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Abstract	1 

Biological	communities	are	thought	to	have	been	evolving	in	trait	spaces	that	are	not	2 

only	 multi-dimensional,	 but	 also	 distorted	 in	 a	 sense	 that	 mutational	 covariance	3 

matrices	among	traits	depend	on	the	parental	phenotypes	of	mutants.	Such	a	distortion	4 

may	affect	diversifying	evolution	as	well	as	directional	evolution.	In	adaptive	dynamics	5 

theory,	 diversifying	 evolution	 through	 ecological	 interaction	 is	 called	 evolutionary	6 

branching.	This	 study	analytically	develops	 conditions	 for	 evolutionary	branching	 in	7 

distorted	 trait	 spaces	 of	 arbitrary	 dimensions,	 by	 a	 local	 nonlinear	 coordinate	8 

transformation	so	that	the	mutational	covariance	matrix	becomes	 locally	constant	 in	9 

the	neighborhood	of	a	focal	point.	The	developed	evolutionary	branching	conditions	can	10 

be	 affected	by	 the	distortion	when	mutational	 step	 sizes	have	 significant	magnitude	11 

difference	among	directions,	 i.e.,	the	eigenvalues	of	the	mutational	covariance	matrix	12 

have	significant	magnitude	difference.	13 

	14 1	Introduction	15 

Biological	 communities	are	 thought	 to	have	been	evolving	 in	multi-dimensional	 trait	16 

spaces	 (Doebeli	 and	 Ispolatov,	2010,	2017),	 and	which	are	distorted	 in	 a	 sense	 that	17 

mutatability	in	each	direction	(i.e.,	the	mutational	covariance	matrix)	varies	depending	18 

on	 the	 parental	 phenotype	 of	 the	mutant.	 Such	 a	 distortion	may	 affect	 evolutionary	19 

dynamics	and	outcomes,	including	directional	evolution	and	diversifying	evolution.	20 

Directional	evolution	in	distorted	trait	spaces	can	be	described	with	an	ordinary	21 

differential	equation	for	the	resident	trait,	derived	under	assumption	of	the	rare	and	22 

small	mutation	limit	in	adaptive	dynamics	theory	(Dieckmann	and	Law,	1996),	or	that	23 

for	the	mean	trait	under	some	assumption	on	variances	and	on	higher	moments	of	the	24 
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trait	in	quantitative	genetics	(Lande,	1979).	In	both	frameworks,	directional	evolution	1 

is	shown	to	be	proportional	to	the	fitness	gradient	(or	selection	gradient)	multiplied	by	2 

the	mutational	covariance	matrix	(or	additive	genetic	covariance	matrix).	In	distorted	3 

trait	 spaces,	 the	 covariance	matrix	 varies	 depending	 on	 the	 parental	 phenotypes	 of	4 

mutants,	 which	 can	 change	 the	 speed	 and/or	 direction	 of	 directional	 evolution	5 

(explained	in	Section	2.1).	6 

Diversifying	evolution,	which	is	a	fundamental	source	of	biodiversity,	is	described	7 

as	evolutionary	branching	in	adaptive	dynamics	theory	(Metz	et	al.,	1996;	Geritz	et	al.,	8 

1997).	 Evolutionary	 branching	 explains	 sympatric	 and	 parapatric	 speciation	 as	9 

continuous	adaptive	evolution	through	ecological	interaction	(Dieckmann	and	Doebeli,	10 

1999;	Doebeli	and	Dieckmann,	2003;	Dieckmann	et	al.,	2004;	Doebeli,	2011).	If	a	space	11 

composed	of	evolutionary	traits	has	an	evolutionary	branching	point,	the	point	attracts	12 

a	 monomorphic	 population	 through	 directional	 selection,	 and	 then	 favors	 its	13 

diversification	through	disruptive	selection	(Geritz	et	al.,	1997).	Moreover,	a	trait	space	14 

may	have	not	only	evolutionary	branching	points	but	also	evolutionary	branching	lines	15 

(Ito	 and	 Dieckmann,	 2012,	 2014),	 if	 the	 trait	 space	 has	 a	 significant	 mutatability	16 

difference	among	directions	so	that	mutation	in	some	direction	is	significantly	difficult	17 

compared	 to	 the	 other	 directions.	 Analogously	 to	 evolutionary	 branching	 points,	 an	18 

evolutionary	branching	line	attracts	a	monomorphic	population	and	then	favors	their	19 

evolutionary	branching	through	disruptive	selection	(Ito	and	Dieckmann,	2014).	20 

So	 far,	 in	 multi-dimensional	 trait	 spaces,	 existence	 conditions	 for	 evolutionary	21 

branching	points	and	lines	(for	two-dimensional	trait	spaces),	or	candidates	for	them	22 

(for	 the	 higher-dimensions,	 explained	 in	 Appendix	 D),	 have	 been	 developed	 under	23 

assumption	of	constant	mutational	covariance	matrices,	i.e.,	no	distortion.	Thus,	a	next	24 
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step	is	to	reveal	these	conditions	in	distorted	trait	spaces.	1 

In	 this	 paper,	 we	 first	 in	 the	 literature	 analyze	 the	 evolutionary	 branching	 in	2 

distorted	 trait	 spaces.	 By	 means	 of	 a	 local	 coordinate	 normalization	 to	 make	 the	3 

distortion	vanish	locally,	we	formally	develop	the	conditions	for	evolutionary	branching	4 

points	 and	 lines	 for	 two-dimensional	 distorted	 trait	 spaces.	 Although	 the	 analogous	5 

conditions	 are	 obtained	 in	 distorted	 trait	 spaces	 of	 arbitrarily	 higher	 dimensions	6 

(Appendix	D),	for	simplicity,	we	restrict	our	explanation	to	two-dimensional	trait	spaces	7 

in	the	main	text.	For	convenience,	we	refer	to	the	conditions	for	evolutionary	branching	8 

points	 and	 lines	 as	 the	 branching	 point	 conditions	 and	 branching	 line	 conditions,	9 

respectively.	10 

To	show	with	a	minimum	complexity	how	 the	distortion	of	 a	 trait	 space	affects	11 

evolutionary	branching,	Section	2	considers	a	simply	distorted	trait	space	and	derives	12 

the	 branching	 point	 conditions	 and	 branching	 line	 conditions.	 Section	 3	 derives	13 

analogous	 results	 in	 an	 arbitrarily	 distorted	 trait	 space.	 Section	 4	 is	 devoted	 to	 an	14 

example	 to	 show	 how	 this	 theory	 can	 be	 applied.	 Section	 5	 discusses	 the	 obtained	15 

results	in	connection	with	relevant	studies.	16 

	17 2	Evolutionary	branching	in	a	simply	distorted	trait	space	18 

Throughout	the	paper,	we	use	italic	for	denoting	scalars,	bold	small	letters	for	column	19 

vectors,	and	bold	capital	for	matrices.	We	consider	a	two-dimensional	trait	space	 B =20 

(D, E)F	 and	a	monomorphic	population	with	a	resident	phenotype	 B = (D, E)F,	where	21 

T	 denotes	 transpose.	 From	 resident	 B	,	 a	 mutant	 BG = (DG, EG)F		 emerges	 with	 a	22 

mutation	 rate	 H		 per	 birth	 event.	 The	 point	 BG		 a	 mutant	 resides	 in	 the	 trait	 space	23 

follows	 a	 probability	 density	 distribution	 I(BG, B)	 ,	 referred	 to	 as	 a	 “mutation	24 
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distribution.”	The	shape	of	 I(BG, B)	 changes	depending	on	 B.	1 

2.1	Adaptive	dynamics	theory	2 

To	 analyze	 adaptive	 evolution	 in	 the	 trait	 space	 B = (D, E)F	,	we	use	 one	 of	 adaptive	3 

dynamics	theories,	which	 is	originated	from	Metz	et	al.	 (1996).	This	 theory	typically	4 

assumes	 clonal	 reproduction,	 sufficiently	 rare	 mutation,	 and	 sufficiently	 large	5 

population	size,	so	that	a	population	is	monomorphic	and	is	almost	at	an	equilibrium	6 

density	whenever	a	mutant	emerges.	In	this	setting,	whether	a	mutant	can	invade	the	7 

resident	is	determined	by	its	initial	per	capita	growth	rate,	called	the	invasion	fitness,	8 

L(BG, B),	which	is	a	function	of	mutant	 BG	 and	resident	 B.	The	invasion	fitness	 L(BG, B)	9 

can	be	translated	into	a	fitness	landscape	along	mutant	trait	 BG.	The	landscape	can	vary	10 

depending	 on	 the	 resident	 trait	 B	.	 The	 mutant	 can	 invade	 the	 resident	 only	 when	11 

L(BG, B)	 is	positive,	resulting	in	substitution	of	the	resident	in	many	cases.	Repetition	of	12 

such	a	substitution	forms	directional	evolution	toward	a	higher	fitness,	as	long	as	the	13 

dominant	 component	 of	 the	 fitness	 landscape	 around	 B		 is	 the	 fitness	 gradient	14 

(corresponding	 to	 directional	 selection)	 rather	 than	 the	 fitness	 curvature	15 

(corresponding	 to	 diversifying	 or	 purifying	 selection).	 When	 the	 fitness	 gradient	16 

becomes	small	so	that	the	second-order	fitness	component	is	not	negligible,	a	mutant	17 

may	coexist	with	its	resident,	which	may	bring	about	evolutionary	diversification	into	18 

two	distinct	morphs,	called	evolutionary	branching	(Metz	et	al.,	1996;	Geritz	et	al.,	1997;	19 

Geritz	et	al.,	1998).	Such	an	evolutionary	transition	of	residents	induced	by	repeated	20 

mutant	invasions,	including	directional	evolution	and	evolutionary	branching,	is	called	21 

a	trait	substitution	sequence	(Metz	et	al.,	1996).	22 

The	 expected	 evolutionary	 shift	 of	 resident	 phenotype	 through	 directional	23 

evolution	is	approximated	as	24 
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dBdt = 12HOPQR(B)S(B) (1a)	1 

(Dieckmann	 and	 Law,	 1996),	 where	 H		 is	 the	 mutation	 rate,	 OP		 is	 the	 equilibrium	2 

population	density	of	the	resident	 B,	 QR(B)	 is	the	covariance	matrix	of	the	mutation	3 

distribution	 I(BG, B),	and	4 

S(B) = ∇BUL(B, B) = V
WXL(B′, B)XDGXL(B′, B)XEG Z

[
BU\B

	 (1b)	5 

is	the	fitness	gradient	vector	evaluated	at	the	resident	trait	 B.	Eqs.	(1)	are	applicable	6 

even	when	 the	mutation	distribution	varies	over	 B		 and	so	does	 QR(B)	.	 In	 this	 case,	7 

such	 a	 dependency	 affects	 not	 only	 the	 speed	 of	 directional	 evolution	 but	 also	 its	8 

direction	(Fig.1).	9 

2.2	Assumption	for	mutation	10 As	 for	 evolutionary	 branching	 in	 two-dimensional	 trait	 spaces,	 branching	 point	11 

conditions	(Geritz	et	al.,	2016)	and	branching	line	conditions	(Ito	and	Dieckmann,	2012,	12 

2014)	are	applicable	only	for	non-distorted	trait	spaces	(i.e.,	the	mutation	distribution	13 

does	not	depend	on	the	resident	phenotype).	To	apply	those	branching	conditions	for	14 

distorted	 trait	 spaces,	 we	 assume	 there	 exists	 a	 nonlinear	 transformation	 of	 the	15 

coordinate	system	 B = (D, E)F	 into	a	new	coordinate	system	 B] = (D], E])F	 in	which	the	16 

mutation	distribution	can	be	approximated	with	a	bivariate	Gaussian	distribution	that	17 

is	 constant	 at	 least	 locally	 around	a	 focal	 point	 B^	.	We	 refer	 to	 the	 coordinates	 B =18 

(D, E)F		 and	 B] = (D], E])F		 as	 the	 “original	 coordinates”	 and	 “geodesic	 coordinates”,	19 

respectively	 (the	meaning	 of	 “geodesic”	 is	 explained	 in	 Section	 3.1).	 However,	 if	we	20 

approximate	 the	 mutation	 distribution	 with	 a	 Gaussian	 distribution	 in	 the	 original	21 

coordinates	 B	 (with	its	covariance	matrix	given	by	 QR(B)),	the	nonlinear	coordinate	22 
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transformation	can	cause	the	mutation	distribution	 in	the	geodesic	coordinates	 B]	 to	1 

deviate	 from	 the	 Gaussian.	 Such	 a	 deviation	 is	 not	 negligible	 when	 the	 mutation	2 

distribution	has	a	significantly	narrow	width	 in	one	direction	compared	to	the	other	3 

(Fig.	 2a).	 In	 this	 case,	 the	 branching	 line	 conditions	 are	 not	 applicable	 even	 in	 the	4 

geodesic	coordinates	 B].	To	avoid	this	difficulty,	in	this	paper	we	assume	the	Gaussian	5 

approximation	not	before	but	after	the	coordinate	transformation	(Fig.	2b).	This	choice	6 

has	 an	 advantage	 that	 we	 can	 express	 mutants	 restricted	 to	 constraint	 curves	7 

completely	or	incompletely	(left	panel	in	Fig.	2b).	8 

To	 show	 with	 a	 minimal	 complexity	 how	 distortion	 of	 a	 trait	 space	 affects	9 

evolutionary	branching	conditions,	we	assume	that	the	nonlinear	transformation	from	10 

the	original	 coordinates	 B = (D, E)F		 (around	 the	 focal	point	 B^ = (D^, E^)F	)	 into	 the	11 

geodesic	coordinates	 B] = (D], E])F	 is	given	by	12 D = D],
E = E] + 2̀ [D] − D^]d, (2) 13 

with	a	single	parameter	 `	 for	controlling	the	degree	of	distortion	(Fig.	2b).	In	addition,	14 

we	assume	that	the	mutation	distribution	in	the	geodesic	coordinates	 B]	 is	a	constant	15 

bivariate	Gaussian	distribution,	16 

Ie(B]G, B]) = 12fg|Qij| exp k−12 [B]G − B]]FQij[B]G − B]]l= 12fmnmo exp p− [D]G − D]]d2mnd − [E]G − E]]d2mod q ,
Q = pmnd 00 modq , (3)

 17 

as	 illustrated	 in	 the	 right	 side	 of	 Fig.	 2b.	 Then,	 expressing	 Ie(B]G, B])		 in	 the	 original	18 

coordinates	 B	 gives	the	mutation	distribution	 I(BG, B)	 that	varies	depending	on	 B,	as	19 

illustrated	in	the	left	side	of	Fig.	2b	(see	Appendix	A.1	for	the	derivation	of	 I(BG, B)).	20 
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The	 mn		 and	 mo		 describe	 the	 standard	 deviations	 of	mutation	 along	 the	 D]	-	 and	 E]	-1 

directions,	 respectively.	When	 mo		 is	 very	 small,	mutants	 deriving	 from	 an	 ancestral	2 

resident	 B]r = (D]r, E]r)F		 are	 almost	 restricted	 to	 a	 line	 E] = E]r		 (i.e.,	 E = E]r + sd [D −3 

D^]d),	but	can	deviate	slightly	from	it	(Fig.	2b).	4 

The	 local	 distortion	 defined	 by	 Eqs.	 (2)	 and	 (3)	 is	 a	 special	 case	 that	 is	much	5 

simpler	than	a	general	expression	for	the	local	distortion	defined	by	Eqs.	(11)	in	the	6 

next	section.	However,	 the	branching	point	conditions	and	branching	 line	conditions	7 

derived	 in	 this	 simple	 case	 are	 essentially	 the	 same	with	 those	 in	 the	 general	 case	8 

(Section	3.3-3.4).	In	this	sense,	the	special	case	analyzed	here	has	a	certain	generality.	9 

By	substituting	Eqs.	(2)	into	the	invasion	fitness	function	 L(BG, B)	 in	the	original	10 

coordinates	 B,	we	obtain	the	 invasion	 fitness	 function	 in	 the	geodesic	coordinates	 B],	11 

referred	to	as	the	“geodesic	invasion	fitness”,	12 

Lt(B]G, B]) = L kuD]G, E]G + 2̀ [DG − D^]dvF , uD], E] + 2̀ [D − D^]dvFl . (4)	13 

Note	 that	 the	constant	Gaussian	mutation	distribution	 in	 the	geodesic	coordinates	 B]	14 

allows	application	of	the	branching	point	conditions	and	branching	line	conditions.	The	15 

contribution	of	 `	 on	those	conditions	shows	how	distortion	of	the	trait	space	affects	16 

them.	17 

2.3	Quadratic	approximation	of	invasion	fitness	functions	18 Both	of	the	branching	point	conditions	and	branching	line	conditions	depend	only	on	19 

the	first	and	second	derivatives	of	invasion	fitness	functions	with	respect	to	mutant	and	20 

resident	phenotypes.	Thus,	to	facilitate	analysis,	we	apply	quadratic	approximation	to	21 

the	original	and	geodesic	invasion	fitness	functions,	 L(BG, B)	 and	 Lt(B]G, B]),	without	loss	22 

of	 generality.	 Since	 the	 resident	 phenotype	 is	 at	 population	 dynamical	 equilibrium,	23 

L(B, B) = 0	 must	hold	for	any	 B.	Then,	following	Ito	and	Dieckmann	(2014),	we	expand	24 
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L(BG, B)	 around	the	focal	point	 B^	 in	the	form	of	1 

L(BG, B) = SFxB + [B − B^]FyxB + 12xBFzxB	 + h. o. t. (5a)	2 

with	 xB = BG − B	,	3 

S = u{n{ov = ∇BUL(B^, B^) = kLnULoUl ,
z = k|nn |no|no |ool = ∇BU∇BUF L(B^, B^) = pLnUnU LnUoULnUoU LoUoUq ,
y = k}nn }no}on }ool = z + ∇B∇BUF L(B^, B^),

