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ABSTRACT

Premise
Research on large-scale patterns of phenology have utilized multiple sources of 
data to analyze the timing of events such as flowering, fruiting, and leaf out. In-situ 
observations from standardized surveys are ideal, but remain spatially sparse. 
Herbarium records and phenology-focused citizen science programs provide a 
source of historic data and spatial replication, but the sample sizes for any one 
season are still relatively low. A novel and rapidly growing source of broad-scale 
phenology data are photographs from the iNaturalist platform, but methods utilizing
these data must generalize to a range of different species with varying season 
lengths and occurring across heterogenous areas. They must also be robust to 
different sample sizes and potential biases toward well travelled areas such as 
roads and towns.

Methods/Results
We developed a spatially explicit model, the Weibull Grid, to estimate flowering 
onset across large-scales, and utilized a simulation framework to test the approach 
using different phenology and sampling scenarios. We found that the model is ideal 
when the underlying phenology is non-linear across space. We then use the Weibull 
Grid model to estimate flowering onset of two species using iNaturalist 
photographs, and compare those estimates with independent observations of 
greenup from the Phenocam network. The Weibull Grid model estimate consistently 
aligned with Phenocam greenup across four years and broad latitudes.

Conclusion
iNaturalist observations can considerably increase the amount of phenology 
observations and also provide needed spatial coverage. We showed here they can 
accurately describe large-scale trends as long as phenological and sampling 
processes are considered.
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INTRODUCTION
Earlier flowering and leaf onset in the spring is one of the strongest indicators of 
climate change (Parmesan and Yohe, 2003; Scheffers et al., 2016). Tracking and 
forecasting these trends for the myriad of plant species remains challenging due to 
the need for a large amount phenological observations across a species range 
(Chuine and Régnière, 2017). Large-scale observing networks and preserved 
herbarium specimens have provided a wealth of information, yet still leave large 
areas under-represented. Here we explore a new data stream of phenological 
observations from iNaturalist, an online social platform where users submit photos 
of plants and animals annotated with the time and geographic coordinates. Other 
users submit identifications of the taxon, resulting in a consensus vote on the final 
species determination. Observations of plants on the platform commonly include 
flowers in the photo, thus can indicate the time and location a species was in flower 
and is analogous to imaged herbarium records now commonly made available via 
aggregators such as iDigBio. With an adequate sample size over time and space, 
the flowering phenology can potentially be inferred for the entire growing season 
across a large portion of a species range.  
  
There is no standardized method yet developed to model large-scale phenological 
trends across space from dispersed phenological observations. Potential methods 
utilizing these data need to account for several confounding factors, as the 
observations are derived from the interaction of both spatially heterogeneous 
phenological patterns and sampling bias. At a single location the full seasonal 
phenology of a species can resemble various statistical distributions such as the 
normal, beta, or uniform distribution. As the spatial extent expands the full 
phenological distribution can change depending on sample size and location (Fig. 1)
(de Keyzer et al., 2017). Observations pull from this underlying phenology, but may 
have their own spatial and temporal  observer bias. As with other citizen science 
projects, we expect iNaturalist observations to have spatial bias toward roads and 
populated areas (Dickinson et al., 2012). Similar to herbarium records we also 
anticipate a temporal bias toward in-season observations of flower presence (Daru 
et al., 2018). Thus, a method to estimate onset at large spatial scales should be 
generalizable to a variety of phenologies and also accommodate highly clustered 
sampling with little to no flowering absence represented. 
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Figure 1: The flowering distribution of two theoretical plant species along a latitudinal gradient. Species
A shifts linearly with increasing latitude while Species B shifts non-linearly. 

In this study we developed a method to estimate the onset of flowering across 
large-spatial scales using a well-tested phenological estimator based on the Weibull 
distribution. Using the Weibull distribution is a well tested method and is beneficial 
as it utilizes only flowering presence data (Pearse et al., 2017; Taylor, 2019). We 
then integrated the Weibull estimator into a spatial ensemble framework (Fink et 
al., 2010). In the first part of our analysis, we test the method using simulated data 
where the underlying phenology and sampling scenarios are known. In the second 
part, we apply the methods to actual iNaturalist data and compare the estimates of 
flowering onset to landscape level greenup from the Phenocam network. Finally we 
discuss the potential for broadest use of iNaturalist data in ecological and 
phenological research. 

MATERIALS AND METHODS

The Model
Our model, the Weibull Grid model, combines a Weibull distribution based estimator
with a spatially explicit ensemble to estimate flowering onset across a 
heterogeneous landscape. The Weibull distribution can model a large range of 
shapes, and is commonly used to used to estimate the start or end of a process 
(Roberts and Solow, 2003; Pearse et al., 2017). It utilizes only observations of 
flowering presence, thus is advantageous here since iNaturalist data has a potential
in-season biases. The estimated date of first flowering is the sum of the dates of all 
flowering weighted by the joint Weibull distribution and is equivalent to estimating 
an origination or extinction date. Taylor (2019) found it to be the superior estimator 
for flowering onset in most cases, and at least as good as methods that also include
sparse absence reporting.

