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ABSTRACT

Increasingly, predicting and even controlling evolutionary processes is a sought after goal in fields ranging from agriculture,
artificial intelligence, astrobiology, oncology, and infectious diseases. However, our ability to predict evolution and plan such
interventions in real populations is limited in part by our understanding of how spatial structure modulates evolutionary dynamics.
Among current clinical assays applied to predict drug response in infectious diseases, for instance, many do not explicitly consider
spatial structure and its influence on phenotypic heterogeneity, despite it being an inextricable characteristic of real populations.
As spatially structured populations are subject to increased interference of beneficial mutants compared to their well-mixed
counter-parts, among other effects, this population heterogeneity and structure may non-trivially impact drug response. In
spatially-structured populations, the extent of this mutant interference is density dependent and thus varies with relative position
within a meta-population in a manner modulated by mutant frequency, selection strength, migration speed, and habitat length,
among other factors. In this study, we examine beneficial mutant fixation dynamics along the front of an asexual population
expanding its range. We observe that multiple distinct evolutionary regimes of beneficial mutant origin-fixation dynamics are
maintained at characteristic length scales along the front of the population expansion. Using an agent-based simulation of range
expansion with mutation and selection in one dimension, we measure these length scales across a range of population sizes,
selection strengths, and mutation rates. Furthermore, using simple scaling arguments to adapt theory from well-mixed populations,
we find that the length scale at the tip of the front within which ‘local’ mutant fixation occurs in a successive mode decreases
with increasing mutation rate, as well as population size in a manner predicted by our derived analytic expression. Finally, we
discuss the relevance of our findings to real cellular populations, arguing that this conserved region of successive mutant fixation
dynamics at the wave tip can be exploited by emerging evolutionary control strategies.

Introduction1

Beneficial mutants and their substitution within a population encapsulate the very crux of natural selection,2

especially in its classic conceptualization. Using his now ubiquitous plots of genotypic frequency over time, H.J.3

Muller demonstrated how beneficial mutants can fix long before subsequent beneficial mutants arise, thus accumulating4

in a successive manner over time. 1,2 Using a theoretical population genetics approach, J.H. Gillespie influentially5

termed these dynamics strong selection weak mutation (SSWM), after the relative balance between population size,6

mutation frequency, and selective advantage he derived for evolution under this model.3–57

Gillespie further demonstrated that evolution proceeding in this regime can be conveniently approximated using8

the robust mathematical construct of a Markov chain, in which evolution proceeds as an adaptive walk across a9

mutational landscape. Gillespie, and many others thereafter, have exploited the mathematical convenience of this10

regime to explore adaptation within molecular evolutionary data, devise algorithms to control the speed and direction11

of evolution, and examine the computational limits of evolution.6–9 More generally, this framework has proven a12

useful qualitative description for beneficial mutation and selection, as these ideas have been applied to experimental13

biology since Gillespie’s theoretical work.10. It is useful to be able recognize evolution under the SSWM regime14

given this Markov-chain representation of evolution, and the powerful analyses it allows (Box 1).15
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Box 1: Beneficial mutations in a well-mixed population

Beneficial mutant fixation and establishment times :
For a large asexual population of fixed size N , with a large, finite number of beneficial mutations conferring
fitness advantage s, acquired at rate Ub, the mutant lineage population size, n, grows as 〈n|not extinct〉 ≈ 1

se
st

at long times, t. Thus we have the approximate average time for a mutant to establish, 〈τest〉, and average
time for a mutant to fix 〈τfix〉,:

〈τfix〉 ≈
1
s

log(Ns). 〈τest〉 ≈ 1/NUbs.

