da Fonseca R.R., Li J., Zhang F., Li H., Zhou L.,
1295	Narula N., Liu L., Ganapathy G., Boussau B., Bayzid Md.S., Zavidovych V.,
1296	Subramanian S., Gabaldón T., Capella-Gutiérrez S., Huerta-Cepas J., Rekepalli B.,
1297	Munch K., Schierup M., Lindow B., Warren W.C., Ray D., Green R.E., Bruford M.W.,
1298	Zhan X., Dixon A., Li S., Li N., Huang Y., Derryberry E.P., Bertelsen M.F., Sheldon
1299	F.H., Brumfield R.T., Mello C.V., Lovell P.V., Wirthlin M., Schneider M.P.C.,
1300	Prosdocimi F., Samaniego J.A., Velazquez A.M.V., Alfaro-Núñez A., Campos P.F.,
1301	Petersen B., Sicheritz-Ponten T., Pas A., Bailey T., Scofield P., Bunce M., Lambert D.M.,
1302	Zhou Q., Perelman P., Driskell A.C., Shapiro B., Xiong Z., Zeng Y., Liu S., Li Z., Liu B.,
1303	Wu K., Xiao J., Yinqi X., Zheng Q., Zhang Y., Yang H., Wang J., Smeds L., Rheindt
1304	F.E., Braun M., Fjeldsa J., Orlando L., Barker F.K., Jønsson K.A., Johnson W., Koepfli
1305	KP., O'Brien S., Haussler D., Ryder O.A., Rahbek C., Willerslev E., Graves G.R.,
1306	Glenn T.C., McCormack J., Burt D., Ellegren H., Alström P., Edwards S.V., Stamatakis
1307	A., Mindell D.P., Cracraft J., Braun E.L., Warnow T., Jun W., Gilbert M.T.P., Zhang G.
1308	2014. Whole-genome analyses resolve early branches in the tree of life of modern birds.
1309	Science. 346:1320.
1310	Joly S., McLenachan P.A., Lockhart P.J. 2009. A Statistical Approach for Distinguishing

- Joly S., McLenachan P.A., Lockhart P.J. 2009. A Statistical Approach for Distinguishing
- 1311 Hybridization and Incomplete Lineage Sorting. Am. Nat. 174:E54–E70.

GENE TREE DISCORDANCE IN PHYLOTRANSCRIPTOMICS

1312	Kadereit G., Ackerly D., Pirie M.D. 2012. A broader model for C4 photosynthesis evolution in
1313	plants inferred from the goosefoot family (Chenopodiaceae s.s.). Proc. R. Soc. B Biol.
1314	Sci. 279:3304–3311.
1315	Kadereit G., Borsch T., Weising K., Freitag H. 2003. Phylogeny of Amaranthaceae and
1316	Chenopodiaceae and the Evolution of C4 Photosynthesis. Int. J. Plant Sci. 164:959–986.
1317	Kadereit G., Hohmann S., Kadereit J.W. 2006. A synopsis of Chenopodiaceae subfam. Betoideae
1318	and notes on the taxonomy of <i>Beta</i> . Willdenowia. 36:9–19.
1319	Kadereit G., Newton R.J., Vandelook F. 2017. Evolutionary ecology of fast seed germination-
1320	A case study in Amaranthaceae/Chenopodiaceae. Perspect. Plant Ecol. Evol. Syst. 29:1-
1321	11.
1322	Kalyaanamoorthy S., Minh B.Q., Wong T.K.F., von Haeseler A., Jermiin L.S. 2017.
1323	ModelFinder: fast model selection for accurate phylogenetic estimates. Nat. Methods.
1324	14:587–589.
1325	Kamneva O.K., Rosenberg N.A. 2017. Simulation-Based Evaluation of Hybridization Network

1326Reconstruction Methods in the Presence of Incomplete Lineage Sorting. Evol.

1327 Bioinforma. 13:117693431769193.

1328 Katoh K., Standley D.M. 2013. MAFFT Multiple Sequence Alignment Software Version 7:

1329 Improvements in Performance and Usability. Mol. Biol. Evol. 30:772–780.

1330 Kearse M., Moir R., Wilson A., Stones-Havas S., Cheung M., Sturrock S., Buxton S., Cooper A.,

1331 Markowitz S., Duran C., Thierer T., Ashton B., Meintjes P., Drummond A. 2012.

70

MORALES-BRIONES ET AL.