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted October 7, 2019. ; https://doi.org/10.1101/794396doi: bioRxiv preprint 

https://doi.org/10.1101/794396
http://creativecommons.org/licenses/by/4.0/


To use the Weibull estimator across heterogeneous landscapes we incorporated it 
into the random spatial grid used by Fink et al. (2010). A landscape is first divided 
into equally spaced grids. Within each grid cell boxes are uniformly randomly 
located. Observations within each box are then used in the Weibull estimator to 
estimate onset, thus all boxes have a spatially independent estimate. An estimate 
of onset at any point on the landscape is the median estimate from all boxes in 
which the point resides, with quantiles of the estimates used for confidence 
intervals. Model parameters are 1) the sizing of the initial grid cells, 2) the sizing of 
the boxes, and 3) the number of boxes per grid cell.

Simulated Data
To evaluate the Weibull Grid model we first used simulated flowering data to create 
scenarios with a variety of underlying phenology and sampling schemes. We first 
simulate flowering on an x,y coordinate system designed to represent longitude and
latitude, respectively. We used four parameters to describe the underlying 
phenology: 1) the initial start day of year (DOY) of flowering, 2) the length of 
flowering, 3) whether the spatial gradient is linear (ie. the change in the start DOY is
a function of only the y-axis) or nonlinear (ie. a random surface is generated over 
which onset varies, Fig. S1), and 4) the strength of the spatial gradient. The start 
DOY is adjusted across the landscape by the equation `DOY ~ initial DOY +  
y*strength` when the gradient is linear, and `DOY = initial DOY + β*strength` when 
the gradient is non-linear, where β is a random surface scaled to 0-1. The random 
surface is generated with the R package gstat using a variogram with a Gaussian 
distribution, a nugget of 0, sill of 0.025, and range of 0.6.

The true flowering curve is a normal distribution with the mean DOY at the midpoint
of flowering, and the start DOY and the end doy (start DOY + flowering length) each
at three standard deviations. From this, observations of flowering are randomly 
drawn using the distribution probabilities as weights. Simulated observations of 
flowering are randomly drawn from all DOYs 1:365 where peak flowering (the center
of the distribution) has the highest probability, and any day before the Start DOY or 
after the End DOY has 0 probability. 

The location of each observation in space is simulated to represent completely 
random sampling (non-clustered), or bias sampling toward 1 to several locations 
(clustered). Non-clustered sampling was generated by randomly selecting x,y 
coordinates from uniform distributions. Clustered sampling was generated using a 
Thomas process, where a random number of cluster centers was chosen from a 
Poisson distribution (λ=5) and n samples are generated with the highest 
probabilities centered on the cluster centers. Finally the total sample size of 
flowering observations was simulated to represent both abundant and relatively 
rare species. 
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We used a range of parameters to represent the potential phenology of as many 
species as possible. We tested flowering lengths of 15, 30, 45, and 60 days (Table 
1). Using satellite data from a prior study we found that spring greenup in the 
Eastern U.S.A. had a trend of 3.36 days latitude-1 (Melaas et al., 2018). From this we
derived three potential gradient strengths labeled Weak (1.68), Moderate (3.36), 
and Strong (6.72). In the simulation study the extent is 0-1, thus the gradient 
strengths were scaled to 0.1 so 10 degrees of latitude is simulated. Finally the 
spatial gradient type could be either linear or nonlinear. For the sampling scenarios 
we used sample sizes of 150, 300, 600, and 1200 flowering observations, where the
observations could be uniformly randomly distributed or clustered. For each 
combination of parameters from both the underlying phenology and sampling 
scenarios we ran 100 simulations, with 19,200 in total. 

Each simulation was fit with the Weibull Grid model several times using different 
combinations of parameters (Table 1). We tested initial grid cell sizes of 0.1, 0.2, 
and 0.3, box sizes of 0.2 and 0.4, and boxes per grid cell of 5, 10, and 20, 40. For 
each simulation we also fit a Naive model to test the performance of the Weibull 
Grid model. The Naive model used a linear regression of DOY~y, where y, 
representing latitude, is assumed to be the primary spatial gradient along which 
phenology varies. The Naive model onset estimate is then 0.01 percentile prediction
interval. 

For each simulation we generated 441 evenly spaced points on the simulated grid 
representing the true flowering onset date and calculated the RMSE of the models 
estimated onset date at the same locations. For each combination of Weibull Grid 
parameters, underlying phenology, and sampling scenarios we calculated, using the
100 replicate simulations, the average: 1) RMSE, 2) bias, and 3) percentage of the 
441 testing observations which had no estimates. A location can lack an estimate in
low sample size scenarios if none of its associated boxes had the minimum sample 
size (n=3) needed to produce an estimate. For each phenology and sampling 
scenario, we chose the set of Weibull Grid model parameters with the lowest RMSE 
to present here. The lowest errors for all simulated scenarios and the corresponding
Weibull Grid parameters are available in the appendix (Table S1, Fig S2-S3). 
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Parameter
Category

Parameter Range of Values Description

Underlying Phenology Flowering Length 15,30,45,60 The length of the 
flowering period.