Dynamical regimes of beneficial mutations:

When 〈τest〉� 〈τfix〉, or NUb log(Ns)� 1, evolution
is mutation limited, this is termed strong selection
weak mutation (SSWM).
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When 〈τfix〉 & 〈τest〉, NUb log(Ns) & 1, and clones
are expected to interfere as they fix, this is termed
strong selection strong mutation (SSSM). 5
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With even higher mutation frequency, the population is likely to have many coexisting mutations, with
successful selection of any given mutant limiting the rate of adaptation. This regime can be characterized as
weak selection strong mutation (WSSM).10

16

However, making such assumptions once spatial complexity is intrduoced presents a challenge. The spatio-17

temporal dynamics of mutants introduced in a migrating population can be surprising, complex, and resistant to18

analytical solutions. After spread into a new environment, the individuals at the very tip of the expanding population19

are preferentially represented in the resulting population’s genetic makeup, as observed across scales and domains20

of life.11–13 Relatedly, mutants at the front of a population expanding its range have an increased probability21

of survival and further proliferation at the wave front, a phenomenon known as mutant surfing.14 Such results22

illustrate a fascinating positional dependence of evolutionary dynamics in spreading populations, an observation23

that has sparked many lines of investigation both experimental and theoretical.15–18 Great theoretical progress24

on population expansions has been made analyzing modelling frameworks based on stochastic reaction-diffusion25

systems.19 Recently this has included work on the properties of range expansions including range expansion with26

neutral mutations,20 range expansion in the strong noise limit,21 selection in the absence of mutationt,22 long-range27

dispersals,23 and cooperation during range expansion.24,2528

The interference of beneficial clones as they fix through a spatially extended population undergoing mutation and29

selection, however, represents an analytical challenge. The dynamics of clonal interference, even within well-mixed30

populations, are complex, and an active area of investigation in which recent advances rely heavily on simulation-31

based studies.10,26 In the case of spatially extended populations, Korolev et al. has shown for a one-dimensional32

stepping stone model with two alleles with unequal fitness benefits, and a non-zero mutation rate between them, a33

closed-form analytic solution to the spatiotemporal dynamics of the allele frequencies cannot be achieved without34

approximations that ultimately yield largely inaccurate results.2035

Despite these limitations, Martens and Hallatschek have made progress in modeling the interference of beneficial36

mutants in a spatially structured population by considering low mutation rates and relatively large spatial scales.2737

The authors show that during long range migrations, waves of beneficial mutants arising on distinct genetic38

backgrounds are likely to interfere beyond a certain characteristic habitat length, determined by the frequency and39

2/14

.CC-BY-NC 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted October 20, 2020. ; https://doi.org/10.1101/794867doi: bioRxiv preprint 

https://doi.org/10.1101/794867
http://creativecommons.org/licenses/by-nc/4.0/


strength of the mutations. Within this habitat length, one beneficial mutant wave fixes locally on average, while40

interfering with previous waves further from the edge of the mutant beyond this habitat length. We note that in this41

work Martens and Hallatschek refer to this as ‘clonal interference’, while this term, as originally coined by Gerrish42

and Lenski, refers to interference between two beneficial mutant arising in the same genetic background.28. In the43

language of Gerrish and Lenski, Desai and Fisher, and others, Martens and Hallatscheks’ work on the inference of44

slowly advancing waves of beneficial mutants with distinct genetic backgrounds during long-range migration is the45

‘multiple mutation’ phenomenon, and hereafter we will refer to these separate phenomena using this convention.5,2946

In this study we will build upon previous work showing patterns of mutant origin-fixation dynamics are positionally47

dependent with respect to origin along the population front of expanding populations. We employ agent-based48

simulations of a modified one-dimensional stepping stone model and analysis based off of the estimated time and49

length scales of mutant establishment and fixation. We demonstrate that within a co-moving frame, a stable50

sub-population at the tip of a spreading population front ‘locally’ fixes beneficial mutants analogous to a well-mixed51

population within the successive-mutant regime, while simultaneously, proximal regions of the wave front experience52

clonal interference. In addition, we discuss the biological relevance of our results as a whole.53