1332	Geneious Basic: An integrated and extendable desktop software platform for the
1333	organization and analysis of sequence data. Bioinformatics. 28:1647–1649.
1334	Knowles L.L., Huang H., Sukumaran J., Smith S.A. 2018. A matter of phylogenetic scale:
1335	Distinguishing incomplete lineage sorting from lateral gene transfer as the cause of gene
1336	tree discord in recent versus deep diversification histories. Am. J. Bot. 105:376-384.
1337	Kubatko L.S., Chifman J. 2019. An invariants-based method for efficient identification of hybrid
1338	species from large-scale genomic data. BMC Evol. Biol. 19:112.
1339	Lanfear R., Calcott B., Ho S.Y.W., Guindon S. 2012. PartitionFinder: Combined Selection of
1340	Partitioning Schemes and Substitution Models for Phylogenetic Analyses. Mol. Biol.
1341	Evol. 29:1695–1701.
1342	Langmead B., Salzberg S.L. 2012. Fast gapped-read alignment with Bowtie 2. Nat. Methods.
1343	9:357–359.
1344	Laumer C.E., Fernández R., Lemer S., Combosch D., Kocot K.M., Riesgo A., Andrade S.C.S.,
1345	Sterrer W., Sørensen M.V., Giribet G. 2019. Revisiting metazoan phylogeny with
1346	genomic sampling of all phyla. Proc. R. Soc. B Biol. Sci. 286:20190831.
1347	Lê S., Josse J., Husson F. 2008. FactoMineR : An R Package for Multivariate Analysis. J. Stat.
1348	Softw. 25: 1–18.
1349	Lee-Yaw J.A., Grassa C.J., Joly S., Andrew R.L., Rieseberg L.H. 2019. An evaluation of
1350	alternative explanations for widespread cytonuclear discordance in annual sunflowers
1351	(Helianthus). New Phytol. 221:515–526.

GENE TREE DISCORDANCE IN PHYLOTRANSCRIPTOMICS

- Li B., Lopes J.S., Foster P.G., Embley T.M., Cox C.J. 2014. Compositional Biases among
 Synonymous Substitutions Cause Conflict between Gene and Protein Trees for Plastid
 Origins. Mol. Biol. Evol. 31:1697–1709.
- 1355 Lightfoot D.J., Jarvis D.E., Ramaraj T., Lee R., Jellen E.N., Maughan P.J. 2017. Single-molecule
- 1356 sequencing and Hi-C-based proximity-guided assembly of amaranth (*Amaranthus*
- 1357 *hypochondriacus*) chromosomes provide insights into genome evolution. BMC Biol.
- 1358 15:74.
- 1359 Linkem C.W., Minin V.N., Leaché A.D. 2016. Detecting the Anomaly Zone in Species Trees
- 1360and Evidence for a Misleading Signal in Higher-Level Skink Phylogeny (Squamata:
- 1361 Scincidae). Syst. Biol. 65:465–477.
- Liu L., Yu L. 2010. Phybase: an R package for species tree analysis. Bioinformatics. 26:962–
 963.
- 1364 Liu Y., Cox C.J., Wang W., Goffinet B. 2014. Mitochondrial Phylogenomics of Early Land
- Plants: Mitigating the Effects of Saturation, Compositional Heterogeneity, and Codon-Usage Bias. Syst. Biol. 63:862–878.
- 1367 Maddison W.P. 1997. Gene Trees in Species Trees. Syst. Biol. 46:532–536.
- Mai U., Mirarab S. 2018. TreeShrink: fast and accurate detection of outlier long branches in
 collections of phylogenetic trees. BMC Genomics. 19:4046.

MORALES-BRIONES ET AL.

