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Abstract  
 
Objective  
To assess a potential causal relationship between genetic variants associated with plasma lipid 
traits (high-density lipoprotein cholesterol, HDL; low-density lipoprotein cholesterol, LDL; 
triglycerides, TG) with risk for breast cancer. 
 
Design 
Mendelian randomization (MR) study. 
 
Setting and Participants 
Data from genome-wide association studies in up to 215,551 subjects from the Million Veterans 
Project were used to construct genetic instruments for plasma lipid traits. The effect of these 
instruments on breast cancer risk was evaluated using genetic data from the BCAC consortium 
based on 122,977 breast cancer cases and 105,974 controls. 
 
Exposures 
Genetically modified plasma levels of LDL, HDL, or TG. 
 
Main Outcomes and Measures 
Odds ratio (OR) for breast cancer risk per standard-deviation increase in HDL, LDL, or TG. 
 
Results 
We observed that a 1-SD genetically determined increase in HDL levels is associated with an 
increased risk for all breast cancers (HDL: OR=1.08, 95% CI=1.04-1.13, P=7.4x10-5). 
Multivariable MR analysis, which adjusted for the effects of LDL, TG, body mass index, and age 
at menarche, corroborated this observation for HDL (OR=1.06, 95% CI=1.03-1.10, P=4.9x10-4) 
and also a relationship between LDL and breast cancer risk (OR=1.03, 95% CI=1.01-1.07, 
P=0.02). We did not observe a difference in these relationships when stratified by breast tumor 
estrogen receptor status. We repeated this analysis using genetic variants independent of the 
leading association at core HDL pathway genes and found that these variants were also 
associated with risk for breast cancers (OR=1.11, 95% CI=1.06–1.16, P=1.5x10-6), including 
gene-specific associations at ABCA1, APOE-APOC1-APOC4-APOC2 and CETP. In addition, we 
find evidence that genetic variation at the ABO locus affects both lipid levels and breast cancer. 
 
Conclusions 
Genetically elevated plasma HDL levels appear to increase breast cancer risk. Future studies are 
required to understand the mechanism underlying this putative causal relationship, with the goal 
to develop potential therapeutic strategies aimed at altering the HDL-mediated effect on breast 
cancer risk.  
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Introduction 
  

Breast cancer is the second leading cause of death for women, motivating the need for a 

better understanding of its etiology and more effective treatments.1 Cholesterol is a known risk 

factor for multiple diseases that have reported associations with breast cancer, including obesity, 

heart disease and diabetes.2 However, it is unknown whether cholesterol plays a causal role in 

breast cancer susceptibility. 

The body of epidemiological and clinical trial studies to date has yet to clearly determine 

if there is a causal relationship between cholesterol and breast cancer. Observational 

epidemiological studies have reported positive, negative, or no relationship between lipid levels 

and breast cancer risk, however these studies can suffer from confounding.3–5 While recent 

evidence suggests that statin use may reduce breast cancer risk,6 cumulative meta-analyses are 

inconclusive.7 Recently, cholesterol-lowering medications have been associated with improved 

outcomes in breast cancer patients on hormonal therapy, suggesting an interaction of circulating 

cholesterol levels with estrogen-sensitive breast tissues.8 These mixed findings motivate the need 

for a high-powered causal inference analysis of lipids on breast cancer. 

 To try to resolve these discrepancies, recent studies have applied the framework of 

Mendelian randomization (MR) to determine if genetically elevated lipid levels associate with 

breast cancer risk. In a small sample of 1,187 breast cancer cases, Orho-Melander et al. used 

multivariable MR to find suggestive evidence of a relationship between triglycerides and breast 

cancer, but no association between LDL-cholesterol or HDL-cholesterol and cancer.9 In a second 

study, Nowak et al.10 performed an MR analysis with genetic association data from large GWAS 

for lipids and breast cancer.11,12 They reported nominal positive associations between LDL-

cholesterol levels and all breast cancers, and between HDL-cholesterol levels and ER-positive 

breast cancers. While compelling, this study also had limitations. First, they used relatively few 

variants in their genetic instrument due to the need for addressing instrument heterogeneity and 

genetic correlation between lipid traits, resulting in a conservative analysis. Second, they 

analyzed each lipid trait separately rather than take advantage of multivariable methods to 

consider lipid traits together along with additional, potentially confounding causal risk factors. 

