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Abstract Approaches for computing small molecule binding free energies based on molecular simula-
tions are now regularly being employed by academic and industry practitioners to study receptor-ligand

systems and prioritize the synthesis of small molecules for ligand design. Given the variety of methods

and implementations available, it is natural to ask how the convergence rates and final predictions of

these methods compare. In this study we describe the concept and results for the SAMPL6 SAMPLing

challenge, the first challenge from the SAMPL series focusing on the assessment of convergence properties

and reproducibility of binding free energy methodologies. We provided parameter files, partial charges,

and multiple initial geometries for two octa-acid (OA) and one cucurbit[8]uril (CB8) host-guest systems.

Participants submitted binding free energy predictions as a function of the number of force and energy

evaluations for seven different alchemical and physical-pathway (i.e., potential of mean force and weighted

ensemble of trajectories) methodologies implemented with the GROMACS, AMBER, NAMD, or OpenMM

simulation engines. To rank the methods, we developed an efficiency statistic based on bias and variance

of the free energy estimates. For the two small OA binders, the free energy estimates computed with

alchemical and potential of mean force approaches show relatively similar variance and bias as a function of

the number of energy/force evaluations, with the attach-pull-release (APR), GROMACS expanded ensemble,

and NAMD double decoupling submissions obtaining the greatest efficiency. The differences between

the methods increase when analyzing the CB8-quinine system, where both the guest size and correlation
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times for system dynamics are greater. For this system, nonequilibrium switching (GROMACS/NS-DS/SB)

obtained the overall highest efficiency. Surprisingly, the results suggest that specifying force field parameters

and partial charges is insufficient to generally ensure reproducibility, and we observe differences between

seemingly converged predictions ranging approximately from 0.3 to 1.0 kcal/mol, even with almost identical

simulations parameters and system setup (e.g., Lennard-Jones cutoff, ionic composition). Further work will

be required to completely identify the exact source of these discrepancies. Among the conclusions emerging

from the data, we found that Hamiltonian replica exchange—while displaying very small variance—can be

affected by a slowly-decaying bias that depends on the initial population of the replicas, that bidirectional

estimators are significantly more efficient than unidirectional estimators for nonequilibrium free energy

calculations for systems considered, and that the Berendsen barostat introduces non-negligible artifacts in

expanded ensemble simulations.

1 Introduction
Predicting the binding free energy between a receptor and a ligand has attracted a great deal of attention

due to its potential to speed up small-molecule drug discovery [1]. Among the methodologies that have been

developed to carry out this task, physics-based methods employing classical force fields are starting to be

routinely used in drug development projects and demonstrate success in real lead optimization scenarios [2–

5]. In principle, these technologies have the advantage of treating both entropic and enthalpic contributions

to the free energy of binding rigorously. However, the applicability domain of thesemodels is currently limited

to a narrow portion of the accessible chemical space for small molecules, and well-behaved protein-ligand

systems that do not undergo significant conformational changes or solvent displacement on timescales

larger than a few tens of nanoseconds [6, 7]. For this reason, much work has been directed at benchmarking

and improving both the predictive accuracy and efficiency of these computational protocols [8–11].

1.1 Characterizing finite-time convergence properties of free energy methods is critical
for progress

While achieving high-accuracy quantitative affinity predictions is one of the primary goals in free energy

methods development, the computational cost of a method is a critical factor that enters the decision-making

process both in academia and industry. To achieve maximum impact in drug discovery, methods should

achieve high-confidence predictions on a timescale sufficiently short to inform synthetic decisions—ideally

within a span of a few hours [2, 6, 7]. The origin of the inefficiencies in free energy methods lies in the

statistical estimation of the theoretical binding free energy, ΔG� , which cannot be evaluated analytically.

Once the thermodynamic parameters (e.g., temperature, pressure) are specified, the model of the system

(e.g., force field, charge model, protonation states, ion concentrations) and the definition of the binding

site completely determine ΔG� through the associated ratio of partition functions [12]. In principle, when

implemented correctly, there are many different methodologies that should converge to the true binding

free energy for a model in the limit of infinite computing time. However, with finite resources, the output of

a method is a statistical estimate of the free energy, a random variable ΔG
calc

= ΔG� + �, which is an estimate
of ΔG� up to an error � that generally depends on the method itself and the computational cost invested in
the calculation. The error distribution determines the standard deviation of ΔG

calc
(i.e. std(ΔG

calc
) = std(�))

and its bias, which is defined as E[ΔG
calc
] − ΔG� = E[�] where the expected value is intended over multiple

independent executions of the method of the same computational cost. Determining which methods are

capable of most rapidly reducing the error is thus critical to enable not only prospective studies in drug

discovery, but also to carry out meaningful benchmarks and optimize molecular models (such as force fields)

with useful turnaround times. For example, significant systematic bias might result in a worse protocol

obtaining greater accuracy to experiments if the bias compensates for the model error even if the variance

of the estimate is very small. Moreover, a protocol might be varied to see which settings produce the most

accurate results based on estimates erroneously judged as converged.

2 of 43

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted October 7, 2019. ; https://doi.org/10.1101/795005doi: bioRxiv preprint 

https://doi.org/10.1101/795005
http://creativecommons.org/licenses/by/4.0/


Preprint ahead of submission — October 5, 2019

1.2 Multiple sources contribute to the error of the estimate
Assuming a method is exact and correctly implemented, the major source of statistical error is arguably

due to the sampling strategy adopted by the method. The rough potential energy hypersurface of complex

systems is usually explored through Markov chain Monte Carlo techniques (e.g. thermostatted molecular

dynamics and Metropolis Monte Carlo) that can experience slow Markov chain mixing behavior due to the

difficulty in overcoming large energetic barriers separating free energy basins. As a consequence, short

simulations (where for proteins, short can still be 100s of ns) can miss entire areas of configurational space

that contribute significantly to the partition functions, or have insufficient time to produce fully uncorrelated

samples that accurately reflects the relative populations of the two basins, thus introducing systematic bias

into the calculation. Enhanced sampling strategies such as metadynamics [13, 14], replica exchange [15–17],

and expanded ensemble [18] methodologies are designed to increase the sampling efficiency along one

or a few collective variables (CV), although their effectiveness strongly depends on the choice of the CV.

Moreover, even in the limit of infinite sampling, common non-Metropolized sampling strategies such as Verlet

integration and Langevin dynamics can introduce systematic bias due to the integration error. While the

magnitude of this bias has not been studied extensively in free energy calculations of host-guest or protein-

ligand systems, it was shown to be significant in simple systems depending on the size of time step, and

choice of integrator [19, 20]. Finally, different free energy estimators (e.g., EXP, BAR, MBAR, thermodynamic

integration) each have different degrees of bias and statistical efficiency for finite-size samples, which will

have an impact on the statistical error of the resulting estimate even if applied to the same sampled data [21].

While many estimators are provably asymptotically unbiased and consistent, these behaviors break down for

finite sample sizes, and their bias and variance decay differently as a function of the number of independent

samples [21].

1.3 Comparing the efficiency of methods requires eliminating confounding factors
Any simulation parameter altering the potential energy landscape can complicate the comparison of two

methods. Firstly, any change affecting energy barriers between metastable states can impact the correlation

times and convergence rates of methods. Secondly, changing the potential energy of the system used to

simulate the bound and unbound states means changing the theoretical free energy ΔG� , which makes it

harder to detect systematic biases introduced by the methodologies. There are several examples in the

literature noting differences in binding free energy predictions between different methods, but in which it

was impossible to determine whether this was due to other differences in the model or system preparation,

insufficient sampling, or shortcomings of the methodology [22–25]. Consequently, it is important to test

the methods on the same set of molecular systems, using the same model. Comparing methods on the

same systems is of particular importance as changing system generally means changing the potential

landscape significantly, even in cases where the molecules are similar. Moreover, using the same model

requires specifying force field parameters and partial charges, but also other components of the simulation,

such as ion concentrations and the treatment of long-range interactions (e.g. PME, reaction field, Lennard-

Jones cutoff, dispersion correction). Treating long-range interactions equivalently is particularly challenging

because different software packages typically make implementation decisions with the goal of increased

performance, and available options such as supported cutoff algorithms and options, the functional form of

switching functions, or even the value of the Coulomb constant may differ for various reasons [26, 27]. As a

consequence, it may be necessary to compromise to establish simulation settings that minimize obvious

differences. Such precautions do not prevent systematic bias due to sampling issues, but they make it

possible to detect it by comparing calculations performed with independent methods and/or starting from

different initial configurations.

Comparing multiple independent methods currently requires substantial pooled technical expertise

and coordination as well as significant computational resources. For example, confidently estimating the

bias necessitates very long simulations and consensus between methods. Moreover, in the absence of a

reliable strategy for uncertainty estimation, multiple independent replicates are vital for a correct ranking of

performance of different methods. The task is thus not trivial to carry out without collaborations between

multiple groups. Previous work investigating the reproducibility of relative alchemical hydration free energy
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calculations across four molecular packages uncovered various issues and challenges in comparing across

simulation packages and resulted in various bug fixes [27]. However, the reproducibility and efficiencies

of various simulation-based approaches has not yet been evaluated in the context of binding free energy

calculations, which is the focus of this work.

1.4 We need robust general strategies to measure the efficiency of binding free energy
calculations

While there are generally established ways of measuring the accuracy of free energy calculation protocols

with respect to experimental measurements, there is no consensus or standard practice regarding how

to measure the efficiency of a method. A typical study focusing on accuracy of free energy calculations—

including the traditional rounds of the SAMPL host-guest binding free energy challenge—proceeds thusly:

One or more free energy protocols is run on a set of molecular systems, and the protocols are ranked

using commonly adopted correlation and error statistics describing how well experimental affinities are

predicted (e.g. R2, MUE, and RMSE) [22, 23, 28–31]. On the other hand, the efficiency of sampling strategies

in the context of free energy calculations has been evaluated in many different ways in the past. In some

cases, one or more system-specific collective variables associated with a slow degree of freedom can be

directly inspected to verify thorough sampling [24, 32, 33]. This strategy requires extensive knowledge of

the system and is not generally applicable to arbitrary receptor-ligand systems. Moreover, free energy

calculations commonly involve simulating the same system in multiple intermediate states—which are not

always physical intermediates—that do not necessarily have the same kinetic properties.

Commonly, quantitative comparisons of performance are based on the standard deviation of the free

energy estimates after roughly the same computational cost [34–37]. This approach, however, has a few

deficiencies. The statistic does not quantify the bias (i.e. E[ΔG
calc
] − ΔG�), which is, in general, not negligible.

In principle, one can test the methods on a set of molecules composed of quickly converging systems, or the

calculations can be run for a very long time in order to increase our confidence in the assumption that the

bias has decayed to zero. However, neither of these two scenarios necessarily reflect the performance of

the method in a real lead optimization project, which ordinarily involves complex receptor-ligand systems

with long correlation times and simulations of a few nanoseconds per intermediate state. Alternatively,

other statistics such as acceptance rate and mean first-passage time have been reported [36–38], but these

statistics are method-specific, and not necessarily indicative of the error of the free energy estimate.

Another common strategy to assess the efficiency of a method is the visual inspection of the decay of

some error metric [39, 40], but this qualitative analysis is not scalable nor statistically quantifiable when

the number of methods and systems considered increases, and it becomes ambiguous if the relative

performance of two methods is system-dependent. Finally, there is a large body of theoretical work focusing

on the efficiency of estimators and protocols in free energy calculations [21, 34, 37, 39, 41, 42], but in many

cases, they are difficult to apply to practical scenarios. The results rely on the assumption of independent

samples and often focus on the asymptotic regime, both of which are conditions that may not apply in

practical scenarios.