- 1370 Marcussen T., Sandve S.R., Heier L., Spannagl M., Pfeifer M., Jakobsen K.S., Wulff B.B.H.,
- 1371 Steuernagel B., Mayer K.F.X., Olsen O.-A. 2014. Ancient hybridizations among the
- ancestral genomes of bread wheat. Science. 345:1250092.
- 1373 Masson R., Kadereit G. 2013. Phylogeny of Polycnemoideae (Amaranthaceae): Implications for
- biogeography, character evolution and taxonomy. TAXON. 62:100–111.
- Maureira-Butler I.J., Pfeil B.E., Muangprom A., Osborn T.C., Doyle J.J. 2008. The Reticulate
 History of *Medicago* (Fabaceae). Syst. Biol. 57:466–482.
- 1377 Mclean B.S., Bell K.C., Allen J.M., Helgen K.M., Cook J.A. 2019. Impacts of Inference Method
- 1378and Data set Filtering on Phylogenomic Resolution in a Rapid Radiation of Ground
- 1379 Squirrels (Xerinae: Marmotini). Syst. Biol. 68:298–316.
- Meyer B.S., Matschiner M., Salzburger W. 2017. Disentangling Incomplete Lineage Sorting and
 Introgression to Refine Species-Tree Estimates for Lake Tanganyika Cichlid Fishes. Syst.
 Biol. 66:531–550.
- Mirarab S., Bayzid M.S., Warnow T. 2016. Evaluating Summary Methods for Multilocus
 Species Tree Estimation in the Presence of Incomplete Lineage Sorting. Syst. Biol.
 65:366–380.
- 1386 Misof B., Liu S., Meusemann K., Peters R.S., Donath A., Mayer C., Frandsen P.B., Ware J.,
- 1387 Flouri T., Beutel R.G., Niehuis O., Petersen M., Izquierdo-Carrasco F., Wappler T., Rust
- 1388 J., Aberer A.J., Aspock U., Aspock H., Bartel D., Blanke A., Berger S., Bohm A.,
- 1389 Buckley T.R., Calcott B., Chen J., Friedrich F., Fukui M., Fujita M., Greve C., Grobe P.,
- 1390 Gu S., Huang Y., Jermiin L.S., Kawahara A.Y., Krogmann L., Kubiak M., Lanfear R.,

GENE TREE DISCORDANCE IN PHYLOTRANSCRIPTOMICS

1391	Letsch H., Li Y., Li Z., Li J., Lu H., Machida R., Mashimo Y., Kapli P., McKenna D.D.,
1392	Meng G., Nakagaki Y., Navarrete-Heredia J.L., Ott M., Ou Y., Pass G., Podsiadlowski
1393	L., Pohl H., von Reumont B.M., Schutte K., Sekiya K., Shimizu S., Slipinski A.,
1394	Stamatakis A., Song W., Su X., Szucsich N.U., Tan M., Tan X., Tang M., Tang J.,
1395	Timelthaler G., Tomizuka S., Trautwein M., Tong X., Uchifune T., Walzl M.G.,
1396	Wiegmann B.M., Wilbrandt J., Wipfler B., Wong T.K.F., Wu Q., Wu G., Xie Y., Yang
1397	S., Yang Q., Yeates D.K., Yoshizawa K., Zhang Q., Zhang R., Zhang W., Zhang Y.,
1398	Zhao J., Zhou C., Zhou L., Ziesmann T., Zou S., Li Y., Xu X., Zhang Y., Yang H., Wang
1399	J., Wang J., Kjer K.M., Zhou X. 2014. Phylogenomics resolves the timing and pattern of
1400	insect evolution. Science. 346:763-767.
1401	Morales-Briones D.F., Liston A., Tank D.C. 2018a. Phylogenomic analyses reveal a deep history
1401 1402	Morales-Briones D.F., Liston A., Tank D.C. 2018a. Phylogenomic analyses reveal a deep history of hybridization and polyploidy in the Neotropical genus <i>Lachemilla</i> (Rosaceae). New
1402	of hybridization and polyploidy in the Neotropical genus <i>Lachemilla</i> (Rosaceae). New
1402 1403	of hybridization and polyploidy in the Neotropical genus <i>Lachemilla</i> (Rosaceae). New Phytol. 218:1668–1684.
1402 1403 1404	of hybridization and polyploidy in the Neotropical genus <i>Lachemilla</i> (Rosaceae). New Phytol. 218:1668–1684. Morales-Briones D.F., Romoleroux K., Kolář F., Tank D.C. 2018b. Phylogeny and Evolution of
1402 1403 1404 1405	of hybridization and polyploidy in the Neotropical genus <i>Lachemilla</i> (Rosaceae). New Phytol. 218:1668–1684. Morales-Briones D.F., Romoleroux K., Kolář F., Tank D.C. 2018b. Phylogeny and Evolution of the Neotropical Radiation of <i>Lachemilla</i> (Rosaceae): Uncovering a History of Reticulate
1402 1403 1404 1405 1406	of hybridization and polyploidy in the Neotropical genus <i>Lachemilla</i> (Rosaceae). New Phytol. 218:1668–1684. Morales-Briones D.F., Romoleroux K., Kolář F., Tank D.C. 2018b. Phylogeny and Evolution of the Neotropical Radiation of <i>Lachemilla</i> (Rosaceae): Uncovering a History of Reticulate Evolution and Implications for Infrageneric Classification. Syst. Bot. 43:17–34.