Third, the authors did not quantitatively assess heterogeneity to determine if the observed lipid 

associations were statistically different across breast cancer subtypes. 
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These studies motivate a Mendelian randomization study that considers multiple lipid 

traits concurrently to delineate the independent effect of each lipid trait on breast cancer 

susceptibility. Such an approach that includes the effects of all biomarkers plus confounding 

factors obviates the need to remove pleiotropic variants and the loss of statistical power which 

results from this removal. An ideal approach would consider the effects of body mass index 

(BMI) and age at menarche, known risk factors for breast cancer that are correlated with 

lipids.13–19 

In what follows, we apply the causal inference framework of MR to determine if 

genetically elevated lipid traits modify breast cancer susceptibility, independent of one another 

and of BMI and age at menarche. We take advantage of a recent GWAS for lipid levels 

performed in up to 215,551 individuals of European ancestry20 to provide power for our causal 

inference analyses. Using a joint, multivariable MR, we find that genetic elevation of HDL trait 

increases risk for breast cancer, even after accounting for the effects of our genetic instruments 

on BMI and age at menarche. In addition, we perform a gene-specific Mendelian randomization, 

which focuses on variants in genes most central to the metabolism of cholesterol. This gene-

specific approach supports HDL as a causal risk factor for breast cancer. Finally, we perform 

genetic correlation analyses to look for both genome-wide and locus-based correlation in effect 

sizes between lipids and breast cancer. Our results suggest that genetically elevated levels of 

HDL, and genetically lowered levels of TG, raise breast cancer risk. 

   

Methods 

 

Study Populations 

Lipids GWAS summary statistics were obtained from the Million Veteran Program (MVP) (up 

to 215,551 European individuals)20 and the Global Lipids Genetics Consortium (GLGC) (up to 

188,577 genotyped individuals).12 As additional exposures in multivariable MR analyses, we 

used BMI summary statistics from a meta-analysis of GWAS in up to 795,640 individuals, and 

age at menarche summary statistics from a meta-analysis of GWAS in up to 329,345 women of 

European ancestry.16,21 Genome-wide association study (GWAS) summary statistics from 

122,977 breast cancer cases and 105,974 controls were obtained from the Breast Cancer 
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Association Consortium (BCAC).11 More details on these cohorts are in the Supplementary 

Methods. 

 

Lipid meta-analysis 

We performed a fixed-effects meta-analysis between each lipid trait (Total cholesterol (TC), 

LDL, HDL, and triglycerides) in GLGC and the corresponding lipid trait in the MVP cohort12,20 

using the default settings in plink.22 These meta-analysis results appear well calibrated 

(Supplementary Figure 1). 

 

Mendelian randomization analyses 

Mendelian randomization analyses were performed using the TwoSampleMR R package 

(https://github.com/MRCIEU/TwoSampleMR).23 For all analyses, we used the two-sample MR 

framework, which means that the lipid, BMI, age at menarche and breast cancer genetic 

associations were estimated in different cohorts. Unless otherwise noted, MR results reported in 

this manuscript used inverse-variance weighting assuming a random effects model. SNPs 

associated with each lipid trait were filtered for genome-wide significance (P < 5x10-8) from the 

MVP lipid study12, and then removed SNPs in linkage disequilibrium (r2 < 0.001 in UK10K 

consortium).24 Each of these independent, genome-wide significant SNPs was termed a genetic 

instrument. To reduce heterogeneity in our genetic instruments for single trait MR, we employed 

a pruning procedure (Supplementary Methods). Genetic instruments used in single trait MR are 

listed in Supplementary Table 1. For multivariable MR experiments, we generated genetic 

instruments by first filtering the genotyped variants for those present across all datasets. For each 

trait and data set combination (Yengo et al. for BMI; Day et al. for age at menarche, MVP and 

GLGC for HDL, LDL, and TG) we then filtered for genome-wide significance (P < 5x10-8), and 

for linkage disequilibrium (r2 < 0.001 in UK10K consortium).24 We then tested for instrument 

strength and validity25, and removed instruments driving heterogeneity (Supplementary 

Methods). Genetic instruments used in multivariable MR are listed in Supplementary Table 2. 

As the MR methods and tests we employed are highly correlated, we did not apply a multiple 

testing correction to the reported P-values. 