Underlying Phenology Gradient Strength 1.68, 3.36, 6.72 The strength of the 
spatial gradient

Underlying Phenology Gradient Linearity Linear or Nonlinear Whether the gradient 
changes only w/ 
respect to the y-axis, 
or a random surface.

Sampling Scenario Sample Size 150, 300, 600, 1200 The number of 
observations

Sampling Scenario Observation Clustering Clustered or 
Nonclustered

Whether observations 
are spatially clustered 
or random.

Weibull Grid Model Box Size 0.2, 0.4 The size of the 
randomly distributed 
boxes.

Weibull Grid Model Number of boxes 5, 10, 20, 40 The number of 
randomly located 
boxes within each grid 
cell

Weibull Grid Model Grid Cell Size 0.1, 0.2, 0.3 The cell size of the 
initial grid.

Table 1: Parameters used in the simulation study. 

iNaturalist and Phenocam comparison
We compared estimates of onset using iNaturalist flowering data for two species 
and compared them with greenup estimates from Phenocam sites. We downloaded 
all research grade observations of Rudbeckia hirta and Maienthemum canadense 
from the dates 2016-01-01 to 2019-08-01 (GBIF.org, 2019). From the primary photo 
for each observation we scored whether a fully open flower was present or not. We 
scored R. hirta as “flowering” when at least 1 flowering head with at least 50% of 
visible ray petals were fully unfolded and non-senesced. We scored M. canadense as
“flowering” when at least 1 fully open flower with non-senesced petals was visible. 
We kept all observations scored as “flowering” and with coordinates accurate to at 
least 50km. We built Weibull grid models to estimate flowering onset for each 
species and year (8 onset models total for the 2 species across 4 years). Weibull 
Grid parameters were chosen from the optimal parameters from the simulation 
analysis described above, and were based on the sample size, range size, and 
flowering length for each species (Figs. S2-S3). 
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We matched Phenocam locations which best represented the primary habitat and 
range for the two species, and which had data available in the years 2016-2019. For
R. hirta we chose 6 grassland sites in the continental U.S.A. east of longitude -100. 
For M. canadense we chose 6 deciduous broadleaf sites in the N.E. U.S.A., Great 
Lakes Region, and southern Appalachian Mountains (Table S2). Using the 
phenocamr package we downloaded and extracted greenup estimated by the 10% 
rising transition of the 3-day 90th percentile Gcc and the associated confidence 
intervals (Richardson et al., 2018). For each Phenocam site location the flowering 
onset from the respective Weibull Grid model (R. hirta models for phenocam 
grassland sites, and M. canadense models for phenocam deciduous broadleaf sites, 
matched to the respective year) was estimated for comparison with the phenocam 
derived greenup date. 

All analysis was done using the R programming language (version 3.6.0, R Core 
Team 2017). Packages used during the analysis included phest (Pearse et al., 
2017), spatstat (Baddeley et al., 2015), gstat (Gräler et al., 2016), doParallel 
(Weston and Calaway, 2019), dplyr (Wickham et al., 2017), tidyr (Wickham and 
Henry, 2018), ggplot2 (Wickham, 2016), testthat (Wickham, 2011), and lubridate 
(Grolemund and Wickham, 2011). 

RESULTS

Simulation Analysis
Using simulated flowering observations with known onset dates the Weibull Grid 
model performed best when the underlying phenology had a non-linear spatial 
gradient (Fig. 2). When the underlying phenology of the simulated flowering data 
was based on a linear spatial gradient, the Naive model outperformed the Weibull 
Grid model in nearly all cases (Fig. 2, Table S1). When the underlying phenology 
was a non-linear spatial gradient, the Weibull Grid model outperformed the Naive 
model, except with long flower days of weak and moderate gradients (Fig. 2 B,D). 
Performance of both models generally decreased (ie. had higher error) with 
increasing flowering length, though with a strong spatial gradient the flowering 
length had either no effect on the Weibull Grid model (Fig. 3 F), or had the highest 
errors at the shortest and longest flowering lengths (Fig. 3 E).
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Figure 2: The RMSE of the Weibull Grid model and the Naive model in estimating onset for 6 types of 
flowering gradients (A-F) and 4 flowering season lengths (x-axis), and using a sample size of 300 based
on clustered sampling. Each point represents the average RMSE from 100 simulations where the true 
onset date was specified.

Simulating clustered sampling, as opposed to completely random sampling, 
increased errors for the Weibull Grid model regardless of the underlying phenology 
(Fig. 3, Table S1). The change in error was highest when the sample size was the 
lowest. Using a sample size of 150 simulated observations the Weibull Grid model 
RMSE increased by more than 1 day when clustered sampling was introduced. This 
increase happened regardless of flowering length or the spatial gradient strength 
(Table S1). As the sample size increased the magnitude of the RMSE change 
attributed to clustered sampling decreased. Higher sample sizes improved the 
Weibull Grid model performance overall, especially moving from 150 to 300 
samples. Beyond 300 simulated samples performance improvements were 
relatively small. 
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Figure 3: RMSE of the Weibull Grid model and a Naive model in estimating onset from for either non-
clustered (A-B) or clustered sampling (C-D). The underlying phenology is a moderate spatial gradient 
with a length of 30 days and spatial gradient linearity specified. Each point represents the average 
RMSE from 100 simulations where the true onset date was specified. 
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Figure 4: Flowering onset estimated from iNaturalist phenology data using the Weibull grid model 
(circles) compared with Phenocam derived estimates of canopy greenup (triangles). Colors represent 
Phenocam sites. Lines represent the 95% confidence interval, which may be not be visible if the 
interval is extremely small. Note that sites marena in 2019, ninemileprairie in 2017, and shalehillsczo 
in 2018-2019 do not have Phenocam estimates. 