∇B∇BUF L(B^, B^) = pLnnU LnoULonU LooUq (5b)

	4 

(Appendix	 B),	 where	 L~ = XL(BG, B)/X�		 for	 � = DG, EG, D, E		 and	 L~� = XdL(BG, B)/5 

X�X�		 for	 �, � = DG, EG, D, E		 denote	 the	 first	 and	 second	 derivatives	 of	 L(BG, B)	,	6 

respectively,	 evaluated	 at	 BG = B = B^	.	 Note	 that	 L(BG, B)		 can	 be	 treated	 as	 a	 fitness	7 

landscape	 along	 BG	,	which	 varies	depending	on	 B	.	When	 S = �	,	 i.e.,	 the	point	 B^		 is	8 

evolutionary	singular	(Geritz	et	al.,	1997),	the	curvature	of	the	fitness	landscape	along	9 

a	vector	 �	 is	given	by	 �Fz�/|�|d.	In	other	words,	the	signs	of	the	two	real	eigenvalues	10 

of	 z	 determines	whether	the	point	 B^	 is	a	mountain	top	(locally	evolutionarily	stable	11 

(Maynard	 Smith	 and	 Price,	 1973)),	 a	 basin	 bottom	 (evolutionarily	 unstable	 in	 all	12 

directions),	or	a	saddle	point	(evolutionarily	unstable	in	some	directions).	Even	when	13 

S ≠ �	,	 the	sign	of	 �Fz�	/|�|d	tells		 whether	 the	 fitness	 landscape	 is	 locally	convex	or	14 

concave	along	 �.	In	this	sense,	we	refer	to	 z	 as	the	“fitness	curvature”.	15 

For	resident	 B	 deviated	slightly	from	the	focal	point	 B^,	the	fitness	gradient	at	 B	16 

is	approximately	given	by	17 
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∇BUL(B, B) = VW
XL(BG, B)XDGXL(BG, B)XEG Z[BU\B

= S + yF[B − B^]. (5c)	1 

Thus,	the	matrix	 y	 describes	the	change	rate	of	the	fitness	gradient	when	the	resident	2 

deviates	from	 B^.	In	this	sense,	we	refer	to	 y	 as	the	“fitness	gradient	variability.”	When	3 

S = �,	the	Jacobian	matrix	 � = QR(B^)yF	 determines	the	local	stability	of	 B^	 through	4 

directional	evolution	described	by	Eqs.	(1)	with	Eq.	(5c).	Thus,	if	the	all	eigenvalues	of	5 

�		 have	 negative	 real	 parts,	 then	 the	 point	 B^		 is	 locally	 stable	 through	 directional	6 

evolution.	Whenever	the	symmetric	part	of	 y	 is	negative	definite,	the	all	eigenvalues	of	7 

�	 have	negative	real	parts	as	far	as	 QR(B^)	 is	non-singular	(i.e.,	mutation	is	possible	in	8 

all	directions),	in	which	case	 B^	 is	called	a	strongly	convergence	stable	point	(Leimar,	9 

2009).	10 

Substituting	 Eqs.	 (2)	 into	 Eqs.	 (5)	 gives	 the	 quadratic	 form	 for	 the	 geodesic	11 

invasion	fitness	function,	12 

Lt(B]G, B]) = S]FxB] + [B] − B^]Fy�xB] + 12xB]F	z�xB] + h. o. t. , (6a)	13 

with	 xB] = B]G − B],	14 

S] = k{]n{]ol = S,
y� = p}tnn }tno}ton }too	q = y + �,
z� = p|�nn |�no|�no |�oo	q = z + �, (6b)

	15 

and	16 

� = k`{o 00 0	l . (6c)	17 

Since	 S] = ∇B]ULt(B^, B^)	,	 y� = z� + ∇B]∇B]UF Lt(B^, B^)	,	 and	 z� = ∇B]U∇B]UF Lt(B^, B^)		 hold,	 they	18 
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respectively	 describe	 the	 fitness	 gradient,	 fitness	 gradient	 variability,	 and	 fitness	1 

curvature	at	the	focal	point	 B^	 in	the	geodesic	coordinates	 B].	Note	that	 y	 and	 z	 in	2 

the	original	coordinates	 B		 are	respectively	 integrated	with	 the	 “distortion	effect”	 �	,	3 

into	 y�		 and	 z�		 in	 the	 geodesic	 coordinates	 B]	.	 On	 the	 basis	 of	 the	 local	 coordinate	4 

normalization	 above,	 we	 derive	 the	 conditions	 for	 the	 focal	 point	 B^		 being	 an	5 

evolutionary	 branching	 point	 (branching	 point	 conditions),	 and	 the	 conditions	 for	6 

existence	of	an	evolutionary	branching	line	containing	 B^	 (branching	line	conditions),	7 

in	the	following	subsections.	8 

2.4	Conditions	for	evolutionary	branching	points	9 An	 evolutionary	 branching	 point	 attracts	 a	 monomorphic	 population	 in	 its	10 

neighborhood	through	directional	evolution,	and	then	favors	its	diversification	into	two	11 

morphs	that	directionally	evolve	in	opposite	directions	(Metz	et	al.,	1996;	Geritz	et	al.,	12 

1997).	Conditions	for	existence	of	evolutionary	branching	points,	i.e.,	branching	point	13 

conditions,	have	been	derived	originally	in	one-dimensional	trait	spaces	(Geritz	et	al.,	14 

1997).	For	two-dimensional	non-distorted	trait	spaces,	the	branching	point	conditions	15 

have	 been	 proved	 by	 approximating	 the	 latter	 diversification	 process	 with	 coupled	16 

Lande	equations	(Geritz	et	al.	2016).	By	expressing	these	two-dimensional	branching	17 

point	conditions	in	the	geodesic	coordinates	 B] = (D], E])F,	we	derive	the	branching	point	18 

conditions	for	the	simply	distorted	trait	space	 B = (D, E)F.	Specifically,	we	obtain	the	19 

following	conditions	for	the	focal	point	 B^	 being	an	evolutionary	branching	point.	20 

(i)	 B^	 is	evolutionarily	singular,	satisfying	21 

S] = S = �. (7a)	22 

(ii)	 B^	 is	strongly	convergence	stable,	i.e.,	the	symmetric	part	of	23 

y� = y + � = y + k`{o 00 0	l (7b)	24 
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is	negative	definite.	1 

(iii)	 B^	 is	evolutionarily	unstable,	i.e.,	a	symmetric	matrix	2 

z� = z + � = z+ k`{o 00 0	l (7c)	3 

has	at	least	one	positive	eigenvalue,	in	which	case	the	fitness	landscape	is	concave	4 

along	at	least	one	direction.	5 

	6 

Since	Eq.	(7a)	requires	 {n = {o = 0,	we	see	 y� = y	 and	 z� = z.	This	means	that	 the	7 

branching	point	conditions	in	the	geodesic	coordinates	 B]	 are	equivalent	to	those	in	the	8 

original	coordinates	 B.	Thus,	the	simple	distortion	of	the	trait	space,	controlled	by	 `	 in	9 

Eqs.	2,	does	not	affect	the	branching	point	conditions. 10 

2.5	Conditions	for	evolutionary	branching	lines	11 As	 long	 as	 mo		 has	 a	 comparable	 magnitude	 with	 mn	,	 evolutionary	 branching	 is	12 

expected	only	around	the	evolutionary	branching	points	(Ito	and	Dieckmann,	2014).	On	13 

the	other	hand,	if	 mo	 is	extremely	smaller	than	 mn,	the	resulting	slower	evolutionary	14 

change	 in	 E]		 is	 negligible	 during	 the	 faster	 evolution	 in	 D]	,	 so	 that	 the	 evolutionary	15 

dynamics	in	the	faster	time	scale	can	be	described	in	a	one-dimensional	trait	space	 D]	16 

under	 fixed	 E]	.	 In	 this	 case,	 a	 point	 satisfying	 the	 one-dimensional	 conditions	 for	17 

evolutionary	 branching	 points	 (Geritz,	 et	 al.	 1997)	 in	 D]		 can	 induce	 evolutionary	18 

branching	in	 D].	Even	if	 mo	 is	not	extremely	small,	this	type	of	evolutionary	branching	19 

is	likely	to	occur,	as	long	as	the	disruptive	selection	along	 D],	measured	by	 jd|�nnmnd,	is	20 

sufficiently	stronger	than	the	directional	selection	along	 E],	measured	by	 {]omo	 (Ito	and	21 

Dieckmann,	2007,	2014).	The	 conditions	 for	 this	 type	of	 evolutionary	branching	are	22 

called	the	conditions	for	evolutionary	branching	lines	or	the	branching	line	conditions,	23 
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because	 points	 that	 satisfy	 those	 conditions	 often	 form	 lines	 in	 trait	 spaces,	 called	1 

evolutionary	branching	lines	(Ito	and	Dieckmann,	2014).	2 

To	facilitate	application	of	the	branching	line	conditions,	we	simplify	the	original	3 

branching	line	conditions,	following	Ito	and	Dieckmann	(2014)	(see	Appendix	C.1-3	for	4 

details	 of	 the	 original	 branching	 line	 conditions	 and	 the	 simplification).	 Specifically,	5 

when	 mo	 is	much	smaller	than	 mn	 so	that	 mo = O(mnd)	 with	 mn ≪ 1	 (i.e.,	 mo	 has	no	6 

larger	 magnitude	 than	 mnd	),	 following	 Ito	 and	 Dieckmann	 (2014),	 we	 can	 further	7 

simplify	Eq.	(6a)	into	8 

Lt(B]G, B]) = {]n�D] + {]o�E] + }tnn[D] − D^]�D] + 12|�nn�D]d + O(mn�), (8a)	9 

with	10 {]n = {n,
}tnn = }nn + �nn,
|�nn = |nn + �nn, (8b)

	11 

and	12 �nn = `{o, (8c)	13 

where	terms	with	 }tno,	 }ton,	}too,	|�no,	and	|�oo	 are	subsumed	in	 O(mn�).	Note	that	this	14 

simplification	 is	 allowed	 even	 when	 mo		 is	 not	 much	 smaller	 than	 mn	,	 as	 long	 as	15 

magnitudes	of	 }tno,	 }ton,	}too,	|�no,	and	|�oo	 are	all	sufficiently	small	instead.	According	16 

to	Appendix	B	in	Ito	and	Dieckmann	(2014),	Eqs.	(8)	hold	when	the	sensitivity	of	the	17 

geodesic	 invasion	 fitness,	 Lt(B]G, B])	,	 to	 single	 mutational	 changes	 of	 B]G		 and	 B]		 is	18 

significantly	lower	in	 E]	 than	in	 D],	satisfying	19 momn [|{]o| + |}tno| + |}tno�+�|�no�� + modmnd [|}too| + ||�oo|]|{]n	| + |}tnn| + �|�nn� = O(mn). (9a)	20 

On	this	basis,	the	simplified	branching	line	conditions	are	described	as	follows:	21 
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(i)	 At	 B^		 the	 sensitivity	 of	 Lt(B]G, B])		 to	 single	 mutational	 changes	 of	 B]G		 and	 B]		 is	1 

significantly	lower	in	 E]	 than	in	 D],	satisfying	Eq.	(9a).	2 

(ii)	 B^	 is	evolutionarily	singular	along	 D],	satisfying	3 

{]n = {n 	= 0. (9b)	4 

(iii)	 B^	 is	convergence	stable	along	 D],	satisfying	5 

}tnn = }nn + �nn < 0. (9c) 6 

(iv)	 B^		 is	 sufficiently	 evolutionarily	 unstable	 (i.e.,	 subject	 to	 sufficiently	 strong	7 

disruptive	selection)	along	 D],	satisfying	8 mnd|�nnmo�{]o� = mnd[|nn + �nn]mo�{o� > √2. (9d)	9 

	10 

Note	that	condition	(ii)	above	does	not	require	 {o = 0,	and	thus	 �nn = `{o	 may	11 

remain	 nonzero	 in	 Eqs.	 (9c)	 and	 (9d).	 Thus,	 differently	 from	 the	 branching	 point	12 

conditions,	distortion	of	the	trait	space	affects	the	branching	 line	conditions	through	13 

�nn = `{o,	as	long	as	the	fitness	gradient	along	the	 E-axis,	 {o,	exists.	14 

Existence	of	an	evolutionary	branching	line	ensures	the	occurrence	of	evolutionary	15 

branching	of	a	monomorphic	population	located	in	its	neighborhood,	in	the	maximum	16 

likelihood	invasion-event	path,	i.e.,	a	trait	substitution	sequence	composed	of	mutant-17 

invasion	events	each	of	which	has	the	maximum	likelihood	(Ito	and	Dieckmann	2014).	 	18 

When	 mo = 0,	the	evolutionary	trajectory	starting	from	the	focal	point	 B^	 in	the	19 

geodesic	 coordinates	 B] = (D], E])F		 is	 completely	 restricted	 to	 the	 line	 E] = E^	,	 which	20 

forms	a	parabolic	curve	in	the	original	coordinates	 B = (D, E)F,	21 

E = 2̀ [D − D^]d + E^ (10)	22 

(green	curves	in	Fig.	2b).	In	this	case,	condition	(i)	always	holds	and	condition	(iv)	is	23 

simplified	 into	 |�nn = |nn + �nn > 0	,	 and	 thus	 conditions	 (ii-iv)	 become	 the	 one-24 
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dimensional	 branching	 point	 conditions	 (Geritz	 et	 al.,	 1997)	 in	 D]		 treated	 as	 a	 one-1 

dimensional	trait	space.	In	the	original	coordinates	 B = (D, E)F,	conditions	(ii-iv)	give	2 

the	 conditions	 for	 evolutionary	 branching	 point	 along	 a	 constraint	 curve	 locally	3 

approximated	in	the	form	of	Eq.	(10),	and	which	are	identical	to	the	three	conditions	4 

derived	by	Ito	and	Sasaki	(2016)	with	an	extended	Lagrange	multiplier	method.	Thus,	5 

the	above	conditions	with	 mo > 0	 extend	the	conditions	by	Ito	and	Sasaki	(2016)	for	6 

the	case	allowing	slight	mutational	deviations	from	the	constraint	curves,	i.e.,	when	the	7 

constraints	are	incomplete.	8 

Although	this	section	focuses	on	one	of	the	simplest	configurations	among	possible	9 

local	 distortions	 for	 two-dimensional	 trait	 spaces,	 the	 obtained	 results	 are	 already	10 

useful	in	analyses	of	eco-evolutionary	models	defined	on	two-dimensional	trait	spaces	11 

with	 constraint	 curves	 deriving	 from	 various	 trade-offs	 (e.g.,	 trade-offs	 between	12 

competitive	ability	and	grazing	susceptibility	of	primary	producers	(Branco	et	al.,	2010),	13 

foraging	gain	and	predation	risk	of	consumers	(Abrams,	2003),	specialist	and	generalist	14 

of	consumers	(Egas	et	al.,	2004),	transmission	and	virulence	of	parasites	(Kamo	et	al.,	15 

2006),	competitive	ability	and	attack	rate	(or	 longevity)	of	parasitoids	(Bonsal	et	al.,	16 

2004),	 and	 fecundity	 and	 dispersal	 (Weigang	 and	 Kisdi,	 2015)).	 Specifically,	 by	 an	17 

appropriate	 rotation	around	a	 focal	point	 (Fig.	3a	 to	3b)	and	obtaining	 the	geodesic	18 

coordinates	(Fig.	3b	to	3c),	we	can	apply	the	branching	line	conditions,	Eqs.	(9),	which	19 

tells	likelihoods	of	evolutionary	branching	in	those	models	when	the	constraint	curves	20 

are	incomplete	as	well	as	complete.	21 

	22 3	Evolutionary	branching	in	an	arbitrarily	distorted	trait	space	23 

The	above	analysis	in	the	simply	distorted	trait	space	showed	that	distortion	of	the	trait	24 
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space	controlled	by	 `	 does	not	affect	the	branching	point	conditions	but	does	affect	1 

the	 branching	 line	 conditions.	 Analogous	 results	 are	 obtained	 for	 an	 arbitrarily	2 

distorted	trait	space	of	an	arbitrarily	higher	dimension,	as	shown	in	Appendix	D.	In	this	3 

section,	for	simplicity,	we	explain	the	obtained	results	mainly	in	an	arbitrarily	distorted	4 

two-dimensional	trait	space,	denoted	by	 B = (D, E)F.	5 

3.1	Assumption	for	mutation	6 We	 generalize	 the	 assumption	 for	 the	 simply	 distorted	 trait	 space	 (Section	 2.2)	 as	7 

follows	(illustrated	in	Fig.	4a	and	4b).	8 

Geodesic-constant-mutation	assumption:	9 

For an arbitrary point B^ = (D^, E^)F in an arbitrarily distorted trait space B = (D, E)F, 10 

there exist the geodesic coordinates B] = (D], E])F defined by 11 

D = D] − 12 ��nnn (D] − D^)d + 2�non (D] − D^)(E] − E^) + �oon (E] − E^)d�,
E = E] − 12 ��nno (D] − D^)d + 2�noo (D] − D^)(E] − E^) + �ooo (E] − E^)d�, (11a) 12 

with an appropriately chosen �s, such that the mutation distribution in the geodesic 13 

coordinates B] can be approximated with a constant bivariate Gaussian distribution, 14 

Ie(B]G, B]) ≃ 12fg|Q(B^)| exp k−12 [B]G − B]]FQ(B^)ij[B]G − B]]l, (11b)	15 

for a resident B] in the neighborhood of B^, satisfying 16 

|�nF[B] − B^]| = O(mn), ��oF[B] − B^]� = O(mo) (11c)	17 

with a sufficiently small mn and mo, where mnd and mod are the two eigenvalues of 18 

Q(B^)  with corresponding eigenvectors �n  and �o , respectively, and mn ≥ mo ≥ 0 19 

is assumed without loss of generality. 20 

 21 

The	matrix	 Q(B)	 in	Eq.	(11b)	is	symmetric	and	positive	definite,	referred	to	as	a	22 
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“mutational	covariance	matrix”	or	“mutational	covariance”,	1 