1.5 Objectives of the SAMPL6 SAMPLing challenge
In this work, we present the design and the results of the first round of the community-wide SAMPLing
challenge. Our goal is to establish a statistical inference framework for the quantitative comparison of the
convergence rates of modern free energy methods on a host-guest benchmark set. Moreover, we assess the

level of agreement that can be reached by different methods and software packages when provided identical

charges, force field parameters, systems, input geometries, and (when possible) simulation parameters.

These objectives are distinct from the goal of the traditional SAMPL host-guest accuracy binding challenge,

which instead focuses on the prediction of experimental values and ignores the computational cost of

methods. Contrary to the accuracy challenge, which accepted data from widely different methods such as

docking [43], QM [44] and QM/MM [45, 46] calculations, or movable type [47, 48] predictions, we limited the

scope of this first round of the challenge to force field-based methodologies that should provide identical
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free energy estimates. With this first round, we lay the groundwork for future SAMPLing challenges and

publish a protocol that can be used by independent studies that are similar in scope.

2 Challenge design
2.1 Selection of the three host-guest systems
The host-guest systems used here are drawn from from the SAMPL6 host-guest binding challenge [23]. We

selected 5-hexenoic acid (OA-G3) and 4-methylpentanoic acid (OA-G6) as guest molecules of the octa-acid

host (OA), and quinine (CB8-G3) for the cucurbit[8]uril (CB8) host (Figure 1). The three guests that were
chosen for the challenge include molecules resembling typical druglike small molecules (i.e. CB8-G3) and

fragments thereof (i.e OA-G3/G6). Quinine was an obvious choice for the former category as it is currently

recommended as the second-line treatment for malaria by the World Health Organization [49]. Originally,

two octa-acid guests with very similar structures were purposely included to make them easily amenable to

relative free energy calculations. However, we did not receive any submission utilizing relative free energy

calculations.

Both supramolecular hosts have been extensively described in the literature [8, 50–53] and featured in

previous rounds of the host-guest binding SAMPL challenge [22, 54, 55]. From the perspective of assessment

of binding free energy methodologies, host-guest systems serve as attractive alternatives to protein-ligand

systems as they generally do not undergo large conformational reorganizations and have limited number

of atoms, which helps the exploration of larger timescales and reducing the uncertainty of the binding

affinity estimates. At the same time, this class of systems provides several well-understood challenges

for standard simulation techniques. Hosts in the cucurbituril and octa-acid families have been found

to bind ions and undergo wetting/dewetting processes governed by timescales on the order of a few

nanoseconds [56, 57]. Moreover, the symmetry of CB8 and OA results in multiple equivalent (and often

kinetically-separated) binding modes that have to be sampled appropriately or accounted for by applying

a correction term [58]. Finally, ligands with net charges can introduce artifacts in alchemical free energy

calculations when Ewald methods are used to model long-range electrostatic interactions. There are several

approaches for eliminating these errors, but disagreements about the optimal strategy persist [59–62].

2.2 Challenge overview
As illustrated in Figure 1, we asked the participants to run five replicate free energy calculations for each of the
three host-guest systems using predetermined force field and simulation parameters and starting from five

different conformations that we made available in a GitHub repository (https://github.com/samplchallenges/

SAMPL6/tree/master/host_guest/SAMPLing) in the form of input files compatible with common molecular

simulation packages (i.e., AMBER, CHARMM, DESMOND, GROMACS, LAMMPS, and OpenMM). Participants

were asked to submit binding free energy estimates and, optionally, associated uncertainty estimates as

a function of the computational cost of their methodologies. More specifically, the submitted data was

required to report 100 free energy estimates computed at regular intervals using the first 1%, . . . , 100% of

the samples, which was defined as the amount of samples collected after 1%, . . . , 100% of the combined

total number of force and energy evaluations performed for the calculation.

To rank the performance of methods, we used a measure of efficiency developed in this work based on

estimates of bias and uncertainty of the predictions obtained from the replicate data (see the Results section

for details). To facilitate the analysis, participants were asked to run the same number of force and energy

evaluations for all the five replicate calculations of the same system, although the total number of force

and energy evaluations could be different for different systems and different methods. Besides the total

number of force and energy evaluations, the submissions included also wall-clock time and, optionally, total

CPU/GPU time for each replicate as measures of the computational cost. However, due to the significant

differences in the hardware employed to run the simulations, this information was not considered for the

purpose of comparing the performance of different methods.
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Figure 1. Challenge overview and initial conformations of the host-guest systems featured in the SAMPLing
challenge. The three-dimensional structures of the two hosts (i.e. CB8 and OA) are shown with carbon atoms represented
in black, oxygens in red, nitrogens in blue, and hydrogens in white. Both the two-dimensional chemical structures of the

guest molecules and the three-dimensional structures of the hosts entering the SAMPLing challenge are shown in the

protonation state used for the molecular simulations. We generated five different initial conformations for each of the

three host-guest pairs through docking, followed by a short equilibration with Langevin dynamics. The three-dimensional

structure overlays of the five conformations for CB8-G3, OA-G3, and OA-G6 are shown from left to right in the figure with

the guests’ carbon atoms colored by conformation. Participants used the resulting input files to run their methods in five

replicates and submitted the free energy trajectories as a function of the computational cost. We analyzed the submissions

in terms of uncertainty of the mean binding free energy ΔG estimate and its bias with respect to the asymptotic free
energy ΔG� .
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2.3 File preparation and information available to participants
The protocol used to prepare the input files is described in the Detailed Methods section. Briefly, for

each host-guest system, five different binding poses were selected among the top-scoring predictions of

OpenEye’s FRED docking facility [63, 64]. We then parametrized the systems with AM1-BCC charges [65, 66]

and GAFF [67] after solvation in TIP3P [68] water molecules with Na+ and Cl- ions added to neutralize the

host-guest net charge and reach a 150 mM ionic strength for CB8 and 60 mM for OA-G3/G6. Finally, we

relaxed each replicate with 1 ns of Langevin dynamics. The input files for different simulation programs

were generated and validated with InterMol [26] to demonstrate they gave the equivalent energies for the

different programs, and uploaded to the public GitHub repository together with details on the setup protocol

and general instructions about the challenge (https://github.com/samplchallenges/SAMPL6/blob/master/

SAMPLing_instructions.md). The instructions also included the recommended values for the simulation

parameters known to affect the theoretical binding free energy (e.g., temperature, pressure, Lennard-Jones

cutoff, Particle Mesh Ewald settings) in order to minimize factors that could confound the analysis of

systematic differences in free energy predictions between methods.

2.4 Timeline and organization
Initially, the SAMPL6 SAMPLing Challenge was designed as a blind challenge with deadline Jan 19, 2018. This

round included data for the methods referred to below as OpenMM/HREX, GROMACS/EE, OpenMM/SOMD,

and OpenMM/REVO. However, OpenMM/SOMD and OpenMM/REVO submissions were affected by two

trivial bugs in the calculation setup and the analysis respectively that were corrected after the deadline.

Moreover, initial disagreement between OpenMM/HREX and GROMACS/EE, which were originally designated

to serve as reference calculations to determine eventual systematic biases arising from methodological

issues, prompted us to perform additional calculations. For these reasons, and to further increase the

opportunities for learning, we elected to extend the study to more methodologies after the initial results of

the calculations were made public and to focus the analysis on the non-blind calculations.

3 Results
3.1 Overview of free energy methodologies entering the challenge
Seven different free energy methodologies based on alchemical or physical binding pathways and imple-

mented using AMBER [69], GROMACS [70], NAMD [71], or OpenMM [72] entered the challenge. Four of these

(referred to in the following as GROMACS/EE, NAMD/BAR, OpenMM/HREX, and OpenMM/SOMD) used the

double decoupling methodology [12], and mainly differ in the enhanced sampling strategies and protocols

employed. The other three submissions are based on the potential of mean force (AMBER/APR), alchemical

nonequilibrium switching (GROMACS/NS-DS/SB), or weighted ensemble (OpenMM/REVO) frameworks. All of

the entries computed standard free energies of binding with respect to a standard concentration of 1 M.

In this section, we give a brief overview of the participating free energy methodologies, focusing on

their main differences. More details about the methodologies and protocols can be found in Detailed

Methods section and in the method description within the submission files available on the public repository

at https://github.com/samplchallenges/SAMPL6/tree/master/host_guest/Analysis/Submissions/SAMPLing.

Detailed accounts of the results obtained by OpenMM/SOMD and OpenMM/REVO have also been published

separately [73, 74] along with detailed accounts of the methodologies they employed.

Importantly, in spite of the focus of this challenge on reproducibility and the best efforts of the organizers

and participants, small differences in the model, and thus in the theoretical asymptotic free energy of

each method, were introduced in the calculations. This was mostly due to fundamental differences in

methodologies and software packages. A brief summary of the main differences affecting the models is

included at the end of the section.

Double decoupling

The challenge entries with identifier OpenMM/HREX, GROMACS/EE, NAMD/BAR, and OpenMM/SOMD are

based on the double decoupling framework[12] for alchemical absolute free energy calculations, which is

arguably the most common approach for current absolute alchemical free energy calculations. All three
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methodologies estimated free energies and their uncertainties using the multistate Bennet acceptance ratio

(MBAR) estimator [75] after decorrelating the data, but they differ mainly in the enhanced sampling strategy

(or lack thereof) used to collect the data and details of the protocol employed.

OpenMM/HREX used Hamiltonian replica exchange (HREX) [17] to enhance the sampling as implemented

in the YANK package [76, 77]. The protocol was based on the thermodynamic cycle in SI Figure 10. Guest

charges were annihilated (i.e. intramolecular electrostatic interactions were turned off) before decoupling

soft-core Lennard-Jones interactions [78] (i.e. intramolecular interactions were preserved during the al-

chemical transformation) between host and guest. Since all guests had a net charge, a randomly selected

counterion of opposite charge was decoupled with the guest to maintain box neutrality during the al-

chemical transformation. A harmonic restraint between the centers of mass of host and guest was kept

active throughout the calculation to prevent the guest to escape the binding site, and the end-points of the

thermodynamic cycles were reweighted to remove the bias introduced by the restraint in the bound state by

substituting the harmonic restraint potential to a square well potential. Each iteration of the algorithm was

composed of Langevin dynamics augmented by Monte Carlo rigid translation and rotation of the guest and

by a Hamiltonian global exchange step (i.e. the exchange was not limited to neighbor states) using the Gibbs

sampling approach [79]. The pressure was controlled by a Monte Carlo barostat.

GROMACS/EE employed the weighted expanded ensemble (EE) enhanced sampling strategy [18]. The

calculation was performed in the NVT ensemble, and comprised two separate stages, referred to as equili-

bration and production. During equilibration, the Wang-Landau algorithm [80, 81] was used to adaptively

converge to a set of expanded ensemble weights that were then used and kept fixed in the production

stage. The data generated using the Wang-Landau algorithm is out-of-equilibrium and non-stationary data,

so only the samples generated in the production phase were used for the estimation of the free energy

through MBAR, which requires equilibrium samples. The equilibration stage was carried out only for a

single replicate, and the same equilibrated weights were used to initialize the other four calculations. We

analyzed two separate submissions, identified as GROMACS/EE and GROMACS/EE-fullequil, which differ

exclusively in whether the computational cost of the equilibration is “amortized” among the 5 replicas (i.e.

the cost is added to each replicate after dividing it by 5) or added fully to each of the 5 replicates respectively.

The alchemical protocol uses 20 states to annihilate the electrostatic interactions followed by 20 states to

annihilate Lennard-Jones. Two restraints attached to the center of mass of host and guest were used in the

complex phase: A flat-bottom restraint, which was kept activated throughout the calculation, and a harmonic

restraint that was activated during the annihilation of the Lennard-Jones interactions to rigidify the guest

in the decoupled state. The Rocklin charge [60] correction was used to remove the effect of the artifacts

introduced by alchemically decoupling a molecule with a net charge.