Comparison of iNaturalist based estimates with Phenocam estimates

We used the Weibull Grid model to estimate flowering onset for two species based 
on flower phenology observations derived from iNaturalist photos. We compared 
these estimates with greenup dates from the Phenocam network. In deciduous 
broadleaf forests the Weibull Grid model estimated flowering onset of M. canadense
an average of 2.7 days after canopy greenup (range: -10.4 to 17.3). At grassland 
sites the Weibull Grid model estimated flowering onset of R. hirta after canopy 
greenup at all sites and years, 33.9 days on average (range: 1.3 to 66.1). However, 
some estimates, especially at lower latitude sites, had confidence intervals 
extending well before the Phenocam greenup. 
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DISCUSSION
Here we have shown that opportunistically collected photos of in-flower plants from 
iNaturalist can provide consistent estimates of large-scale phenological patterns. 
We showed that a method to estimate flowering onset integrated into a spatial 
ensemble framework can consistently match independent estimates of greenup. 
The same method was also validated using simulated data and was especially 
beneficial when non-linear spatial gradients were present. The iNaturalist platform 
is still relatively new, and its data has largely been used as verified observations in 
species distribution models. Extracting ecologically relevant information from user 
submitted photographs is challenging (Barve et al., 2019), yet the scale of the data 
can provide an extremely high return on investment for phenological research. 

Diverse Data Harmonization 
The sheer amount of observations available from iNaturalist as well as the spatial 
coverage provides potential for analysis at scales not before possible. The data 
density provides high replication across gradients, which provides the most 
information about large-scale patterns (Kreyling et al., 2018). Yet, as a relatively 
new platform which does not emphasize standardized sampling, iNaturalist data are
missing historical context as well as site fidelity. Herbarium specimens have been a 
primary source of large-scale analysis and provide historic observations dating back
over 100 years (Willis et al., 2017). Yet for the two species used here historic 
herbarium observations rarely exceed 100 total observations per year, thus are 
likely lacking adequate spatial replication to track seasonal large-scale trends (Fig. 
5). Since 2016 the annual number of research grade R. hirta observations on 
iNaturalist has increased from 500 to nearly 2000. USA-NPN has similar increases in 
the number of observations, but does not provide as high a density since many 
observations are repeated at the same location (Fig. S4). Even with this lower 
density the repeated sampling observations from the USA-NPN, and other 
monitoring networks, helps constrain phenological timings (Gerst et al., 2016; 
Elmendorf et al., 2019). Thus with its dense sampling iNaturalist derived 
phenological data can compliment as opposed to replace other data sources. 

Combining these diverse data streams will be a major challenge, as they have a 
variety of protocols and observation biases. The Plant Phenology Ontology (PPO) 
provides a framework for harmonizing different phenology observations into 
common indicators (Stucky et al., 2018; Barve et al., 2019; Brenskelle et al., 2019). 
Hierarchical models can be used to model the different observations processes 
under a common underlying phenology (Ogle et al., 2015; Elmendorf et al., 
2019) and also share strength between closely related species or ones with similar 
traits (Theobald et al., 2017). Incorporating potential drivers into models may also 
be difficult. For example if gridded temperature data were combined with onset 
estimates from the Weibull Grid model then the spatial grain chosen will affect the 
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results (Jelinski and Wu, 1996). Alternatively, the presence/absence observations 
could be integrated into a model directly without first estimating onset dates (Clark 
et al., 2014; Elmendorf et al., 2019). Future analysis using the strengths of each 
dataset will likely provide the most information for inferring phenological patterns 
and their drivers. 

Figure 5: Total observations from other large-scale phenological data sources for the two species (A & 
B) analyzed in the current study. iNaturalist data reflects the total research grade observations 
regardless of flower status. USA-NPN data reflects observations of open flowers (phenophase 501, 
either present or absent) from Jan. 1, 2009 to Aug. 1, 2019 (USA National Phenology Network 2019). 
Herbarium data were obtained from iDigBio and reflects all observations marked as preserved 
specimens for the respective species. Though the x-axis is cropped from the year 2000 onward, 
herbarium observations here date back to the year 1800. 