Q(B) = p�nn(B) �no(B)�no(B) �oo(B)q.		 (12a) 2 

Each	of	the	six	 �s	in	Eqs.	(11a)	correspond	to	each	mode	of	local	distortion	for	a	trait	3 space	(Fig.	5).	For	a	given	 Q(B),	we	choose	 �~�� 	 for	 �, �, � ∈ {D, E}	 as	4 

�~�� = 12��n(B^)��~n� + ��n~ − �~�n � + 12��o(B^) ��~o� + ��o~ − �~�o � , (12b) 5 

with	6 

p�nnn �non�non �oon q =  ∂Q(B)ijXD	 ¢B\B£ , p�nno �noo�noo �ooo q =  ∂Q(B)ijXE	 ¢B\B£ , (12c) 7 

so	 that	 Q(B)ij		 has	 no	 linear	 dependency	 on	 B]		 at	 the	 focal	 point	 B^		 (in	 order	 to	8 satisfy	Eq.	(11b)).	In	differential	geometry,	 �~�� 	 are	called	the	Christoffel	symbols	of	9 

the	second	kind	at	 B^	 in	the	original	coordinates	 B	 with	respect	to	the	metric	 Q(B)ij	10 

(see	 Section	 3	 in	 Hobson	 et	 al.	 (2006)	 for	 introduction	 to	 Christoffel	 symbols	 and	11 

geodesic	coordinates).	For	example,	in	the	simply	distorted	trait	space	in	Section	2	(Eqs.	12 (2)),	the	focal	point	 B^	 has	 �nno = −`	 and	 �~�� = 0	 for	the	all	other	 �, �, � ∈ {D, E}.	13 

We	refer	to	the	inverse	of	the	mutational	covariance,	 Q(B)ij,	as	the	“mutational	metric”,	14 

with	which	we	 can	describe	 the	mutational	 square	distance	 from	 B		 to	 B + ¤B		 with	15 

infinitesimal	 ¤B = (dD, dE)F	 as	16 

d¥d = ¤BFQ(B)ij¤B. (13) 17 

Based	 on	 the	 mutational	 covariance	 Q(B)	,	 we	 formally	 define	 “distorted	 trait	18 

spaces”	as	trait	spaces	with	non-constant	 Q(B).	(This	“distortion”	corresponding	to	the	19 

first	 derivatives	 of	metrics	 is	 different	 from	 the	 “distortion”	 in	 differential	 geometry	20 

defined	 by	 the	 second	 derivatives	 of	 metrics	 (Hobson	 et	 al.,	 2006).)	 Although	 the	21 

plausibility	of	the	geodesic-constant-mutation	assumption	above	must	be	examined	by	22 

empirical	data,	 this	 assumption	provides	one	of	 the	 simplest	 frameworks	 that	 allow	23 
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analytical	treatment	of	evolutionary	branching	in	distorted	trait	spaces.	1 

In	Figs.	4	and	5,	 the	mutational	 covariance	at	 each	point	 B^		 is	 expressed	as	an	2 

ellipse,	3 

(B − B^)FQ(B^)ij(B − B^) = 1, (14a)	4 

referred	to	as	a	“mutation	ellipse”,	which	indicates	the	standard	deviation	of	 Ie(B]G, B^)	5 

(the	mutation	distribution	described	in	the	geodesic	coordinates)	along	each	direction	6 

in	 the	 geodesic	 coordinates	 B]		 (overlaid	 on	 coordinates	 B	),	 with	 its	 maximum	 and	7 

minimum	 given	 by	 mn		 and	 mo	,	 respectively.	 Expressing	 Ie(B]G, B^)		 in	 the	 original	8 

coordinates	 B		 gives	 the	mutation	 distribution	 I(BG, B^)		 in	 the	 original	 coordinates	9 

(see	Appendix	A.2	for	the	derivation).	For	 mn	 and	 mo	 having	comparable	magnitudes,	10 

I(BG, B^) ≃ 	Ie(B]G, B^)	 holds	for	sufficiently	small	 mn.	In	this	case,	the	covariance	matrix	11 

QR(B^)	 of	 I(BG, B^)	 is	approximately	given	by	the	mutational	covariance	 Q(B^),	and	12 

the	 mutation	 ellipse	 is	 approximately	 the	 same	 with	 the	 contour	 for	 I(BG, B^)		 at	13 

density	level	14 

exp k−12lmaxBU (I(BG, B^)) , (14b)	15 

referred	to	as	the	“mutation	contour”	(red	closed-curves	in	Figs.	2	and	3).	On	the	other	16 

hand,	when	 mo	 is	much	smaller	than	 mn,	the	mutation	contour	non-negligibly	deviates	17 

from	the	mutation	ellipse	(Fig.	6).	In	this	case,	using	 Q(B)	 in	stead	of	 QR(B)	 in	Eq.	(1a)	18 

may	give	a	better	description	for	directional	evolution	(see	Appendix	E	for	the	details).	19 

3.2	Quadratic	approximation	of	invasion	fitness	functions	20 

To	 reduce	 complexity	 of	 the	 expressions	 in	 the	 subsequent	 analysis,	without	 loss	 of	21 

generality	 we	 assume	 that	 coordinates	 B = (D, E)F		 are	 first	 rotated	 so	 that	 Q(B^)	22 

becomes	a	diagonal	matrix	expressed	as	23 
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Q(B^) = pmnd 00 modq , (15) 1 

and	then	the	geodesic	coordinates	 B] = (D], E])F	 are	obtained	(Fig.	4c-e).	In	this	case,	Eqs.	2 

(11c)	 become	 |D] − D^| = O(mn)		 and	 |E] − E^| = O(mo)	.	 For	 convenience,	we	 express	3 

Eqs.	(11a)	in	a	vector-matrix	form,	as	4 

B = B] − 12p[B] − B^]F¦n[B] − B^][B] − B^]F¦o[B] − B^]q ,
¦n = p�nnn �non�non �oon q = mnd2 p�nnn �nno�nno 2�noo − �oon q ,
¦o = p�nno �noo�noo �ooo q = mod2 p2�non − �nno �oon�oon �ooo q . (16)

 5 

Note	 that	 ¦n		 and	 ¦o		 are	 both	 symmetric.	We	 refer	 to	 ¦n		 and	 ¦o		 as	 “distortion	6 

matrices.”	By	substituting	Eqs.	(16)	into	the	original	invasion	fitness	function,	 L(B′, B),	7 

we	derive	the	invasion	fitness	function	in	the	geodesic	coordinates	 B],	i.e.,	the	geodesic	8 

invasion	fitness,	9 

Lt(B]G, B]) = L §B]′ − 12p[B]G − B^]F¦n[B]G − B^][B]G − B^]F¦o[B] − B^] q , B] − 12p[B] − B^]F¦n[B] − B^][B] − B^]F¦o[B] − B^]q¨ . (17)	10 

Then,	we	expand	 L(BG, B)	 in	the	same	form	with	Eqs.	(5),	and	expand	 Lt(B]G, B])	 in	a	form	11 

similar	to	Eqs.	(6),	as	12 

Lt(B]G, B]) = S]FxB] + [B] − B^]Fy�xB] + 12xB]F	z�xB] + h. o. t. , (18a)	13 

with	14 
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S] = k{]n{]ol = S,
y� = p}tnn }tno}ton }too	q = y + �,
z� = p|�nn |�no|�no |�oo	q = z + �, (18b)

	1 

and	2 � = −{n¦n − {o¦o. (18c)	3 

Note	that	Eqs.	(18)	are	identical	to	Eqs.	(6),	except	that	Eq.	(18c)	is	different	from	Eq.	4 

(6c).	5 

3.3	Conditions	for	evolutionary	branching	points	6 

Analogously	 to	 the	 branching	 point	 conditions	 in	 the	 simply	 distorted	 trait	 space	7 

(Section	 2.4),	 we	 can	 describe	 conditions	 for	 a	 point	 B^		 being	 an	 evolutionary	8 

branching	point,	as	follows.	9 

Branching	point	conditions	in	arbitrarily	distorted	two-dimensional	trait	spaces:	10 

In an arbitrarily distorted trait space B = (D, E)F, a point B^ = (D^, E^)F is an 11 

evolutionary branching point, if B^ satisfies the following three conditions in 12 

the corresponding geodesic coordinates B] = (D], E])F given by Eqs. (16) with 13 

Eqs. (12c) (after rotation of coordinates B so that Eq. (15) holds). 14 

(i) B^ is evolutionarily singular, satisfying 15 

S] = S = �. (19a) 16 

(ii)	B^ is strongly convergence stable, i.e., the symmetric part of 17 

y� = y + � (19b) 18 

is negative definite. 19 
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(iii) B^ is evolutionarily unstable, i.e., a symmetric matrix 1 

z� = z + � (19c) 2 

has at least one positive eigenvalue.  3 

Here � = −{n¦n − {o¦o, while S, y, and z are calculated from Eqs. (5). 4 

	5 

Since	Eq.	(19a)	gives	 � = −{n¦n − {o¦o = �,	we	see	 y� = y	 and	 z� = z.	This	means	6 

that	 the	branching	point	 conditions	 in	 the	 geodesic	 coordinates	 B]		 are	 equivalent	 to	7 

those	in	the	original	coordinates	 B	 (and	in	the	original	coordinates	before	the	rotation).	8 

Analogous	results	are	obtained	in	distorted	trait	spaces	of	arbitrary	higher	dimensions	9 

(Appendix	D.3).	Therefore,	distortion	of	a	trait	space	of	an	arbitrary	dimension	does	not	10 

affect	the	branching	point	conditions,	as	long	as	mutation	is	possible	in	all	directions.	11 

3.4	Conditions	for	evolutionary	branching	lines	12 

Analogously	 to	 the	 case	 of	 the	 simply	 distorted	 trait	 space	 in	 Section	 2.5,	when	 the	13 

sensitivity	of	the	geodesic	invasion	fitness,	 Lt(B]G, B]),	to	single	mutational	changes	of	 B]G	14 

and	 B]	 is	significantly	lower	in	 E]	 than	in	 D],	so	that	Eq.	(9a)	holds,	we	can	simplify	Eqs.	15 

(18)	into	16 

Lt(B]G, B]) = {]n�D] + {]o�E] + }tnn[D] − D^]�D] + 12|�nn�D]d + O(mn�), (20a)	17 

with	18 {]n = {n,
}tnn = }nn + �nn,
|�nn = |nn + �nn, (20b)

	19 

and	20 

�nn = −{n�nnn − {o�nno . (20c)	21 

Note	that	Eqs.	(20)	are	identical	to	Eqs.	(8)	except	that	Eq.	(20c)	is	different	from	22 
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Eq.	(8c).	On	this	basis,	the	simplified	branching	line	conditions	for	arbitrarily	distorted	1 

two-dimensional	trait	spaces	are	described	as	follows	(Appendix	C.1-3).	2 

Branching	 line	 conditions	 in	 arbitrarily	 distorted	 two-dimensional	 trait	 spaces	3 

(simplified):	4 

In an arbitrarily distorted two-dimensional trait space B = (D, E)F, there exists 5 

an evolutionary branching line containing a point B^ = (D^, E^)F , if B^ 6 

satisfies the following four conditions in the corresponding geodesic 7 

coordinates B] = (D], E])F given by Eqs. (16) with Eqs. (12c) (after rotation of 8 

coordinates B so that Eq. (15) holds). 9 

(i) At B^  the sensitivity of the geodesic invasion fitness, Lt(B]G, B]) , to single 10 

mutational changes of B]G  and B]  is significantly lower in E]  than in D] , 11 

satisfying  12 momn [|{]o| + |}tno| + |}tno�+�|�no�� + modmnd [|}too| + ||�oo|]|{]n	| + |}tnn| + �|�nn� = O(mn). (21a)	13 

(ii) B^ is evolutionarily singular along D], satisfying  14 

{]n = {n 	= 0. (21b) 15 

(iii) B^ is convergence stable along D], satisfying  16 

}tnn = }nn + �nn < 0. (21c) 17 

(iv)	B^ is sufficiently evolutionarily unstable (i.e., subject to sufficiently strong 18 

disruptive selection) along D], satisfying  19 mnd|�nnmo�{]o� = mnd[|nn + �nn]mo�{o� > √2. (21d) 20 

Here �nn = −{n�nnn − {o�nno , while {n, {o,	}nn, and	|nn are calculated from 21 

Eqs. (5). 22 

	23 
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Note	 that	 condition	 (ii)	 {n = 0		 gives	 {n�nnn = 0	,	 while	 {o�nno 		 can	 remain	1 

nonzero	 in	 Eqs.	 (21c)	 and	 (21d).	 Thus,	 the	 distortion	 affects	 the	 branching	 line	2 

conditions	through	 {o�nno ,	as	long	as	the	fitness	gradient	along	the	 E-axis,	 {o,	exists.	3 

Interestingly,	 {n�nnn = 0	 makes	the	above	branching	line	conditions	equivalent	to	the	4 

branching	 line	 conditions	 for	 the	 simply	 distorted	 trait	 space	 (Section	 2.5),	 where	5 

�nno = −`.	Among	the	six	 �s	for	describing	local	distortion,	only	 �nno 	 has	effect	on	the	6 

branching	line	conditions,	even	in	this	general	case.	7 

When	 mo = 0	 ,	 the	 evolutionary	 trajectory	 starting	 from	 B^ = (D^, E^)F	 	 in	8 

coordinates	 B] = (D], E])F		 is	 completely	 restricted	 to	 the	 line	 E] = E^	,	 which	 forms	 a	9 

parabolic	curve	in	the	coordinates	 B = (D, E)F	 in	the	neighborhood	of	 B^,	10 

E = −�nno2 [D − D^]d + E^ + h. o. t. , (23)	11 

analogously	 to	 Eq.	 (10)	 in	 Section	 2.5.	 In	 this	 case,	 condition	 (i)	 always	 holds,	 and	12 

conditions	(ii-iv)	become	identical	to	the	three	conditions	for	evolutionary	branching	13 

point	 along	 a	 constraint	 curve	 that	 is	 locally	 approximated	 in	 the	 form	 of	 Eq.	 (23),	14 

derived	by	Ito	and	Sasaki	(2016)	with	an	extended	Lagrange	multiplier	method.	15 

The	branching	line	conditions	for	distorted	two-dimensional	trait	spaces,	Eqs.	(21),	16 

are	extended	for	trait	spaces	of	arbitrary	higher	dimensions	(Ito	and	Dieckmann,	2014),	17 

referred	 to	as	 “candidate-branching-surface	 conditions”	 in	 this	paper,	 and	which	are	18 

affected	 by	 the	 distortion	 in	 a	manner	 analogous	 to	 the	 two-dimensional	 case	 here	19 

(Appendix	 D.4).	 Those	 conditions	 extend	 the	 branching	 point	 conditions	 along	20 

constraint	curves	and	surfaces	of	arbitrary	dimensions	(Ito	and	Sasaki,	2016),	for	the	21 

case	allowing	slight	mutational	deviations	from	those	curves	and	surfaces.	22 

3.5	Conditions	for	evolutionary	branching	areas	23 

In	numerical	simulations,	evolutionary	branching	may	occur	before	populations	have	24 
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reached	to	evolutionary	branching	points	or	lines.	Consequently,	the	set	of	points	where	1 

evolutionary	 branchings	 have	 occurred	 form	 an	 area	 or	 areas.	 To	 characterize	 such	2 

areas,	 Ito	 and	 Dieckmann	 (2012)	 have	 heuristically	 extended	 the	 branching	 line	3 

conditions	into	the	branching	area	conditions,	for	non-distorted	trait	spaces.	Although	4 

the	branching	area	conditions	have	not	been	formally	proved,	those	conditions	have	a	5 

good	prediction	performance	in	numerically	simulated	evolutionary	dynamics	(Ito	and	6 

Dieckmann,	2012).	7 

In	this	paper,	we	extend	the	branching	area	conditions	for	distorted	trait	spaces	of	8 

two	dimensions	(Appendix	C.5)	and	of	arbitrary	higher	dimensions	(Appendix	D.5),	by	9 

describing	 those	 conditions	 (for	 non-distorted	 trait	 spaces)	 in	 the	 corresponding	10 

geodesic	 coordinates.	 Analogously	 to	 the	 case	 of	 branching	 line	 conditions,	 the	11 

distortion	affects	the	branching	area	conditions	in	trait	spaces	of	arbitrary	dimensions.	12 

In	non-distorted	trait	spaces,	any	evolutionary	branching	point	or	line	is	contained	13 

in	an	evolutionary	branching	area	(Ito	and	Dieckmann,	2012).	This	property	is	kept	in	14 

distorted	trait	spaces	(Appendices	C.5	and	D.5).	15 

	16 4	Example	17 

In	this	example,	we	design	the	trait	space	 B = (D, E)F	 by	nonlinear	transformation	of	a	18 

coordinate	system	having	a	constant	Gaussian	mutation	distribution.	This	setting	shows	19 

clearly	how	our	local	coordinate	normalization	works.	20 

4.1	Ecological	interaction	21 

In	 trait	 space	 B = (D, E)F	,	 we	 consider	 the	 two-dimensional	 version	 of	 the	 classical	22 

MacArthur-Levins	resource	competition	model	(MacArthur	and	Levins,	1967;	Vukics	et	23 

al.,	 2003).	 The	 growth	 rate	 of	 ith	 phenotype	 Bª = (Dª , Eª)F	 	 among	 coexisting	24 
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phenotypes	 Bj, ⋯ , B¬  is	defined	by	1 

1Oª ­Oª­® = 1 −¯�°B± − Bª²O±³(Bª)
¬
±\j , (24a)

�°B± − Bª² = exp§− �B± − Bª�d2m~d ¨ , (24b)
³(B) = ³^ exp p− (B − B´)d2md́ q . (24c)