OpenMM/SOMD used the implementation in Sire/OpenMM6.3 [72, 82]. The protocol used 24 interme-

diate thermodynamic states for CB8-G3 and 21 states for OA-G3/G6 that were simulated independently

(i.e. without enhanced sampling methods) with a velocity Verlet integrator and a 2 femtosecond time-step

for 20 ns each and a Monte Carlo barostat. Unlike the other submissions, which constrained only bonds

involving hydrogen atoms, here all bonds were constrained to their equilibrium values in the host and guest

molecules. The temperature was controlled with an Andersen thermostat [83] set at a collision frequency of

10 ps−1, and pressure control was achieved with a Monte Carlo Barostat and isotropic box scaling moves

were attempted every 25 time steps. In the complex leg of the calculation, a flat-bottom distance restraint

between one atom of the guest and four atoms of the host was kept active throughout the calculation. This

is the only submission using a generalization of the Barker-Watts reaction field [84, 85] to model long-range

electrostatic interactions instead of Particle Mesh Ewald. Reaction field models usually require larger cutoffs

to be accurate for relatively large systems due to the assumption that everything beyond the cutoff can

be modeled as a uniform dielectric solvent. Consequently, a 12 Å cutoff was used both for Coulomb and

Lennard-Jones interactions instead of the 10 Å cutoff employed by the other methods.

Finally, NAMD/BAR calculations were based on the implementation in NAMD 2.12 [71]. In this case as

well, the intermediate states were simulated independently with no enhanced sampling strategy and a

flat-bottom restraint was used in the complex phase of the calculation. However, 32 � states were used
in which the Lennard-Jones interactions were decoupled in equidistant windows between 0 and 1, and
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the charges were turned off simultaneously over the � values 0–0.9 for CB8-G3 and 0–0.5 for OA-G3 and
OA-G6. The second schedule was the result of a protocol optimization to work around an issue in which

convergence was impaired by a sodium ion binding tightly the carboxylic group of the OA guests in earlier

pilot calculations. A non-interacting particle having the same charge as the guest was created during the

annihilation of the Coulomb interactions to maintain the charge neutrality of the box. [62, 86]. The system

was propagated with Langevin dynamics using a Nosé–Hoover barostat to control the pressure [62, 86]. Free

energy estimates and uncertainties were computed with the BAR estimator.

Nonequilibrium alchemical calculations

In GROMACS/NS-DS/SB, the binding free energies were predicted with alchemical nonequilibrium switching

calculations using a strategy referred to previously as double-system/single-box [87]. In this approach, two

copies of the guest are simulated in the same box, one of which is restrained to the binding site of the host

by a set of restraints as described by Boresch [88]. In addition, a harmonic positional restraint is applied

to each of the guest molecules to keep them at a distance of 25 Å from one another. The first guest is

decoupled simultaneously with the coupling of the second guest in order to keep the net charge of the box

neutral during the alchemical transformation. For each replicate, the calculation was carried out first by

collecting equilibrium samples from the two endpoints of the transformation. A total of 50 frames were

extracted from each equilibrium simulation at an interval of 400 ps, and each snapshot was used to seed a

rapid nonequilibrium alchemical transformation of a fixed duration of 500 ps in both directions. For CB8-G3,

a second protocol, here referred to as GROMACS/NS-DS/SB-long, was also applied in which 100 snapshots

were extracted from each equilibrium simulation at an interval of 200 ps, and each nonequilibrium trajectory

had a duration of 2000 ps. Ten independent calculations were run for each of the 5 initial conformations, and

a bi-directional estimator BAR, based on Crook’s fluctuation theorem [89], was used to estimate the binding

free energy after pooling all work values from all the independent runs. The uncertainty of ΔG for each
initial conformation was instead estimated by computing the standard error from the ten independent free

energy estimates. Because this approach required two copies of the guest and a box large enough to sample

distances between host and guest of 25 Å, the complexes were re-solvated. The force field parameters were

taken from the challenge input files. However, both with CB8-G3 and OA-G3/G6, the ion concentration was

set to 100 mM, which is different than the reference input files. Unfortunately, we realized this after the

calculations were already completed.

Potential of mean force

AMBER/APR followed the attach-pull-release (APR) [90, 91] methodology to build a potential of mean force

profile along a predetermined path of unbinding. The method was implemented in the pAPRika software

package based on AMBER [69]. Briefly, the method is divided into three stages. In the “attach” stage, the

guest in the binding pocket is gradually rigidified and oriented with respect to the pulling direction in 14

intermediate states through the use of 3 restraints. An additional 46 umbrella sampling windows were

used to pull the host and guest apart to a distance of 18 Å. A final semi-analytical correction was applied to

compute the cost of releasing the restraints and obtain the binding free energy at standard concentration.

The analysis was carried out using thermodynamic integration, and the uncertainties were determined using

an approach based on blocking and bootstrap analysis. As in the case of GROMACS/NS-DS/SB, the method

required larger solvation boxes than the cubic ones provided by the challenge organizers, in order to reach

sufficiently large distances between host and guest. Therefore, the initial five complex conformations were

re-solvated in an orthorhombic box, elongated in the pulling direction, of TIP3P waters with Na+ and Cl- ions.

The resulting ionic strength differed from the provided files by about 2–5 mM, but the force field parameters

were identical.

Weighted ensemble of trajectories

The OpenMM/REVO method predicted binding and unbinding kinetic rates with a particular weighted ensem-

ble approach named reweighting of ensembles by variation optimization [74, 92] (REVO) as implemented in

the wepy package (https://github.com/ADicksonLab/wepy) using OpenMM [72]. The calculation was carried
out by maintaining a set of 48 independent walkers generating MD trajectories starting from bound and
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unbound states, the latter defined with a distance between host and guest above 10 Å. At each cycle of the

algorithm, some of the walkers are cloned or merged in order to maximize a measure of trajectory variation

given by the weighted sum of all-to-all distances between walkers. For unbinding trajectories, the distance

between two walkers was defined as the RMSD of the system coordinates after aligning the host, while

rebinding trajectories used a measure of distance based on the RMSD with respect to the reference unbound

starting structure. The k
on
and k

off
rates were estimated directly from the weights of the "reactive" unbinding

and rebinding trajectories, and the free energy of binding was computed from the ratio of the rates.

Summary of main differences in setups and models

While force field parameters and charges were identical in all calculations, there are small differences among

the models used by the different methods. The challenge instructions suggested the settings for simulation

parameters that are traditionally not included in parameter files. In particular, most calculations were

performed at a temperature and pressure of 298.15 K and 1 atm respectively, using particle mesh Ewald

(PME) [93] with a cutoff of 10 Å, and employing a Lennard-Jones cutoff of 10 Å with a switching function

between 9 Å and 10 Å. Because of methodological and technical reasons, however, not all simulations were

run using these settings. In particular, AMBER does not support switching function so AMBER/APR used a 9 Å

truncated cutoff instead, and OpenMM/SOMD supports only reaction field for the treatment of long-range

electrostatic interactions. Moreover, even when the suggested settings were used, software packages differ

in the supported options and parameter values such as PME mesh spacing and spline order, or the exact

functional form of the Lennard-Jones switching function. In addition, all the bonds in OpenMM/SOMD were

constrained to their equilibrium value, while all the other calculations constrained only the bonds involving

hydrogen. Finally, the APR and NS-DS/SB methodologies required a larger solvated box than the cubic one

provided by the organizers. Host and guests were thus re-solvated, and while the force field parameters and

charges were preserved, the resulting ion concentrations in the box were slightly different from the original

files.

3.2 Development of an efficiency statistic for free energy methods
In order to make statistically sound statements about which methods are the most efficient and rank

performance of methods based on objective criteria, we require a statistic that captures our meaning of

"efficiency". As mentioned in the Introduction, we found the standard metrics of efficiency usually adopted

in the literature either incomplete or impractical for the purposes of evaluating relative efficiency in the

SAMPLing Challenge. In this section, we make a case for measuring the efficiency of a method based on its

time-averaged root mean square error (RMSE) with respect to the theoretical binding free energy determined

by the model (Figure 2). Moreover, we argue that, in the presence of data spanning different ranges of
computational cost, a measure of relative efficiency based on the ratio of the time-averaged RMSE of one

method to that of another method can be adopted to improve the robustness of the efficiency statistic.

In the rest of the work, we use ΔG
X
(c) to indicate the binding free energy predicted by method X at

computational cost c, which can be measured, for example, in number of force/energy evaluations, CPU
time, or wall-clock time. We consider ΔG

X
(c) to be a random variable, in the sense that multiple independent

replicate calculations performed with the same method and model will generally produce a set of different

binding free energies collected at the same computational cost that can be thought as sampled from an

unknown distribution.

Mean error as an inefficiency statistic

We seek a measure of the (in)efficiency of a free energy methodology that can (1) take into account both
bias and variance of the free energy estimate, (2) summarize the performance of a method over a range of
computational costs of interest, (3) easily be computed without previous system-specific knowledge (e.g.
knowledge of the slowest degrees of freedom). In its general formulation, we adopt themean error as the
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computational cost
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A'
[RMSEA ′]

cmin, A ′ cmax, A ′

A''[RMSEA ′′]

cmin, A ′′ cmax, A ′′

0

A'/Z

A''/Z

relative efficiency

Figure 2. Relative efficiency is robust to difference in computational cost ranges. Examples of RMSE trajectories
for two hypothetical methods (Z and A) with decay proportional to c−1∕2. The mean error of two runs of an identical
method (A’ and A”) is affected by the range of computational cost considered, while the relative efficiency with respect to

the reference method Z is identical in the two cases when A and Z decay according to the same model. To be used as a

reference, a method must span the full range of computational costs covered by the data.

primary metric of inefficiency of method X

Ew[errX(c)] = ∫

∞

0
w(c) errX(c)dc (1)

∫

∞

0
w(c)dc = 1

where we have assumed c is continuous (extensions to the discrete case is trivial), errX(c) is an error statistic
that depends on the computational cost, and w(c) is a normalized weighting function. Error statistics
considered in this report are

std(ΔG
X
(c)) =

√

E[(ΔG
X
(c) − E[ΔG

X
(c)])2]

|

|

bias(ΔG
X
(c))|

|

= |

|

E[ΔG
X
(c) − ΔG�]|| = |

|

E[ΔG
X
(c)] − ΔG�

|

|

RMSE(ΔG
X
(c)) =

√

[

std(ΔG
X
(c))

]2 +
[

bias(ΔG
X
(c))

]2

(2)

where the expected value E[⋅] is to be evaluated over the probability distribution of ΔG
X
(c) for a fixed

computational cost c, | ⋅ | indicates the absolute value, and ΔG� is the model binding free energy, which

depends exclusively on the model and not on the sampling methodology.

Themean RMSE statistic in Eq. (1) satisfies our three requirements: The RMSE with respect toΔG� includes

the contributions to the total error of both bias and uncertainty, which we can still study independently

for different choices of the error function that enters the average. Moreover, the information about the

performance of X over a range of computational costs of interest is summarized through the average. In

particular, the normalized weight function w(c) can be chosen to limit the average over a finite range of c
(i.e. setting w(c) = 0 outside some interval), or based on the uncertainty of the estimate of the error statistic
errX(c), or also to satisfy other constraints such as the inclination of investing c to obtain a free energy
prediction within a drug discovery workflow. Note that, once w(c) is given, our measures of inefficiency do
not depend explicitly on c, which is integrated out.

