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Abstract 

Purpose: Predicting hypotension well in advance provides physicians with enough time to respond with proper 
therapeutic measures. However, the real-time prediction of hypotension with high positive predictive value (PPV) is 
a challenge due to the dynamic changes in patients’ physiological status under the drug administration which is 
limiting the amount of useful data available for the algorithm. 

Methods: To mimic real-time monitoring, we developed a machine learning algorithm that uses most of the 
available data points from patients’ record to train and test the algorithm. The algorithm predicts hypotension up to 
30 minutes in advance based on only 5 minutes of patient’s physiological history. A novel evaluation method is 
proposed to assess the algorithm performance as a function of time at every timestamp within 30 minutes prior to 
hypotension. This evaluation approach provides statistical tools to find the best possible prediction window.  

Results: During 181,000 minutes of monitoring of about 400 patients, the algorithm demonstrated 94% accuracy, 
85% sensitivity and 96% specificity in predicting hypotension within 30 minutes of the events. A high PPV of 81% 
obtained and the algorithm predicted 80% of the events 25 minutes prior to their onsets. It was shown that choosing 
a classification threshold that maximizes the F1 score during the training phase contributes to a high PPV and 
sensitivity.  

Conclusion: This study reveals the promising potential of the machine learning algorithms in real-time prediction of 
hypotensive events in ICU setting based on short-term physiological history. 

Introduction 

The American College of Critical Care Medicine (ACCM) guidelines indicates that a Mean Arterial Pressure (MAP) 
of 60 to 65 mmHg is required for adequate organ perfusion [1]. Drop in the Blood Pressure (BP) below the limit for 
a prolonged period can lead to fatal consequences. This phenomenon is called arterial hypotension and frequently 
occurs in Intensive Care Units (ICUs) or Operating Rooms (ORs). New researches highlight the importance of 
predicting hypotensive events in hospital settings by providing evidences that correlate the occurrence of 
intraoperative or postoperative hypotensive events and various upcoming complications [2] [3] [4] [5] [6].  

To promote the awareness among the scientific society, in 2009, Computers in Cardiology Competition challenged 
developers to predict hypotensive events using vital signals of 110 patients [7] [8] [9] [10] [11]. Following 
researches, including the study by Lee et.al [12] mainly adapted the methodology, rules and definitions laid out by 
this event [12] [13] [14]  [15] [16] [17]. However, despite their significant contribution in showing the promising 
potential of machine learning in predicting hypotension, there are a few items that are missing or require further 
investigations. In particular:  
 

- These studies defined hypotension as a drop in MAP below 65 mmHg for more than 30 minutes, which 
allows patients experience long period of low organ perfusion. No adequate clinical justification was 
provided for using this definition and its impact on ICU patients health status [12] [13] [14] [15] [16]. 

- These algorithms categorize the entire length of physiological record of each patient into hypotensive 
or non-hypotensive group. This approach of evaluating the algorithms only once per patient does not 
mimic the real-time monitoring applications during the entire ICU stay. For example, Lee et. al. [12] 
reported that by increasing the number of evaluation points per patient, the Positive Predictive Value 
(PPV) drops significantly from 66.5% to 13.6%, which leads to alarm fatigue among the hospital staff.  

- The defined features required the data from a relatively long period of monitoring up to six hours [12] 
[13] [14] [15] [16], which impede the application of the algorithm in scenarios where only a short 
physiological history is available e.g. immediately after patients being admitted to the ICU.  
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To the best of authors’ knowledge, the research by Hatib et. al [17] is the only significant study in this field that 
addressed some of the above-mentioned challenges. However, the main target of the research was OR patients and 
the features were extracted from high-fidelity blood pressure waveforms using a propriety commercial software 
which neither is available to the public research community nor exists at all hospital settings. Also, the algorithm 
was evaluated at few specific predefined points of monitoring, which may artificially improve the reported accuracy 
by not considering the marginal data points. Further studies showed that the PPV of the algorithm can drastically 
drop down to 12.6% for the real-time monitoring scenarios in the OR settings [18]. 