1410 Mower J.P. 2009. The PREP suite: predictive RNA editors for plant mitochondrial genes,

1411 chloroplast genes and user-defined alignments. Nucleic Acids Res. 37:W253–W259.

MORALES-BRIONES ET AL.

Müller K., Borsch T. 2005. Phylogenetics of Amaranthaceae Based on matK/trnK Sequence

1413	Data: Evidence from Parsimony, Likelihood, and Bayesian Analyses. Ann. Mo. Bot.
1414	Gard. 92:66–102.
1415	Nguyen LT., Schmidt H.A., von Haeseler A., Minh B.Q. 2015. IQ-TREE: A Fast and Effective
1416	Stochastic Algorithm for Estimating Maximum-Likelihood Phylogenies. Mol. Biol. Evol.
1417	32:268–274.
1418	Osuna-Mascaró C., Rubio de Casas R., Perfectti F. 2018. Comparative assessment shows the
1419	reliability of chloroplast genome assembly using RNA-seq. Sci. Rep. 8:17404.
1420	Pamilo P., Nei M. 1988. Relationships between Gene Trees and Species Trees. Mol. Biol. Evol.
1421	5:568–583.
1422	Paradis E., Schliep K. 2019. ape 5.0: an environment for modern phylogenetics and evolutionary
1423	analyses in R. Bioinformatics. 35:526–528.
1424	Patro R., Duggal G., Love M.I., Irizarry R.A., Kingsford C. 2017. Salmon provides fast and bias-
1425	aware quantification of transcript expression. Nat. Methods. 14:417-419.
1426	Patterson N., Moorjani P., Luo Y., Mallick S., Rohland N., Zhan Y., Genschoreck T., Webster
1427	T., Reich D. 2012. Ancient Admixture in Human History. Genetics. 192:1065–1093.
1428	Pease J.B., Brown J.W., Walker J.F., Hinchliff C.E., Smith S.A. 2018. Quartet Sampling
1429	distinguishes lack of support from conflicting support in the green plant tree of life. Am.
1430	J. Bot. 105:385–403.

GENE TREE DISCORDANCE IN PHYLOTRANSCRIPTOMICS

- 1431 Pease J.B., Hahn M.W. 2015. Detection and Polarization of Introgression in a Five-Taxon
- 1432 Phylogeny. Syst. Biol. 64:651–662.
- 1433 Peden J. 1999. Analysis of Codon Usage. PhD diss., University of Nottingham.
- Philippe H., Forterre P. 1999. The Rooting of the Universal Tree of Life Is Not Reliable. J. Mol.
 Evol. 49:509–523.
- 1436 Piirainen M., Liebisch O., Kadereit G. 2017. Phylogeny, biogeography, systematics and
- 1437 taxonomy of Salicornioideae (Amaranthaceae/Chenopodiaceae) A cosmopolitan, highly
- specialized hygrohalophyte lineage dating back to the Oligocene. Taxon. 66:109–132.
- 1439 Prasanna A.N., Gerber D., Kijpornyongpan T., Aime M.C., Doyle V.P., Nagy L.G. 2019. Model
- Choice, Missing Data, and Taxon Sampling Impact Phylogenomic Inference of Deep
 Basidiomycota Relationships. syz029, https://doi.org/10.1093/sysbio/syz029
- Pruitt K.D., Tatusova T., Maglott D.R. 2007. NCBI reference sequences (RefSeq): a curated
 non-redundant sequence database of genomes, transcripts and proteins. Nucleic Acids
- 1444 Res. 35:D61–D65.
- 1445 R Core Team. 2019. R: A Language and Environment for Statistical Computing. Vienna,
 1446 Austria: R Foundation for Statistical Computing.
- 1447 Rannala B., Yang Z. 2003. Bayes Estimation of Species Divergence Times and Ancestral
 1448 Population Sizes Using DNA Sequences From Multiple Loci. Genetics. 166:1645–1656.