In this study, we adopt a particular case of Eq. (1) in which if w(c) is uniform over an interval [c
min
, c
max

].
The inefficiency of method X with respect to the error function err is then simply the total error divided by
the range of the computational cost

Ew[errX(c)] =
∫ cmax
cmin

errX(c)dc

c
max

− c
min

. (3)
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The mean error cannot be meaningfully compared over different ranges of computational cost

Given two free energy methods, A and B, we want to use our efficiency statistic to accept or reject the

hypothesis that A is more efficient than B, or vice versa. When the data available for methods A and B
cover the same range of computational cost, then Ew[errA(c)] and Ew[errB(c)] can be directly compared,
and standard statistical inference tools can be applied to the statistic defined in Eq. (3). In this challenge,

however, each submission provided data spanning very different ranges of computational cost. For example,

GROMACS/EE does not provide free energy predictions during the initial part of the calculation corresponding

to the equilibration stage, which is used to calibrate the expanded ensemble weights. Mean errors computed

over different ranges of c (i.e. different weight functions w(c)) cannot be meaningfully compared, and the
analysis thus requires some attention. To understand why this is a problem, consider two runs of the same

method, A’ and A”, for which the RMSE decays as a function of the computational cost according to a standard

unbiased Monte Carlo model

RMSE(c) = �
√

c
(4)

where � > 0. The two calculations are identical, but the data available for A’ and A” covers different intervals
[c
min,A′ , cmax,A′ ] and [cmin,A′′ , cmax,A′′ ] respectively as sketched in Figure 2. A reasonable property to expect from
our statistic is to assign the same inefficiency to data generated by the same method. However, using Eq. (3)

and (4), we can compute the mean RMSE as

Ew[RMSE(c)] =
∫ cmax
cmin

RMSE(c)dc

c
max

− c
min

= 2�

√

c
max

−
√

c
min

c
max

− c
min

(5)

which implies that the mean RMSE of methods A and B will generally be different unless computed over the

same cost interval. This is also evident from the submitted data, as can be seen in SI Figure 2.

In order to arrive at a statistic that can be properly compared, there are at least three solutions. The first,

and simplest, is to compute the inefficiency statistic in the range [c
min
, c
max

] for which there are data for all
the methods and discard all data points outside the interval. Alternatively, when a robust model of the error

decay is available, as with the example in Eq. (4), it may be possible to remove the dependency on the range

of computational costs by appropriate scaling. In the example above, this could be achieved by comparing

Ew[RMSE(c)] ⋅
cmax−cmin

√

cmax−
√

cmin
instead of Ew[RMSE(c)]. However, both these strategies are impractical here due

to the very different ranges of c, which would require discarding between 50% and 75% of the data points
for several methods, and the difficulty of finding a model for the error functions that could satisfactorily fit

the data from all methodologies. Instead, we decide to report and compare the inefficiency relative to a

common reference method, which we found to be much less sensitive to the range of c as described next.

Definition of relative efficiency

If we have free energy trajectories from a collection of methods A, B, ... spanning different ranges of c,
but there is one method Z for which we have data covering the whole range, we can compute the relative
efficiency of all methodologies with respect to Z starting from the ratio of the mean errors

eerr,X∕Z = −log10

(

EwX [errX(c)]
EwX [errZ (c)]

)

= −log10

(∫ cmax,X
cmin,X

errX(c)dc

∫ cmax,X
cmin,X

errZ (c)dc

)

(6)

where err is std, bias, or RMSE, X = A, B, ..., and the weight functionwX is uniform on the interval [cmin,X , cmax,X]
covered by the data available for method X. The base 10 logarithm ensures eerr,X∕Z = −eerr,Z∕X and facilitates
interpretation of the statistic: A relative efficiency eX∕Z of +1 (-1) means that the total error of X is one order
of magnitude smaller (greater) than the total error of Z over the same range of computational cost. We call

this the relative efficiency of method X as it increases inversely proportional to its mean error. Note that
the mean error of Z entering the definition is computed with the same weight function (i.e. over the same

interval), which cancels out with the numerator to leave the ratio of the error function areas. For methods

employing stationary Markov chain Monte Carlo, a relative efficiency of +1 would also mean that this method

could achieve the same statistical accuracy as the reference method with an order of magnitude less effort.
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We expect this statistic to be more robust with respect to the range of c than the simple mean error,
and thus to be useful in this scenario to compare the efficiency of methods A, B, ... within a statistical

inference framework. In particular, assuming the error function to obey the general model err(c) = �Xf (c)
(e.g., f (c) = c−1∕2 in the example in Eq. (4)), with the constant �X characterizing the decay rate of the method
X, then the relative efficiency does not depend on the range of the computational costs

eerr,X∕Z = −log10

(

�X
�Z

)

(7)

and the relative efficiency of different methods can be directly compared to each other even if their data

spans different intervals (see Figure 2). A meaningful comparison still requires the methods to obey the
same decay model, but the key advantage here is that an explicit expression for f (c) is not required. In
practice, the relative efficiency and the ranking it produces seem to be relatively robust to differences in

computational cost ranges for most methods (see SI Figure 3) with fluctuations that are within the statistical

uncertainty of the estimates (see for example SI Figure 4).

3.3 Converged estimates and identical force field parameters do not ensure agreement
among methods

Absolute free energy calculations can converge to sub-kcal/mol uncertainties in host-guest

systems

The final predictions of the submitted methods are shown in Table 1, Figure 3, and SI Figure 5 in terms of
the average binding free energy of the five replicate calculations with 95% t-based confidence intervals.

With the exception of OpenMM/REVO, the five independent replicate calculations of each method starting

from different initial conformations are always within 0.1–0.4 kcal/mol for OA-G3, and 0.1–0.6 kcal/mol for

OA-G6 (see also SI Table 2). All methods achieved this level of convergence for the two octa-acid systems

in less than 400 ⋅ 106 force/energy evaluations (i.e. the equivalent of 800 ns of aggregate MD simulations
with a 2 fs integration time step) that can be parallelized over more than 40 processes in all methods

with the exception of GROMACS expanded ensemble (see Discussion for more details on parallelization).

The agreement between replicates of the same method is generally worse for CB8-G3. Nevertheless, all

CB8-G3 predictions of OpenMM/HREX and GROMACS/NS-DS/SB-long are within 0.4 kcal/mol after 2000 ⋅ 106

force/energy evaluations (i.e. the equivalent of 4 �s of MD with a 2 fs time step), which suggests that absolute
free energy calculations can indeed achieve convergence for this class of systems in reasonable time given

widely available computational resources.

Identical force field parameters and charges do not guarantee agreement among methods

Although the predictions of different methods are roughly within 1 kcal/mol, the methods sometimes

yield statistically distinguishable free energies. For example, OpenMM/REVO tended towards significantly

more negative binding free energies than those predicted by the other methods by about 5-6 kcal/mol,

and the final predictions of OpenMM/SOMD for OA-G3 were between 0.5 and 1.0 kcal/mol more positive

than the other alchemical and PMF methods. NAMD/BAR and OpenMM/SOMD also generally obtained

very negative binding free energies for CB8-G3, but in these two cases, the large statistical uncertainty

suggests that the calculations are not close to convergence (i.e. the replicate calculations do not agree).

This could be a reflection of the smaller number of energy evaluations used for these submissions (see

Table 1). AMBER/APR also obtained free energy predictions for OA-G3 and OA-G6 that are significantly
different than the predictions from OpenMM/HREX, GROMACS/EE, and NAMD/BAR by 0.2-0.5 kcal/mol.

Finally, GROMACS/NS-DS/SB-long and AMBER/APR differ in their predictions for CB8-G3 by 0.8 ± 0.6 kcal/mol.
The origin of these discrepancies is unclear as the interpretation of these results is, in several cases,

confounded by differences in simulation parameters and setups. For example, without more data, it is

impossible to distinguish whether the systematic bias observed in OpenMM/SOMD is due to sampling

issues or the use of reaction field instead of PME or a Lennard-Jones cutoff of 12 Å instead of 10 Å. Multiple

explanations are also possible for the other observed discrepancies. Firstly, simulation engines generally

differ in the implementation details of the long-range treatment strategies. For example, AMBER does not
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support switched Lennard-Jones cutoff as the AMBER family of force fields was fit with a truncated cutoff. As

a consequence, APR calculations were run using a truncated 9 Å cutoff. In principle, the default values and

the algorithms used to determine parameters such as the PME grid spacing and error tolerance can also

have an impact on the free energies. Secondly, discrepancies may arise from small differences in the model.

Specifically, in order to allow for sufficiently great distances between host and guest in the unbound state, the

solvation boxes for APR and NS-DS/SB were regenerated and have a slightly different ionic strength, which

is known to affect the binding free energy of host-guest systems. Finally, even for these relatively simple

systems, differences in sampling, such as those arising from unsurmounted energetic barriers and different

numerical integration schemes, could have affected the convergence of the calculations and introduced

non-negligible biases respectively.

Reducing the setup differences between HREX and APR did not reduce the discrepancy

In order to obtain insights into the origin of these differences, we focused on APR and HREX. The choice of

focusing on these two methods was mainly due to technical feasibility as we considered it possible to run

further HREX calculations after minimizing the differences in setups and other simulation parameters. This

option was not available for investigating the differences between HREX and SOMD, for example, due to the

lack of support for reaction field in YANK. Differences between HREX and other methods were not statistically

significant or, in the case of CB8-G3 predictions from NAMD/BAR, likely the result of uncoverged calculations.

Moreover, we observed a systematic and statistically distinguishable difference of 0.3–0.4 kcal/mol in the

final free energies from APR and HREX for all systems, which we found particularly curious. We verified by

manual inspection that the distance between host and guest in the unbound state of APR was sufficient for

the PMF to reach a plateau.

The conditions and the results of the additional HREX calculations are summarized in Table 2. All the
new OpenMM/HREX calculations were run for 20 ns/replica (i.e. half the duration of the calculations in

the original conditions), and we thus report in the table the original HREX binding free energy obtained at

the same computational cost, which is statistically indistinguishable from the mean ΔG after 40 ns/replica.
Surprisingly, simulating with a 9 Å truncated cutoff instead of using a switching function between 9 Å and

10 Å decreased the original OpenMM/HREX ΔG prediction by 0.3 kcal/mol, widening the difference between
the two methods.

The source of this sensitivity may be connected to the central role of the van der Waals interactions in

stabilizing the host-guest complex, and the size of the host, whose diameter is in the order of the cutoff.

Changing the other parameters did not alter the binding free energy significantly. In particular, the predictions

proved insensitive to the exact value of the Coulomb constant, which is slightly different in AMBER and

OpenMM [26], and to the specific restraint used to restrict the conformational space available to the guest

in the HREX calculation, which used a relatively tight harmonic potential (spring constant 0.17 kcal/mol/Å2)

in the original calculation and a more permissive flat-bottom potential (well radius 7.5 Å, spring constant

5 kcal/mol/Å2) in the second case. We also investigated the impact of using a leapfrog Langevin integrator

instead of a BAOAB discretization scheme, but this proved to be statistically insignificant as well with a

timestep of 2 fs. It should be noted that the two leapfrog integration schemes provided in OpenMM [94] and

AMBER [95] still have differences so it is still theoretically possible for the discretization error to contribute

to the differences in free energy obtained by the two methods. Finally, we re-ran OpenMM/HREX complex

phase using the same input files generated for AMBER/APR. These solvation boxes were bigger to allow

sampling long distances between host and guest, and the ionic strengths were slightly different. Again, the

HREX binding free energy did not change significantly.