Above mentioned shortcomings call for more in-depth analysis to judge the usefulness of the machine learning 
algorithms for prediction of hypotensive events in ICU. In particular, we believe there is a need to i) define the most 
clinically relevant definition of the hypotension for the ICU setting, ii) define the optimum number of required and 
readily available physiological signals to predict the events with a high sensitivity and PPV iii) the coverage of the 
algorithm across a large population of patient’s from multiple sites with a range of contextual information such as  
different medical history, hospitalization cause, administered drugs, etc., iv) train and test algorithms that considers 
changes in patients’ physiological state during monitoring rather than assuming each patient as one data point or 
only considering specific non-marginal data points, v) develop evaluation methods to better assess the algorithm 
performance and vi) to investigate the algorithm performance as a function of time to hypotension, which is required 
to find the best prediction window achievable by the adopted learning technique. Investigating all of the above items 
requires multiple focused studies each dedicated to specific item(s).  

In this research, we attempted to address the last three challenges by developing a machine learning algorithm that 
mimics the real-time monitoring of the ICU patients. The proposed learning algorithm introduces a labeling 
approach that uses the majority of the data points from the patient’s physiological records to train and test the 
algorithm. It also requires only 5 minutes of prior physiological data to make the prediction at each data point within 
30 minutes of the events’ onset. Because of the proposed labeling approach, we were able to evaluate the algorithm 
performance i) in a close to real-time monitoring scenario that includes all positive and negative points in the test 
sets and ii) as a function of time to event during 30 minutes prior to hypotension. These evaluation approaches help 
developers to determine the best prediction window that meets the algorithm performance objectives. 

 

Materials and Methods 

Problem Definition and Labelling Approach 

The onset of a hypotensive event is tagged when the MAP drops below 65 mmHg in the next 30 minutes for at least 
90% of the time i.e. 27 minutes in 30 minutes. We adopted this definition of hypotension solely to benchmark our 
results along with other available literature on using machine learning methods to predict hypotensive events in ICU 
units [12] [13] [14] [15] [16].  

Figure 1 shows the data labeling scheme proposed in this study. Each data point of the physiological time series is 
categorized into positive (red), negative (green), or buffer (grey) zone. Positive points are defined as all the data 
points up to 30 minutes prior to the event onset. Negative points are defined as any point with MAP greater than 75 
mmHg located at 40 minutes before or 20 minutes after any hypotensive event. This definition helps to separate the 
positive and negative zones [17]. Any data point that does not match these two criteria belongs to a buffer zone and 
is not used to train or test the algorithm. More than 70% of these data points in our dataset occur in the first 20 
minutes after hypotension in which the patient’s physiological states are unstable due to the medical interventions 
such as drug administration. Although this is a common but considerable limitation that has been identified and 
investigated for the first time in this study, in practice the medical staff tend to monitor patients more closely in such 
periods of hospitalization. This helps to reduce the impact of the gray zone on the monitoring outcomes. 
Furthermore, as will be discussed later, other techniques can be used to reduce the size of buffer zones. Figure 2 
shows the building blocks of the proposed algorithm, which will be discussed in detail in the following sections.  
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Figure 1: The data labeling approach. Data points up to 30 minutes before the onset of a hypotensive event labeled as positive 
(y=1). Any points 40 minutes before or 20 minutes after any hypotensive event labeled as negative (y=0). Gray points are not 
considered in the learning process. 

Figure 2: The overall flow of the proposed machine learning algorithm.  The data from 1000 patients are going through the data
processing steps from which 400 patients are randomly selected for the testing purpose and the remainings are used to train the
algorithm. In the training phase, a 5-flod cross-validation is applied to find the optimum learning parameters which are used to
evaluate the algorithm on the test set.  

Record Selection and Data Preprocessing  

We randomly selected 1000 patient records from MIMIC III [19] [20] database version 1.0, released on August
2017, which have all the physiological signals of interest. Table 1 shows the patients’ demographics including age,
gender, Body Surface Area (BSA) as well as the top reason of hospitalization for the selected patients. It can be seen
that the majority of the patients have been admitted to the emergency room prior to ICU transfer. The numerical
database of MIMIC III contains minute-by-minute physiological data of ICU patients which are driven from
physiological monitors. We then preprocess each signal to remove i) spikes, where the variation of the signal value
is more than 25% Of the baseline in one-minute period and ii) segments with values outside of the clinical range
listed in  

. Then, we assume that the missing parts of the physiological signals can be interpolated if the signal(s) value were
missed for less than 5 minutes, otherwise that period is removed. 