 

Core HDL and LDL pathway genetic instrument development 
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We defined sets of core genes for HDL or LDL that met the following criteria: (1) their protein 

products are known to play a key role in HDL or LDL biology (plus HMGCR and NPC1L1, two 

targets of LDL lowering drugs, in the LDL gene set), and (2) there were conditionally 

independent lipid trait-associated variants within 100kb upstream or downstream of the RefSeq 

coordinates for the gene (or locus, in the case of APOE-APOC1-APOC4-APOC2 and APOA4-

APOC3-APOA1).20 We then used the conditional HDL or LDL association statistics from Klarin 

et al. for those genes in gene-specific MR analyses.20 The loci included in each set and the 

genetic instruments used in each locus-specific MR are listed in Supplementary Table 3. We 

performed a separate fixed effects inverse-variance weighted MR with the conditionally 

independent genetic instruments at each gene, and performed fixed effects inverse variance 

weighted meta-analysis of the results across HDL or LDL genes using the R package meta.26 

 

Genetic correlation analyses 

We performed cross-trait LD Score Regression using the LDSC toolkit with default parameters, 

with the BCAC association statistics for breast cancer and our meta-analysis of GLGC and MVP 

for lipid associations. We used the ρ-Hess software for our local genetic correlation analysis,27 

using the UK10K reference panel, and the LD-independent loci published in Berisa et al. to 

partition the genome.28 We used a Bonferroni significance threshold based on the number of 

these independent loci (1,704 loci). There was minor cohort overlap between the GLGC and 

Breast Cancer GWAS due to the EPIC cohort.10 We included this overlap when performing ρ-

Hess, using the cross-trait LD score intercept to estimate phenotypic correlation. 

 

Results 

 

Single trait Mendelian randomization (MR) in breast cancer 

We first performed single trait MR analyses using summary statistics from MVP20 for each of 

four lipid traits (i.e., total cholesterol - TC, high density lipoprotein cholesterol - HDL, low 

density lipoprotein cholesterol - LDL, and triglycerides - TG) as the intermediate biomarkers and 

risk for all breast cancers as the outcome (Supplementary Figure 2). We observed a significant 

relationship between genetically elevated HDL and breast cancer risk (OR=1.10 per standard 

deviation of lipid level increase, 95% CI=1.04-1.17, P = 2.1x10-3) and genetically decreased 
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triglyceride levels and breast cancer risk (OR=0.93, 95% CI=0.88-0.99, P=0.015; 

Supplementary Table 4). Sensitivity analyses identified heterogeneity (Methods, 

Supplementary Table 5), but there was no evidence of bias from directional pleiotropy 

(Methods, Supplementary Table 6). To mitigate concerns of instrument heterogeneity, we 

removed genetic variants from our genetic instrument for each lipid trait that were responsible 

for instrument heterogeneity (Supplementary Methods), and again observed a relationship with 

HDL cholesterol (OR=1.08, 95% CI=1.04-1.13, P=7.4x10-5) and triglycerides (OR=0.94, 95% 

CI=0.90-0.98, P=2.6x10-3) (Figure 1, Supplementary Figures 3 and 4, Supplementary Table 

7). As HDL and TG are inversely correlated14,29, the opposing relationship between these two 

lipid traits and breast cancer could be expected in single-trait analyses. 

We also tested the relationship between lipid traits and breast cancer using a meta-

analysis of the two major lipid GWAS from MVP and GLGC, and GLGC alone. Overall, single 

trait MR analyses with the meta-analysis and GLGC lipid associations produced consistent 

results to those with MVP alone (Supplementary Figure 5). In a reciprocal single trait MR 

testing the effect of genetically-determined breast cancer risk on each lipid trait, we observed no 

relationship with HDL or LDL cholesterol (Supplementary Table 8), but did see a relationship 

with TG. However, a Steiger test for directionality confirmed that breast cancer as outcome was 

the correct causal direction for all lipid traits (Supplementary Table 7).30 We also performed 

genetic instrument pruning in the same manner as Nowak et al.: removing genetic instruments 

for LDL, HDL, and TG that were associated with at least one of the two other lipid traits 

(P<0.001).10 After this pruning, we did not find a significant relationship with LDL, HDL, or 

TG, and noted that this pruning procedure increased the size of the confidence intervals 

considerably (Supplementary Table 9). 