Weibull Grid Model Performance
The Weibull Grid model was most beneficial when the underlying phenology had a 
non-linear spatial gradient. This is due to the spatial ensemble method having a 
location dependent estimate which is informed only by nearby observations (Fink et
al., 2010). This limits the model to regions with dense sampling, which we expect 
iNaturalist to provide for many abundant well-known species (Fig. 5). Estimates 
improved up to 300 total observations, but beyond that improvement of overall 
performance was minimal. Our analysis simulated 10 degrees of latitude/longitude, 
thus as a first approximation we can suggest, for every year of transitions to 
estimate, sampling densities of 3 observations per degree-2 at mid-latitudes. When 
the underlying phenology had a linear spatial gradient the Naive model always 
performed better. This scenario will likely be encountered when an analysis has a 
small spatial extent, and the onset of flowering, or other phenophases, is nearly 
simultaneous across the study region.
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The Weibull Grid model was fairly robust to clustered sampling, with errors 
increasing by 1 day or less when clustered sampling was introduced and sample 
size was 300 or greater (Fig. 3). The model performed best with shorter flowering 
seasons and moderate to strong nonlinear spatial gradients. As the flowering 
season was lengthened observations on average were farther from the true onset 
date, thus the estimate had higher uncertainty. With stronger gradients, nearby 
observations were also more likely to be farther apart in time, again contributing to 
higher uncertainty and overall error. Larger sample sizes did improve performance 
to a degree, especially at the strongest gradient (Table S3).

We found a larger box size (sized 0.4 on a 0-1 simulated grid) had the lowest errors 
except in two cases: With a strong non-linear gradient combined with a short 
flowering season, and with a high sample size (n=1200). (Figs. S2-S3). The optimal 
choice for the other two parameters (the initial grid cell size and number of boxes 
within each cell) varied as the interaction between these two parameters 
determined the total number of boxes across the entire simulated landscape. Since 
the final point estimates are based off quartiles, more estimates from a higher 
amount of boxes are not detrimental and the only downside is increased 
computational time. Thus a small initial grid cell size and high number of boxes is 
recommended. 

iNaturalist vs. Phenocam Derived Onset Estimates
The flowering onset estimates for M. canadense and R. hirta were consistent with 
ecosystem level estimates. We had no a priori assumptions about when in the 
growing season the two species flowered, yet the Weibull Grid model fit with 
iNaturalist derived phenology data consistently provided estimates near Phenocam 
derived greenup. The onset of flowering for R. hirta was always estimated after 
Phenocam greenup, while M. canadense was estimated to be fairly close to the 
Phenocam greenup.

Estimates for R. hirta flowering onset had wider confidence intervals overall. With a 
larger range, and thus stronger gradient, and longer flowering season of R. hirta 
onset is inherently harder to estimate. At lower latitudes open flowers were 
observed in every month of the year. Recent direct measurements for R. hirta 
flowering onset are DOY’s 169-177 at 46.9 latitude (Dunnell and Travers, 2011), 
which is similar to the estimates of 160-166 at the oakville site. 

Our results show that M. canadense flowers near canopy greenup throughout its 
range. M. canadense flowers in “early spring” (Flora of North America Editorial 
Committee 1993), and Helenurm and Barrett (1987) measured flowering onset 
between DOY’s 151-165 in Doaktown, New Brunswick  (46.5 latitude) in the years 
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1979-1980. The Phenocam site willowcreek, at latitude 45.8, had M. canadense 
flowering onset estimates between DOY’s 138-142. This disparity could be due to 
the nearly four decades since the data collection by Helenurm and Barrett (1987), 
as another study showed M. canadense flowering 7 days earlier since 1980 due to 
warmer temperatures.

The Potential Information Content of Photographs
We are discretizing the iNaturalist photos into binary presence or absence of open 
flowers, yet there is additional information in the photos which can be utilized. 
Phenophases such as fruiting, leaf onset and coloring can also be scored. The total 
number of flowers or fruit on an individual or in a photo can be tallied to quantify 
flower intensity or reproductive success. The natural progression of different 
phenophases can be used to constrain the timing of earlier and later transitions 
(Wolkovich and Ettinger, 2014; Ettinger et al., 2018). For example, fruiting follows 
flowering, thus the presence of fruit implies flowering onset happened at an earlier 
date, and vice versa. M. canadense, analysed here, had very discrete phenophase 
timing. During scoring we noted that open flowers of M. canadense never coincided 
with ripe fruit, but occasionally coincided with enlarging ovaries. We hypothesize 
the overlap between phenophases is highly species dependent and thus difficult to 
generalize in models. For example, some species have ripe fruit which persist for 
months, and the presence of maturing or unripe fruit may be a better phenophase 
to utilize. Likewise, long flowering plants with indeterminate inflorescences could 
simultaneously have unopened flower buds, open flowers, and immature and ripe 
fruit.