 2 

Here,	 ³(Bª) is	 the	 carrying	 capacity	 for	 phenotype	 Bª	,	 expressed	with	 an	 isotropic	 	3 

bivariate	 Gaussian	 function	 with	 its	 standard	 deviation	 m´		 and	 maximum	 ³^		 at	4 

B´ = (D´ , E´)F.	The	competition	kernel	 �°B± − Bª² describes	the	competition	strength	5 

between	 B±  and	 Bª	,	 which	 is	 also	 an	 isotropic	 Gaussian	 function	 with	 its	 standard	6 

deviation	 m~	,	 i.e.,	 the	 competition	 strength	 is	 a	 decreasing	 function	 about	 their	7 

phenotypic	distance.	8 

We	assume	a	monomorphic	population	with	its	resident	phenotype	 B,	where	its	9 

density	 O	 is	at	an	equilibrium	given	by	 ³(B).	The	invasion	fitness	 L(BG, B) is	defined	10 

as	the	per-capita	growth	rate	of	the	mutant	population	density	 OG when	it	is	very	low,	11 

L(BG, B) = limµU→^   1OG ­OG­® ¢µ\´(B) = 1 − �(BG − B)³(B)³(BG) . (25)	12 

4.2	Mutation	13 

To	model	a	nontrivial	but	analytically	tractable	mutational	covariance	for	the	trait	space	14 

B = (D, E)F	,	 we	 assume	 that	 D		 and	 E		 are	 functions	 of	 ·		 and	 ¸		 which	 mutate	15 

independently,	 following	 one-dimensional	 Gaussian	 distributions	 with	 constant	16 

standard	 deviations	 m¹		 and	 mº	,	 respectively.	 Thus,	 in	 coordinates	 (¸, ·)F	,	 the	17 

mutation	distribution	is	a	bivariate	Gaussian	distribution	with	a	constant	and	diagonal	18 

mutational	covariance	with	its	entries	 m¹d	 and	 mºd	 (Fig.	7b).	Specifically,	we	define	 D	19 
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and	 E	 as	1 D = ·sin¸,
E = ·cos¸. (26) 2 

Eqs.	(26)	may	be	plausible	when	the	trait	space	 B = (D, E)F	 is	for	predators	competing	3 

for	their	prey	animals	as	resources	(Fig.	8),	where	 2D	 and	 E	 respectively	describe	the	4 

width	and	height	of	the	main	prey	for	a	predator	of	phenotype	 B = (D, E)F,	while	 ·	 and	5 

¸	 respectively	describe	the	length	of	predator’s	jaw	(or	raptorial	legs)	and	its	maximum	6 

open	angle.	Note	that	both	of	 D	 and	 E	 must	be	positive	in	this	case.	7 

From	Eqs.	(26),	we	can	derive	the	mutational	covariance	as	8 

Q(B) = ¼(¸) p·dm¹d 00 mºdq¼(¸)F,
¼(¸) = u cos ¸ sin ¸− sin ¸ cos ¸v (27) 9 

(Eq.	 (F.7)	 in	 Appendix	 F.1).	 After	 coordinate	 rotation	 about	 a	 focal	 point	 B^ =10 

(D^, E^)F = (·̂ sin ¸^ , ·̂ cos ¸^)F		 so	 that	 Q(B^)		 becomes	 diagonal,	 we	 obtain	 the	11 

geodesic	coordinates	 B]	 (Fig.	7d)	with	12 

Q(B^) = pmnd 00 modq = p·̂dm¹d 00 mºdq ,
¦n = p�nnn �non�non �oon q = p 0 ·̂ij·̂ij 0 q ,
¦o = p�nno �noo�noo �ooo q = k·̂ij 00 0l (28)

 13 

(Appendix	F.2).	Note	that	the	constant	Gaussian	mutation	distribution	in	coordinates	14 

(¸, ·)F		 (Fig.	 7b)	 is	 locally	 recovered	 around	 the	 focal	 point	 B^		 in	 the	 geodesic	15 

coordinates	 B]	 (Fig.	7d).	In	this	special	example,	the	non-distorted	coordinates	 (¸, ·)F	16 

allows	 application	 of	 the	 evolutionary	 branching	 conditions	 for	 non-distorted	 trait	17 
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spaces.	(As	shown	in	Appendix	F.	6,	the	branching	point	conditions	and	branching	line	1 

conditions	derived	in	the	non-distorted	coordinates	 (·, ¸)F	 are	identical	to	those	in	the	2 

geodesic	coordinates	 B].)	However,	obtaining	such	coordinates	is	usually	impossible	for	3 

a	 given	 mutational	 covariance	 Q(B)	.	 On	 the	 other	 hand,	 obtaining	 the	 geodesic	4 

coordinates	 B]	 by	the	local	coordinate	normalization	is	possible	in	many	cases.	5 

4.3	Branching	point	conditions	6 

From	Eq.	(25),	we	derive	the	fitness	gradient,	 fitness-gradient	variability,	and	fitness	7 

curvature	at	the	focal	point	 B^	 in	the	original	coordinates	(after	rotation,	Fig.	7c),	as	8 

S = − 1md́·̂ 	k E´D^ − D´E^·̂d − D´D^ − E´E^l ,
y = − 1md́ u1 00 1v ,
z =   1m~d − 1md́¢ u1 00 1v − SFS (29)

	9 

(Appendix	F.3).	As	shown	in	Section	3.3,	the	branching	point	conditions	(Eqs.	19)	are	10 

not	affected	by	 the	distortion.	Thus,	we	can	directly	examine	 those	conditions	 in	 the	11 

original	 coordinates	 B	.	 Consequently,	 a	 necessary	 and	 sufficient	 condition	 for	 the	12 

existence	of	an	evolutionary	branching	point	 is	given	by	 m~ < m´ .	When	 m~ < m´ ,	an	13 

evolutionary	 branching	 point	 exists	 at	 the	 peak	 point	 of	 the	 carrying	 capacity,	 B´	14 

(Appendix	F.4),	as	already	derived	in	Vukics	et	al.	(2003)	for	non-distorted	trait	spaces.	15 

Conversely,	 when	 m~ > m´	,	 the	 point	 B´		 is	 locally	 evolutionarily	 stable	 as	 well	 as	16 

strongly	convergence	stable,	in	which	case	 B´	 is	not	an	evolutionary	branching	point.	17 

4.4	Branching	line	conditions	18 

The	branching	line	conditions	(Eqs.	(21))	are	examined	in	this	model	by	substituting	19 

Eqs.	 (28)	 and	 (29)	 into	 Eqs.	 (21).	 As	 shown	 in	 Appendix	 F.5,	 for	 a	 mº		 sufficiently	20 
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smaller	 than	 m¹	,	 there	 exists	 an	 evolutionary	 branching	 line	 along	 the	 line	 passing	1 

through	 the	 origin	 and	 the	 peak	 point	 B´ = (D´ , E´)F		 of	 the	 carrying	 capacity,	2 

expressed	in	the	original	coordinates	before	the	rotation,	as	3 

uD^E^v = ½D´ ·̂·́E´ ·̂·́ ¾ , (30a)	4 

with	 ·́ = gDd́ + Éd	 and	a	positive	parameter	 ·̂ ,	where	the	range	of	 ·̂ 	 is	given	by	5 

m¹d·̂d ¿md́m~d − 1 + md́�nnÀmº|·̂ − ·Á| > √2 (30b) 6 

with	7 

�nn = 1md́ ¿1 − ·́·̂ À . (30c) 8 

Note	that	this	branching	line	exists	even	under	 m~ > m´ ,	in	which	case	there	exists	no	9 

branching	 point.	 Moreover,	 the	 distortion	 effect	 �nn		 enables	 the	 existence	 of	 this	10 

branching	line,	because	Eq.	(30b)	is	never	satisfied	for	 �nn = 0	 under	 m~ > m´ .	11 

4.5	Numerical	analysis	12 

Figure	 9	 shows	 evolutionary	 dynamics	 simulated	 numerically	 as	 trait	 substitution	13 

sequences	(Ito	and	Dieckmann,	2014)	starting	from	various	initial	phenotypes,	under	14 

mº = m¹	 (see	Appendix	G	for	the	simulation	algorithm).	This	simulation	assumes	 m~ >15 

m´	,	 i.e.,	 the	 unique	 evolutionary	 singular	 point	 B´		 is	 convergence	 stable	 but	 not	 an	16 

evolutionary	branching	point.	As	predicted,	all	evolutionary	trajectories	converge	to	 B´,	17 

but	evolutionary	branching	does	not	occur.	Even	in	this	case,	a	branching	line	can	exist	18 

when	 mº		 is	much	smaller	 than	 m¹		 (Fig.	10a),	 inducing	evolutionary	branching	(Fig.	19 

10c-e).	The	area	of	occurrence	of	evolutionary	branchings	is	well	characterized	by	the	20 

branching	area	(Fig.	10b).	21 
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Therefore,	both	of	analytical	and	numerical	results	in	this	example	accord	with	the	1 

general	result	derived	in	Section	3	that	distortion	of	a	trait	space	affects	evolutionary	2 

branching	when	mutatability	have	significant	magnitude	differences	among	directions,	3 

through	the	branching	line	conditions	and	branching	area	conditions.	4 

	5 5	Discussion	6 

5.1	General	discussion	7 

Biological	communities	are	thought	to	have	been	evolving	in	trait	spaces	that	are	not	8 

only	 multi-dimensional	 but	 also	 distorted,	 in	 a	 sense	 that	 mutational	 covariance	9 

matrices	 depend	 on	 the	 parental	 phenotypes	 of	 mutants.	 For	 efficient	 analysis	 of	10 

adaptive	evolutionary	diversification	in	distorted	trait	spaces,	we	made	an	assumption	11 

for	mutation	such	that	an	appropriate	local	nonlinear	coordinate	transformation	allows	12 

approximation	 of	 the	 mutation	 distribution	 with	 a	 locally	 constant	 Gaussian	13 

distribution,	and	then	we	applied	conventional	conditions	for	evolutionary	branching	14 

points	(Metz	et	al.,	1996;	Geritz	et	al.,	1997),	lines	(Ito	and	Dieckmann,	2014)	and	areas	15 

(Ito	and	Dieckmann,	2012).	Consequently,	we	have	shown	that	the	distortion	does	not	16 

affect	 branching	 point	 conditions	 but	 do	 affect	 branching	 line	 conditions	 and	 area	17 

conditions,	 in	two-dimensional	trait	spaces.	Analogous	results	have	been	obtained	in	18 

trait	 spaces	 of	 arbitrary	 higher	 dimensions	 (Appendix	 D).	 Our	method	 provides	 an	19 

extension	tool	of	adaptive	dynamics	theory	for	distorted	trait	spaces.	Our	assumption	20 

for	mutation	and	coordinate	normalization	described	in	Subsection	3.1	may	be	useful	21 

in	other	theories	for	evolution	as	well,	including	quantitative	genetics.	22 
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5.2	Assumption	for	mutation	and	evolutionary	constraints	1 

Although	 the	 plausibility	 of	 our	 assumption	 for	 the	 geodesic-constant-mutation	 in	2 

Section	3.1	must	be	examined	by	empirical	data,	our	assumption	provides	one	of	the	3 

simplest	 frameworks	 that	 allow	 analytical	 treatment	 of	 evolutionary	 branching	 in	4 

distorted	trait	spaces.	The	biological	plausibility	of	our	assumption	may	be	examined	5 

by	using	it	as	a	statistical	fitting	function	for	empirical	data	about	mutation	distributions,	6 

and	checking	its	fitting	performance.	At	least,	our	assumption	would	be	closer	to	the	7 

reality	than	assuming	a	constant	mutation	distribution	over	a	trait	space.	8 

An	advantage	of	our	assumption	 is	 that	evolutionary	dynamics	along	constraint	9 

curves	or	surfaces	(of	arbitrary	dimensions)	can	be	described	by	setting	zeros	for	some	10 

eigenvalues	of	the	mutational	covariance	matrix.	The	obtained	evolutionary	branching	11 

conditions	are	 identical	 to	 those	derived	by	 Ito	and	Sasaki	 (2016)	with	an	extended	12 

Lagrange	 multiplier	 method.	 (The	 obtained	 conditions	 are	 also	 mathematically	13 

equivalent	 to	 deMazancourt	 and	 Dieckmann	 (2004)	 when	 constraints	 are	 one-14 

dimensional	 curves	 in	 two-dimensional	 trait	 spaces,	 and	 to	 Kisdi	 (2015)	 when	15 

constraints	are	one-dimensional	curves	in	trait	spaces	of	arbitrary	dimensions.)	Note	16 

that	in	reality	all	constraint	curves	are	incomplete	in	a	sense	that	mutational	deviations	17 

from	the	curves	must	not	be	impossible,	although	their	magnitudes	may	be	very	small	18 

and/or	their	likelihoods	may	be	very	low.	Therefore,	constraint	curves	themselves	can	19 

change	evolutionarily.	Under	our	assumption	for	mutation	in	this	paper,	such	a	situation	20 

is	easily	expressed	by	assuming	very	small	but	nonzero	values	for	some	eigenvalues	of	21 

the	mutational	covariance	matrix,	which	gives	evolutionary	branching	conditions	along	22 

incomplete	 constraints,	 in	 the	 form	 of	 the	 branching	 line	 conditions	 for	 two-23 

dimensional	trait	spaces	(Sections	3.4)	and	the	candidate-branching-surface	conditions	24 
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for	arbitrary	higher-dimensional	trait	spaces	(Appendix	D.4).	1 

5.3	Relationship	between	evolutionary	branching	points	and	lines	2 

If	a	focal	point	 B^	 is	an	evolutionary	branching	point	with	positive	 |�nn	 (Section	3.3),	3 the	point	also	satisfies	the	branching	line	conditions	for	sufficiently	small	 mo	 (Section	4 

3.4),	 which	 allows	 the	 coexistence	 of	 the	 branching	 point	 and	 a	 branching	 line	5 

containing	the	point,	like	as	Fig.2	in	Ito	and	Dieckmann	(2012)	for	a	non-distorted	two-6 

dimensional	 trait	 space.	 On	 the	 other	 hand,	 if	 the	 focal	 point	 is	 an	 evolutionary	7 

branching	point	with	negative	 |�nn,	the	branching	line	conditions	are	not	satisfied	by	8 any	small	 mo.	In	this	case,	 mo → 0	 makes	the	branching	point	just	vanish.	On	the	other	9 

hand,	 depending	 on	 the	 invasion	 fitness	 function,	 a	 sufficiently	 small	 mo		 allows	10 

existence	of	a	branching	line	containing	no	branching	point,	as	shown	in	Fig.	10,	like	as	11 

Figs.	4	 in	 Ito	and	Dieckmann	(2012)	 for	non-distorted	 two-dimensional	 trait	spaces.	12 

Thus,	 the	 relationship	 between	 branching	 points	 and	 branching	 lines	 is	 complex,	13 

requiring	further	analyses.	14 

5.4	Comparison	with	population	genetic	theory	for	distorted	trait	spaces	15 

Rice	 (2002)	 developed	 a	 general	 population	 genetic	 theory	 for	 the	 evolution	 of	16 

developmental	interactions,	in	the	framework	of	quantitative	genetics.	This	theory	can	17 

analyze	 evolutionary	 dynamics	 in	 distorted	 trait	 spaces	 from	 the	 perspective	 of	18 

developmental	interactions,	while	its	focal	time	span	is	different	from	our	method.	The	19 

theory	 by	 Rice	 (2002)	 seems	 good	 for	 analyzing	 short-term	 evolution	 with	 explicit	20 

description	of	the	dynamics	of	standing	genetic	variations,	while	our	method	is	good	for	21 

analyzing	 long-term	 directional	 evolution	 and	 evolutionary	 diversification	 with	22 

simplification	of	the	genetic	structure.	23 

	24 
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	21 Figure	captions	22 

Figure	1	23 

Illustrated	directional	evolution	affected	by	distortion	of	trait	space.	In	panels	(a)	and	24 
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(b),	 the	 covariance	 matrices	 of	 mutation	 distributions,	 indicated	 with	 black	 dotted	1 

ellipses,	vary	depending	on	resident	phenotypes	(i.e.,	trait	spaces	are	distorted).	In	both	2 

cases,	directionally	evolving	populations	described	with	Eqs.	(1)	are	expected	to	change	3 

their	directions	(blue	curved	arrows)	as	well	as	speeds,	even	under	constant	selection	4 

gradients	(dark	gray	arrows).	5 

	6 

Figure	2	7 

Gaussian	approximation	of	mutation	distributions	before	or	after	nonlinear	coordinate	8 

transformation.	Red	closed	curves	are	contours	of	mutation	distributions	defined	by	Eq.	9 

(14b),	referred	to	as	mutation	contours.	Green	curves	indicate	constraint	curves	formed	10 

under	 mo = 0.	The	coordinate	transformation	is	defined	by	Eqs.	(2).	Parameters:	mn =11 

0.8,	mo = 0.1,	and	` = 0.6.	12 

	13 

Figure	3	14 

Illustrated	application	of	branching	 line	conditions	derived	 for	simply	distorted	 trait	15 

spaces	 in	 Section	 2.5.	 In	 eco-evolutionary	models	 defined	 on	 two-dimensional	 trait	16 

spaces	with	constraint	curves,	we	can	analyze	the	likelihood	of	evolutionary	branching	17 

not	 only	 when	 all	 mutants	 are	 completely	 restricted	 to	 the	 curves	 (complete	18 

constraints),	 but	 also	 when	 some	 mutants	 can	 slightly	 deviate	 from	 the	 curves	19 

(incomplete	constraints).	The	branching	line	conditions	can	be	applied	in	the	geodesic	20 

coordinates,	 obtained	 after	 coordinate	 rotation	 (from	 (a)	 to	 (b))	 and	 nonlinear	21 

coordinate	transformation	(from	(b)	to	(c)).	Red	closed	curves	are	mutation	contours	22 

defined	by	Eq.	 (14b).	Green	curves	 indicate	constraint	curves	 formed	under	 mo = 0	.	23 