Although other explanations exist, it is possible that the observed discrepancies between AMBER/APR

and OpenMM/HREX are the results of subtle differences or bugs in the software packages, or of an area of

relevant configurational space that is systematically undersampled, which was found to be a problem in

host-guest systems both with umbrella sampling [96] and alchemical approaches [97]. Further work will

be required to establish the exact source of the persistent deviation between seemingly well-converged

HREX and APR calculations. A version of APR implemented with OpenMM is close to be completed and might

prove useful in determining whether the differences are caused by the methods or the simulation package.
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Table 1. Average binding free energy predictions, computational cost, and relative efficiencies of all methods.
Final average binding free energy predictions in kcal/mol computed from the five independent replicate calculations with

95% t-based confidence intervals. The computational cost is reported in millions of force and energy evaluations per

replicate calculation. Relative efficiencies of a method X are reported with respect to OpenMM/HREX as eerr,X∕OpenMM/HREX
as defined by Eq. (6). The lower and upper bound of the 95% confidence intervals bootstrap estimates for the relative

efficiencies are reported as subscript and superscript respectively.

CB8-G3 OA-G3 OA-G6
Method Δ G

[kcal/mol]
neval
[×106]

estd e
|bias| eRMSE

Δ G
[kcal/mol]

neval
[×106]

estd e
|bias| eRMSE

Δ G
[kcal/mol]

neval
[×106]

estd e
|bias| eRMSE

AMBER/APR -10.5 ± 0.6 2135 -0.6
−0.4
−0.9 -0.4

0.0
−0.8 -0.5

−0.1
−0.6 -6.3 ± 0.1 458 -0.1

0.1
−0.3 0.7

0.9
0.5 0.0

0.2
−0.2 -6.8 ± 0.1 305 0.1

0.3
0.0 0.35

0.47
0.28 0.2

0.3
0.1

GROMACS/EE -6.6 ± 0.1 210 0.2
0.8
0.0 0.5

0.7
0.2 0.3

0.5
0.1 -7.0 ± 0.1 212 -0.1

0.1
−0.2 0.32

0.39
0.27 0.01

0.09
0.02

GROMACS/EE-fullequil -6.6 ± 0.1 261 0.05
0.52
0.04 0.5

0.7
0.3 0.2

0.4
−0.1 -7.0 ± 0.1 271 -0.2

0.2
−0.3 0.0

0.4
−0.2 -0.1

0.1
−0.3

GROMACS/NS-DS/SB -11.4 ± 0.4 1202 -0.1
0.1
−0.3 0.5

0.8
0.2 0.2

0.3
0.0 -6.4 ± 0.2 450 -0.1

0.0
−0.2 0.1

0.3
−0.2 0.06

0.00
−0.17 -7.1 ± 0.2 450 -0.1

0.2
−0.3 -0.2

0.1
−0.5 -0.1

0.1
−0.3

GROMACS/NS-DS/SB-long -11.3 ± 0.2 2202 0.1
0.2
−0.1 0.5

0.8
0.4 0.25

0.32
0.21

NAMD/BAR -13.0 ± 1.0 657 -0.8
−0.2
−0.9 0.2

0.7
−0.3 -0.18

0.08
−0.40 -6.8 ± 0.07 657 0.2

0.5
0.0 0.9

1.1
0.7 0.4

0.5
0.1 -7.28 ± 0.08 657 0.1

0.3
−0.4 0.3

0.6
−0.3 0.1

0.3
−0.2

OpenMM/REVO -16.0 ± 1.0 1920 -1.1
−0.9
−1.3 -0.9

−0.6
−1.3 -1.0

−0.7
−1.3 -11.0 ± 2.0 1920 -1.3

−1.1
−1.5 -1.4

−0.8
−1.8 -1.4

−1.0
−1.6 -12.0 ± 1.0 1920 -1.3

−1.1
−1.7 -1.9

−1.7
−2.1 -1.50

−1.42
−1.66

OpenMM/SOMD -14.0 ± 2.0 460 -0.8
−0.2
−1.0 0.5

0.8
0.3 -0.3

0.0
−0.5 -5.7 ± 0.1 420 -0.2

0.0
−0.5 0.2

0.6
−0.1 -0.1

0.1
−0.3 -7.0 ± 0.3 420 -0.3

0.0
−0.5 -0.1

0.3
−0.6 -0.3

−0.1
−0.4

OpenMM/HREX -10.8 ± 0.2 3327 0.0 0.0 0.0 -6.71 ± 0.05 2789 0.0 0.0 0.0 -7.18 ± 0.06 2615 0.0 0.0 0.0

Table 2. Summary of the free energy calculations run for the sensitivity analysis. Average binding free energy
predictions computed from five independent OpenMM/HREX calculations with 95% t-based confidence intervals under

different simulation conditions. The AMBER/APR results are also reported in the first row to facilitate the comparison.

All OpenMM/HREX binding free energies are reported after 20 ns/replica, including the one computed by the reference

calculations after 40 ns/replica (second row). The HREX calculations were run by varying the Lennard-Jones cutoff, the

exact value of the Coulomb constant, the restraint applied between host and guest, the Langevin discretization algorithm,

and the box size and ion concentration. The only statistically significant difference in binding free energy was obtained

after changing the cutoff from using a switching function between 9 Å and 10 Å to a 9 Å truncated cutoff.

method LJ cutoff Coulomb
constant Restraint

Langevin
integrator
discretization

Complex
box size /

ionic strength
ΔG

[kcal/mol]

AMBER/APR 9 Å truncated AMBER multiple AMBER leap-frog
44x43x67 Å3

73.9 mM
-6.3 ± 0.1

OpenMM/HREX 9–10 Å switched OpenMM harmonic BAOAB
43x43x43 Å3

64.3 mM
-6.7 ± 0.1

OpenMM/HREX 9 Å truncated OpenMM harmonic BAOAB
43x43x43 Å3

64.3 mM
-7.0 ± 0.1

OpenMM/HREX 9 Å truncated AMBER harmonic BAOAB
43x43x43 Å3

64.3 mM
-7.1 ± 0.1

OpenMM/HREX 9 Å truncated AMBER flat-bottom BAOAB
43x43x43 Å3

64.3 mM
-6.98 ± 0.08

OpenMM/HREX 9 Å truncated AMBER harmonic OpenMM leap-frog
43x43x43 Å3

64.3 mM
-7.14 ± 0.08

OpenMM/HREX 9 Å truncated AMBER harmonic BAOAB
44x43x67 Å3

73.9 mM
-7.1 ± 0.1
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Figure 3. Mean free energy, standard deviation, and bias as a function of computational cost. The trajectories and
shaded areas in the top row represent the mean binding free energies and 95% t-based confidence intervals computed

from the 5 replicate predictions for CB8-G3 (left column), OA-G3 (center), and OA-G6 (right) for all submissions, excluding

OpenMM/REVO. The same plot including OpenMM/REVO can be found in SI Figure 5. The second and third rows show the

standard deviation and bias, respectively, as a function of the computational effort. Given the differences in the simulation

parameters between different methods, the finite-time bias is estimated assuming the theoretical binding free energy of

the calculation to be the final value of its mean free energy. This means that the bias eventually goes to zero, but also that

the bias can be underestimated if the simulation is not converged.

3.4 Bias and variance of free energy estimates can vary greatly with methods and
protocols

We estimated standard deviation, bias, and RMSE relative efficiencies for all methods and built bias-corrected

and accelerated (BCa) bootstrap [98] 95% confidence intervals (see also Detailed Methods for details). We

used the total combined number of force and energy evaluations to measure the computational cost, and

OpenMM/HREX was used as a reference for the calculation of the relative efficiencies because it was the

longest calculation and could thus provide free energy estimates for all the computational cost intervals

required to estimate the statistics. The resulting relative efficiencies with confidence intervals are represented

in Table 1.

16 of 43

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted October 7, 2019. ; https://doi.org/10.1101/795005doi: bioRxiv preprint 

https://doi.org/10.1101/795005
http://creativecommons.org/licenses/by/4.0/


Preprint ahead of submission — October 5, 2019

The methods displayed system-dependent performance

Overall, no method emerged as a superior choice in all three systems, but double decoupling, potential of

mean force, and nonequilibrium switching all proved to be solid approaches to obtained precise binding

free energy estimates for the host-guest systems considered. Indeed, GROMACS/NS-DS/SB (nonequilibrium

switching with double-system/single box), NAMD/BAR (double decoupling), and AMBER/APR (potential of

mean force) obtained the greatest RMSD efficiency for CB8-G3, OA-G3, and OA-G6 respectively. In general,

however, all methods showed larger uncertainty and slower convergence for CB8-G3 than for OA-G3/G6

(Figure 2), and the differences among the methods’ performance, which were relatively small for the two

octa-acid systems, increased for CB8-G3. For example, with GROMACS/EE, it was not possible to equilibrate

the expanded ensemble weights within the same time used for OA-G3/G6. Moreover, OpenMM/SOMD

and NAMD/BAR replicate calculations could not converge the average free energy to uncertainties below

1 kcal/mol, and OpenMM/HREX and AMBER/APR displayed a significant and slowly decaying bias. Contrarily,

GROMACS/NS-DS/SB, which generally obtained a slightly negative relative efficiency in OA-G3/G6, performed

significantly better than any other methods with CB8-G3 and obtained variance similar to OpenMM/HREX

but smaller total bias.

Enhanced-sampling strategies can significantly increase convergence rates

The four double decoupling methods performed similarly for the two octa-acid systems. NAMD/BAR and

GROMACS/EE obtained the greatest relative efficiencies for OA-G3/G6 among the four methods, and, while

their difference in efficiency is not statistically significant, it is worth noticing that NAMD/BAR did not employ

enhanced sampling methodologies. This suggest that enhanced sampling strategies had little impact on the

performance for these two simple systems. On the other hand, the difference in performance between the

double decoupling methods widened greatly with CB8-G3, which featured the largest guest molecule in the

set and generally proved to be more challenging for free energy methods than OA-G3/G6. OpenMM/HREX

obtained much smaller uncertainties and bias with CB8-G3 than both OpenMM/SOMD and NAMD/BAR,

whose replicates seem far from converging to a single prediction. We could not compare the methodologies

with GROMACS/EE as the expanded ensemble weights did not converge to a sufficient degree during the

70 ns equilibration stage due to the long correlation times in the system. The difference in performance

between HREX, SOMD, and NAMD/BAR is likely explained by the Hamiltonian replica exchange strategy. In

particular, when looking at the free energy trajectories of the single replicate calculations of OpenMM/SOMD

(SI Figure 7), we noticed that CB8-G3-2 was significantly more positive than the other four replicates by about

4 kcal/mol, increasing significantly the standard deviation of the estimate to around 2 kcal/mol. This was not

observed in HREX, where the agreement among replicate calculations kept the free energy uncertainty below

0.5 kcal/mol. In order to determine whether this was connected with the particular initial conformation

of CB8-G3-2, we ran the five SOMD replicate calculations two more times. The average free energy and

standard error of the mean computed from the three CB8-G3-2 calculations was -13 ± 1 kcal/mol. This is in
line with the results from the other four replicates (SI Table 4), which suggests that the outlier free energy

trajectory and large uncertainties in SOMD are likely due to sampling issues that are independent of the

initial conformation. This is consistent with a previous study on cucurbit[7]uril ligands showing that jumps

between � states accelerated the convergence of binding affinity estimates [99].
Nonequilibrium switching trajectories (the NS protocol) also seemed to be effective in working around

problematic energetic barriers in CB8-G3 associated with the alchemical transformation. In particular,

NS-DS/SB-long, which used longer nonequilibrium switching trajectories, slightly improved the efficiency of

the method in CB8-G3. This suggests that collecting fewer nonequilibrium switching trajectories to achieve

for a narrower nonequilibrium work distribution can be advantageous in some regimes.