Model54

Our model begins with a one-dimensional lattice configuration representing a linear habitat. Along the habitat, at55

each lattice site are colonization sites with a fixed capacity of K particles, called demes. Within each deme, these56

particles can either represent a vacancy or an individual, with some number of mutations. For each simulation step57

the following three steps are carried out:58

1. A migration step in which two neighboring demes are chosen at random and a random particle from each deme59

is swapped with one another.60

2. A duplication step, in which two particles are chosen from a randomly chosen deme, and the second particle is61

replaced by a duplicate of the first with some probability.62

3. A mutation step, in which a random particle is granted a mutation with some probability.63

These steps are schematized in Fig. 1. The probability of duplication during the duplication step is 1, except for64

the case of replacing an individual with a duplicate of a vacancy (i.e. death), which occurs with probability 1-rm,65

where m is the number of mutations the particle has acquired. The transition probability of a non-vacancy particle66

acquiring one mutation during a time step is Ub and 0 for all other possible mutational events (i.e. no backward or67

multiple mutations are allowed within a time step). The above model is akin to a modified stepping stone model used68

in previous literature and generates stochastic Fisher-Kolomogrov-Petrovsky-Piscounov (sFKPP) waves undergoing69

selection and mutation.30 The speed of the Fisher wave established from any individual is dependent upon the70

parameter rm, which can shown to be analogous to the growth rate of the corresponding sFKPP system when71

written in the continuous limit with appropriate assumptions (See SI, sec. 1.2.1).72

Simulations are initialized using a standing wave solution to the deterministic Fisher equation and we use an73

initial wild type wave of growth rate r0 = 0.1. As the cells spread throughout the linear habitat they undergo74

rare mutations that confer the organism a growth rate of rm = r0α
m, where α quantifies the average strength of75

the fitness benefit conferred by the mutation. During the simulation, full demes furthest behind the wave tip are76

periodically dropped and empty demes are added past the wave tip. This choice improves computational efficiency,77

while allowing measurement of the evolutionary dynamics along the portion of the front, where mutant survival78

provability varies most significantly with position.79

In this way, the simulation field represents the wave front, traveling at the average velocity of the spreading80

population. As mutants accumulate over time, their clonal sub-populations grow and establish into travelling waves81

with some probability, eventually causing the wild-type population to fall behind the mutant wave-front. Simulations82

stop at the extinction of a specified number of mutants within the the wave front, with the number of distinct clonal83

populations in each deme recorded. All simulations were performed in the python programming language with the84

Numba package to optimize computational speed.3185

Results86

Fate of a beneficial mutant87

At short spatial and temporal scales and sufficiently large deme sizes, we estimate that the dynamics of mutant88

establishment are roughly as in a well-mixed population. To emphasize this analogy we define s ≡ α− 1. At89
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A B

Figure 1. Simulation algorithm: one-dimensional stepping stone model with selection and mutation. A) The
simulation field is comprised up to M demes distributed along a line, shown here along the horizontal axis. Each deme can each contain
up to K particles, shown here as distributed along the y axis within each deme. Each particle is either a vacancy (white) or individual
with m mutations, with, in this diagram, m= 0 (blue) or 1 (pink). The simulation is comprised of a Migration, Duplication, and
Mutation step, illustrated from top to bottom respectively, which each occur once per time step ∂t. Each of the 10 possible events is
diagrammed with an arrow, illustrating the change in the system state per time step ∆~x, and its associated probability pE . The
simulation is equivalent to a sFKPP wave in the continuous limit, arbitrarily re-scaled, and superimposed on the simulation field as a
dotted curve. B) Each possible event and the corresponding probabilities with which they occur during a time step for a randomly
chosen particle in two neighboring randomly chosen demes for Migration, two randomly chosen particles in a randomly chosen deme for
Duplixation, and a randomly chosen particle in a random deme for mutation.

sufficiently low mutational supply and strong selective mutant strength, a mutant establishes locally with probability90