The	thick	orange	line	is	an	evolutionary	branching	line	detected	by	the	branching	line	24 
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conditions.	 	1 

	2 

Figure	4	3 

Local	coordinate	normalization	for	arbitrarily	distorted	trait	spaces.	Black	ellipses	are	4 

mutation	 ellipses,	 defined	 by	 Eq.	 (14a).	 A	mutation	 ellipse	 indicates	 the	mutational	5 

standard	deviation	in	each	direction	from	a	parental	phenotype	located	at	its	center.	6 

	7 

Figure	5	8 Modes	of	local	distortion.	Each	of	(i-vi)	in	panel	(a)	shows	how	each	 ���~ 	 for	 �, �, � =9 

D, E	 contributes	to	local	distortion	of	a	trait	space	(only	the	focal	 ���~ 	 is	set	at	0.4,	while	10 

the	others	are	all	zero).	An	example	for	all	 ���~ s	being	nonzero	is	shown	in	(vii)	in	panel	11 

(a).	All	of	the	local	distortions	(i-vii)	are	canceled	by	coordinate	transformation	into	the	12 

geodesic	coordinates	(Eqs.	(11a))	as	shown	in	panel	(b).	13 

	14 

Figure	6	15 

Deviation	of	mutation	contour	from	mutation	ellipse	caused	by	nonlinear	coordinate	16 

transformation.	Black	ellipses	and	red	closed-curves	are	respectively	mutation	ellipses	17 

(Eq.	 (14a))	 and	 mutation	 contours	 (Eq.	 (14b)).	 The	 coordinate	 transformation	 is	18 defined	by	Eqs.	(11a).	Parameters:	mn = 0.8,	mo = 0.1,	and	���~ = 0	 for	all	�, �, � = D, E	19 

except	�nno = −0.6.	20 

	21 

Figure	7	22 

Local	coordinate	normalization	in	Example.	(a)	Original	coordinates	 B = (D, E)F.	 	 (b)	23 
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Non-distorted	 coordinates	 (Å, Æ)F	,	 nonlinear	 transformation	of	which	generates	 the	1 

original	coordinates.	(c)	Original	coordinates	after	rotation,	still	denoted	by	 B = (D, E)F.	2 

(d)	 Geodesic	 coordinates	 B] = (D], E])F	.	 Black	 dots	 indicate	 a	 focal	 point	 B^		 for	3 

examination	 of	 evolutionary	 branching	 conditions.	 Thick	 red	 and	 thin	 black	 ellipses	4 

respectively	indicate	mutation	contours	and	mutation	ellipses	(almost	identical	in	this	5 

figure).	 Green	 curves	 indicate	 constraint	 curves	 formed	 under	 mº = 0	.	 Parameters:	6 

m¹ = 0.2,	 mº = 0.03.	7 

	8 

Figure	8	9 

Ecological	assumption	for	predator-prey	relationship	in	Example.	10 

	11 

Figure	9	12 

Numerically	 calculated	 evolutionary	 trajectories	 in	 Example,	 without	 significant	13 

anisotropy	 in	mutation.	 From	each	of	 randomly	 chosen	25	 initial	phenotypes	 (small	14 

blue	 dots)	 within	 0 ≤ ¸ ≤ f/2		 and	 0.1 ≤ · ≤ 1.5	,	 evolutionary	 trajectories	 was	15 

calculated	 for	 10È		 generations,	 as	 a	 trait	 substitution	 sequence	 assuming	 asexual	16 

reproduction	 (blue	 curves)	 (see	 Appendix	 G	 for	 the	 simulation	 algorithm).	 White	17 

triangles	 bordered	 with	 black	 indicate	 the	 final	 resident	 phenotypes	 that	 have	 not	18 

brought	 about	 evolutionary	 branching.	 Neither	 evolutionary	 branching	 line	 (Section	19 

3.4)	nor	area	(Section	3.5)	was	found	(condition	(i)	in	the	branching	line	condition	is	20 

examined	by	 replacing	 “= O(mn)	”	with	 “> gmn	”	 in	 the	 right	hand	 side	of	Eq.	 (21a)).	21 

Parameters:	 D´ = 0.15	,	 E´ = √3D´	,	 ³^ = 1 × 10Ê	, 	m´ = 0.7	, 	m~ = 0.75	,	 	H = 1 ×22 

10iË	 (mutation	rate	per	birth	event),	and	 	m¹ = mº = 5 × 10i�.	23 

	24 
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Figure	10	1 

Comparison	 of	 evolutionary	 branching	 lines	 and	 areas	 with	 numerically	 calculated	2 

evolutionary	trajectories	in	Example,	with	significant	anisotropy	in	mutation.	In	panel	3 

(a),	 an	 evolutionary	 branching	 line	 (Section	 3.4)	 is	 indicated	 with	 a	 red	 line.	 An	4 

evolutionary	branching	area	(Section	3.5)	is	indicated	with	an	orange	area	bordered	by	5 

black	curve	(values	of	the	color	bar	indicate	the	values	for	 �	 in	Eqs.	(C.7)	in	Appendix	6 

C.5).	The	green	curves	indicate	constraint	curves	formed	under	 mº = 0.	Panel	(b)	shows	7 

50	 evolutionary	 trajectories	 numerically	 calculated	 as	 trait	 substitution	 sequences	8 

(blue	curves)	for	 10È	 generations	(Appendix	G),	with	initial	phenotypes	(small	blue	9 

dots)	 randomly	 chosen	 within	 0 ≤ ¸ ≤ f/2	 	 and	 0.1 ≤ · ≤ 1.5	 .	 White	 circles	10 

bordered	with	 red	 indicate	 occurrence	 of	 evolutionary	 branching	 there,	while	white	11 

triangles	 bordered	 with	 blue	 indicate	 the	 final	 resident	 phenotypes	 that	 have	 not	12 

brought	 about	 evolutionary	 branching.	 Panels	 (c-e)	 show	 an	 example	 evolutionary	13 

trajectory	(blue	curves).	The	 initial	state,	 first	branching,	and	the	state	at	 the	end	of	14 

simulation	are	indicated	with	the	blue	filled	circle,	white	circle	bordered	with	red,	white	15 

triangle	bordered	with	black,	respectively.	The	time	unit	in	panels	(d-e)	is	generation.	16 

Parameters:	 m¹ = 5 × 10i�	,	mº = 1 × 10iË	,	 and	other	parameters	are	 the	same	as	 in	17 

Fig.9.	18 	 	19 
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Appendix	A:	Mutation	distributions	in	original	coordinates	1 

A.1.	Simply	distorted	trait	space	2 

By	using	Eqs.	(3)	in	the	main	text,	the	mutation	distribution	 I(BG, B)	 can	be	expressed	3 

as	4 

I(BG, B) = Ie(B]G, B]) Ì¤B]′¤BGÌ
= 12fmnmo exp p− [D]G − D]]d2mnd − [E] G − E]]d2mod q Ì¤B]′¤BGÌ , (A. 1) 5 

where	 the	 expansion	 or	 diminishing	 rate	 of	 area	 element	 due	 to	 the	 coordinate	6 

transformation	is	described	by	 Í¤B]G¤BGÍ,	which	is	the	determinant	of	a	Jacobian	matrix	 ¤B]G¤BG.	7 

By	expressing	Eqs.	(2)	with	respect	to	mutant	 BG,	8 DG = D]G,
EG = E]G + 2̀ [D]G − D^]d, (A. 2) 9 

we	see	10 

¤B]′¤B′ = VÎ
WXD]′XD′ XD]′XE′XE]′XD′ XE]′XE′ZÏ

[ =
VÎ
WXD′XD]′ XD′XE]′XE′XD]′ XE′XE]′ZÏ

[−1
= k 1 0`D]′ 1l−1 = k 1 0−`D′ 1l , (A. 3)	11 

and	thus	12 

Ì¤B]′¤BGÌ = 1. (A. 4)	13 

In	addition,	from	Eqs.	(2)	we	see	14 D] = D,
E] = E − 2̀ [D − D^]d. (A. 5) 15 

Substituting	Eqs.	(A.4)	and	(A.5)	into	Eq.	(A.1)	gives	16 
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I(BG, B) = 12fmnmo expÐ− [DG − D]d2mnd − �EG − 2̀ [DG − D^]d − E + 2̀ [D − D^]d�d2mod Ñ . (A. 6) 1 

To	 see	 the	 deviation	 of	 I(BG, B)		 from	 Ie(B]G, B])	,	 we	 express	 �D = DG − D	,	 �E =2 

EG − E	 as	3 �D = �D],
�E = �E] − `[D] − D^]�D] − 2̀ �D]d. (A. 7) 4 

with	 �D] = D]G − D]	,	 and	 �E] = E] G − E]	.	 Note	 that	 (�D], �E])F = B]G − B]		 follows	 Ie(B]G, B])	,	5 

which	is	a	constant	Gaussian	distribution,	Eqs.	(3).	If	 mo	 has	a	similar	magnitude	to	 mn,	6 

i.e.,	both	of	 |�D]|		 and	 |�E]|		 are	expected	 to	be	of	order	 mnj	,	 then	 �D = �D]		 and	 �E ≃7 

�E]		 hold	 for	 a	 resident	 in	 the	 neighborhood	 of	 the	 focal	 point	 satisfying	 |D] − D^| =8 

O(mn).	In	this	case,	the	deviation	of	 I(BG, B)	 from	 Ie(B]G, B])	 is	negligible.	On	the	other	9 

hand,	 if	 mo	 is	much	smaller	 than	 mn	 so	 that	 mo = O(mnd),	 i.e.,	 |�E]| = O°mo² = O(mnd)	10 

is	expected,	then	 −`[D] − D^]�D] − sd �D]d	 is	not	negligible,	and	thus	 �E ≃ �E]	 does	not	11 

hold.	In	this	case,	the	deviation	of	 I(BG, B)	 from	 Ie(B]G, B])	 is	not	negligible,	even	under	12 

an	extremely	small	 mn.	13 

A.2.	Arbitrarily	distorted	trait	space	14 

For	an	arbitrarily	distorted	two-dimensional	trait	space,	from	Eqs.	(11)	we	express	the	15 

mutation	distribution	 I(BG, B)	 as	16 

I(BG, B) = Ie(B]G, B) Ì¤B]′¤BGÌ
≃ 12fg|Q(B^)| exp k12 [B]G − B]]FQ(B^)ij[B]G − B]]l Ì¤B]′¤BGÌ , (A. 8) 17 

where	 ¤B]G¤BU	 is	expressed	by	using	Eq.	(16)	as	18 
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¤B]′¤B′ = VÎ
WXD]′XD′ XD]′XE′XE]′XD′ XE]′XE′ZÏ

[ =
VÎ
WXD′XD]′ XD′XE]′XE′XD]′ XE′XE]′ZÏ

[−1
=  Ò − p(B]′ − B^)F¦n(B]′ − B^)F¦oq¢

ij . (A. 9)	1 

From	Eqs.	(16),	we	can	express	 B]G	 and	 B]	 as	2 

B]G = BG + 12p(BG − B^)F¦n(BG − B^)(BG − B^)F¦o(BG − B^)q + h. o. t. ,
B] = B + 12p(B − B^)F¦n(B − B^)(B − B^)F¦o(B − B^)q + h. o. t. , (A. 10)	3 

from	which	we	express	 xB] = B]′ − B]	 as	4 

xB] = xB + p(B − B^)F¦nxB(B − B^)F¦oxBq + 12 kxBF¦nxBxBF¦oxBl + h. o. t. (A. 11)	5 

with	 xB = B′ − B.	Substituting	Eqs.	(A.9)	and	(A.11)	into	Eq.	(A.8)	approximately	gives	6 

an	explicit	form	for	 I(BG, B),	which	is	used	for	plotting	mutation	contours	in	Fig.	7.	7 

To	 see	 the	 deviation	 of	 I(BG, B)		 from	 Ie(B]G, B])	,	 we	 express	 �D = DG − D	,	 �E =8 

EG − E	 as	9 

�D = �D] + (B − B^)F¦nxB + 12xBF¦nxB,�E = �E] + (B − B^)F¦oxB + 12xBF¦oxB, (A. 12)	10 

with	 �D] = D]G − D],	and	 �E] = E] G − E].	Then	analogously	to	Section	A.1	above,	if	 mo	 has	11 

a	similar	magnitude	to	 mn,	the	deviation	of	 I(BG, B)	 from	 Ie(B]G, B])	 is	negligible.	On	the	12 

other	 hand,	 if	 mo		 is	 much	 smaller	 than	 mn		 so	 that	 mo = O(mnd)	,	 the	 deviation	 of	13 

I(BG, B)	 from	 Ie(B]G, B])	 is	not	negligible,	even	under	an	extremely	small	 mn.	14 

	15 Appendix	 B:	 Quadratic	 approximation	 of	 invasion	 fitness	16 

functions	17 

Following	 Ito	 and	 Dieckmann	 (2014),	 we	 derive	 an	 approximate	 quadratic	 form	 of	18 
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L(B′, B),	as	 follows.	We	assume	 B^ = �	 without	 loss	of	generality.	We	expand	 L(B′, B)	1 

around	 B^ = �	 with	respect	to	 B′	 and	 B	 as	2 

L(BG, B) = SÓF BG + SÔFB + 12 �BGFzÓÓBG + BFzÔÔB + BFzÔÓBG + BGFzÓÔB� + h. o. t. , (B. 1a)	3 

with	4 SÓ = (LnU LoU), SÔ = (Ln Lo),
zÓÓ = pLnUnU LnUoULnUoU LoUoUq ,zÔÔ = pLnn LnoLno Looq ,
zÓÔ = pLnUn LnUoLoUn LoUoq ,zÔÓ = pLnnU LnoULonU LooUq = zÓÔF , (B. 1b)

	5 

where	the	subscripts	‘m’	and	‘r’	refer	to	mutants	and	residents,	respectively,	and	where	6 

L~ = XL(BG, B)/X�	 	 for	 � = DG, EG, D, E	 	 and	 L~� = XdL(BG, B)/X�X�	 	 for	 �, � =7 

DG, EG, D, E	 denote	the	first	and	second	derivatives	of	 L(BG, B),	respectively,	evaluated	at	8 

BG = B = B^	.	 Since	 L(B, B) = 0		 always	holds	 for	any	 B		 by	definition,	we	see	 from	Eq.	9 

(B.1a)	that	10 

L(B, B) = SÓF B + SÔFB + 12 [BFzÓÓB + BFzÔÔB + BFzÔÓB + BFzÓÔB] + h. o. t. = 0. (B. 2)	11 

Subtracting	Eq.	(B.2)	from	Eq.	(B.1a)	gives 12 

L(BG, B) = SÓF xB + 12 [xB + B]FzÓÓ[xB + B] − 12 BFzÓÓB+12 BFzÔÓxB + 12xBFzÓÔB + h. o. t.= SÓF xB + 12 [xBFzÓÓxB + BFzÓÓxB + xBFzÓÓB]+12 [BFzÔÓxB + xBFzÓÔB] + h. o. t. (B. 3)
	13 

with	 xB = BG − B	.	 By	 using	 xBFzÓÓB = [xBFzÓÓB]F = BFzÓÓF xB = BFzÓÓxB		 	 and	14 

xBFzÓÔB = [xBFzÓÔB]F = BFzÓÔF xB = BFzÔÓxB,	we	further	transform	Eq.	(B.3)	into	15 
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L(BG, B) = SÓF xB + 12xBFzÓÓxB + BFzÓÓxB + BFzÔÓxB + h. o. t.
= SÓF xB + 12xBFzÓÓxB + BF[zÓÓ + zÔÓ]xB + h. o. t. . (B. 4)	1 

Analogously,	for	 B^ ≠ �,	we	get 2 

L(BG, B) = SÓF xB + 12xBFzÓÓxB + [B − B^]F[zÓÓ + zÔÓ]xB + h. o. t.
= SFxB + 12xBFzxB + BFyxB + h. o. t. (B. 5)	3 

with	 S = SÓ,	 z = zÓÓ,	and	 y = zÓÓ +zÔÓ.	4 

	5 Appendix	 C:	 Branching	 line	 conditions	 and	 area	 conditions	 in	6 

arbitrarily	distorted	two-dimensional	trait	spaces	7 

C.1.	Preparation	8 

To	apply	the	original	branching	line	conditions	(Ito	and	Dieckmann,	2014)	to	a	distorted	9 

trait	space,	we	transform	the	geodesic	coordinates	 B]	 for	a	focal	point	 B^,	given	by	Eqs.	10 

(12c),	 (15)	 and	 (16),	 into	 new	 coordinates	 BÖ = (DÖ, EÖ)F	,	 so	 that	 the	 mutational	11 

covariance	becomes	 mnÒ,	i.e.,	the	mutation	is	isotropic	with	its	standard	deviation	 mn.	12 

Specifically,	we	define	coordinates	 BÖ = (DÖ, EÖ)F	 by	13 B] − B^ = ×Ø[BÖ − B^],
× = p1 00 ÙÚÙÛq , (C. 1)	 	 	14 

where	 Ø	 is	a	rotation	matrix	for	further	adjustment,	which	is	used	for	description	of	15 

the	original	branching	line	conditions	and	area	conditions.	Substituting	Eqs.	(C.1)	into	16 

the	geodesic	 invasion	fitness,	Eqs.	(18)	 in	 the	main	text,	gives	the	 invasion	 fitness	 in	17 

coordinates	 BÖ,	18 
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LÜ(BÖG	, BÖ) = SÖFxBÖ + [BÖ − B^]FyÝxBÖ + 12xBÖF	zÞxBÖ + h. o. t. (C. 2a)	1 

with	2 

SÖ = k{Ön{Öo	l = ØF×FS],		yÝ = p}Ünn }Üno}Üon }Üooq = ØF×Fy�×Ø,		zÞ = p|Þnn |Þno|Þno }Üooq = ØF×Fz�×Ø.		 (C. 2b)
	3 