 

Multivariable Mendelian randomization with age at menarche and body mass index as exposures 

It has been previously observed that body mass index (BMI) and age at menarche are both 

genetically correlated and epidemiologically associated with both breast cancer19,31,32 and lipid 

traits.14,29 To incorporate these potential confounders into our causal inference framework, we 

performed multivariable MR analyses using all three lipid traits (genetic effect estimates from 

MVP), age at menarche, and BMI as exposures, and breast cancer risk as the outcome (Figure 

1). We observed relationships between genetically-influenced HDL, LDL, BMI, and age at 
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menarche with breast cancer (HDL: OR=1.06, 95% CI=1.03-1.10, P=4.93x10-4; LDL: OR=1.04, 

95% CI=1.01-1.07, P=0.02; BMI: OR=0.90, 95% CI=0.87-0.94, P=1.15x10-6; age at menarche: 

OR=0.96, 95% CI=0.93-0.99, P=2.44x10-3), but not TG (OR=0.98, 95% CI=0.95-1.00, P=0.10) 

(Figure 1, Supplementary Table 10). Our results were consistent before and after pruning for 

genetic instrument heterogeneity (Supplementary Table 10), and when using summary statistics 

from three independent subsets of the breast cancer dataset (Supplementary Figure 6, 

Supplementary Table 10). We also performed multivariable MR with pairs of lipid traits with 

genetic effect estimates from different datasets (GLGC or MVP), with and without BMI, and saw 

consistent results (Supplementary Table 11, Supplementary Figure 7). Considering the 

genetic correlation between HDL and TG, the significant association of HDL compared to TG 

with breast cancer in multivariable analysis, and the consistent relationship between HDL and 

breast cancer across breast cancer datasets, we focused our further MR analyses on the 

relationship between HDL cholesterol and breast cancer, in addition to the previously reported 

association between LDL and breast cancer.10 
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Figure 1. Results of MR analyses of the effects of HDL, LDL, or TG on breast cancer risk. 

IVW= inverse-variance weighted MR; MVMR = multivariable MR with HDL, LDL, TG, BMI, 

and age at menarche as exposures. Results plotted are after pruning for instrument heterogeneity. 

 

Mendelian randomization with outcome stratified by estrogen receptor status 

We next performed a MR analysis of the relationship between genetically-influenced lipids and 

breast cancer risk stratified by estrogen receptor positive (ER+) or negative (ER-) status. We 

observed similar effect size estimates of the four lipid traits on the breast cancer subtypes as on 

breast cancer not stratified by subtype (Supplementary Figure 8). A formal test for 

heterogeneity found no evidence to reject the null hypothesis of homogeneity between the cancer 

subtypes (e.g. HDL: Cochran’s Q = 6.6x10-5, P = 0.99; Supplementary Table 12). Thus, we 

observed no substantive difference in the relationship from any lipid trait to ER+ or ER- breast 

cancers, consistent with the strong genetic correlation between these two breast cancer subtypes 

(cross-trait LD Score regression genetic correlation estimate = 0.62, P = 2.9 x 10-83). 

 

HDL and LDL pathway gene-specific Mendelian randomization 

OR	(95%	CI)	

MR	Method	 Odds	Ra3o	(95%	CI)	 P-value	

HDL	

			IVW	 1.08	(1.04-1.13)	 7.42	x	10-5	

			Weighted	median	 1.06	(1.00-1.13)	 0.05	

			MR-Egger	 1.09	(1.02-1.17)	 0.01	

			MVMR	 1.06	(1.03-1.10)	 4.93	x	10-4	

LDL	

			IVW	 1.04	(1.00-1.09)	 0.07	

			Weighted	median	 1.06	(1.00-1.12)	 0.05	

			MR-Egger	 1.06	(1.00-1.13)	 0.05	

			MVMR	 1.04	(1.01-1.07)	 0.02	

TG	

			IVW	 0.94	(0.90-0.98)	 2.60	x	10-3	

			Weighted	median	 0.92	(0.88-0.97)	 3.47	x	10-3	

			MR-Egger	 0.91	(0.86-0.97)	 3.98	x	10-3	

			MVMR	 0.98	(0.95-1.00)	 0.10	

0.9	 1.0	 1.1	 1.2	
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To further clarify causal association, we next examined associations for breast cancer risk at 

genetic variants near core HDL and LDL genes. We identified conditionally independent 

associations at core genes, which we define as genes or loci previously annotated with a core role 

in the metabolism of each lipid trait, or an established drug target (HDL: ABCA1, APOA4-