∼ s, analogous to the ultimate fixation probability of a beneficial mutant in a well-mixed population of constant91

size (See Box 1).5 Accordingly, the reciprocal of this probability is the approximately average timescale of local92

establishment, τest ∼ 1/s. As shown by Lehe et al., the probability that a single mutant wave emerges from the93

wild-type wave after local establishment and goes on to outpace and take-over the wild-type wave (or surf on94

the wave front), in the absence of clonal interference, saturates at r0(1+ s), as the position at which the mutant95

is introduced goes further into the sparsely populated tip of the wave front (See Box 2).14,22 Before a mutant96

establishes, at a time t < τest, it diffuses along the axis, and, if it fails to successfully establish, is left behind by97

the traveling population front. With sufficient mutational supply and strength, multiple mutants may arise along98

the wave front and interfere if their spatial scales of diffusion overlap or if one or more subclones establishes into a99

traveling wave and migrate to neighboring demes (See Fig. 2).100

Length scales of evolutionary regimes101

In our initial simulations, the genetic diversity (number of distinct subclones) in each deme throughout the wave102

front was recorded at the time of wild-type extinction. From our simulation data, with sufficient mutation rate,103

deme size, and mutation strength, we observe a length scale extending from the very tip wave tip to some position104

within the bulk of the wave front in which the population remains genetically pure on average (Fig. 3). Following105

the scaling arguments of Martens and Hallateschek, we can quantify the time scales of the previously described106

scenario of mutant inference to illustrate the quantitative relationships between these parameters and this length107

scale, which we denote as LSSW M .27 A single beneficial mutant that has established into a traveling wave will fix in108

time τfix by travelling across a length L such that109

τfix ∝ L/vm, (1)

where vm is the relative velocity of the mutant wave. Within the length scale L, the average time for mutants to110

establish (τest) locally is estimated by the following relation:111

τest ∝ 1/(LUbs), (2)

somewhat analogously to a well-mixed population (See Box 1). These times are comparable at a particular length112
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‘SSWM’CI

Figure 2. Mutant clones interfere with each other in various stages of diffusion, moving as an establishing traveling
wave, and successfully surfing on the wave front. The wave profile in the co-moving frame of a population that can acquire
beneficial mutations during range expansion is shown at a particular time point on each row, with increasing time from top to bottom.
The y - axis represents the total population density while the x- axis represents the position x in the co-moving frame. Wild-type
individuals are indicated in blue, and each other color a distinct mutant clonal population, each with the same selective advantage
relative to its genetic background of origin. Mutant clonal populations are variously observed as traveling waves beginning to surf at the
front of the population (violet), established mutants that have failed to surf at the wave front (red, generation 150), and spreading
diffusively along the x-axis without apparently establishing as a traveling wave (salmon, generation 100). Dotted lines are placed at the
position at which the population transitions from being polyclonal (labeled ‘CI’ for clonal interference) to monoclonal (labeled ‘SSWM’
for strong selection weak mutation) within local spatial scales. Simulations were performed with mutation rate Ub = 10−3, selective
advantage s= .1, and diffusion constant K = 500.

scale at which mutants begin to interfere locally as they fix. We denote this length scale as LSSW M and find by113

setting τfix ∼ τest:114

LSSW M ∝
√

v

Ubs
. (3)

Within this length scale, we expect local fixation of an established mutant to occur before another mutant establishes115

locally, on average, analogous to a well-mixed population within the SSWM regime.116

Thus, from Eq. (3) we expect LSSW M , the length scale at the tip of the wave in which we expect mutants to117

appear successively to go as U−1/2
b which agrees well with our stochastic simulations, see (Fig. 3A).118

As expected, this behavior varies strongly with deme size. As the total length of the wave front, Lfront, varies119

linearly with total population size, within the wave front we expect a linear relationship with logK. This can be120

demonstrated by noting that the initial wild-type population density at the tip of the front in the continuous limit121

bw(x) (As in Box 2 Fig. L), can be approximated as an exponential decay function,122

bw(x)≈ e−vwx/2, (4)

for x > 0 and bw(x)≡ 1 everywhere else, with position x and velocity vw. As x for which K ∗ bw(x) = 1 determines123

the length of the wave front, Lfront, solving Eq. (4), we obtain124

Lfront ≈ 2logK/vw. (5)

Equation (5) implies that LSSW M expressed as a proportion of the total front,LSSW M/Lfront, hereafter L̃SSW M125

for simplicity, is inversely proportional to logK. This relationship is observed within our simulation data as well (Fig.126