MORALES-BRIONES ET AL.

- 1449 Ranwez V., Douzery E.J.P., Cambon C., Chantret N., Delsuc F. 2018. MACSE v2: Toolkit for
- the Alignment of Coding Sequences Accounting for Frameshifts and Stop Codons. Mol.
 Biol. Evol. 35:2582–2584.
- 1452 Regier J.C., Shultz J.W., Zwick A., Hussey A., Ball B., Wetzer R., Martin J.W., Cunningham
- 1453 C.W. 2010. Arthropod relationships revealed by phylogenomic analysis of nuclear
- 1454 protein-coding sequences. Nature. 463:1079–1083.
- 1455 Rieseberg L.H., Soltis D.E. 1991. Phylogenetic consequences of cytoplasmic gene flow in plants.
- 1456 Evol. Trends Plants. 5:65–84.
- 1457 Robinson D.F., Foulds L.R. 1981. Comparison of phylogenetic trees. Math. Biosci. 53:131–147.
- 1458 Rosenberg N.A. 2013. Discordance of Species Trees with Their Most Likely Gene Trees: A
 1459 Unifying Principle. Mol. Biol. Evol. 30:2709–2713.
- 1460 Roycroft E.J., Moussalli A., Rowe K.C. 2019. Phylogenomics Uncovers Confidence and
- 1461 Conflict in the Rapid Radiation of Australo-Papuan Rodents. Syst. Biol. syz044,
 1462 https://doi.org/10.1093/sysbio/syz044
- 1463 Salichos L., Stamatakis A., Rokas A. 2014. Novel Information Theory-Based Measures for
- 1464 Quantifying Incongruence among Phylogenetic Trees. Mol. Biol. Evol. 31:1261–1271.
- 1465 Sang T., Crawford D.J., Stuessy T.F. 1995. Documentation of reticulate evolution in peonies
- 1466 (Paeonia) using internal transcribed spacer sequences of nuclear ribosomal DNA:
- 1467 implications for biogeography and concerted evolution. Proc. Natl. Acad. Sci. 92:6813–
- 1468 6817.

GENE TREE DISCORDANCE IN PHYLOTRANSCRIPTOMICS

- 1469 Sayyari E., Mirarab S. 2016. Fast Coalescent-Based Computation of Local Branch Support from
- 1470 Quartet Frequencies. Mol. Biol. Evol. 33:1654–1668.
- 1471 Schliep K.P. 2011. phangorn: phylogenetic analysis in R. Bioinformatics. 27:592–593.
- 1472 Schliesky S., Gowik U., Weber A.P.M., Bräutigam A. 2012. RNA-Seq Assembly Are We
- 1473 There Yet? Front. Plant Sci. 3.
- 1474 Schwarz G. 1978. Estimating the Dimension of a Model. Ann. Stat. 6:461–464.
- 1475 Sharp P.M., Li W.-H. 1986. An evolutionary perspective on synonymous codon usage in
- 1476 unicellular organisms. J. Mol. Evol. 24:28–38.
- Shi C., Wang S., Xia E.-H., Jiang J.-J., Zeng F.-C., Gao L.-Z. 2016. Full transcription of the
 chloroplast genome in photosynthetic eukaryotes. Sci. Rep. 6:30135.
- Shimodaira H. 2002. An Approximately Unbiased Test of Phylogenetic Tree Selection. Syst.
 Biol. 51:492–508.
- Shimodaira H., Hasegawa M. 2001. CONSEL: for assessing the confidence of phylogenetic tree
 selection. Bioinformatics. 17:1246–1247.
- Smith D.R. 2013. RNA-Seq data: a goldmine for organelle research. Brief. Funct. Genomics.
 12:454–456.
- Smith S.A., Moore M.J., Brown J.W., Yang Y. 2015. Analysis of phylogenomic datasets reveals
 conflict, concordance, and gene duplications with examples from animals and plants.
- 1487 BMC Evol. Biol. 15:745.