Other information beyond the presence or quantity of phenophases can be 
extracted from photos as well. Plants besides the target species may be present, 
allowing for analysis of competing species or community scale phenology. However,
researchers should ensure the same photo was not submitted repeatedly to record 
multiple species. If the photo frame is large enough then landscape level greenness 
indices can be extracted using either machine learning and/or crowdsourcing 
techniques (Kosmala et al., 2016), which can be integrated with Phenocam data. 
iNaturalist observations identified as plant pollinators have a high chance of 
containing flowers, providing an avenue to analyse these phenological interactions 
(Gazdic and Groom, 2019). The long-term storage of iNaturalist photos and their 
metadata, similar to storing herbarium specimens, will provide future researchers 
with these analysis avenues, as well as other options which may not be obvious 
today (Heberling and Isaac, 2018). 
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Limits and Biases of Phenology From Photographs
While we utilized only flowering presence data here, the absence of flowers or other
phenophases can be highly informative in constraining estimates of phenological 
timings (Taylor, 2019). The scoring of iNaturalist photos provides a method for 
characterizing phenophase absence, though depending on size, abundance, and 
other traits, such absence reporting may be better suited to some species more 
than others. 

We expected a bias toward observations of plants in flower on iNaturalist, and that 
was the case with one of the two species analyzed. For R. hirta 94% of observations 
had open flowers, while M. canadense had 36%. We hypothesize the presence of 
flowers drives a higher proportion of research grade observations in two ways: 1) 
the ability to positively identify a plant to the species level, and 2) the prominence 
of a plant driving the motivation of an observer to photograph it. M. canadense is a 
common, sometimes dominant, understory plant in N.E. North America with 
distinctive parallel veined leaves. This allows for both more observations and easier 
identification when flowers are absent, thus more non-flowering observations. R. 
hirta is common throughout Eastern North America, but the early season basal 
rosette can resemble other species in the Asteraceae family, thus lacking flowers 
identification is difficult. Without a positive identification the observations will not be
marked as “research grade”, excluding them from most downstream analysis.  
Alternatively, if R. hirta is in the understory and lacking flowers it may not be 
prominent enough for an observer to take a photo to begin with. If the former is the 
primary driver for the dearth of non-flowering R. hirta research grade observations, 
then there is potentially a large history of phenological absence data available on 
iNaturalist if more advanced identification methods could be applied. 

Extracting phenological information from photos has several strengths and 
limitations. False positives for flowers are likely low since the presence of flowers is 
easy to detect. There is potential dispute over what constitutes “flowering”, as the 
inflorescence of some species may remain highly visible even after successful 
pollination and cessation of ovule viability. Flowering heads comprising numerous 
flowers can also remain viable over several days to weeks. For these issues the PPO
can provide guidance (Stucky et al., 2018), and multiple observers resulting in a 
consensus vote on final phenology decreases scoring errors (Barve et al., 2019). 
The potential for false negative (flowers absent) is high, especially if the entire plant
is not included in the photo frame. R. hirta is a perennial taprooted herb, so it’s 
likely the full above ground portion of the plant, or at least the full inflorescence, is 
in most photos. M. canadense has spreading rhizomes, so it would be impossible to 
judge from a single photograph whether all stems of an individual plant are present.
Larger plants will likely have higher error rates from scoring, either from only a 
portion of an individual being photographed or the plant being far away in the 
image (Barve et al., 2019). Photos of plants with charismatic flowers, even small 
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ones, may exclude the rest of the plant which would prohibit deriving any 
information besides flower presence. 

Taken together these biases will limit which plant species can have their phenology 
scored and analyzed from online photographs on iNaturalist and other platforms. 
Most suitable will be common, abundant and easily identifiable species which are 
large enough to be conspicuous, but small enough such that the entire plant is 
included in most photos at a near enough distance to adequately score 
phenophases. Still unstudied is the effect of observer effort across space and time. 
To obtain an adequate sample size a plant must flower (or have other phenophases 
present) at the locations and times coinciding with observers. Plants more abundant
in locations which are more likely to be visited, and which flower during times 
mostly likely to be visited will be better suited. Tall species such as trees, rare 
species, or those with inconspicuous flowers will likely not be suitable. 

How Predominant is Nonlinear Phenology?
In our simulation analysis we found the Weibull Grid method to be superior when 
the underlying phenology is non-linear across space. In the real world we hypothesis
that large-scale (>100km in extent) phenology gradients will have non-linear trends
in the majority of plant species. Complex topography, which affects phenology thru 
abiotic drivers such as temperature and sunlight, predominates much of the world’s
land surface. Even in areas of uniform topography differences in weather patterns, 
community structure, and successional status can change the phenology such that 
a single explanatory variable such as latitude cannot adequately account for the 
variance (Melaas et al., 2016). Regions experiencing shifts in climate at faster rates 
than surrounding regions will also contribute to non-linearity (Ault et al., 2015). In 
the cases where a linear gradient exists the Weibull Grid method may still be 
beneficial when the species encompass a large range, and the shape of the 
phenological distribution varies over latitude. Future research should explore further
the approximate threshold in non-linearity in which a simple naive model fails to 
capture the variation.  We admit that beyond studies using gridded climate or 
remotely sensed data, this aspect of plant phenology is largely unstudied, and we 
believe iNaturalist data will provide valuable information in analysing large-scale 
patterns. 