3B).127

We additionally observe that with relatively weak mutational supply or mutation strength, this heterogeneity in128
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evolutionary regime is not observed, and instead the entire wave front accumulates beneficial mutants successively.129

We estimate this to occur when the mutational supply relative to its selective advantage is sufficiently small:130

Ub <<
√

(s)/K When this constraint holds, it is expected that L̃SSW M = 1 on average throughout the wavefront131

(See Supplementary Information, section 2.3).132

Box 2: Mutant surfing on the wave of an expanding population

Beneficial mutant surfing probability: Mutant
surfing probability with respect to position, u(x) is
well approximated as a stochastic branching process
with a phenomonoligical correction (u2 term):

0 = ∂2
xu+urm(1−〈bw〉)−vw∂xu−u2,

The balance between increased surfing probability at
the wave tip, and larger mutational supply toward
the wave bulk can result in the surfing mutant supply
being maximized somewhere in between (See SI sec.
1)

x
0

1

w
(x

) w(x)
u(x) w(x)

0

rm

u(x)

u(x)

Beneficial mutant substitution rate: The sup-
ply of successful surfing mutants can approximately
be quantified as:

G=K

∫
〈bw(x)u(x)〉dx,

and the substitution rate for the population front
is given by GUb. In a well-mixed population the
analogous expression to G is represented as Ks, for
total population size K and selective advantage s.
Compared to a well-mixed population, where the sub-
stitution rate increases weakly with s, especially at
low values, demonstrates that selection is rendered
inefficient by range expansion.22

0.05 0.10 0.15 0.20
s

101

102

103
sK
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102 5 × 102103 5 × 103

K

133

To further examine the relationship between s and LSSW M/L, we simulated evolution in our system through134

multiple extinction events and observe that if the evolutionary regime switches at some position in the wave tip, this135

regime switching is sustained and roughly invariant over multiple extinction events and across evolution scales(Fig.136

3C). As each mutation event on average occurs at a particular time in the ‘cycle’ of mutant establishment and fixation137

(which parameter specific), L̃SSW ML is seen to vary stochastically over time, though predictable relationship between138

L̃SSW M with s is observed over an average of many extinction events. Our simulations of multiple extinction events139

were limited by the maximum fitness at the end of simulations, which we ensured obeyed our analytic assumptions,140

i.e. rm << 1 by performing these simulations at low values of s ∈ 0.01,0.03,0.05. Multiple fixation events at higher141

values of s or K would allow for mutants that violate the assumption of strong migration (rm ' 1), under which our142

analysis holds.143

The relationship between L̃SSW M and the selective advantage at each extinction event in our simulation is more144

nuanced as s determines mutant establishment probability, velocity, and the shape of the front profile. While the145

velocity v for a classic Fisher wave v ∼ 2
√
r with growth-rate r, there are two important deviations from this classic146

behavior.147

First, as waves interfere with each other, as is the case within the parameter regime we simulated, Martens and148

Hallatschek demonstrated that their velocity slow with increasing interference, though this velocity does saturate149

at a critical value. Secondly with decreased s relative to the strength of the noise, the velocity deviates from the150

deterministic velocity 2
√
s, and becomes roughly proportional to the product of s and wave density, as opposed to151 √

s in the deterministic limit 21. These two phenomenon underscore the complexity in the relation between LSSW M152

and v and s. At strong noise relative to s as in the parameter regime simulated, for example, we expect v ∝ s and153

thusly L̃SSW M to be invariant with s, from (??). Simulation results from s= 0.01,0.03, .05, K = 100,200,500 and154

µ= 10−3 show L̃SSW M to be roughly invariant with s in this regime. (Fig 3D)155
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A B