 

Table 1: Patients’ demographics including age, gender and reason of hospitalization. 

Number of Patients 

(n) 

Sex 

(male) 

Age 

(year) 

Weight 

(kg) 

Height 

(cm) 

BSA 

(  

Top Admission 
Type 

Top Diagnosis at 
Admission 

1000 604 65 ± 14 83 ± 23 169 ± 10 2.0 ± 0.3 Emergency (680) Coronary Artery Disease 

(190 patients) 

 

 

 

 
ata 
the 
to 

ust 
ge, 
en 
cal 
m 
ue 
ge 

re 

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted October 7, 2019. ; https://doi.org/10.1101/794768doi: bioRxiv preprint 

https://doi.org/10.1101/794768


 

 

Table 2: Clinical range of physiological signals as well as central tendency and variation of the patients. 
 

 BP 
(mmHg) 

Sys 
(mmHg) 

Dia 
(mmHg) 

HR 
(beat/min) 

SpO2 
(%) 

Resp 
(breath/min) 

Min 30 50 20 30 70 2 
Max 150 220 103 180 100 35 
Central Tendency of the 
studied Patients 82 ± 17 123 ± 24 61 ± 13 85 ± 16 97 ± 2 18 ± 6 
 
 
Feature Extraction 
 
We used information from three sensor lines which output six physiological signals including ABP (Arterial Blood 
Pressure), HR (Heart Rate), Systolic Blood Pressure (Sys), Diastolic Blood Pressure (Dia), Resp (Respiration rate), 
and peripheral capillary oxygen saturation (SpO2) for feature extraction. We then derived five additional numerical 
signals including Pulse Pressure (PP), MAP, Cardiac Output (CO), MAP to HR ratio (MAP2HR), and the average of 
RR intervals on ECG time series (RR), as following: 
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It should be noted that Equation (3) only provides a correlation with CO and does not quantify it [21]. These eleven 
time-series form our basic feature sets and represent the main physiological parameters at each one-minute interval. 
Furthermore, for each of these time series, we calculated short-term statistical features including, moving Mean and 
Standard Deviation (SD) for 5-minutes prior window as following: 
 


�	������� � ∑ ���� ��� 

�	�n                                           � � 5  (6) 

�������� � !∑ ���� � "���

�	��� � 1�                                       � � 5  (7) 

From the statistical point of view, using five data points to calculate the mean and standard deviation of a timeseries 
may not pass the normality test, however, it should be noted that equations (6) and (7) are just calculating features 
that their effectiveness in predicting hypotension should be analyzed at the training and testing phases. 
 

Data Allocation 

We first identified the onset of hypotensive events which amounted to 2,710 total events in the entire dataset. The 
training set is then formed by allocating the entire records of 600 randomly picked patients, which their total number 
of hypotensive events amounts to around 65% of the total events i.e. 1,764 events. The remaining 400 records 
including about 946 hypotensive events formed the test set used for algorithm evaluation. Allocating the entirety of 
each record to either test or training set ensures that we do not overestimate the performance of the algorithm by 
using data points from patients in the training set to evaluate the algorithm. Each minute of monitoring either in the 
training or test set then is labeled as positive, negative or gray. To reduce the skewness, we down sampled the data 
points by randomly choosing 20% of negative data points during training of the algorithm as well as the testing 
phase. Table 3 summarizes the resulting data sets.  
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Table 3: Number of patients and data points in training and test sets. 

 Number of records (patients)  Number of positive points Number of negative points 
Training and cross validation 600 51,960 228,144 
Testing 400 27,513 153,634 
All sets  1000 79,473 381,778 

Data Labeling and Machine Learning Algorithm 

We used the data labeling approach described previously to extract positive and negative data points for our 
classification algorithm. Throughout this study we developed in-house subroutines in MATLAB 2017b 
(MathWorks, Inc.) to train and test several classification algorithms including ridge logistic regression algorithm, 
variety of SVM algorithms and nearest neighbor algorithms with different kernels. In conjunction with these 
algorithms, we also investigated reducing the dimensionality of our feature space using Principal Component 
Analysis (PCA) retaining 95% of variance. We concluded that while most of these methods lead to similar 
outcomes, ridge logistic regression classifier yields better outcome. Logistic regression is a very popular method and 
its hypothesis function is defined as: 

#
��� �  11 � ��
��
 (8) 

 
where ‘x’ is the independent variable (features) vector, ω the corresponding vector of coefficients, which are 
obtained by solving the following cost function: 
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We used “fminunc” function of MATLAB to optimize the convex cost function of the ridge logistic regression 
algorithm with maximum of 400 iteration to converge.  