According	to	Eqs.	(11b)	and	(11c)	in	the	geodesic-constant	mutation	assumption,	4 

the	 mutation	 distribution	 Iß(BÖG, BÖ)		 in	 coordinates	 BÖ		 can	 be	 approximated	 with	 a	5 

constant	isotropic	Gaussian	distribution	with	its	standard	deviation	 mn,	6 

Iß(BÖG, BÖ) ≃ 12fmnd exp p|BÖG − BÖ|d2mnd q (C. 3a)	7 

for	a	resident	 BÖ = (DÖ, EÖ)F	 satisfying	8 

|DÖ − D^| = O(mn), |EÖ − E^| = O(mn). (C. 3b)	9 

Thus,	 if	 the	 focal	 point	 B^		 satisfies	 the	 branching	 line	 conditions	 below	 (or	 the	10 

branching	 point	 conditions),	 we	 expect	 that	 evolutionary	 branching	 successfully	11 

proceed	 (from	 an	 initial	 resident	 BÖ		 satisfying	 |DÖ − D^| = O(mn)		 and	 	 |EÖ − E^| =12 

O(mn)),	as	long	as	distances	of	coexisting	residents	to	the	focal	point	 B^	 are	all	 O(mn),	13 

so	that	the	mutation	distributions	for	those	residents	still	can	be	approximated	with	a	14 

constant	and	isotropic	Gaussian	distribution	with	its	standard	deviation	 mn,	and	that	15 

the	quadratic	approximation	of	the	invasion	fitness	function	is	valid	(Ito	and	Dieckmann,	16 

2014).	17 

C.2.	Original	branching	line	conditions	18 

In	 coordinates	 BÖ		 defined	 in	 Eqs.	 (C.1),	 we	 describe	 the	 original	 branching	 line	19 
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conditions	(Ito	and	Dieckmann,	2014),	as	follows.	1 

Branching	 line	 conditions	 in	 arbitrarily	 distorted	 two-dimensional	 trait	 spaces	2 

(original)	3 

In an arbitrarily distorted two-dimensional trait space B = (D, E)F, there exists 4 

an evolutionary branching line containing a point B^ = (D^, E^)F , if B^ 5 

satisfies the following four conditions in the corresponding coordinates BÖ =6 

(DÖ, EÖ	)F given by Eqs. (C.1), (12c), and (16) (after rotation of coordinates B 7 

so that Eq. (15) holds), with an appropriate choice of Ø. 8 

(i) At B^ the sensitivity of LÜ(BÖG, BÖ	) to single mutational changes of BÖG and BÖ 9 

are significantly lower in EÖ than in DÖ, satisfying 10 �{Öo� + �}Üno� + �}Üno� + �}Üoo� + �|Þno� + �|Þoo�|{Ön| + �}Ünn� + �|Þnn� = O(mn). (C. 3a) 11 

(ii) B^ is evolutionarily singular along Dß, satisfying  12 

{Ön 	= 0. (C. 3b) 13 

(iii) B^ is convergence stable along Dß, satisfying  14 

}Ünn < 0. (C. 3c) 15 

(iv) B^ is sufficiently evolutionarily unstable (i.e., subject to sufficiently strong 16 

disruptive selection) along Dß, satisfying  17 mn|Þnn�{Öo� > √2. (C. 3d) 18 

 19 

Note	that	condition	(i)	allows	simplification	of	Eq.	(C.2a)	into	20 

LÜ(BÖG, BÖ) = {Ön�DÖ + {Öo�EÖ + }Ünn[DÖ − D^]�DÖ + 12|Þnn�DÖd + O(mn�) (C. 4)	21 

(Ito	and	Dieckmann,	2014).	22 
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C.3.	Simplified	branching	line	conditions	1 

When	 à = ÙÚÙÛ		 	 is	 very	 small	 so	 that	 mo = O(mnd)	,	 an	 appropriate	 Ø		 for	 the	 original	2 

branching	 line	 conditions	 is	 approximately	 given	 by	 Ò		 (Ito	 and	 Dieckmann,	 2014).	3 

Assuming	 Ø = Ò	 transforms	Eqs.	(C.2b)	into	4 

SÖ = k {]nà{]o	l , yÝ = p }tnn à}tnoà}ton àd}tooq ,zÞ = p |�nn à|�noà|�no àd|�ooq.		 (C. 5)	5 

Substituting	Eqs.	(C.5)	into	Eqs.	(C.3)	gives	the	simplified	branching	line	conditions	in	6 

Section	3.4.	  7 

C.4.	Original	branching	area	conditions	8 

In	 coordinates	 BÖ		 defined	 by	 Eqs.	 (C.1),	 we	 can	 apply	 the	 original	 branching	 area	9 

conditions	(Ito	and	Dieckmann,	2012),	as	described	below.	10 

Branching	 area	 conditions	 in	 arbitrarily	 distorted	 two-dimensional	 trait	 spaces	11 

(original)	12 

In an arbitrarily distorted two-dimensional trait space B = (D, E)F, there exists 13 

an evolutionary branching area containing a point B^ , if B^  satisfies the 14 

following two conditions in the corresponding coordinates BÖ = (DÖ, EÖ	)F given 15 

by Eqs. (C.1), (12c), and (16) (after rotation of coordinates B so that Eq. (15) 16 

holds), where Ø is chosen so that |Þnn > |Þoo and |Þno = 0 hold.  17 

(i) B^ satisfies 18 

}Ünn < 0 (C. 6a) 19 

  (i.e., convergence stable along DÖ when {Ön = 0). 20 

(ii) B^ satisfies 21 mn|Þnng2{Önd + {Öod 	> √2�	 (C. 6b) 22 

  (i.e., sufficiently evolutionarily unstable along DÖ when {Ön = 0). 23 
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 1 

The	 �	 is	a	positive	constant	to	prevent	condition	(ii)	from	being	too	conservative.	2 

Since	 � = jË	 has	shown	a	good	prediction	performance	in	Ito	and	Dieckmann	(2012),	 	3 

� = jË	 is	used	in	this	paper	as	well.	4 

C.5.	Simplified	branching	area	conditions	5 When	 mo ≪ mn	 holds,	 Ø	 for	attaining	 |Þnn > |Þoo	 and	 |Þno = 0	 in	the	branching	area	6 

conditions	above	is	approximately	given	by	 Ò.	Then	 Ø = Ò	 transforms	Eqs.	(C.2b)	into	7 

Eqs.	 (C.5).	 Substituting	Eqs.	 (C.5)	 into	Eqs.	 (C.6)	gives	 the	 simplified	branching	area	8 

conditions,	as	described	below.	9 

Branching	 area	 conditions	 in	 arbitrarily	 distorted	 two-dimensional	 trait	 spaces	10 

(simplified):	11 

In an arbitrary distorted two-dimensional trait space B = (D, E)F, there exists 12 

an evolutionary branching area containing a point B^ , if B^  satisfies the 13 

following two conditions in the corresponding geodesic coordinates B] =14 

(D], E]	)F given by Eqs. (12c), and (16) (after rotation of coordinates B so that 15 

Eq. (15) holds), under mo ≪ mn. 16 

(i) B^ satisfies 17 

}tnn = }nn + �nn < 0 (C. 7a) 18 

(i.e., convergence stable along D] when {n = 0). 19 

(ii) B^ satisfies 20 mnd|�nng2mnd{]nd + mod{]od = mnd[|nn + �nn]g2mnd{nd + mod{od 	> √2�	 (C. 7b) 21 

(i.e., sufficiently evolutionarily unstable along D] when {n = 0), where � = jË. 22 
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	1 

Under	 mo ≪ mn	,	 Eq.(C.7b)	 requires	 |{n|		 to	 be	 very	 small,	 while	 �{o�		 is	 not	2 

needed	 to	 be	 very	 small,	 which	 allows	 �nn = {n�nnn + {o�nno 	 	 to	 be	 non-small.	3 

Therefore,	analogously	to	the	case	of	branching	lines,	distortion	of	a	trait	space	affects	4 

the	branching	area	conditions	when	 mo ≪ mn.	5 

	6 Appendix	D:	Evolutionary	branching	conditions	in	distorted	trait	7 

spaces	of	arbitrary	higher	dimensions	8 

We	derive	conditions	for	evolutionary	branching	points,	lines,	and	areas	in	an	arbitrarily	9 

distorted	 trait	space	 B = (Dj, … , Dâ)F	 of	an	arbitrary	dimension	 ã	 with	 ã ≥ 2.	The	10 

derivation	and	the	obtained	result	are	analogous	to	the	two-dimensional	case	(Section	11 

3	in	the	main	text	and	Appendix	C).	12 

D.1.	Assumption	for	mutation	13 We	generalize	 the	 geodesic-constant-mutation	 assumption	 for	 two-dimensional	 trait	14 

spaces	(Section	3.1)	as	follows.	15 

Geodesic-constant-mutation	assumption	(for	a	trait	space	of	an	arbitrary	dimension):	16 

For an arbitrary point B^ = °D^,j, … , D^,â²F in an arbitrarily distorted trait space 17 

B = (Dj, … , Dâ)F, there exist coordinates B] = (D]j, … , D]â)F defined by 18 

B = B] − 12Ð(B] − B^)
F¦j(B] − B^)⋮(B] − B^)F¦â(B] − B^)Ñ	, (D. 1a)	19 

with an appropriately chosen symmetric matrices ¦j ,…,	¦â , such that the 20 

mutation distribution in coordinates B] can be approximated with a constant 21 

ã-variate Gaussian distribution, 22 

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted October 8, 2019. ; https://doi.org/10.1101/794966doi: bioRxiv preprint 

https://doi.org/10.1101/794966


49 
 

Ie(B]G, B]) ≃ 1°√2f²âg|Q(B^)| exp k−12 [B]G − B]]FQ(B^)ij[B]G − B]]l , (D. 1b)	1 

for a resident B] in the neighborhood of B^, satisfying 2 

��ªF[B] − B^]� = O(mª) (D. 1c)	3 

for all å = 1,… ,ã , with a sufficiently small mj, … , mâ , where Q(B^)  has 4 

eigenvalues mjd, … , mâd  with the corresponding eigenvectors �j, … , �â , 5 

respectively, and mj ≥ ⋯ ≥ mâ ≥ 0 is assumed without loss of generality. 6 

 7 

The	 mutational	 covariance	 Q(B)		 is	 an	 ã × ã		 symmetric	 and	 positive	 definite	8 

matrix	9 

Q(B) = §�jj(B) ⋯ �jâ(B)⋮ ⋱ ⋮�âj(B) ⋯ �ââ(B)¨.		 (D. 2). 10 

For	a	given	 Q(B),	we	choose	 ¦ª	 for	 å = 1,… ,ã	 as	11 

¦ª = Ð�jjª ⋯ �jâª⋮ ⋱ ⋮�âjª ⋯ �ââª Ñ ,
�±Áª = 12¯Vªç(B^)��±çÁ + �Áç± − �±Áç �â

ç\j ,
Ð�jjª ⋯ �jâª⋮ ⋱ ⋮�âjª ⋯ �ââª Ñ =  ∂Q(B)ièXDª	 ¢B\B£ , (D. 3)

 12 

so	 that	 Q(B)ij		 has	 no	 linear	 dependency	 on	 B]		 at	 the	 focal	 point	 B^		 (in	 order	 to	13 

satisfy	Eq.	(D.1b)).	In	differential	geometry,	 �±Áª 	 are	called	the	Christoffel	symbols	of	14 

the	second	kind	at	 B^	 in	the	original	coordinates	 B	 with	respect	to	the	metric	 Q(B)ij.	15 

D.2.	Quadratic	approximation	of	invasion	fitness	functions	16 

To	 reduce	 complexity	 of	 the	 expressions	 in	 the	 subsequent	 analysis,	without	 loss	 of	17 

generality	we	 assume	 that	 coordinates	 B		 are	 first	 rotated	 so	 that	 Q(B^)		 become	 a	18 
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diagonal	matrix	expressed	as	1 

Q(B^) = Ðmjd ⋯ 0⋮ ⋱ ⋮0 ⋯ mâdÑ , (D. 5) 2 

and	then	the	geodesic	coordinates	 B]	 are	obtained	from	Eqs.	(D.1-3).	Then,	in	the	same	3 

manner	with	Eqs.	(5)	in	the	main	text,	we	expand	 L(BG, B)	 around	the	focal	point	 B^	 as	4 

L(BG, B) = SFxB + [B − B^]FyxB + 12xBFzxB	 + h. o. t. , (D. 6a)	5 

with	 xB = BG − B	 and	6 

S = §{j⋮{â¨ = ∇BUL(B^, B^),
y = §}jj ⋯ }jâ⋮ ⋱ ⋮}âj ⋯ }ââ¨ = z + ∇B∇BUF L(B^, B^),
z = §|jj ⋯ |jâ⋮ ⋱ ⋮|âj ⋯ |ââ¨ = ∇BU∇BUF L(B^, B^). (D. 6b)

	7 

Substitution	 of	 Eq.	 (D.1a)	 into	 Eqs.	 (D.6)	 gives	 the	 invasion	 fitness	 function	 in	 the	8 

geodesic	coordinates,	9 

Lt(B]G, B]) = S]FxB] + [B] − B^]Fy�xB] + 12xB]Fz�xB] + h. o. t. (D. 7a) 10 

with	 xB] = B]G − B]	 and	11 
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S] = §{]j⋮{â¨ = S,
y� = Ð}tjj ⋯ }tjâ⋮ ⋱ ⋮}tâj ⋯ }tââÑ = y + �,
z� = Ð|�jj ⋯ |�jâ⋮ ⋱ ⋮|�âj ⋯ |�ââÑ = z +�,
� = −¯{ª¦ªâ

ª\j . (D. 7b).

 1 

D.3.	Conditions	for	evolutionary	branching	points	2 In	 trait	 spaces	 of	 dimensions	 higher	 than	 two,	 it	 has	 not	 been	 formally	 proved	 yet	3 

whether	points	that	are	strongly	convergence	stable	and	evolutionarily	unstable	ensure	4 

high	 likelihoods	 of	 evolutionary	 branching	 (but	 see	 Geritz	 et	 al.,	 2016).	 Thus,	 such	5 

points	are	called	candidate	branching	points	(Ito	and	Sasaki,	2016).	The	conditions	for	6 

the	focal	point	 B^	 being	a	candidate	evolutionary	branching	point	(Ito	and	Dieckmann,	7 

2014;	Geritz	et	al.,	2016;	Ito	and	Sasaki,	2016)	are	described	as	follows.	8 

Candidate-branching-point	conditions	in	distorted	 é-dimensional	trait	spaces:	9 

In an arbitrarily distorted é-dimensional trait space B = (Dj, … , Dâ)F, a point 10 

B^ = °D^,j, … , D^,â²F  is a candidate-branching-point, if B^  satisfies the 11 

following three conditions in the corresponding geodesic coordinates B] =12 

(D]j, … , D]â)F given by Eqs. (D.1-3) (after rotation of coordinates B so that Eq. 13 

(D.5) holds). 14 

(i) B^ is evolutionarily singular, satisfying 15 

S] = S = �. (D. 8a) 16 

(ii)	B^ is strongly convergence stable, i.e., the symmetric part of 17 
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y� = y + � (D. 8b) 1 

is negative definite. 2 

(iii) B^ is evolutionarily unstable, i.e., a symmetric matrix 3 

z� = z + � (D. 8c) 4 

has at least one positive eigenvalue.  5 

	6 

Since	 condition	 (i)	 S] = �		 requires	 � = −∑ {ª¦ªâª\j = �	,	we	 see	 y� = y		 and	 z� = z	.	7 

Thus,	 analogously	 to	 the	 two-dimensional	 case	 in	 the	 main	 text,	 the	 candidate-8 

branching-point	conditions	are	not	affected	by	the	distortion	in	trait	spaces	of	arbitrary	9 

higher-dimensions.	10 

D.4.	Conditions	for	candidate-branching-surfaces	11 It	 has	 not	 been	 formally	 proved	 yet	 whether	 the	 higher-dimensional	 extension	 of	12 

branching	 line	 conditions	 (Ito	 and	 Dieckmann,	 2014)	 ensures	 high	 likelihoods	 of	13 

evolutionary	 branching.	 In	 this	 sense,	 we	 refer	 to	 the	 extended	 branching	 line	14 

conditions	as	the	“candidate-branching-surface	conditions.”	If	we	can	find	an	integer	 ë	15 

with	 1 ≤ ë < ã		 such	 that	 mì ≫ mìîj		 (i.e.,	 mìîj, … , mâ		 are	 all	 significantly	 smaller	16 

than	 mj, … , mì	 ),	 then	 we	 can	 simplify	 the	 original	 candidate-branching-surface	17 

conditions	(Ito	and	Dieckmann	2014),	in	a	manner	analogous	to	the	two-dimensional	18 

case	(Appendix	C).	Consequently,	we	get	 the	Candidate-branching-surface	conditions	19 

for	distorted	trait	spaces	of	arbitrary	dimensions,	described	below.	20 

Candidate-branching-surface	 conditions	 in	 distorted	 trait	 spaces	 of	 arbitrary	21 

dimensions	(simplified):	22 

In an arbitrarily distorted ã -dimensional trait space B = (Dj, … , Dâ)F , there 23 

exists an (ã − ë) -dimensional candidate-branching-surface containing a 24 
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point B^ , if B^  satisfies the following four conditions in the corresponding 1 

geodesic coordinates B] given by Eqs. (D.1-3) (after rotation of coordinates B 2 

so that Eq. (D.5) holds). 3 

(i) At B^ the sensitivity of Lt(B]G, B]) to single mutational changes of B]G and B] 4 

is significantly lower in a subspace ï] = (E]ìîj, … , E]â)F = (D]ìîj, … , D]â)F than 5 

in ð] = (D]j, … , D]ì)F, satisfying 6 m±mj ��{]±� + �}tª±� + �}t±ª� + �|�ª±�� + m±dmjd ��}t±±� + �|�±±��|{]ª| + �}tªª� + �|�ªª� = O(mj), (D. 9a) 7 

for all å = 1,… , ë and ñ = ë + 1,… ,ã, so that the normalized invasion fitness 8 

function can be simplified into 9 

Lt(B]G, B]) = S] ðFxð] + S] ïFxï] + [ð] − ð^]Fy�ððxð] + 12xð]Fz� ððxð] + O(mj�), (D. 9b)	10 

with ð^ = °D^,j, … , D^,ì	²F and 11 

S] ð = §{]j⋮{]ì¨ , S] ï = §{]ìîj⋮{]â ¨ ,
y�ðð = Ð}tjj ⋯ }tjì⋮ ⋱ ⋮}tìj ⋯ }tììÑ ,z� ðð = Ð|�jj ⋯ |�jì⋮ ⋱ ⋮|�ìj ⋯ |�ììÑ . (D. 9c)