APOC3-APOA1, APOE-APOC1-APOC4-APOC2, CETP, LCAT, LIPC, LIPG, PLTP, SCARB1; 

LDL: APOB, HMGCR, LDLR, LPA, MYLIP, NPC1L1, PCSK9) (Methods, Supplementary 

Table 3). For each gene or locus with at least two conditionally independent genetic instruments 

(all except LCAT and MYLIP), we performed inverse variance weighted MR (fixed effects 

model) with conditional HDL or LDL effect size estimates as the exposure and breast cancer risk 

as the outcome (Supplementary Figures 9 and 10). We observed a positive relationship 

between HDL and breast cancer risk at three loci (ABCA1, APOE-APOC1-APOC4-APOC2, 

CETP; Figure 2), and between LDL and breast cancer risk at one locus (HMGCR, 

Supplementary Figure 11). Combining the effect estimates across core genes in a meta-

analysis, we observed a positive relationship for HDL (OR = 1.11, 95% CI = 1.06-1.16, P = 

1.53x10-6; Figure 2) and LDL (OR = 1.07, 95% CI = 1.01-1.14, P = 0.02; Supplementary 

Figure 11). There was no evidence of heterogeneity across loci in either meta-analysis (HDL: 

Q=6.63, P=0.47; LDL: Q=5.53, P=0.35).  
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Figure 2. MR results for HDL gene-specific instruments (see Supplementary Table 3) and 

meta-analysis of effect estimates across genes. 

 
Genome-wide and local genetic correlation 

If cholesterol levels were a causal risk factor for breast cancer, we might expect a correlation 

between the strength of genetic association with these two traits at genetic variants across the 

entire genome, in addition to those at genome-wide significant loci. To answer this question, we 

utilized two approaches to estimate genetic correlation between breast cancer and lipid traits. 

Consistent with our MR results, we found positive genetic correlation estimates for TC, LDL, 

and HDL; and a negative estimate for TG using cross-trait linkage disequilibrium score 

regression (Supplementary Figure 12).14 However, most P-values were not significant; the only 

nominal association (P < 0.05) was with total cholesterol and ER-negative breast cancer 

(P=0.04). In contrast, the ρ-Hess method, which uses a different model of genetic correlation, 

found significant (P<0.05) correlations between all four lipid traits and breast cancer, with 

directions consistent with our MR results (Supplementary Table 13). 

 

To discover specific new loci that may be specifically correlated, we used the ρ-Hess method to 

search for genomic regions with genetic correlation between this same lipid meta-analysis and 

breast cancer.27 ρ-Hess identified one region that surpassed Bonferroni test correction, with a 

positive correlation between both LDL and TC and breast cancer (Supplementary Table 14). In 

this region there are two SNPs in high LD (rs532436 and rs635634, r2=0.99) that are genome-

Meta−analysis
CETP
LIPC

APOA4−APOC3−APOA1
LIPG

ABCA1
APOE−APOC1−APOC4−APOC2

PLTP
SCARB1

1.0 1.2 1.4
Odds RatioOR	(95%	CI)	

Locus	 N	SNPs	 Odds	Ra5o	(95%	CI)	 P-value	

SCARB1	 5	 1.09	(0.86-1.37)	 0.48	

PLTP	 2	 1.14	(0.92-1.41)	 0.23	

APOE-APOC1-APOC4-APOC2	 6	 1.26	(1.07-1.49)	 6.09x10-3	

ABCA1	 8	 1.21	(1.05-1.40)	 0.01	

LIPG	 6	 1.04	(0.91-1.20)	 0.56	

APOA4-APOC3-APOA1	 3	 1.13	(0.99-1.28)	 0.07	

LIPC	 16	 1.02	(0.91	-1.14)	 0.74	

CETP	 14	 1.11	(1.04-1.18)	 1.71x10-3	

Meta-analysis	 1.11	(1.06-1.16)	 1.53x10-6	

1.0	 1.2	 1.4	
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wide significantly associated with LDL (rs532436: P=9.98x 10-112), TC (P=1.68 x 10-98) and 

breast cancer (P=2.9 x 10-8). These SNPs lie within an intron of the ABO gene and are associated 

with change in gene expression of ABO in multiple tissues, suggesting ABO is a possible causal 

gene for these trait associations.33 

 

Discussion 

Causal inference is one of the most challenging problems in biology and medicine, requiring a 

strong consensus of evidence from multiple sources. Excitingly, large-scale human genetics data 

provides the opportunity to bring an additional line of evidence to this important problem. To 

clarify how circulating levels of serum lipids levels might influence risk of breast cancer, we 

utilized the framework of Mendelian randomization. We provide evidence that genetically 

elevated HDL and LDL levels increase the risk for breast cancer in support of a causal 

hypothesis. 