 

Optimizing the Classification Threshold 

Logistic regression algorithm classifies a data point as positive if its output is bigger than a threshold. Bigger 
threshold values lead to a more conservative algorithm with a higher specificity and a lower sensitivity. Thus, the 
optimum threshold should be obtained for the best trade-off between these two antagonistic objectives. For example, 
Lee et. al defined the discriminatory threshold as the value that maximizes the summation of specificity and 
sensitivity [12] while Hatib et.al [17] found a threshold that minimizes the difference between these two metrics. 
However, these objective function does not necessarily yield to a higher PPV. Maximizing the F1 score is another 
popular approach among machine learning developers to optimize the algorithm performance to achieve a higher 
PPV and sensitivity on skewed datasets [22]. These three approaches are listed in Table 4 and to the best of authors 
knowledge there is no study to elaborate on the effect of different threshold optimization approaches on the 
prediction performance. In this study, we investigate how these three criteria affect the trained algorithm 
performance by first finding the thresholds which optimize each criterion on the 5-fold cross-validation set and then 
evaluating the algorithm performance on the test set using those thresholds.  

 

Table 4: Different criteria to find the optimal threshold of the logistic regression algorithm. 

 
Criterion Threshold 

maximize �	1_�
��� �
2 � ��� � �����������

��� � �����������
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maximize ������������ � ���
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���� Threshold2 
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Evaluation Methods and Statistical Analysis 

Training the algorithm using features extracted from minute-by-minute time series allows us to evaluate the
algorithm performance in a real-time scenario. Various competing Figures of Merits (FOMs) including accuracy,
sensitivity, specificity, PPV, NPV (negative predictive values), and F1 score of the test set were reported with 95%
confidence. The overall performance of the algorithm is a trade-off between these FOMs.  

Continuous Evaluation Method: Real-time Monitoring  
This method provides lumped performance of the algorithm for all data points available in the test set. A positive
flag means there will be a hypotensive event within the next 30 minutes and a negative flag means there is no
hypotensive event at least in the next 40 minutes. This evaluation method mimics the field application of ICU
settings where the patient is unattended for some period of monitoring. To the best of the authors knowledge, this is
the first time that a machine learning algorithm performance is evaluated in a scenario close to the real-time
monitoring with a significant number of negative events, which in turn can severely affect the PPV.  

Discrete Evaluation Method: Selective Time Stamps to Hypotension 
This novel approach extends the method used by Hatib et. al. [17] in which their algorithm was evaluated at only 15,
10, or 5 minutes prior to the hypotensive events and at the midpoint of 30 minutes intervals far from any
hypotension. In this study, we calculated the predictive power of algorithm as a function of time to hypotension. To
achieve this goal, we formed 30 sets of positive points located at the same time distances (one to 30 minutes) to the
hypotensive events. Also, a set of representative negative points is created by picking a random point from each 30
minutes intervals located at least 40 minutes before and 20 minutes after any hypotensive event. Then, by evaluating
the algorithm performance for the negative set as long as each of the 30 positive sets, we come up with the FOMs
for the corresponding prediction window (timestamp). This approach provides a high resolution of the algorithm
performance as we get closer to the events.  

 

Figure 3: Receiver Operating Characteristic Curve (ROC) of the machine learning model for the prediction of hypotensive
events in the training set. A high Area Under the Curve (AUC) of 0.93 (0.932-0.939 with 95% CI) represents a high potential of
the algorithm to predict events correctly.    
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Results  

Figure 3 shows the Receiver Operating Characteristic curve (ROC) on the training set for a range of different
thresholds used in logistic regression algorithm. The proposed model had an area under the curve of 0.93 (0.932-
0.939 with 95% CI). The feature importance graph is also investigated (Figure 4) and shows that MAP2HR is the
most prominent feature followed by RR.  