As a final observation, NAMD/BAR generally obtained a greater efficiency in OA-G3/G6 thanOpenMM/SOMD,

which also did not use any enhanced sampling approach. Part of the difference might be explained by the

long equilibration of NAMD/BAR, which discarded the initial 2 ns of data of each � window, and proved to be
helpful in removing the bias introduced by initializing the intermediate state simulations with the same initial

configuration in Hamiltonian replica exchange calculations (Figure 6). NAMD/BAR, which originally turned off
the charges linearly between � values 0.0–0.9 instead of 0.0–0.5, used an optimized � schedule for OA-G3/G6
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in a second round of calculations to work around a convergence problem caused by sodium ions binding

tightly the carboxylic group of the OA guests and increasing correlation times of the system. However, this

is unlikely connected to the very difference in precision with respect to OpenMM/SOMD, which turned off

electrostatics completely before decoupling the Lennard-Jones interactions, and OpenMM/HREX, which was

not affected by sampling issues connected to the sodium ions.

Equilibrating expanded ensemble weights can increase efficiency when running replicates

In the two octa-acid systems, OpenMM/HREX and GROMACS/EE-fullequil achieved similar efficiencies,

although the latter obtained a better absolute bias relative efficiency with OA-G3. GROMACS/EE obtained,

however, a greater RMSE relative efficiency when the cost of equilibrating the expanded ensemble weights

is amortized over the five replicate calculations. This strategy is thus attractive when precise uncertainty

estimates through replicate calculations are required. These observations, however, are limited to the

two OA systems as the expanded ensemble weights equilibration stage did not converge in sufficient time

for CB8-G3. Finally, we note that differences in the details of the protocols between GROMACS/EE and

OpenMM/HREX may explain the greater efficiency of the former.

In the expanded ensemble strategy, the weights attempt to bias the probability of jumping from a state

to another in order to sample all intermediate states equally. In the presence of bottlenecks, this helps

to reduce the round trip time along the alchemical � variable, which in turn can help reducing correlation
times of the sampled binding poses in the bound state. Moreover, while OpenMM/HREX decoupled a

counterion of opposite charge to the guest to maintain the neutrality of the simulation box, GROMACS/EE

corrected for Coulomb finite-size effects arising with PME using an analytical correction [60]. While the

approach decoupling the counterion does not introduce approximations, the process of discharging an ion

is accompanied by solvent reorganization, which could impact the statistical efficiency of the calculation.

Finally, GROMACS/EE annihilated Lennard-Jones (LJ) interactions (i.e. intra-molecular LJ forces were turned

off in the decoupled state) while OpenMM/HREX decoupled them (i.e. intra-molecular LJ interactions were

left untouched). The choice of decoupling versus annihilating has two effects on convergence, and these

may work in opposite directions. On one hand, annihilating the LJ could increase the thermodynamic length

of the transformation, which was found to be directly connected to the minimum theoretical variance of the

free energy estimate [37]. On the other hand, annihilation of internal LJ interactions might remove some

energy barriers separating metastable states, which could help reducing correlation times.

Estimating binding free energies via estimation of binding kinetics was an order of magnitude

less efficient than predicting binding free energies directly

OpenMM/REVO employed a dramatically different approach for free energy prediction, calculating estimates

of the binding kinetics through direct sampling of the binding and unbinding processes. The free energies

obtained using the ratio of the binding and unbinding rates had larger uncertainties and showed a significant

systematic bias with respect to other methodologies, although the ranking of the compounds agrees with

the other submissions. The slow unbinding process may be responsible for the large variance and bias

observed in REVO. Indeed, REVO calculations collected a total of 1.92 �s per system per replicate, which
should allow obtaining reasonably robust statistics for the binding process, whose mean first passage time

(MFPT) estimated by the method for the three systems was between 36±6 and 150±50 ns [74]. On the other
hand, the MFPT estimates for the unbinding process yielded by the method were 6±4 �s for OA-G3, 2.1±0.5 s
for OA-G6, and 800±200 s for CB8-G3, which is significantly beyond the reach of the data accumulated for
the prediction, and suggests that further simulation is required to obtain a better estimate of k

off
and ΔG.

Another possible element that may have affected the asymptotic free energies is the size of the simulation

box, which was relatively small for this type of calculation and made it difficult to sample long distances

between host and guest in the unbound state, which can artificially lower the unbinding rate. Despite the

smaller efficiency in predicting the binding free energy, this method was the only one among the submissions

capable of providing information on the kinetics of binding.

18 of 43

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted October 7, 2019. ; https://doi.org/10.1101/795005doi: bioRxiv preprint 

https://doi.org/10.1101/795005
http://creativecommons.org/licenses/by/4.0/


Preprint ahead of submission — October 5, 2019

0 1000 2000
20

15

10

5

0

5
G

 [k
ca

l/m
ol

]
CB8-G3

BAR
BAR-long

Gaussian-Forward
Gaussian-Reverse

Jarzynski-Forward
Jarzynski-Reverse

0 200 400
number of energy/force evaluations [106]

40

35

30

25

20

15

10

5

0
OA-G3

0 200 400
40

35

30

25

20

15

10

5

0
OA-G6

Figure 4. Comparison of bidirectional and unidirectional free energy estimators of the same nonequilibrium
work switching data. Average free energy estimates obtained by different estimators from the same nonequilibrium
work data collected for CB8-G3 (left), OA-G3 (center), and OA-G6 (right) as a function of the number of energy/force

evaluations. The average and the 95% t-based confidence interval (shaded areas) are computed from the 5 replicate

calculations. BAR and BAR-long correspond to the GROMACS/NS-DS/SB and GROMACS/NS-DS/SB-long submissions in

Figure 3, and utilize the bidirectional Bennett acceptance ratio estimator based on the Crooks fluctuation theorem [100].
Jarzynski-Forward/Reverse are the free energy estimates computed through unidirectional estimators derived from the

Jarzynski equality using only the nonequilibrium work values accumulated in the forward/reverse direction respectively.

The Gaussian-Forward/Reverse trajectories are based on the Crooks fluctuation theorem and the assumption of normality

of the forward/reverse nonequilibrium work distribution, as described in [101]. Unidirectional estimators can introduce

significant instabilities and bias in the estimates.

3.5 Unidirectional nonequilibrium work estimators can be heavily biased and
statistically unstable

We verified how the choice of the estimator can impact the convergence of the free energy estimate in

nonequilibrium switching calculations. In particular, besides the bi-directional BAR estimates discussed

above (GROMACS/NS-DS/SB and GROMACS/NS-DS/SB-long), we computed binding free energies of the host-

guest systems using uni-directional estimator based on Jarzynski’s equality [102] in both forward and reverse

directions and the estimator presented in [101], which is based on Jarzynski’s equality and the assumption

of normality of the nonequilibrium work distribution. No extra simulation was run to obtain these new

estimates. Rather, the same nonequilibrium data produced by the GROMACS/NS-DS/SB and GROMACS/NS-

DS/SB-long protocols were re-analyzed using the unidirectional estimators. Their associated computational

cost was halved to account for the fact that the method required to generate only nonequilibrium switching

trajectories in one direction. As can be seen in Figure 4 and in SI Table 3, the efficiency of unidirectional
estimators is significantly smaller than one obtained with BAR in all cases but GROMACS/NS-Jarz-F for OA-G3,

where the sign of the RMSE relative efficiency is not statistically significant. In particular, the estimator

based on the Gaussian approximation of the work distribution can be significantly unstable for both the

forward (e.g. CB8-G3) and the reverse (e.g. OA-G3) directions. This may be due to the Gaussian estimator’s

linear dependency on the work variance, which makes its free energy estimate sensitive to rare events

that do not affect Jarzynski’s estimator. For example, the average free energy profile obtained for OA-G3

with the Gaussian estimator in the reverse direction (i.e. Gaussian-Reverse) displays a "saw-like" pattern

with large and sudden jumps in the average free energy that are due to single rare events with large work

dissipation which substantially increase the variance of the work distribution (SI Figure 8). The work variance

subsequently gradually decreases when more regular events are introduced. Moreover, all unidirectional

estimates for CB8-G3 are significantly biased, and none of them agree with the bidirectional estimates within

statistical uncertainty. In general, this data suggests that collecting nonequilibrium switching trajectories in
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Figure 5. OA-G3 volume distribution, restraint radius distributions, and binding free energy dependency on the
binding site definition. (A) Box volume empirical distributions obtained by NPT simulations using the Monte Carlo
barostat implemented in OpenMM (bottom) and the Berendsen barostat implemented in GROMACS (top) at 298 K. The

continuous blue (�MD(V|1atm)) and orange (�MD(V|100atm)) lines represent Gaussian kernel density estimates of volume
distributions sampled with simple molecular dynamics at a constant pressure of 1 atm and 100 atm respectively. The

green distribution is obtained by reweighting �MD(V|1 atm) to 100 atm. The red densities (�MD(V|1 atm)) represent the
volume distribution sampled in the bound state by the enhanced sampling algorithm (i.e., expanded ensemble for the

Berendsen barostat and HREX for the Monte Carlo barostat). The expected distribution is predicted correctly only from

the volumes sampled using the Monte Carlo barostat, while the Berendsen barostat samples distributions of similar mean

but much smaller fluctuations. Moreover, the expanded ensemble algorithm introduce artifacts in the volumes sampled

by the Berendsen barostat. (B) Distribution of the harmonic restraint radius (right-top) in the bound (purple), discharged
(green), and decoupled state (yellow) for OA-G3-0, and predicted binding free energy as a function of the restraint radius

cutoff (right-bottom). The black vertical line represents the threshold used during the reweighting analysis. The orange

horizontal line in the right-bottom plot is the MBAR-predicted free energy of OA-G3-0 that did not undergo the reweighting

procedure. The binding affinity is insensitive to the restraint cutoff radius between a large range of values that include

most of the bound state distribution.

both directions is worth the cost of generating samples from the equilibrium distributions at both endpoints

of the alchemical transformations.

3.6 The Berendsen barostat introduces artifacts in expanded ensemble calculations
Initially, the GROMACS/EE free energy calculations were performed in the NPT ensemble, but these converged

to different binding free energies than the reference OpenMM/HREX calculations performed with YANK. In

order to understand the origin of this discrepancy, we looked into the differences in the protocols adopted

by the two methods. In particular, we identified and investigated three elements that could have an effect on

the asymptotic binding free energy: the strategies used for the receptor-ligand restraint, the PME parameters,

and the barostat. We found that the different barostats adopted by the two methods were sufficient to

explain the discrepancies between binding free energy predictions.

We first looked at whether the different protocol adopted for restraining the host-guest complex might

have affected the binding free energy predictions. YANK used a harmonic restraint throughout the calculation

while GROMACS/EE activated a harmonic restraint in several intermediate states while decoupling the

Lennard-Jones interactions. In particular, the harmonic restraint used by OpenMM/HREX in the bound state

introduced bias in the free energy prediction. This bias was corrected by reweighting the data with MBAR

to a state using a restraint following a square-well potential of a specific radius, which effectively defined

the binding site (see also Detailed Methods). We thus looked into whether the binding free energy was
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sensitive to the radius of the binding site, and whether the reweighting procedure was statistically robust, or

if an eventual poor overlap between the sampled and reweighted distribution could introduce significant

statistical error. The results of the analysis represented in Figure 5B for OA-G3 show that very little statistical
error is introduced in the reweighting process, and that the binding free energy is robust to the square

well radius (i.e. the radius of the defined binding site), as expected from a tight binder [12]. Moreover,

comparing the distributions of the restraint radius sampled in the bound and decoupled states, with the

latter distribution having much larger support than the former (Figure 5B), suggests that the spring constant
of the harmonic potential was appropriate and did not limit the exploration of the binding site in the bound

state.