CONCLUSIONS
The iNaturalist platform has been operational since 2008, yet it’s grown to be one of
the most popular citizen science platforms, given its inclusive participatory nature, 
tools to help with identification, and how it balances ownership issues related to 
photographs, while also strongly supporting open data approaches. Here we have 
shown the potential to extract phenological info from iNaturalist photographs, and 
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outlined how these data, with their high spatial replication, can complement other 
sources. Quantifying large-scale trends across space and time can validate past 
findings of experimental studies and provide new hypotheses for future ones. 
Location specific transition estimates can also be used to parameterize models for 
large-scale forecasts, which benefit from data across a large spatial extent (Taylor, 
2019). We made a spatially explicit model which showed, given an adequate sample
size, iNaturalist derived data can provide precise estimates of phenological onset 
for plant species which occur across heterogeneous environments. Flexible 
modelling approaches which can utilize the unique structure of these data, eg. the 
Weibull estimator, will be key in large scale analysis. In the future, and as the 
iNaturalist database grows, it will likely become a primary source of phenological 
data.
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Appendix 

Sample Size

Spatial Gradient
Type 

Gradient Strength
Flowering 

Length 
150 300 600 1200 

Clustered Sampling
linear Weak 15 1.9 (0.8) 1.6 (1) 1.7 (1) 1.5 (1) 

linear Weak 30 4.1 (1.8) 3.3 (2.1) 2.3 (2.1) 2 (2.2) 

linear Weak 45 6.6 (3.1) 5.4 (3.2) 3.6 (3.1) 2.6 (3.2) 

linear Weak 60 9.5 (4.3) 7.3 (4.3) 4.9 (4.3) 3.4 (4.4) 

linear Moderate 15 3.4 (0.9) 2.1 (1) 1.7 (1) 1.5 (1) 

linear Moderate 30 3.9 (2) 3.2 (2) 3.3 (2.1) 3.2 (2.2) 

linear Moderate 45 6.3 (3.1) 4.9 (3.1) 3.9 (3.3) 3.7 (3.3) 

linear Moderate 60 8.4 (3.9) 6.9 (4.1) 4.8 (4.2) 4 (4.3) 

linear Strong 15 6.2 (0.9) 3.7 (1) 3.3 (1) 3.5 (1) 

linear Strong 30 6.7 (2) 4.3 (2.1) 3.5 (2.2) 2.9 (2.2) 

linear Strong 45 6.4 (3.2) 6 (3.2) 5.8 (3.3) 4.6 (3.3) 

linear Strong 60 8 (4.3) 6.7 (4.4) 6.4 (4.4) 6.6 (4.4) 

non-linear Weak 15 2.2 (4.2) 2 (3.8) 1.9 (4.1) 1.6 (4.3) 

non-linear Weak 30 4.2 (3.4) 3.4 (3.6) 2.5 (3.3) 2.2 (3.4) 

non-linear Weak 45 6.8 (3.8) 5.3 (3.6) 3.8 (3.7) 2.7 (3.6) 

non-linear Weak 60 9.5 (4.8) 7.5 (4.5) 5 (4.6) 3.6 (4.7) 

non-linear Moderate 15 3.9 (10.9) 2.5 (11.2) 2.2 (10.6) 2 (9.6) 

non-linear Moderate 30 4.4 (7.4) 4 (7.5) 3.9 (7.4) 3.3 (7.9) 

non-linear Moderate 45 6.5 (6.7) 5.3 (6.8) 4.2 (6.6) 4.2 (6.8) 

non-linear Moderate 60 8.7 (6.7) 7.1 (6.7) 5.2 (6.9) 4.5 (6.4) 

non-linear Strong 15 7.1 (25.6) 4.6 (23.9) 4.4 (24.9) 4.4 (25.3) 

non-linear Strong 30 7.7 (20.7) 5 (22) 4.2 (21.5) 3.8 (19.9) 

non-linear Strong 45 8 (19.2) 7.3 (17.9) 6.2 (17.3) 5.1 (16.7) 

non-linear Strong 60 9.3 (16.3) 8 (15.8) 8.3 (16.7) 6.8 (15) 

Non-Clustered Sampling
linear Weak 15 2.5 (0.9) 2.1 (1) 1.8 (1) 1.9 (1) 

linear Weak 30 5.1 (2) 3.8 (2) 3.1 (2.1) 2.5 (2.2) 

linear Weak 45 7.8 (3) 5.9 (3.2) 4.6 (3.3) 3.8 (3.2) 

linear Weak 60 11.5 (4.3) 7.8 (4.3) 6.2 (4.5) 4.8 (4.4) 

linear Moderate 15 4.9 (1) 3.9 (1) 3.2 (1) 2 (1) 

linear Moderate 30 5.4 (1.9) 4.1 (2) 3.7 (2.1) 3.7 (2.1) 

linear Moderate 45 8.1 (2.9) 5.8 (3.2) 4.7 (3.2) 4.2 (3.3) 

linear Moderate 60 9.8 (4) 8 (4.4) 6.4 (4.3) 5.3 (4.4) 

linear Strong 15 9.7 (0.9) 9.3 (1) 5.7 (1) 3.9 (1.1) 

linear Strong 30 9.4 (2) 7.4 (2) 6.2 (2.2) 4.1 (2.2) 