 

While substantial effort has been spent developing HDL raising therapies for cardiovascular 

disease prevention, independent studies have proposed an increase in all-cause mortality in 

individuals with high HDL levels.34 Our results suggest that therapies that aim to reduce 

cardiovascular risk by raising HDL levels might have an unintended consequence of elevated 

breast cancer risk. Specifically, our gene-based score using HDL-raising variation at the CETP 

locus predicted that CETP-based inhibition would elevate breast cancer risk (OR=1.11, 95% 

CI=1.04-1.18, P=1.71x10-3). Additionally, two recent Mendelian randomization studies reported 

causal evidence between elevated HDL and risk for age-related macular degeneration.35,36 These 

potential disease-increasing consequences may not have been possible to identify in safety trials, 

given the limited window of study to monitor progression or incidence of disease, the putative 

causal effect estimates, and the demographics of the study population (i.e., higher proportion of 

male participants). Our result supports the use of human genetics data as both a novel strategy 

for therapeutic targeting and for the discovery of potential drug complications to direct long term 

post-clinical trial followup.37 

 

Although Nowak et al. previously used Mendelian randomization to discover associations 

between lipids and breast cancer9,10, our report presents a reconsideration of these effects. Even 
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after conditioning on the effects of HDL, BMI, and age at menarche, our MR analysis suggests a 

potential causal relationship between LDL and BC. Nowak et al. only found a relationship 

between HDL cholesterol and ER+ breast cancer, while we found a relationship between HDL 

cholesterol and risk for all breast cancers. We also find a previously unreported association with 

triglycerides and breast cancer, though our multivariable analysis suggests this may be explained 

by correlation between triglycerides and HDL, and not an independent triglyceride effect. In 

their analyses, Nowak et al. used a strict pruning procedure in an attempt to isolate the effects of 

each lipid trait. However, this approach reduces power due to the high genetic correlation of 

these traits. The multivariable approach taken here is an alternative way to estimate the effect of 

an exposure while accounting for correlated exposures. 

 

We note several caveats to our analyses. The first is that MR makes a number of assumptions 

that must be met for accurate causal inference.38,39 Although we used statistical methods that try 

to detect and correct for violations of these assumptions, these methods are not guaranteed to 

correct for all types of confounding, and alternative causal inference frameworks outside of MR 

are warranted. We note that our effect estimates may be attenuated due to association of lipid 

IVS with the use of lipid-lowering medication. In addition, it is perhaps surprising that we did 

not find a significant genetic correlation between breast cancer and lipids using cross-trait LD 

score regression, however, our result corroborates a previous study which performed this 

analysis using smaller GWAS.15 Our lack of significant results could be caused by limited 

polygenicity of either trait, which decreases the power of this method.14 Lastly, we cannot be 

certain that the true underlying causal exposure is lipid levels, and not some phenotype for which 

lipids is a proxy. However, we are not aware of any process for which lipids is a proxy through 

which breast cancer would be affected. 

 

The analyses presented here do not bring evidence on a specific mechanism for tumorigenesis, 

but they do bring renewed attention to potential mechanisms requiring future functional study. 

Cholesterol and its oxysterol metabolites, either in the circulatory system or in the local 

mammary microenvironment, may have direct effects on mammary tissue growth induction of 

breast tumorigenesis.40,41  
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Our study supports a causal relationship from increased HDL cholesterol to increased breast 

cancer risk, and this hypothesis warrants further exploration. Statins are widely prescribed to 

decrease LDL levels; however, statins also increase HDL levels. If further research substantiates 

the relationship between higher HDL levels and increased breast cancer risk, the consensus that 

HDL is “good cholesterol”, or of benign effect, may require re-evaluation. 
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