We then proceeded to investigate the effect on the asymptotic binding free energy of the different

PME parameters (i.e. FFT grid, error tolerance, and spline order) and the barostat employed. OpenMM

used Metropolis-Hastings Monte Carlo molecular scaling barostat [103, 104] while GROMACS a continuous

scaling (or Berendsen) barostat [105]. Because of implementation issues, only the Berendsen barostat was

compatible with both expanded ensemble simulations and bond constraints at the time simulations were

run. It is known that the Berendsen barostat does not give the correct volume distribution [106, 107], but

in most cases, expectations of variables relatively uncorrelated to the volume fluctuations, such as energy

derivatives in alchemical variables, might be expected to be essentially unaffected. We thus re-ran both

methods in NVT, first with different and then identical PME parameters. If the NVT calculation is run at the

average NPT volume, we expect the NVT and NPT binding free energy predictions to be essentially identical

as, in the thermodynamic limit, dG = dA+d(pV ), where G and A are the Gibbs (NPT) and Helmholtz (NVT) free
energies respectively, and we expect 1 atm⋅ΔV , where V is the change in volume on binding, to be negligible.
The box vectors used for the NVT calculations were selected from the OpenMM/HREX NPT trajectories in

order to obtain the volume closest to the average NPT volume. The changes introduced by the different PME

parameters were not statistically significant (SI Table 5), but we found that the discrepancies between the

methods vanished without the barostats. In particular, OpenMM/HREX yielded free energies identical to

those obtained at NPT, whereas the expanded ensemble predictions for OA-G3 decreased by 0.6 kcal/mol,

suggesting that the Berendsen barostat was responsible for generating artifacts in the simulation.

To obtain further insight, we performed molecular dynamics simulations of OA-G3 at 1 atm and 100 atm

in NPT using the GROMACS Berendsen barostat and the OpenMM Monte Carlo barostat. We found that the

Berendsen barostat generated volume distributions with much smaller fluctuations and slightly different

means than the MC barostat. At 1 atm, the mean of the Berendsen and MC barostat distributions are

80.250 ± 0.006 nm3 and 80.286 ± 0.004 nm3 respectively (errors here are two times the standard error

of the mean). In contrast to the MC barostat, reweighting the distribution generated by the Berendsen

barostat at 1 atm with the weight e�(100atm−1atm)V fails to recover the 100 atm distribution (Figure 5), which
confirms that the Berendsen barostat did not sample correctly the expected volume fluctuations in the NPT

ensemble. Moreover, the volume distribution sampled in the bound state by the Berendsen barostat during

the expanded ensemble calculations is quite different from that obtained through simple MD simulations,

with thicker right tails and mean 80.298 ± 0.008 nm3. The apparent shift to the right is consistent with the

volume expansion observed in the neighbor intermediate states during the expanded ensemble calculations

(SI Figure 6), which suggests that the artifacts might be introduced by the random walk along states. In

principle, we expect the difference in binding free energy due to the different barostats to be approximately

p(ΔV MC − ΔV B), where ΔV MC∕B is the change in volume on binding from according to the MC or Berendsen

barostat, as indicated. However, because the mean volume for the Berendsen and MC barostats are different

even for the simple MD simulation, it is not completely clear whether a difference in free energy would still

be present without the expanded ensemble algorithm. In fact, the mean bound state volume obtained by

the Berendsen barostat during the expanded ensemble calculation is closer to the MC mean volume than

the one obtained with MD. Further free energy calculations using the Berendsen barostat but independent �
windows might be helpful in clarifying this issue.
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3.7 Estimators of the free energy variance based on correlation analysis can
underestimate the uncertainty

Since participants also submitted uncertainty estimates for each of the five replicate calculations, we were

able to verify how accurately the different uncertainty estimators could reproduce the true standard deviation

of the ΔG estimates, here referred to as std(ΔG), from a single run. OpenMM/YANK, GROMACS/EE, and
SOMD estimated the single-replicate uncertainties from the asymptotic variance estimator of MBAR after

decorrelating the potential based on estimates of the integrated autocorrelation time. AMBER/APR instead

used blocking analysis to compute the mean and standard error of dU/d� in each window. These statistics
were then used to generate 1000 bootstrapped splines, and the uncertainty was determined by computing

the standard deviation of the free energies from the thermodynamic integration of the bootstrapped splines.

Finally, GROMACS/NS-DS/SB estimated the uncertainties by running an ensemble of 10 independent non-

equilibrium switching calculations for each of the 5 replicate calculations and computing their standard

deviations. We built ŝ(ΔG), our best estimate of std(ΔG), with 95% confidence intervals for each method by
computing the standard deviation of the five replicated free energy predictions. Under the assumption of

normally-distributed ΔG, ŝ(ΔG) is distributed according to ŝ(ΔG) ∼ �N−1std(ΔG)∕(N − 1), where N = 5 is the
number of replicates [108], which makes it trivial to build confidence intervals around ŝ(ΔG).
Under this statistical analysis, the single-replicate trajectories of most methods are within the confidence

interval of ŝ(ΔG) (SI Figure 7). In particular, the standard deviations of the single GROMACS/NS-DS/SB
replicate calculations generally agree within statistical uncertainty to our best estimate. This is probably

expected as both are based on independent calculations. The AMBER/APR uncertainty estimates based on

bootstrapping also agree well with the replicate-based estimate, especially in the final part of the trajectory.

We note, however, that the MBAR standard deviation estimate based on autocorrelation analysis statistically

underestimates ŝ(ΔG) in OpenMM/SOMD, and, in general, it shows a marked tendency to be on the lower
end of the confidence interval also in OpenMM/HREX and GROMACS/EE. These observations are consistent

with those of a prior comparison of the autocorrelation and blocking analysis methods [91]. Similarly, the

BAR standard deviation in the NAMD/BAR submission did well for the two octa acids, but the uncertainty

was significantly underestimated for the CB8-G3, in which the true standard deviation was on the order of

1.2 kcal/mol. Curiously, the MBAR uncertainties are almost identical across the five replicates in all three

submissions using them and for all systems. This is in contrast not only to bootstrap- and replicate-based

methods but also to the BAR uncertainty estimates submitted by NAMD/BAR, which seem to yield estimates

that are more sensitive to differences in the single free energy trajectories.

The performance of the MBAR uncertainties may be due to underestimated correlation times, which

are in general not trivial to estimate without knowledge of the slow degrees of freedom of the system. We

tested this hypothesis by re-analyzing the OpenMM/HREX data while forcing increasing values of statistical

inefficiency. For the HREX calculations, YANK’s automatic analysis pipeline estimated the correlation times of

the systems from the time series of the potential energies of all replicas obtaining a statistical inefficiency of

2.74 ± 0.03 ps, 2.9 ± 0.3 ps, and 2.84 ± 0.3 ps for CB8-G3, OA-G3, and OA-G6 respectively (uncertainties are
given as the standard deviation of the statistical inefficiencies over replicates). While it is known that the

naive correlation function estimator is biased [109], such small statistical inefficiency might be simply due to

the potential energy being an inadequate collective variable to consider for the estimation of the correlation

times of the system. We thus ran the analysis pipeline forcing the statistical inefficiency to be 5, 10, 20, 50,

100, and 200 ps to subsample the data more sparsely. In this case, the equilibration time, and thus the

number of initial iterations discarded, was determined as two times the statistical inefficiency. As SI Figure 9

shows, setting the statistical inefficiency to 5 ps is sufficient for the single-replicate uncertainty to fall within

the best estimate confidence interval, and arguably, the agreement becomes slightly better with greater

values of statistical inefficiency. However, the single-replicate uncertainties are still almost identical across

the five replicates even for the estimates obtained with statistical inefficiency set at 200 ps, in which, due

to the limited number of samples, the free energy trajectories are quite different and show very different

errors. Thus, while the error computed through autocorrelation analysis is within statistical uncertainty of

the standard deviation, the estimates seem insensitive to the particular trajectory.
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Figure 6. Initiating the HREX calculation from a single conformation introduces significant bias that slowly
relaxes as the system reaches equilibrium. Mean (top row) and standard deviation (bottom row) of the five replicate
free energy trajectories as a function of the simulation length computed after discarding an increasing number of initial

iterations going from 1000 (purple) to 24000 (light green) for the three host-guest systems. The trajectories are plotted

starting from the last discarded iteration. The initial bias is consistently negative, and it decays faster in OA-G3/G6 than in

CB8-G3, in which correlation times are longer. Ignoring the beginning of the trajectory removes the bias.

3.8 The initial bias of HREX is explained by the starting population of the replicas
The initial conformation can bias the free energy in systems with long correlation times

In all three host-guest systems, we noticed that the OpenMM/HREX free energy trajectories were significantly

biased at the beginning of the calculation. The problem was particularly evident for the CB8-G3 system, for

which the performance of methods was generally poorer and a lot of computational effort was required for

the bias to decay in comparison to OA-G3 and OA-G6. The trend reminded us of an equilibration process,

and this was confirmed after re-analyzing the data by discarding a varying amount of initial HREX iterations.

Indeed, the results in Figure 6 show that the initial bias of CB8-G3 observed for HREX gradually disappears
when an increasing amount of data from the initial portion of the calculation is ignored during the analysis.

The peculiarity of this equilibration process is the consistent sign of the observed bias (i.e. E
[

ΔGX
]

−ΔG� < 0),
which remains negative even after several thousands iterations (1000 iterations corresponding to the

equivalent of 131 ns of aggregate simulation from all replicas) are removed. In other words, all the free

energy trajectories collected from independent replicate calculations show an upward trend instead of

approaching the asymptotic free energy equally likely from below or above. The same trend is observed

both for OA-G3 and OA-G6, although the correlation times governing the equilibration process appear much

smaller in these two cases than with CB8-G3. Indeed, while the final average free energies in Figure 6 are
statistically indistinguishable (confidence intervals not shown), one can notice an upward trend that suggests

the CB8-G3 free energy trajectory in Figure 2 may be still undergoing a small transient. The same trend

cannot be observed for OA-G3/G6.

The systematic negative sign of the bias might be explained by the replicas’ initialization process

Decomposing the free energy in terms of contributions from complex and solvent legs of the HREX calculation

shows that the finite-time bias is entirely attributable to the complex phase (SI Figure 11), so we focused

only on the data from the simulation in the complex stage. We point out that, as it is common to do

with multiple-replica methodologies, all HREX replicas were seeded with the same initial conformation,

which was obtained by equilibrating the docked structures for 1 ns in the bound state. We also note that
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the free energy trajectories in Figure 6 obtained after discarding the initial iterations of the algorithm can
be thought of the result of separate HREX calculations whose replicas were seeded with conformations

obtained from a previous simulation. Thus, because the bias disappears after removing a sufficient number

of iterations, it is reasonable to assume that the observed bias is the result of initializing all the replicas with

a single conformation. Starting from this assumption, we formulated two possible hypotheses to explain

the observed systematic negative sign of the bias: The slow increase in the binding free energy could be

driven by the difference of entropy between the bound and decoupled states (entropy-driven), or it could be

caused by biased sampling in one or more intermediate states that are struggling to relax from the initial

conformation due to the long correlation times of the CB8-G3 calculation (sampling-driven).