C D

Figure 3. Proportion of wave front in ‘local’ successive mutation regime goes as U−1/2
b

and log−1K, and saturates at
1 with sufficiently weak mutational supply and strength. Over an ensemble of simulations
(∼ 40forpanelsA,B;∼ 150forpanelsC,D)L̃SSW M is measured as the distance in demes from the wave tip to the position at which no
more than two clonal populations exist, divided by the total number of demes occupied by the wave front in the co-moving frame. A)
Over a range of Ub and K with s= 0.1, the median L̃SSW M from simulation results and standard deviation (shown with X’s and error
bars respectively are plotted showing approximately approximate agreement with an inverse square root fit (colored lines) well, as
predicted by Eq. (3). L̃SSW M = 1 corresponds to successive mutant fixation throughout the wave front. B) L̃SSW M is again measured
from simulations and plotted against logK at three particular values of Ub and s, showing approximate agreement with an inverse fit, as
predicted by Eq. (3). C) L̃SSW M shown for each of 10 extinction events over 100 instantiations for s = 0.01, K = 100, µ= 10−3 show
strong fluctuations, but remain roughly constant on average (thick blue line). D) Median L̃SSW M over 10 extinction events at
K = 100,200,500 and µ= 10−3, L̃SSW M does not vary over s= 0.01,0.03,0.05. Simulation data is fit with line of slope 0 as predicted by
Eq. (3) for relatively weak selection assuming a noisy Fisher wave velocity proportional to s.
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Discussion156

An enduring goal of population genetics is to understand the temporal dynamics of genotypic frequency and the157

selective forces that (may) shape them. When mathematical analyses or simulation models are used for these means,158

it is important, then, to consider the extent to which our model does and does not reflect known biology to be able159

to evaluate the validity of the results it provides.160

To this end, we first consider the range of experimentally observed beneficial mutation rates. Beneficial mutation161

rates have historically been posited to be very low, and early experiments supported this with estimates on the order162

of 10−9−10−8 per genome per generation.28,32. However, subsequent experiments that have sought to eliminate163

the bias introduced by non-optimized growth conditions, and unaccounted for clonal interference, variously suggest164

beneficial mutation rates may be on the order of 10−4. Accurately measuring and even identifying mutations as165

beneficial in an empirical context is still an active area of investigation.28,32 Our model examines parameters an166

order of magnitude above below this upper limit.167

We secondly consider the strength of beneficial mutations observed previously. Recent studies have been in closer168

agreement with measurements often from .01−0.05. In our study, we examine this range of selective advantages169

within and up to an order of magnitude above the empirical values.170

Thirdly, we address deme size in our model and its relation to real populations. We note that in a one dimensional171

stepping stone model, deme size is effectively a linear density term, however its relation to real population is not172

straight-forward. In this study, as in others we explore a relatively wide range of deme size to capture effects specific173

to any given regime. However we can attempt to gain a rough idea of the relationship of deme size to population174

density of real populations by stating deme size in terms of maximum individuals per diffusion length, or average175

distance diffused within a generation. Given D = 1 and r0 = 0.1, in our model
√
D/r0 describes a diffusion length,176

and K
√
D/r0 the maximum number of individuals within a diffusion length For values of K ranging from 100 to177

1000 as examined in our simulations this corresponds to ∼ 300−3000 individuals per diffusion length.178

To compare this estimate to real cellular populations, we can take the example of bacterial colonies, which are179

observed to exhibit diffusive motility within a large range of densities.33 To get a sense for this range we refer to180

Butler et al. and Perfeito et al. who report report a migrating cell surface density of ∼ 3×106cells/mm2 on agar181

plates. We further use and average generation time (i.e. experimental r0 of .7 hr−1) and a range of cell diffusivities182

from 0.7−5.7 mm/hr, observed with varying agar concentration for E. Coli.34 We can further suppose a minimum183

possible surface density of close packed E. Coli without deformation as 1 cell per µm2. Converting the experimental184

surface densities to a linear density ρ, we find individual per diffusion length as ∝ ρ∗
√
D/r).185

This yields a range of 1000 to 5000 cells per diffusion length and overlaps significantly with the estimated186

linear density examined in our model, suggesting the model parameters examined and the corresponding behavior187

observed are biologically plausible. Furthermore, at higher densities than those examined in our model, shifting188

clonal interference patterns within a wavefront can be observed at even lower mutation rates (See SI 1.2.3).189