	12 

(ii) B^ is evolutionarily singular in subspace ð], satisfying  13 

S] ð = Sð = �. (D. 9d) 14 

(iii) B^ is strongly convergence stable in subspace ð], i.e., the symmetric part 15 

of 16 

y�ðð = yðð + �ðð (D. 9e) 17 

is negative definite, where 18 
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�ðð = −¯{ª¦ððªâ
ª\j ,

¦ððª = Ð�jjª ⋯ �jìª⋮ ⋱ ⋮�ìjª ⋯ �ììª Ñ . (D. 9f)
 1 

(iii) B^  is sufficiently evolutionarily unstable (corresponding to disruptive 2 

selection) in subspace ð], satisfying  3 λÓró°×ðz� ðð×ð²�×ïS] ï� = λÓró(×ð[zðð + �ðð]×ð)�×ïS] ï� 	> √2. (D. 9g) 4 

where ×ð  and ×ï  are diagonal matrices with their diagonal components 5 

mj, … , mì  and mìîj, … , mâ , respectively, and λÓró()  gives the maximum 6 

eigenvalue of its argument matrix. 7 

	8 

Note	 that	 even	 when	 condition	 (ii),	 Sð = ({j, … , {ì	)F = �	 ,	 is	 satisfied,	 Sï =9 

({ìîj, … , {â	)F		 can	make	 �ðð = −∑ {±¦ððªâ±\ìîj 		 non-zero.	Therefore,	 analogously	 to	10 

the	 two-dimensional	 case	 (Section	 3.4	 and	 Appendix	 C.4),	 the	 candidate-branching-11 

surface	conditions	are	affected	by	the	distortion.	12 

When	 the	 subspace	 ð]		 is	 one-dimensional	 ( ë = 1	),	 the	 candidate-branching-13 

surface	 conditions	 are	 proved	 to	 ensure	 evolutionary	 branching	 in	 the	 maximum	14 

likelihood	invasion-event	paths	(Ito	and	Dieckmann,	2014).	But	for	other	cases	(ë > 1),	15 

those	 conditions	 only	 give	 candidates,	 which	 do	 not	 ensure	 high	 likelihoods	 for	16 

evolutionary	branching.	 	17 

When	 mì ≫ mìîj		 is	 satisfied,	 all	 possible	mutants	 are	 almost	 restricted	 to	 ï] =18 

ï^ = °E^,ìîj, … , E^,â²F	,	 which	 upon	 substituting	 into	 Eq.	 (D.1a)	 gives	 an	 (ã − ë)	-19 

dimensional	constraint	surface	expressed	in	coordinates	 B,	20 
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ï = ï^ − 12Ð[ð − ð^]
F¦ððìîj[ð − ð^]⋮[ð − ð^]F¦ððâ [ð − ð^] Ñ + h. o. t. . (D. 10a) 1 

If	 mìîj, … , mâ	 are	all	zero,	then	the	candidate-branching-surface	conditions	(Eqs.	2 

(D.9))	 become	 identical	 to	 the	 conditions	 for	 candidate-branching-points	 along	 a	3 

constraint	surface	locally	described	in	the	form	of	Eq.	(D.10a),	derived	by	Ito	and	Sasaki	4 

(2016).	Specifically,	we	describe	the	constraint	surface,	Eq.	(D.10a),	as	5 

ℎ±(B) = E± − E^,± + 12 [ð − ð^]F¦ðð± [ð − ð^] + h. o. t. = 0. (D. 10b) 6 

for	 ñ = ë + 1,… , ã,	and	define	a	Lagrange	invasion	fitness	7 

õ(BG; B; ö) = L(BG; B) − ¯ ÷±�ℎ±(BG) − ℎ±(B)�â
±\ìîj . (D. 10c) 8 

Then	by	Theorem	2	in	Ito	and	Sasaki	(2016),	we	get	 ö = (÷ìîj, … , ÷¬)F = Sï,	and	find	9 

the	fitness	gradient	 Sø,	fitness	gradient	variability	 yø,	and	fitness	curvature	 zø	 along	10 

the	constraint	surface	at	the	focal	point	 B^	 as	11 Sø = ùFS = Sð = S] ð,
yø = ùF[∇BU∇BUF õ(B^, B^; ö) + ∇B∇BUF õ(B^, B^; ö)]ù = yðð − ¯ {±¬

±\ìîj ¦ðð± ,
zø = ùF∇BU∇BUF õ(B^, B^; ö)ù = zðð − ¯ {±¬

±\ìîj ¦ðð± , (D. 11d)
 12 

where	 ù = (új, … , úì) = k Òì,ì�âiì,âiìl	 consists	of	the	orthogonal	base	vectors	 új, … , úì	13 

of	 the	 tangent	 plane	 of	 the	 surface	 at	 B^	,	 with	 Òì,ì		 an	 ë × ë		 identity	 matrix	 and	14 

�âiì,âiì	 	 an 	(ã − ë) × (ã − ë)	 	 zero	 matrix.	 Thus,	 when	 Eq.	 (D9d),	 Sð =15 

({j, … , {ì)F = �	,	 holds,	 yø = y�ðð		 and	 zø = z� ðð		 both	 hold.	 Therefore,	 the	 above	16 

candidate-branching	 surface	 conditions	 under	 mìîj, … , mâ	=0	 are	 identical	 to	 the	17 

branching	point	 conditions	along	 	 (ã − ë)	-dimensional	 constraint	 surfaces	 (Ito	and	18 

Sasaki,	2016).	19 
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D.5.	Branching	area	conditions	1 

The	branching	area	conditions	have	not	been	developed	for	trait	spaces	of	dimensions	2 

higher	 than	 two.	 Here	 we	 heuristically	 extend	 the	 simplified	 candidate-branching-3 

surface	conditions	in	Appendix	D.4	into	the	simplified	branching	area	conditions,	in	a	4 

manner	analogous	 to	 the	 two-dimensional	 case.	 Specifically,	we	propose	 the	higher-5 

dimensional	simplified	branching	area	conditions	as	follows.	6 

Branching	area	conditions	in	distorted	trait	spaces	of	arbitrary	dimensions	(simplified)	7 

In an arbitrarily distorted é -dimensional trait space B = (Dj, … , Dâ)F , there 8 

exists an evolutionary branching area containing a point B^, if B^ satisfies 9 

the following two conditions in the corresponding geodesic coordinates B] 10 

given by Eqs. (D.1-3) (after rotation of coordinates B so that Eq. (D.5) holds), 11 

under mj, … , mì ≫ mìîj, … , mâ. 12 

(i) The symmetric part of 13 

y�ðð = yðð + �ðð (D. 11a) 14 

is negative definite (i.e., B^  is strongly convergence stable in subspace ð] 15 

when Sð = �). 16 

(ii)	 B^	 satisfies 17 λÓró°×ðz� ðð×ð²û2|×ðS] ð|d + �×ïS] ï�d =
λÓró(×ð[zðð + �ðð]×ð)û2|×ðSð|d + �×ïSï�d 	> √2� (D. 11b) 18 

with � = jË  (i.e., B^  is sufficiently evolutionarily unstable in subspace ð] 19 

when Sð = � ), where ×ð  and ×ï  are diagonal matrices with its diagonal 20 

components mj, … , mì  and mìîj, … , mâ , respectively, and λÓró()  gives the 21 

maximum eigenvalue of its argument matrix. 22 

 23 
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Under	 mj, … , mì ≫ mìîj, … , mâ	,	 i.e.,	 λÓró(×ð) ≫ λÓró(×ï)	,	 Eq.(D.11b)	 requires	1 

|Sð| = |({j, … , {ì	)F|	 to	be	very	small,	while	 �Sï� = |({ìîj, … , {â	)F|	 is	not	needed	to	2 

be	 very	 small,	 which	 allows	 �ðð = ∑ {±¦ððªì±\j + ∑ {±¦ððªâ±\ìîj 	 	 to	 be	 non-small.	3 

Therefore,	 analogously	 to	 the	 two-dimensional	 case	 in	 Appendix	 C.5,	 the	 distortion	4 

affects	the	branching	area	conditions	under	 mj, … , mì ≫ mìîj, … , mâ,	 in	distorted	trait	5 

spaces	of	arbitrary	dimensions.	6 

	7 Appendix	 E:	 Describing	 directional	 evolution	 in	 geodesic	8 

coordinates	9 

When	the	mutation	distribution	non-negligibly	deviates	from	the	Gaussian	distribution,	10 

the	canonical	equation	for	directional	evolution,	Eqs.	(1)	in	the	main	text,	may	not	be	11 

warranted	(Dieckmann	and	Law,	1996).	In	this	case,	if	the	geodesic-constant-mutation	12 

assumption	(Section	3.1	and	Appendix	D.1,	for	two-	and	the	higher-dimensional	trait	13 

spaces,	 respectively)	 holds	 good,	 the	 canonical	 equation	 described	 in	 the	 geodesic	14 

coordinates	is	still	warranted.	15 

Specifically,	 in	 a	 trait	 space	 B = (Dj, … , Dâ)F		 of	 an	 arbitrary	 dimension	 ã	,	 we	16 

assume	a	directionally	evolving	population	with	a	resident	phenotype	 B.	Even	when	the	17 

mutation	distribution	 I(B′, B)		 cannot	 be	 approximated	with	 an	 ã	-variate	Gaussian	18 

distribution,	 the	 geodesic	 coordinates	 for	 the	 focal	 point	 B^		 chosen	 at	 the	 resident	19 

phenotype	 B	 allows	the	approximation,	if	the	geodesic-constant-mutation	assumption	20 

holds.	In	this	case,	in	the	same	manner	with	Eqs.	(1)	,	we	can	describe	the	directional	21 

evolution	in	the	geodesic	coordinates	 B]	 as	22 dB]d® = 12HOPQ(B^)S](B^), (E. 1a)	23 
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with	1 

B = B] − 12p(B] − B^)F¦n(B] − B^)(B] − B^)F¦o(B] − B^)q , (E. 1b) 2 

where	 S](B^)	 is	the	fitness	gradient	in	coordinates	 B].	For	 B] = B^,	we	see	that	3 dB]d® = dBd® ,
S](B^) =

VÎ
WXLt(B]G, B])XD]GXLt(B]G, B])XE]G ZÏ

[
B]U\B]\B£

= VW
XL(BG, B)XDGXL(BG, B)XEG Z[BU\B\B£

= S(B^), (E. 2)	4 

which	upon	substitution	into	Eq.	(E.1a)	gives	5 dBd® = 12HOPQ(B^)S(B^). (E. 3)	6 

Replacing	 B^	 with	 B	 gives	7 dBd® = 12HOPQ(B)S(B). (E. 4)	8 

Eq.	(E.4)	is	the	same	with	Eq.	(1a)	in	the	main	text	except	that	 QR(B)	 is	replaced	with	9 

Q(B)	.	 Note	 that	 differentiation	 of	 Eq.	 (E.4)	 is	 not	 warranted.	 Thus,	 for	 numerical	10 

simulation	by	differentiation,	Eq.	(E.1)	is	better	than	Eq.	(E.4).	11 

	12 Appendix	F:	Analysis	of	evolutionary	branching	in	Example	13 

In	 the	main	 text,	 the	 original	 coordinates	 B		 are	 first	 rotated	 so	 that	 its	mutational	14 

covariance	at	the	focal	point	becomes	diagonal,	and	then	the	rotated	coordinates	are	15 

denoted	by	 B	 again.	To	avoid	confusion,	only	in	this	section	we	distinguish	the	original	16 

coordinates	before	the	rotation	and	after	the	rotation,	by	calling	the	former	the	“original	17 

coordinates”,	 denoted	 by	 B̅ = (D̅, Eý)F	,	 and	 calling	 the	 latter	 the	 “rotated	 original	18 

coordinates”,	denoted	by	 B = (D, E)F.	19 
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F.1.	Mutational	covariance	1 

In	coordinates	 þ = (¸, ·)F,	the	mutational	covariance	is	given	by	a	constant	diagonal	2 

matrix	3 

Qþ = pm¹d 00 mºdq . (F. 1) 4 

Since	 Qþij		can	be	 treated	as	 a	metric	 for	 coordinates	 þ	,	we	describe	 the	mutational	5 

square	distance	from	 þ	 to	 þ + ¤þ	 with	infinitesimal	 ¤þ = (d¸, d·)F	 as	6 

d¥d = ¤þFQþij¤þ. (F. 2) 7 

By	taking	the	first	derivative	of	Eqs.	(26)	in	the	main	text,	8 D̅ = ·sin¸,
Eý = ·cos¸, (F. 3) 9 

we	express	an	infinitesimally	small	 ¤B̅ = (dD̅, dEý)F	 as	10 

¤B̅ = kdD̅dEýl = ½XD̅X¸ XD̅X·XEýX¸ XEýX·¾u
d¸d·v = u ·cos¸ sin¸−·sin¸ cos¸v ud¸d·v , (F. 4) 11 

which	gives	12 

¤þ = ud¸d·v = u ·cos¸ sin¸−·sin¸ cos¸vij ¤B̅ = u·ij cos ¸ −·ij sin ¸sin ¸ cos ¸ v¤B̅
= u·ij 00 1v¼(¸)F¤B̅,

¼(¸) = u cos ¸ sin ¸− sin ¸ cos ¸v . (F. 5)
 13 

Substituting	Eq.	(F.5)	into	Eq.	(F.2)	gives	14 

d¥d = ¤B̅F¼(¸) p·idm¹id 00 mºidq¼(¸)F¤B̅
= ¤B̅FQ�(B̅)ij¤B̅, (F. 6) 15 

which	gives	the	mutational	metric	in	the	original	coordinates,	16 
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Q�(B̅)ij = ¼(¸) p·idm¹id 00 mºidq¼(¸)F. (F. 7) 1 

Next,	we	rotate	the	original	coordinates	 B̅	 about	the	focal	point	 B̅^ = (D̅^, Eý^)F =2 

(·̂ sin ¸^ , ·̂ cos ¸^)F	 into	the	rotate	original	coordinates	 B = (D, E)F	 by	3 

B̅ − B̅^ = ¼(¸^)[B − B̅^] (F. 8)	4 

with	a	rotation	matrix	 ¼(¸^).	Eq.	(F.8)	gives	 ¤B̅ = ¼(¸^)¤B,	and	substituting	it	into	Eq.	5 

(F.6)	gives	6 

d¥d = ¤BF¼(¸^)F¼(¸) p·idm¹id 00 mºidq¼(¸)F¼(¸^)¤B= ¤BF¼(¸ − ¸^) p·idm¹id 00 mºidq¼(¸ − ¸^)F¤B, (F. 9) 7 

from	which	we	get	the	mutational	metric	in	the	rotated	original	coordinates,	8 Q(B)ij = ¼(�)�(·)¼(�)F,
�(·) = p·idm¹id 00 mºidq ,
¼(�) = k cos� sin�−sin� cos�l , (F. 10)

 9 

where	 � = ¸ − ¸^,	and	 Q(B̅^)	 is	given	by	10 

Q(B̅^) = �(·̂ )ij = p·̂dm¹d 00 mºdq = pmnd 00 modq . (F. 11) 11 

For	convenience,	we	express	 B − B̅^	 in	terms	of	 ·	 and	 � = ¸ − ¸^,	as	12 

B − B̅^ = ¼(¸^)F[B̅ − B̅^] = kcos ¸^ −sin ¸^sin ¸^ cos ¸^ l ¿u·sin¸·cos¸v − k·̂ sin¸^·̂ cos¸^lÀ
= · ksin¸ cos ¸^ − cos¸ sin ¸^sin¸sin ¸^ + cos¸cos¸^ l − k0·̂ l
= · ksin�cos�l − k0·̂ l (F. 12)

	13 

Note	that	the	focal	point	 B̅^ = (D̅^, Eý^)F	 corresponds	to	 (�, ·)F = (�^, ·̂ )F	 with	 �^ =14 

0.	15 
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F.2.	Distortion	matrices	1 

By	using	Eq.	(F.10),	we	express	the	first	derivative	of	the	mutational	metric	 Q(B)ij	 as	2 

 XQ(B)ijXD ¢B\B̅£ =  X¼(�)XD �(·)¼(�)F + ¼(�)�(·) X¼(�)FXD + ¼(�) X�(·)XD ¼(�)F¢B\B̅£
=  X¼(�)XD ¢B\B̅£ �(·̂ ) + �(·̂ )  X¼(�)XD ¢B\B̅£

F +  X�(·)XD ¢B\B̅£ (F. 13a) 3 

and	4 

 XQ(B)ijXE ¢B\B̅£ =  X¼(�)XE �(·)¼(�)F + ¼(�)�(·) X¼(�)FXE + ¼(�) X�(·)XE ¼(�)F¢B\B̅£
=  X¼(�)XE ¢B\B̅£ �(·̂ ) + �(·̂ )  X¼(�)XE ¢B\B̅£