MORALES-BRIONES ET AL.

- 1488 Smith S.A., O'Meara B.C. 2012. treePL: divergence time estimation using penalized likelihood
- 1489 for large phylogenies. Bioinformatics. 28:2689–2690.
- 1490 Smith-Unna R., Boursnell C., Patro R., Hibberd J.M., Kelly S. 2016. TransRate: reference-free
- 1491 quality assessment of de novo transcriptome assemblies. Genome Res. 26:1134–1144.
- 1492 Solís-Lemus C., Ané C. 2016a. Inferring Phylogenetic Networks with Maximum
- 1493 Pseudolikelihood under Incomplete Lineage Sorting. PLOS Genet. 12:e1005896.
- 1494 Soltis D.E., Kuzoff R.K. 1995. Discordance between nuclear and chloroplast phylogenies in the
- 1495 Heuchera group (Saxifragaceae). Evolution. 49:727–742.
- Song L., Florea L. 2015. Reorrector: efficient and accurate error correction for Illumina RNAseq reads. GigaScience. 4:48.
- 1498 Srivastava S.K. 1969. Assorted angiosperm pollen from the Edmonton Formation
- 1499 (Maestrichtian), Alberta, Canada. Can. J. Bot. 47:975–989.
- Stamatakis A. 2014. RAxML version 8 a tool for phylogenetic analysis and post-analysis of
 large phylogenies. Bioinformatics. 30:1312–1313.
- Sugiura N. 1978. Further analysts of the data by akaike's information criterion and the finite
 corrections. Commun. Stat. Theory Methods. 7:13–26.
- 1504 Swofford D. 2002. PAUP*. Phylogenetic analysis using parsimony (*and other methods) version
 1505 4. Sunderland MA Sinauer Assoc.
- 1506 Than C., Ruths D., Nakhleh L. 2008. PhyloNet: a software package for analyzing and
- 1507 reconstructing reticulate evolutionary relationships. BMC Bioinformatics. 9:322–16.

GENE TREE DISCORDANCE IN PHYLOTRANSCRIPTOMICS

1508	The Angiosperm	ı Phylogeny	Group,	Chase M.W.,	Christenhusz M	1.J.M., Fay	и М.F.,	Byng J.W.,
------	----------------	-------------	--------	-------------	----------------	-------------	---------	------------

- 1509 Judd W.S., Soltis D.E., Mabberley D.J., Sennikov A.N., Soltis P.S., Stevens P.F. 2016.
- 1510 An update of the Angiosperm Phylogeny Group classification for the orders and families
- 1511 of flowering plants: APG IV. Bot. J. Linn. Soc. 181:1–20.
- 1512 Varga T., Krizsán K., Földi C., Dima B., Sánchez-García M., Sánchez-Ramírez S., Szöllősi G.J.,
- 1513 Szarkándi J.G., Papp V., Albert L., Andreopoulos W., Angelini C., Antonín V., Barry
- 1514 K.W., Bougher N.L., Buchanan P., Buyck B., Bense V., Catcheside P., Chovatia M.,
- 1515 Cooper J., Dämon W., Desjardin D., Finy P., Geml J., Haridas S., Hughes K., Justo A.,
- 1516 Karasiński D., Kautmanova I., Kiss B., Kocsubé S., Kotiranta H., LaButti K.M., Lechner
- 1517 B.E., Liimatainen K., Lipzen A., Lukács Z., Mihaltcheva S., Morgado L.N., Niskanen T.,
- 1518 Noordeloos M.E., Ohm R.A., Ortiz-Santana B., Ovrebo C., Rácz N., Riley R., Savchenko
- 1519 A., Shiryaev A., Soop K., Spirin V., Szebenyi C., Tomšovský M., Tulloss R.E., Uehling
- 1520 J., Grigoriev I.V., Vágvölgyi C., Papp T., Martin F.M., Miettinen O., Hibbett D.S., Nagy
- 1521 L.G. 2019. Megaphylogeny resolves global patterns of mushroom evolution. Nat. Ecol.
- 1522 Evol. 3:668–678.
- Vargas O.M., Ortiz E.M., Simpson B.B. 2017. Conflicting phylogenomic signals reveal a pattern
 of reticulate evolution in a recent high-Andean diversification (Asteraceae: Astereae: *Diplostephium*). New Phytol. 214:1736–1750.
- Walker J.F., Walker-Hale N., Vargas O.M., Larson D.A., Stull G.W. 2019. Characterizing gene
 tree conflict in plastome-inferred phylogenies. PeerJ. 7:e7747.