 

Figure 4: The importance of the features used to train the proposed machine learning algorithm. The greater the rate, the more 
essential the feature in the algorithm performance and its predictive power.  

During the training phase, the threshold is optimized to apply the trained logistic regression algorithm on the test set.
Table 5 shows the algorithm performance on the test set for three different threshold optimization schemes. During
the real-time monitoring, the algorithm can predict hypotensive events within 30 minutes by 95% accuracy, 85%
sensitivity and 96% specificity. Also, the model yields to an AUC of 0.92 (0.920-0.927 with 95% CI) on the test set.
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Table 5: The algorithm overall predictive performance based on the real-time monitoring scenario, i.e. continuous evaluation
method, for three optimization approach of Table 4. The results show that the first threshold optimization approach, which is
based on optimizing the F1 score, leads to better results. 

 

Threshold 
optimization 
metric 

Threshold TP TN FP FN 
F1 

(%) 

Accuracy 

(%) 

Sensitivity 

(%) 

PPV 

(%) 

Specificity 

(%) 

NPV

(%)

Threshold 1 0.45 23447 148234 5400 4066 83 95 85 81 96 97 

Threshold 2 0.3 24424 138508 15126 3089 73 90 89 62 90 97 

Threshold 3 0.2 24965 127795 25839 2548 64 84 91 50 83 98 

 

Notably, Table 5 shows that the threshold optimization criterion significantly affects the algorithm predictive
performance. Our investigation shows that the threshold that maximizes the F1 score on the cross-validation set
leads to the best algorithm performance during the evaluation phase, while using the threshold that minimizes the
difference between sensitivity and specificity leads to the lowest F1 score on the test set. 

Figure 5 shows a graphical representation of the number of true positives and false negatives at each time stamp
within 30 minutes prior to the hypotensive events. From the total of 7,130 tested negative points in discrete
evaluation method, the algorithm only flagged 25 false positives. By analyzing the first flagging point of the events
(Figure 5), on average the algorithm detects events 26 minutes prior to their onset, while 80% of them were
predicted at least 25 minutes earlier. This information is valuable to determine the best predictive window and it is
an outcome of the second proposed evaluation method.   

Based on the results discussed above, we calculated the F1 score, sensitivity, and PPV of the algorithm as shown in
Figure 6. Since the specificity is calculated based on negative data points, its value is not a function of time to
hypotension. Hence, we did not include this parameter in Figure 6. As expected, Figure 6 indicates that the
predictive power of the algorithm improves as we get closer to the hypotensive events and it is able to provide up to
96% PPV and 84% sensitivity, with 95% confidence, at 15 minutes prior the events while the specificity is evaluated
as 99%. As a result of the evaluation approach presented in this work, Figure 6 shows that the sensitivity of the
algorithm reaches to 80% mark, 24 minutes prior to the event for threshold1, however, high PPV ensures a reliable
prediction throughout the entire 30 minutes prediction window.  

Figure 5: The number of true positives and false negatives at each time stamp within 30 minutes prior to the events for the three
threshold optimization approaches.  
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Figure 6: The predicative power of algorithm at each time stamp within 30 minutes before the hypotensive events for the three 
threshold optimization approaches. 

 

Discussion  

Table 5 shows that throughout 181,000 minutes of monitoring of about 400 patients, our algorithm only flagged 
5400 false positive which is reflected in 81% PPV. This significantly improves the experience of hospital staff 
compared to 13.6% PPV reported by Lee et. al. [12]. It should be noted that because of the high skewness of the 
dataset during the real-time monitoring, interpreting the algorithm performance based on the accuracy and PPV 
metrics is very difficult without providing the number of true positives and false negatives. However, since other 
researchers did not report this information, we only were able to compare our algorithm based on the common 
FOMs available in the literature.  

It should be noted that in this study, we classified data points as positive or negative solemnly based on the output of 
the machine learning algorithm, which is far from a robust diagnostic platform with multiple layers of decision 
making. Developing a high-level risk assessment algorithm can further improve the prediction outcomes. For 
example, because of the high confidence of the algorithm in predicting negative points, in its simplest form such a 
risk assessment algorithm flags a positive event only if a number of specified consecutive data points are detected as 
positive. The detail implementation of this approach is out of the scope of this study. 