F +  X�(·)XE ¢B\B̅£ . (F. 13b) 5 

From	Eqs.	(F.12)	we	see	6 

VÎ
WX�XD X�XEX·XD X·XEZÏ

[ =
VÎ
WXDX� XDX·XEX� XEX·ZÏ

[ij
= k ·cos� sin�−·sin� cos�lij

= k·ijcos� −·ijsin�sin� cos� l (F. 14)
	7 

and	thus	8 

 X¼(�)XD ¢B\B̅£ =  X¼(�)X� X�XD + X¼(�)X· X·XD¢B\B̅£ = ·̂ij u 0 1−1 0v ,
 X¼(�)XE ¢B\B̅£ =  X¼(�)X� X�XE + X¼(�)X· X·XE¢B\B̅£ = u0 00 0v , (F. 15a)

 9 

and	10 

 X�(·)XD ¢B\B̅£ =  X�(·)X� X�XD + X�(·)X· X·XD¢B\B̅£ = u0 00 0v ,
 X�(·)XE ¢B\B̅£ =  X�(·)X� X�XE + X�(·)X· X·XE¢B\B̅£ =  X�(·)X· ¢B\B̅£ = k−2·̂i�m¹id 00 0l . (F. 15b)

 11 
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Substituting	Eqs.	(F.15)	into	Eqs.	(F.13)	gives	1 

 XQ(B)ijXD ¢B\B̅£ =  X¼(�)XD ¢B\B̅£ �(·̂ ) + �(·̂ )  X¼(�)XD ¢B\B̅£
F

= p 0 ·̂ijmºid − ·̂i�m¹id·̂ijmºid − ·̂i�m¹id 0 q = p�nnn �non�non �oon q ,
 XQ(B)ijXE ¢B\B̅£ =  X�(·)XE ¢B\B̅£ = k−2·̂i�m¹id 00 0l = p�nno �noo�noo �ooo q . (F. 16)

 2 

Finally,	substituting	Eqs.	(F.11)	and	(F.16)	into	Eqs.	(16)	in	the	main	text,	we	get	3 

�nnn = mnd2 �nnn = 0,						�non = mnd2 �nno = −·̂ij, �oon = mnd2 �2�noo − �oon � = 0, (F. 17a) 4 

and	5 

�nno = mºd2 �2�non − �nno � = mºd[·̂ijmºid − ·̂i�m¹id] + mºd·̂i�m¹id = ·̂ij,
�noo = mºd2 �oon = 0, �ooo = mºd2 �ooo = 0. (F. 17b) 6 

F.3.	Geodesic	invasion	fitness	function	7 

In	the	original	coordinates	before	rotation,	 B̅ = (D̅, Eý)F,	we	express	the	invasion	fitness	8 

function	(Eq.	(25)	in	the	main	text)	as	9 

L(̅B̅G, B̅) = 1 − �(B̅G − B̅)³(B̅)³(B̅G) , (F. 18)	10 

and	expand	it	around	the	focal	point	 B̅^	 as	11 

L(̅B̅G, B̅) = SýFxB̅ + [B̅ − B̅^]FyýxB̅ + 12xB̅Fz�xB̅ + h. o. t. , (F. 19a)	12 

with	 xB̅ = B̅G − B̅		 and	13 

Sý = k{̅n{̅ol = ∇B̅UL(̅B̅^, B̅^) =
VÎ
WXL(̅B̅G, B̅)XD̅GXL(̅B̅G, B̅)XEýG ZÏ

[
B̅U\B̅\B̅£

= − 1md́ kD̅^ − D´Eý^ − E´l (F. 19b)	14 
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z� = p|�nn |�no|�no |�ooq = ∇B̅U∇B̅UF L(̅B̅^, B̅^) =
VÎ
WXdL(̅B̅G, B̅)XD̅Gd XdL(̅B̅G, B̅)XD̅GXEýGXdL(̅B̅G, B̅)XD̅GXEýG XdL(̅B̅G, B̅)XEýGd ZÏ

[
BU\B̅\B̅£=   1m~d − 1md́¢ u1 00 1v − SýSýF, (F. 19c)

	1 

yý = p}̅nn }̅no}̅on }̅ooq = z� + ∇B̅∇B̅UF L(̅B̅^, B̅^)

= z� +
VÎ
WXdL(̅B̅G, B̅)XD̅XD̅G XdL(̅B̅G, B̅)XD̅XEýGXdL(̅B̅G, B̅)XEýXD̅G XdL(̅B̅G, B̅)XEýXEýG ZÏ

[
BU\B̅\B̅£

= − 1md́ u1 00 1v . (F. 19d)	2 

Substituting	Eq.	(F.8)	into	Eqs.	(F.19)	gives	the	invasion	fitness	in	the	rotated	original	3 

coordinates	 B,	4 

L(BG, B) = SFxB + [B − B̅^]FyxB + 12xBFzxB	 + h. o. t. , (F. 20a)	5 

with	6 

S = u{n{ov = ¼(¸^)FSý = 1·̂ 	kEý^ −D̅^D̅^ Eý^	 l  − 1md́ kD̅^ − D´Eý^ − E´l¢= − 1md́·̂ 	 k E´D̅^ − D´Eý^·̂d − D´D̅^ − E´Eý^	l ,
y = k}nn }no}on }ool = ¼(¸^)Fyý¼(¸^) = yý = − 1md́ u1 00 1v ,
z = k|nn |no|no |ool = ¼(¸^)Fz�¼(¸^) = z� − ¼(¸^)FSýSýF¼(¸^)
=   1m~d − 1md́¢ u1 00 1v − SSF (F. 20b)

	7 

and	8 

� = −{n¦n − {o¦o = ·̂ij k−{o {n{n 0 l . (F. 20c)	9 

In	addition,	Eq.	(F.11)	gives	10 
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mn = ·̂ m¹ ,
mo = mº . (F. 20d)	1 

F.4.	Evolutionary	branching	points	2 

Since	 the	branching	point	 conditions	 are	not	 affected	by	 the	distortion,	 as	 shown	 in	3 

Section	3.3,	we	can	directly	examine	those	conditions	in	the	original	coordinates	 B̅	 (or	4 

in	the	rotated	original	coordinates	 B,	equivalently),	by	using	Eqs.	(F.19).	Condition	(i)	5 

(for	evolutionary	singularity),	 Sý = S = �,	gives	a	unique	evolutionarily	singular	point	6 

B̅^ = B´ = (D´ , E´)F.	At	the	point,	we	see	7 

yý = y = − 1md́ u1 00 1v , z� = z = p 1m~d − 1md́q u1 00 1v . (F. 21)	8 

Thus,	condition	(ii)	(for	strong	convergence	stability)	is	always	satisfied.	Condition	(iii)	9 

(for	evolutionary	instability)	is	satisfied	if	and	only	if	 m~ < m´ .	Therefore,	a	necessary	10 

and	sufficient	 condition	 for	existence	of	 an	evolutionary	branching	point	 is	 given	by	11 

m~ < m´ .	12 

F.5.	Evolutionary	branching	lines	13 

We	 apply	 the	 simplified	 branching	 line	 conditions	 described	 in	 Section	 3.4,	 by	14 

substituting	Eqs.	(F.20)	into	Eqs.	(21)	in	the	main	text.	For	simplicity,	we	assume	that	15 

mo = mº		 is	 much	 smaller	 than	 mn = ·̂ m¹	,	 so	 that	 condition	 (i)	 is	 satisfied.	 Then	16 

condition	(ii)	(for	evolutionarily	singular	line)	is	given	by	17 

{]n = {n = − 1md́·̂ [E´D̅^ − D´Eý^] = 0, (F. 22)	18 

which	forms	a	line	19 

kD̅^Eý^	l = ½D´ ·̂·́E´ ·̂·́ ¾ (F. 23)	20 
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with	 ·́ = gDd́ + Éd	 and	a	positive	parameter	 ·̂ .	From	Eqs.	(F.20)	and	(F.23)	we	see	1 

{]o = {o = − 1md́ [·̂ − ·́ ],
}tnn = }nn + �nn = − 1md́ + �nn,
|�nn = |nn + �nn =   1m~d − 1md́¢ + �nn,�nn = −·̂ij{o = 1md́ ¿1 − ·́·̂ À . (F. 24)

	2 

Thus,	condition	(ii)	(for	convergence	stability	along	 D])	is	expressed	as	3 

}tnn = − 1md́ + �nn = − ·́md́·̂ < 0, (E. 25) 4 

which	 is	 always	 satisfied	 because	 ·̂ > 0	.	 Condition	 (iv)	 (for	 sufficient	 disruptive	5 

selection	along	 D])	is	expressed	as	6 

m]nd|�nnm]o�{]o� =
m¹d·̂d ¿k 1m~d − 1md́l + �nnÀmº �·̂ − ·Ámd́ �

= m¹d·̂d ¿md́m~d − ·́·̂ Àmº|·̂ − ·Á| > √2. (F. 26) 7 

F.6.	Meaning	of	geodesic	invasion	fitness	8 

Here	we	show	that	the	geodesic	invasion	fitness	function	for	a	focal	point	describes	the	9 

invasion	fitness	function	in	the	undistorted	coordinates	 þ = (·, ¸)F	 up	to	the	second	10 

order	terms.	11 

Substituting	Eqs.	(24)	and	(26)	 into	Eq.	(25),	we	express	the	 invasion	fitness	 in	12 

coordinates	 þ = (·, ¸)F	 as	13 

Lþ(þG, þ) = exp p·Gd + ·d − 2·G· cos(¸G − ¸)2m~d q
× expp−·Gd − ·d − 2·G·́ cos(¸G − ¸´) + 2··́ cos(¸ − ¸´)2md́ q , (F. 27)	14 

which	 is	expanded	around	 the	point	 þ^ = (¸^, ·̂ )F		 corresponding	 to	 the	 focal	point	 	15 
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B̅^ = (·̂ sin ¸^ , ·̂ cos ¸^)F	 as	1 

Lþ(þG, þ) = SþFxþ + [þ − þ^]Fyþxþ + 12xþFzþxþ	 + h. o. t. , (F. 28a)	2 

with	3 

Sþ = − 1md́ k ·̂ ·́ sin(¸^ − ¸´)·̂ − ·Á cos(¸^ − ¸´)l ,
yþ = − 1md́ k·̂ ·́ cos(¸^ − ¸´) ·Á sin(¸^ − ¸´)·Á sin(¸^ − ¸´) 1 l , (F. 29b)	4 

and	5 

zþ = k|¹¹ |¹º|¹º |ººl ,
|¹¹ = ·dm~d −  ·̂ ·́ sin(¸^ − ¸´)md́ ¢d − ·̂ ·́ cos(¸^ − ¸´)md́ ,
|ºº = 1m~d − 1md́ −  ·̂ − ·́ cos(¸^ − ¸´)md́ ¢d ,
|¹º = −·̂  ·́ sin(¸^ − ¸´)md́ ¢  ·̂ − ·́ cos(¸^ − ¸´)md́ ¢ − ·́ sin(¸^ − ¸´)md́ . (F. 29c)

	6 

On	the	other	hand,	we	can	express	the	geodesic	invasion	fitness	(from	Eqs.	(18)	with	7 

Eqs.	(F.20))	as	8 

Lt(B]G, B]) = S]FxB] + [B] − B̅^]Fy�xB] + 12xB]F	z�xB] + h. o. t. (F. 30a)	9 

with	10 

S] = �FSþ, y� = �Fyþ�,								z� = �Fzþ�,
� = k·̂ij 00 1l . (F. 30b),	11 

Note	 that	 the	coordinates	 þ = (·, ¸)F		 has	a	globally	 constant	mutational	 covariance	12 

pm¹d 00 mºdq	,	 while	 the	 geodesic	 coordinates	 B] = (D], E])F	 	 have	 a	 locally	 constant	13 
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mutational	covariance	 p·̂dm¹d 00 mºdq	 around	the	focal	point	 B̅^.	Thus,	we	scale	 D]	 of	the	1 

geodesic	coordinates	by	 ·̂ij	 (and	shift	 B̅^	 to	 þ^),	by	introducing	new	coordinates	2 

� = u��v = �[B] − B̅^] + þ^, (F. 31)	3 

to	 attain	 the	 same	 covariance	 matrix	 pm¹d 00 mºdq		 with	 that	 of	 the	 coordinates	 þ =4 

(·, ¸)F.	Then	we	get	the	scaled	geodesic	invasion	fitness,	5 

L�(�G,�) = Lt(�ij[�G − þ^] + B̅^,�ij[�− þ^] + B̅^)
= Sþ¤�+ [�− þ^]Fyþx�+ 12x�Fzþx�	 + h. o. t. . (F. 32)	6 

Note	 that	 Eq.	 (F.32)	 is	 identical	 to	 Eq.	 (28a).	 Therefore,	 the	 scaled	 geodesic	 fitness	7 

function	 L�(�G,�)		 describes	 the	 invasion	 fitness	 function	 Lþ(þG, þ)		 in	 the	 non-8 

distorted	 coordinates	 þ = (·, ¸)F		 up	 to	 the	 second	 order	 terms.	 Since	 all	 of	 the	9 

conditions	for	evolutionary	branching	points,	lines,	and	areas	in	this	paper	concern	only	10 

the	first	and	second	order	derivatives	of	invasion	fitness	functions,	application	of	those	11 

conditions	in	the	coordinates	 þ = (·, ¸)F	 give	identical	results	to	those	in	the	scaled	12 

geodesic	 coordinates	 � = (�,�)F	,	 which	 are	 also	 identical	 to	 those	 in	 the	 geodesic	13 

coordinates	 B] = (D], E])F	,	 because	 a	 linear	 coordinate	 transformation	 does	 not	 affect	14 

those	conditions.	15 

	16 Appendix	G:	Simulation	algorithm	for	evolutionary	dynamics	17 

This	study	conducts	numerical	simulation	of	evolutionary	dynamics	in	Example	as	trait	18 

substitution	sequences	based	on	the	oligomorphic	stochastic	model	defined	by	Ito	and	19 

Dieckmann	(2014).	The	oligomorphic	stochastic	model	in	Ito	and	Dieckmann	(2014)	is	20 
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the	 same	 with	 the	 algorithm	 described	 in	 Ito	 and	 Dieckmann	 (2007),	 except	 that	1 

population	 dynamics	 after	 each	 mutant	 invasion	 is	 directly	 calculated	 in	 Ito	 and	2 

Dieckmann	(2014).	The algorithm of the oligomorphic stochastic model used in this study 3 

is listed below.	4 

0. [Initial	setting]	Set	initial	 		 phenotypes	 Bj, … , B¬	 at	time	 ® = 0	 (This	study	uses	5 

	 = 1	 ,	 corresponding	 to	 an	 initially	 monomorphic	 community).	 Calculate	6 

equilibrium	 population	 densities	 
� = (OPj, … , OP¬)		 at	 which	 dOÁ	/ 	d® = 0		 for	 all	7 

� = 1,… ,	.	Define	the	extinction	threshold	 
.	8 

1. [Mutant	emergence]	Choose	resident	 å	 with	probability	 	�ª/	�,	where	 �Á = HOPÁ	9 

is	the	emergence	rate	of	a	mutant	from	resident	 BÁ,	with	 H	 the	mutation	rate	per	10 

unit	population	density	per	one	generation,	and	 � = ∑ �Á¬Á\j .	Choose	a	mutant	 BªG	11 

according	to	the	mutation	distribution	 I(BªG, Bª).	12 

2. [Time	 updating]	 Update	 time	 ®		 by	 adding	 Δ® = − j
� ln �	,	 where	 0 < � ≤ 1		 is	 a	13 

uniformly	distributed	random	number.	14 

3. [Mutant	invasion]	Choose	a	uniformly	distributed	random	number	 0 < � ≤ 1.	If	 �	15 

is	 smaller	 than	 the	 invasion	 fitness	 	L(BªG; Bj, … , B¬)		 of	 the	mutant	 phenotype	 BªG	16 

against	 residents	 Bj, … , B¬		 at	 
� = (OPj, … , OP¬)	,	 proceed	 to	 Step	 4.	 Otherwise,	17 

return	to	Step	1.	18 

4. [Population	dynamics	triggered	by	mutant	invasion]	Increase	 		 by	1	and	set	 B¬ =19 

BªG.	Calculate	equilibrium	population	densities	from	population	dynamics	with	initial	20 

population	densities	 (Oj, … , O¬ij, O¬) = (OPj, … , OP¬ij, �
)		 with	a	 constant	 � ≥ 1	.	21 

In	 the	 course	of	 these	population	dynamics,	delete	phenotypes	 BÁ		 with	 	OÁ < 
	,	22 

and	decrease	 		 accordingly.	23 
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5. Continue	with	Step	1.	1 

	2 

Note	that	the	time	taking	for	population	dynamics	triggered	by	a	mutant	invasion	3 

to	reach	the	next	equilibrium	(Step	4)	is	assumed	to	be	negligible	in	comparison	with	4 

waiting	times	for	invading	mutants	(Step	2).	The	above	algorithm	is	slightly	simplified	5 

from	Ito	and	Dieckmann	(2014),	by	assuming	that	the	birth	rate	per	unit	population	6 

density	per	unite	time	is	equal	to	1.	7 

For	the	numerical	simulation	in	Example,	the	two	parameters	 
	 and	 �	 are	set	at	8 


 = 1 × 10ij		 and	 � = 10�	.	 Occurrence	 of	 evolutionary	 branching	 are	 treated	 as	9 

emergence	 of	 polymorphic	 residents	 with	 the	 maximum	 distance	 among	 them	10 

exceeding	 15 ×	m¹	 along	 ¸.	11 

	12 
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Figure 1 (Ito and Sasaki)
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Figure 2 (Ito and Sasaki)
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s = (x, y)T s̃ = (x̃, ỹ)T
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Figure 3 (Ito and Sasaki)
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Figure 4 (Ito and Sasaki)
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Figure 5 (Ito and Sasaki)
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Figure 6 (Ito and Sasaki)
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Figure 7 (Ito and Sasaki)
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Figure 8 (Ito and Sasaki)
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Figure 9 (Ito and Sasaki)
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Figure 10 (Ito and Sasaki)
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