MORALES-BRIONES ET AL.

- 1528 Walker J.F., Yang Y., Feng T., Timoneda A., Mikenas J., Hutchison V., Edwards C., Wang N.,
- 1529 Ahluwalia S., Olivieri J., Walker-Hale N., Majure L.C., Puente R., Kadereit G.,
- 1530 Lauterbach M., Eggli U., Flores-Olvera H., Ochoterena H., Brockington S.F., Moore
- 1531 M.J., Smith S.A. 2018. From cacti to carnivores: Improved phylotranscriptomic sampling
- and hierarchical homology inference provide further insight into the evolution of
- 1533 Caryophyllales. Am. J. Bot. 105:446–462.
- 1534 Wang Y., Tang H., DeBarry J.D., Tan X., Li J., Wang X., Lee T. -h., Jin H., Marler B., Guo H.,

1535 Kissinger J.C., Paterson A.H. 2012. MCScanX: a toolkit for detection and evolutionary

analysis of gene synteny and collinearity. Nucleic Acids Res. 40:e49–e49.

- Wen D., Nakhleh L. 2018. Coestimating Reticulate Phylogenies and Gene Trees from Multilocus
 Sequence Data. Syst. Biol. 67:439–457.
- Wen D., Yu Y., Hahn M.W., Nakhleh L. 2016a. Reticulate evolutionary history and extensive
 introgression in mosquito species revealed by phylogenetic network analysis. Mol. Ecol.
 25:2361–2372.
- Wen D., Yu Y., Nakhleh L. 2016b. Bayesian Inference of Reticulate Phylogenies under the
 Multispecies Network Coalescent. PLOS Genet. 12:e1006006.

1544 Wickett N.J., Mirarab S., Nguyen N., Warnow T., Carpenter E., Matasci N., Ayyampalayam S.,

- 1545 Barker M.S., Burleigh J.G., Gitzendanner M.A., Ruhfel B.R., Wafula E., Der J.P.,
- 1546 Graham S.W., Mathews S., Melkonian M., Soltis D.E., Soltis P.S., Miles N.W., Rothfels
- 1547 C.J., Pokorny L., Shaw A.J., DeGironimo L., Stevenson D.W., Surek B., Villarreal J.C.,
- 1548 Roure B., Philippe H., dePamphilis C.W., Chen T., Deyholos M.K., Baucom R.S.,