linear Strong 45 9.9 (3) 7.2 (3.2) 6.8 (3.4) 6.3 (3.3) 

linear Strong 60 11.1 (4.1) 8.4 (4.4) 7.3 (4.4) 7 (4.5) 

non-linear Weak 15 2.7 (4.1) 2.2 (4) 2.1 (4) 1.9 (3.9) 

non-linear Weak 30 5.2 (3.7) 3.9 (3.7) 3.2 (3.4) 2.6 (3.4) 

non-linear Weak 45 7.8 (4.1) 5.9 (4) 4.5 (4.1) 3.9 (4.1) 

non-linear Weak 60 9.8 (4.8) 8.3 (5) 6.3 (4.9) 5 (4.9) 

non-linear Moderate 15 4.9 (10) 4.6 (9.7) 3.3 (8.7) 2.4 (9.2) 

non-linear Moderate 30 6.1 (8.5) 4.5 (7.4) 4.1 (7.5) 3.9 (7.3) 

non-linear Moderate 45 8 (6.6) 6 (7) 5.1 (7.5) 4.5 (6.6) 
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Sample Size

Spatial Gradient
Type 

Gradient Strength
Flowering 

Length 
150 300 600 1200 

non-linear Moderate 60 10.3 (7.2) 7.9 (7.2) 6.5 (7) 5.5 (7.1) 

non-linear Strong 15 10.4 (25.8) 8.8 (22) 6.1 (20.4) 5 (24.9) 

non-linear Strong 30 11.3 (19.9) 8.8 (19.9) 6.8 (17.9) 4.8 (18.3) 

non-linear Strong 45 11.3 (16.4) 8.7 (18.2) 8.2 (17) 6.5 (15.4) 

non-linear Strong 60 11.9 (15) 9.1 (14.7) 8.7 (17) 8.1 (13.8)

Table S1: Errors for all combinations of phenology and sampling scenarios. Each 
number represents the RMSE of the best performing Weibull Grid model (chosen 
from a suite of potential parameter combinations, see main text & Table 1). 
Numbers in parenthesis indicate the RMSE of the Naive model for the same 
scenario. Bold text indicates when the Weibull Grid model had a lower RMSE than 
the Naive model. 

Species Primary
Vegetation

Box
Size

Grid Cell
Size

Number
of

Boxes

Latitude
Bounds

Longitude
Bounds

R. hirta Grassland 10° 5° 40 25 - 50 -100 - -70

M. 
canadense

Deciduous 
Broadleaf

10° 5° 40 35 - 50 -95 - -60

Table S2: Parameters used for the Weibull Grid model for the 2 species using 
iNaturalist derived phenology data. 
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Site Primary
Vegetation

Matched
Species

Latitude Longitude ROI Used

marena Grassland R. hirta 36.06434    -97.21271 1000

konza Grassland R. hirta 39.08240    -96.56030 1000

uiefprairie Grassland R. hirta 40.06462    -88.19847 1000

ninemileprairie Grassland R. hirta 40.86802    -96.82208 2000

oakville Grassland R. hirta 47.89933    -97.31614 1000

harvardfarmno
rth

Grassland R. hirta 42.52047    -72.18224 1000

shiningrock Deciduous Broadleaf M. 
canadense

35.39016    -82.77497 3000

harvard Deciduous Broadleaf M. 
canadense

42.53780    -72.17150 1000

proctor Deciduous Broadleaf M. 
canadense

44.52500    -72.86600 1000

willowcreek Deciduous Broadleaf M. 
canadense

45.80599    -90.07912 1000

boundarywater
s

Deciduous Broadleaf M. 
canadense

47.94670    -91.49551 4000

shalehillsczo Deciduous Broadleaf M. 
canadense

40.66580    -77.90410 2000

Table S2: Phenocam sites used in the analysis. 

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted October 7, 2019. ; https://doi.org/10.1101/794396doi: bioRxiv preprint 

https://doi.org/10.1101/794396
http://creativecommons.org/licenses/by/4.0/


Figure S1: Example of simulated data. The color represents the onset, while points 
represent 200 sampled observations. Panel A depicts a linear spatial gradient which
varies as a function of the y-axis and observations representing non-clustered 
sampling. Panel B depicts a nonlinear spatial gradient and observations 
representing clustered sampling. 
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Figure S2: Weibull Grid parameters for the best performing models within each 
scenario. Points represent the RMSE of the Weibull Grid model for 6 types of 
flowering gradients (A-F) and 4 flowering season lengths (x-axis), and using a 
sample size of 300 based on clustered sampling. Text boxes indicate the two best 
performing parameter sets for that scenario as determined by lowest RMSE. 
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Figure S3: Weibull Grid parameters for the best performing model with in different 
sampling scenarios. Points represent the RMSE of the Weibull Grid model for either 
non-clustered (A-B) or clustered sampling (C-D). The underlying phenology is a 
moderate spatial gradient with a length of 30 days and spatial gradient linearity 
specified. Text boxes indicate the two best performing parameter sets for that 
scenario as determined by lowest RMSE. 
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Figure S4: Locations of all data used in the analysis and discussion. 
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