Notably, both continuous and discrete evaluation methods show that maximizing F1 score leads to a significantly 
higher PPV, compared to the other two threshold optimization approaches. As previously described, this is an 
expected result since the F1 score optimization approach directly targets PPV while the other two approaches focus 
on finding a proper balance between sensitivity and specificity.  

Interestingly for threshold2 and threshold3, evaluating the algorithm performance at distinct data points yields to 
significantly better results compared to the continuous evaluation method (Table 5 and Figure 6). One contributing 
factor to this discrepancy is that evaluating the algorithm at distinct positive or negative data points excludes the 
marginal ones where the algorithm is more prone to incorrect classification. This can also be a potential reason 
behind the lower PPV reported by [12] and [18] when considering marginal data points and highlights the 
importance of the proposed continuous evaluation method.  

To benchmark our work along the other studies in the literature, we defined a hypotensive event as the drop of MAP 
below 65 mmHg for 90% of a 30 minutes window, which is not necessarily the best definition because of the 
relatively long period of low organ perfusion. We will address this limitation, in our next study by investigating the 
algorithm’s predictive performance for various definitions of hypotensive events. 

Because of the short physiological history used to predict the hypotensive events, i.e. 5 minutes of prior data, this 
study hints the potential of using machine learning approaches to predict hypotensive events in the OR setting where 
the useful baseline data is limited due to the rapid changes in patient’s physiological state. However, since the 
algorithm has been trained and evaluated for the ICU patients, the scope of this study is limited only to the ICU 
units. Furthermore, we did not consider the reason for hospitalization, drug administration, type of surgical 
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procedure, and other contextual data which may affect the algorithm performance in real OR setting. Addressing this 
challenge is the subject of our future works.  

In this study to better train and evaluate the classifiers, we categorized some of the data points in gray zone, which is 
a deviation from field monitoring. To the best of author knowledge this is the first time that the coverage of the 
algorithms for predicting hypotension is discussed in the literature. While the labeling method used in this study has 
significantly reduced the gray data points compared to the other studies [12] [17], this limitation must be addressed 
before judging the application of machine learning algorithms in real time monitoring of hypotensive events. 
Developing multi-class classification algorithms, which classify each data point as positive, negative, or gray can be 
a potential solution for this limitation that is beyond the scope of this study. These algorithms can be combined with 
higher level risk management protocols to provide timely and precise prediction of the future events.  

Moreover, in this study we used the continuous BP signal which is not available at all ICU bed sides because of its 
invasive nature. This limits the availability of the proposed method for all hospital settings. Training and evaluating 
a predictive algorithm based on only non-invasively measured physiological signals is a potential solution to address 
this issue. Also, because of its availability to the research community, we only used publicly available MIMIC III 
database. This is a major limitation of this study as expanding the trained algorithm to multiple hospitals with 
different protocols may affect the reported outcome.    

 
 

Conclusion 

To study the potential of using machine learning algorithms to predict hypotensive events in ICU settings, in this 
research, we trained a logistic regression algorithm that uses only 5 minutes of the preceding physiological data to 
make prediction at each data point. ABP, ECG, Respiration Rate, and Oxygenation level time series were used to 
extract features. We proposed to label all available data points in these time series as positive, negative or gray 
zones. It was shown that compared to the other two optimization approaches used in literature to find the best 
classification threshold, maximizing the F1 score significantly improves the algorithm PPV. Overall, the algorithm 
was able to detect hypotensive events with 94% accuracy, 85% sensitivity, and 96% specificity. Furthermore, during 
181,000 minutes of monitoring, the algorithm only flagged 5400 false positives (high PPV of 81%), which shows 
that it does not disturb the medical staff by false alarms. The algorithm sensitivity improved by getting closer to the 
event and passed the 85% mark at 22 minutes prior to the hypotensive event. The algorithm was able to detect 80% 
of the events at least 25 minutes earlier. Various limitation of the proposed method such as neglecting contextual 
data, single site study, gray zones, and making use of multiple sensor lines were discussed which are the subjects of 
our future studies. 
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