GENE TREE DISCORDANCE IN PHYLOTRANSCRIPTOMICS

1549	Kutchan T.M., Augustin M.M., Wang J., Zhang Y., Tian Z., Yan Z., Wu X., Sun X.,
1550	Wong G.KS., Leebens-Mack J. 2014. Phylotranscriptomic analysis of the origin and
1551	early diversification of land plants. Proc. Natl. Acad. Sci. 111:E4859–E4868.
1552	Widhelm T.J., Grewe F., Huang JP., Mercado-Díaz J.A., Goffinet B., Lücking R., Moncada B.,
1553	Mason-Gamer R., Lumbsch H.T. 2019. Multiple historical processes obscure
1554	phylogenetic relationships in a taxonomically difficult group (Lobariaceae, Ascomycota).
1555	Sci. Rep. 9:8968.
1556	Xu B., Yang Z. 2016. Challenges in Species Tree Estimation Under the Multispecies Coalescent
1557	Model. Genetics. 204:1353-1368.
1558	Xu C., Jiao C., Sun H., Cai X., Wang X., Ge C., Zheng Y., Liu W., Sun X., Xu Y., Deng J.,
1559	Zhang Z., Huang S., Dai S., Mou B., Wang Q., Fei Z., Wang Q. 2017. Draft genome of
1560	spinach and transcriptome diversity of 120 Spinacia accessions. Nat. Commun. 8:15275.
1561	Yang Y., Moore M.J., Brockington S.F., Timoneda A., Feng T., Marx H.E., Walker J.F., Smith
1562	S.A. 2017. An Efficient Field and Laboratory Workflow for Plant Phylotranscriptomic
1563	Projects. Appl. Plant Sci. 5:1600128.
1564	Yang Y., Smith S.A. 2013. Optimizing de novo assembly of short-read RNA-seq data for
1565	phylogenomics. BMC Genomics. 14:328.
1566	Yang Y., Smith S.A. 2014. Orthology Inference in Nonmodel Organisms Using Transcriptomes
1567	and Low-Coverage Genomes: Improving Accuracy and Matrix Occupancy for
1568	Phylogenomics. Mol. Biol. Evol. 31:3081–3092.

MORALES-BRIONES ET AL.

- 1569 Yao G., Jin J.-J., Li H.-T., Yang J.-B., Mandala V.S., Croley M., Mostow R., Douglas N.A.,
- 1570 Chase M.W., Christenhusz M.J.M., Soltis D.E., Soltis P.S., Smith S.A., Brockington S.F.,
- 1571 Moore M.J., Yi T.-S., Li D.-Z. 2019. Plastid phylogenomic insights into the evolution of
- 1572 Caryophyllales. Mol. Phylogenet. Evol. 134:74–86.
- 1573 Yu Y., Degnan J.H., Nakhleh L. 2012. The Probability of a Gene Tree Topology within a
- 1574 Phylogenetic Network with Applications to Hybridization Detection. PLoS Genet.
 1575 8:e1002660–10.
- 1576 Yu Y., Dong J., Liu K.J., Nakhleh L. 2014. Maximum likelihood inference of reticulate
- 1577 evolutionary histories. Proc. Natl. Acad. Sci. 111:16448–16453.
- Yu Y., Nakhleh L. 2015. A maximum pseudo-likelihood approach for phylogenetic networks.
 BMC Genomics. 16:S10.
- 1580 Zhang C., Ogilvie H.A., Drummond A.J., Stadler T. 2018a. Bayesian Inference of Species
- 1581 Networks from Multilocus Sequence Data. Mol. Biol. Evol. 35:504–517.
- 1582 Zhang C., Rabiee M., Sayyari E., Mirarab S. 2018b. ASTRAL-III: polynomial time species tree
- reconstruction from partially resolved gene trees. BMC Bioinformatics. 19:523.
- 1584 Zhao T., Schranz M.E. 2019. Network-based microsynteny analysis identifies major differences
- and genomic outliers in mammalian and angiosperm genomes. Proc. Natl. Acad. Sci.
- 1586 116:2165–2174.
- 1587 Zheng Y., Janke A. 2018. Gene flow analysis method, the D-statistic, is robust in a wide1588 parameter space. BMC Bioinformatics. 19:10.

GENE TREE DISCORDANCE IN PHYLOTRANSCRIPTOMICS

1589	Zhu J., Liu X., Ogilvie H.A., Nakhleh L.K. 2019. A divide-and-conquer method for scalable
1590	phylogenetic network inference from multilocus data. Bioinformatics. 35:i370-i378.

- 1591 Zhu J., Wen D., Yu Y., Meudt H.M., Nakhleh L. 2018. Bayesian inference of phylogenetic
- 1592 networks from bi-allelic genetic markers. PLOS Comput. Biol. 14:e1005932.
- 1593 Zwick A., Regier J.C., Zwickl D.J. 2012. Resolving Discrepancy between Nucleotides and
- 1594 Amino Acids in Deep-Level Arthropod Phylogenomics: Differentiating Serine Codons in
- 1595 21-Amino-Acid Models. PLoS ONE. 7:e47450.