The aforementioned discussion suggests a biological relevance for interference with relatively high beneficial190

mutation rate and short spacial scales as examined in our model. We have shown that in this regime within a191

relatively wide range of biologically relevant parameters, a region at the tip of the wave front fixes mutations ‘locally’192

in a successive manner, analogous to the SSWM regime in well-mixed populations. Such a property is potentially193

useful for applying analyses such as a mutational landscape model, or considering theoretical work built on models194

assuming SSWM regime for the crucial tip of a wave expanding its population. In a variety of contexts, as the195

population ‘pioneers’, the individuals at the tip of the population and their dynamics can be considered exclusively,196

as they disproportionately influence the genetic diversity of the population following migration. In addition, our197

results demonstrate how the effective evolutionary parameters of a population shift through range expansion. The198

implications of the results for inferring evolutionary dynamics, for antibiotic resistance assays in clinical contexts, for199

instance, is that the dynamics observed at a specific time and place in the population maybe transient and highly200

unrepresentative of the entire population. While the spatiotemporal dynamics of a population expanding its range201

and acquiring mutations subject to selection can be highly complex, evading exact analytic treatment, we believe the202

our work demonstrates that analyses from well-mixed populations can be applied to the tip of the wave as long as it203

is maintained within the SSWM regime. To this end, we have estimated, in terms of ‘real parameters’ when this204

phenomenon is observed and the dependence of this scale length of local successive mutation fixation on relevant205

population genetic parameters. In summary, we shed light on the phenomenon of shifting clonal interference patterns206

during range expansion with relevance and application across evolutionary and scientific contexts .207
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1 Supplementary Information:285

Range expansion shifts clonal interference patterns in evolving populations286

1.1 Analysis of beneficial mutant surfing287

Here, we will review the analysis of the beneficial mutant surfing probability by Lehe et al., shown in Box 2 of the288

main text. In their work Lehe and colleagues demonstrate that the beneficial mutant surfing probability with respect289

to position of origin is well approximated as a branching process. Such a branching process yields the following290

differential equation with a non-linear correction term.291

0 = rm(1−〈bw(x,t= 0)〉)u−v ∂u
∂x

+ ∂2u

∂x2 +u2. (6)

The analytic solution u(x) can be expressed in terms of a length scale γ, which governs how far in the wave tip the292

surfing probability begins to rise significantly.293

In Box 2, to demonstrate how the mutational supply for surfing mutants is non-monotonic with respect to294

position we follow Lehe et al: the initial wild type wave bw(x) can be approximated as bw(x) = rw exp(−vmx/2).295

The mutant surfing probability can be approximated as u(x) = rm exp(vm(x−γ)/2), where γ ∼ π/
√

2rm(rm/rw−1).296

Using this approximation, one can find G≡
∫
〈u(x)〉〈bw(x)〉dx, for sufficiently strong selection, which allows for an297

approximation of the substitution rate given the initial wild type wave density and survival probability. Using the298

above approximate expressions for u(x),w(x) Lehe et. al. further find an analytic expression for G in the limit of299

large K and and small s, though this expression and analysis was not used for the demonstration in Box 2300

1.2 Mathematical expression of simulation algorithm301

1.2.1 Master equation302

We consider demes arranged along a single dimension denoted by i= 1,2,3 . . .M . The vector ~x describes the number
of individuals Nm

i , with m ≥ 0 mutations at each deme i from 1 to M : ~x = (N0
0 ,N

1
0 ,N

0
1 ,N

1
1 . . . ,N

0
M ,N1

M ). Over
the course of a time step, the events that occur with the simulation are denoted by the index E, its respective
probability as a function of the state vector pE(~x, and the change in the state vector ∆~xE . We can then describe
change in probabilities for the entire system, P (~x,t) over a time step within our algorithm with the following general
master equation:

∂P (~x,t)
∂t

=
∑
E

−pE(~x)P (~x,t) +pE(~x−∆~xE)P (~x−∆~xE , t), (7)

where pE and ∆~xE for all E are as follows:

with pE = (1−N0
i −N1

i )N0
i M

−1, ∆xm=0
i = 1

with pE = (1−N0
i −N1

i )N1
i M

−1, ∆xm=1
i = 1

with pE = (1−N0
i −N1

i )N0
i , (1− r0)M−1,∆xm=0

i =−1
with pE = (1−N0

i −N1
i )N0

i , (1− r1)M−1,∆xm=1
i =−1

with pE =N0
i N

1
i M

−1, ∆xm=0
i =−1, ∆xm=1

i = 1
with pE =N0

i N
1
i M

−1, ∆xm=0
i = 1 ,∆~xm=1

i =−1
with pE = (1−N0

j −N1
j )N0

i M
−1, for |j− i|= 1,∆~xm=0

i =−1 ,∆xm=0
j = 1

with pE = (1−N0
j −N1

j )N1
i M

−1 for |j− i|= 1,∆xm=1
i =−1 ∆xm=1

j = 1
with pE =N0

i N
1
j M

−1 for |j− i|= 1,∆xm=0
i =−1, ∆xm=1

i = 1, ∆xm=0
j = 1, ∆xm=1

j =−1
with pE =N0

i UbM
−1, ∆xm=0

i =−1, ∆xm=1
i = 1

1.2.2 Continuous limit of model dynamics as Stochastic Fisher-KPP equation303

To discuss the examine the bounds of our model validity one apply the diffusion approximation to the master equation304

(7) obtaining a Fokker-Planck equation and subsequently the corresponding Langevein equations, corresponding to a305

stochastic Fisher-KPP equation with mutation (See Refs. 19,20,22,35):306
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∂tbw = ∂2
xbw + bw(1− (bw + bm))− bwUb +

√
2bw(1− b)
K
√
rw

ηbw (x,t) and (8)

∂tbm = ∂2
xbm + bw(1− (bw + bm)) + bwUb +

√
2bw(1− b)
K
√
rm

ηbm(x,t) (9)

where bw(x,t) and bm(x,t) are the wild type and single mutation population densities through time and space307

(non-dimensionalized) respectively. For simplicity we omit the populations carrying multiple mutation and only308

consider the wild-type and single mutant populations. rw and rm describes the average growth rates per unit time309

and Ub is the rate at which wild type individuals acquire beneficial mutations per generation310

Equations (8) and (9) are valid assuming Nm
i is sufficiently smooth across i, rm, rw << 1, and ηbw (t),ηbw (t) are311

Gaussian white noises uncorrelated with itself at each x and t.312

1.2.3 Bounds on model validity313

From the above description we can analyze the boundaries in terms of model parameters at which our results our314

expected to be valid following the analysis of Martens and Hallatschek.27 Initially mutations are expected to occur315

at an average time τmut ∼ 1/UbK.316

In analogy to the heuristic arguments for a well mixed population (Box 1), we expect a mutant to establish on317

time scales ∼ 1/s. In that time the mutant population will diffuse over a length ∼
√

1/s, given a migration rate of318

1 by construction of our model. In regions where mutants are most likely to interfere during this phase the local319

population within this length scale is roughly KUb/
√
s. Approximating the time between mutant establishment on320

this scale as
√

(s)/Ub ∗K ∗s, interference is unlikely when the time over which mutant establishment occurs ∼ 1/s is321

much less than time between mutant arrivals. Stated mathematically:322

Ub <<
√

(s)/K. (10)

In the context of our model, s = α− 1. We can develop a sense of the validity of this predicted constraint by323

considering Ub below 10
√

(s)/K to be sufficiently in accordance with Eq. (9). Fig. 3D in the main text shows this324

relationship plotted in parameter space with the simulations performed. The simulations that do not display this325

heterogeneity in clonal interference pattern fall roughly below the plotted surface Ub = 10
√

(s)/K. While a factor of326

10 is an arguably arbitrary quantification of this constraint, these results suggest this constraint to be valid. Of note,327

by modeling mutations far below this upper bound, Martens and Hallatschek model the dynamics of this system328

with an algorithm in which each agent represents monoclonal subpopulation traveling as an established wave. 27.329
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