The entropy-driven hypothesis relies on the assumptions that the entropy decreases when going from the

decoupled to the bound state, and that MBAR would require extensive sampling of the decoupled state to be

able to estimate accurately the difference in entropy. Under these assumptions, the estimated difference in

entropy would be zero with only one sample available from the end states and decrease with the number of

independent samples collected. The entropy-enthalpy decomposition of the predicted binding free energy

(SI Figure 12) does point to a loss of entropy from the decoupled to the bound state, which could be due to

water reorganization (e.g. water molecules that do not have access to the binding site in the bound state)

and/or an increased host and guest rigidity due to steric clashes between the two molecules. However, this

explanation is not consistent with the timescale required for the bias to decay, which is on the order of

10 ns. In fact, in its HREX implementation, YANK performs Monte Carlo rigid rotation and translation of the

guest that help quickly explore the volume accessible by the harmonic restraint in the decoupled state. The

MC rotations, in particular, are always accepted as they do not affect the potential energy. Thus, it would

not explain why there is still bias after removing the first 1000 iterations (i.e. the equivalent of 1 ns/replica)

but the bias completely disappears after removing 8000 iterations as in both cases HREX would require

accumulating a long number of samples before estimating correctly the difference in entropy.

Instead, the sampling-driven hypothesis relies on the fact that the binding free energy estimated by MBAR

will be favorable towards the bound state (i.e., it will be negatively biased) if sampling any of the intermediate

states generate conformations that are biased towards the distribution of the bound state. We expect the

the initial conformation used to seed the HREX replicas should be representative of the bound state as it

was obtained by equilibrating the docked structure with MD. If the dynamics of the intermediate states will

be dominated by long correlation times, the intermediate states might require a long time to relax the initial

conformation and sample areas of phase space that share less overlap with the bound state. These initial

biased samples will be reweighted to the bound state by MBAR causing the estimate of the binding free

energy to be more negative than it would if the samples coming from the intermediate states were properly

collected from their equilibrium distributions. estimator to compute a more negative free energy. A more

detailed explanation of this fact and a numerical demonstration on a toy problem can be found in Appendix 1

in the Supporting Information. This hypothesis is consistent with the sign of the bias, its decay time, and

the observation that the problem is exacerbated in systems with long correlation times since it would

require a longer time for the intermediate states to relax the initial bound-state conformation into a sample

more representative of their equilibrium distribution. In this hypothesis, contrarily to the entropy-driven

hypothesis, we do not expect the sampling of the end states (i.e. the bound and the decoupled states) to

contribute significantly to the negative bias. In the case of the bound state, an initial conformation that is far

from equilibrium would introduce a bias of opposite sign in the MBAR estimate due to the low probability of

the initial samples. Instead, the decoupled state, in which the guest is free to rotate, should very quickly

generate conformations with very low probability when reweighted to the bound state due to the steric

clashes, and this is not consistent to the long time observed for the bias to decay.

The direct verification of the two hypotheses by inspecting the estimated entropy and potential energy

trajectories is hindered by their large fluctuations, which are in the range of 10-20 kcal/mol (SI Figure 12)

against a bias of less than 2 kcal/mol. While we could not identify a specific physical collective variable

responsible for the slow decorrelation of the intermediate states, the correlation time of the replica state

index is consistent with the bias decay time in CB8-G3 and OA-G3/G6 (Figure 7). Further work and more
calculations starting from different initial configurations and/or involving smaller systems with reduced
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Figure 7. Bound water molecules inducemetastability in HREX replicas with CB8-G3. (A) Histograms of the number
of bound water by thermodynamic state. The color maps the progression of the alchemical protocol from the bound

state (purple) to the discharged state (blue), where all the charges are turned off but Lennard-Jones interactions are still

active, and decoupled state (yellow). The number of bound waters has a peaked distribution around 0-2 for most of the

alchemical protocol, and it rapidly shifts to the right in the near-decoupled state. (B) Superposition of the trajectories of
the number of bound waters and the state index for replica 1 and 5 of the OpenMM/HREX calculation for CB8-G3-0 (top)

and average autocorrelation function over replicas for CB8-G3-0 (blue), OA-G3-0 (green), and OA-G6-0 (red) computed

from the time series of the number of bound waters (dark colors) and replica state indices (light colors) (bottom). Replicas

remain stuck in the near-decoupled states for several nanoseconds. CB8-G3 exhibits much longer correlation times for

both time series than the two OA systems.

fluctuations will be needed to corroborate the hypothesis. Nevertheless, the data suggest that cheap

methods for the determination of a sensible initial conformation for the intermediate states may improve

considerably the efficiency of HREX in systems with long correlation times. Moreover, a better trade-off

between bias and variance in the final estimate could be achieved with better strategies for automatic

equilibration detection or by reducing the number of intermediate states (69 for the complex and 62 for the

solvent in the CB8-G3 HREX calculations), which directly impact the total number of energy evaluations spent

equilibrating the replicas.

Finally, while we focused on the HREX case here, it should be noted that, in principle, this is not a

problem confined to the HREX methodology, and most free energy trajectories generated by alchemical

methods show an initial upward trend in all three host-guest systems that may be due to one of these

two explanations. In fact, the bias of HREX in CB8-G3 seems to decay faster than other multiple-replica

double decoupling methods (i.e., NAMD/BAR and OpenMM/SOMD), whose free energy estimates are still

significantly more negative when compared to more converged estimates (e.g., APR, HREX, NS-DS/SB) at

the same computational cost (Figure 3). This is expected as the enhanced sampling strategy should help
reducing correlation times of the intermediate states as well.

3.9 Water binding/unbinding in CB8-G3 might contribute to long correlation times in
HREX

In order to get insights into the origin of the large uncertainties generally obtained by the double decoupling

submissions for the CB8-G3 system, we analyzed the correlation times of various collective variables (CV) in

the complex phase of the OpenMM/HREX calculations, for which was the major source of uncertainty came

from the complex leg of the calculation (SI Figure 11). In particular, we looked at the statistical inefficiency of

the number of water bound to CB8 and the replica state indices. The latter was previously found to correlate

well with the uncertainty of free energy estimates in Harmiltonian replica exchange calculations [36]. In

HREX, the statistical inefficiency of a time series (i.e. the interval of time required for two samples of the time

series to be uncorrelated) can be computed along a replica trajectory, which can explore different states

during the calculation, or along a state trajectory [110]. Here we estimated the autocorrelation function and
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the statistical inefficiency of the number of bound waters for each state trajectory. The number of bound

waters was computed by counting the water molecules with at least one atom within the convex hull of

the heavy atoms of CB8. Moreover, we estimated an overall statistical inefficiency for both the number of

bound waters and the state indices along replica trajectories from the autocorrelation function computed by

averaging the autocorrelation functions over all the replicas [36, 110].

The average autocorrelation function of both CVs and their associated statistical inefficiencies are

represented in (Figure 7B). The overall statistical inefficiency of the state indices is about five times smaller
for OA-G3/G6 (1208.8 ps and 1371.0 ps) than for CB-G3 (6572.3 ps), which is consistent with the larger

uncertainties generally found for the latter set of calculations. In previous alchemical calculations of

cucurbit[7]uril, it was found that the number of bound waters had correlation times on the order of several

nanoseconds for intermediate states in which the Lennard-Jones interactions between host and guest were

almost completely turned off [57]. In that study, the simulation of each intermediate state was performed

independently, without state swapping. The same problem does not seem to affect HREX calculations.

Indeed, the statistical inefficiency of the number of bound waters along the intermediate state trajectories
(instead of the replica statistical inefficiency considered above) is never greater than 282 ps (SI Figure 13).

On the other hand, the replica trajectories, which in HREX span multiple states, of the number of bound
waters in Figure 7B highlight a marked correlation with the state index and the presence of metastabilities.
Indeed, the distribution of bound waters changes very rapidly during the last intermediate states where

the Lennard-Jones interactions are almost completely turned off (Figure 7A), which causes the overlap
between neighbor states distribution to diminish rapidly, while it remains fairly stable from the bound to the

near-decoupled state, where the only evident change is a shift in the mode of the bound water histogram

from 2 to 0 when the guest’s charges are turned off. The shift in mode is consistent with the observed

harmonic restraint radius (Figure 5), which suggests that the guest tends to crawl into the hydrophobic
binding site in the discharged state to compensate for the loss of the polar interactions with water.

In addition to the number of bound waters and the state indices, we looked also at other CVs along

replica trajectories without finding any correlating with the state indices or the bias decay time shown in

Figure 6. In particular, both the host-guest distance restrained by the harmonic potential and the distance
between the alchemically-decoupled counterion and the guest seem to decorrelate quickly along a replica

trajectory, with estimated statistical inefficiencies never exceeding 50 ps.

While these results prove only the existence of correlation between the metastabilities in the number

of bound waters and the state indices along a replica trajectory in the CB8-G3 calculations, it is plausible

to hypothesize that water molecules displaced by the quinine when the Lennard-Jones interactions are

re-coupled, alongside eventual steric clashes with the host binding site, might contribute significantly to

hindering the replica exchange step with obvious negative effects on the ability of the HREX algorithm to

enhance sampling. Possibly, an increased number of intermediate states close to the decoupled state might

enhance the replica exchange acceptance rates and reduce the state indices correlation times of CB8-G3.

However, this will help reducing the bias decay time only if the exchange step can enhance the sampling of

the physical collective variable responsible for this behavior.

3.10 Methods generally overestimated the host-guest binding free energies with respect
to experimental measurements

Accuracy with respect to experiments was not the focus of this study, but the input files for the challenge

were created using a quite typical setup, and it is thus interesting to compare the converged predictions to

the corresponding experimental data collected for the accuracy host-guest challenge [23, 111, 112]. The ITC

measurements yielded binding free energies of -6.45 +- 0.06 kcal/mol for CB8-G3, -5.18 +- 0.02 kcal/mol for

OA-G3, and -4.97 +- 0.02 for OA-G6. In comparison, the well-converged computational results were more

negative on average by -4.4, -1.2, and -2.1 kcal/mol respectively, in line with what was observed for other

methods employing the GAFF force field in the SAMPL6 host-guest accuracy challenge [23]. It should be

noted that the ionic strengths of SAMPLing systems (i.e., 150 mM for CB8-G3 and 60 mM for OA-G3/G6)

were slightly higher than in experimental conditions (estimated to be 57.8 mM for CB8-G3 and 41.25 mM

for OA-G3/G6) used for the host-guest binding challenge, and previous evidence revealed the host-guest
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binding free energies to be sensitive to concentration and composition of the ions. In a recent SOMD

calculations performed for the SAMPL6 accuracy challenge, removing the ions modeling ionic strength of the

experimental buffer (i.e. going from 150 mM for CB8-G3 and 60 mM OA-G3/G6 to 0 mM) caused the ΔG
prediction to shift by -4.87 ± 2.42, 1.37 ± 0.50, and 1.48 ± 0.48 for CB8-G3, OA-G3, and OA-G6 respectively
(computed as the average of three runs ± standard error of the mean) [73]. In particular, the estimated
binding free energy for OA-G3 obtained without buffer ions agreed with the experimental measurement

within uncertainty. It is unlikely for the ion concentrations to be the sole responsible for the overestimated

binding affinities. The sign of the shift for CB8-G3 described above is not consistent with the hypothesis,

and a negative mean error was very consistent across GAFF submissions employing different buffer models.

Nevertheless, the order of magnitude of these shifts suggests that ionic strengths cannot be neglected.

4 Discussion
4.1 Disagreements between methodologies impact force field development and

evaluation
In many cases, methods obtained statistically indistinguishable predictions with very high precision. The

agreement between methodologies is quite good for OA-G6, where essentially all estimates are within

0.4 kcal/mol. On the other hand, despite the focus of the study on reproducibility, some of the methods

yielded predictions that significantly deviated from each other by about 0.3 to 1.0 kcal/mol. This directly

raises a problem with force field evaluation and development since it implies that the accuracy afforded

by a given set of forcefield parameters (and thus the value of the loss function used for their training) can,

in practice, be affected significantly by the software package, methodological choices, and/or details of

simulation that are considered to have negligible impact on the predictions (e.g., switched vs truncated

cutoff, treatment of long-range interactions, ion concentrations). Trivially, this also implies that we should

not expect a force field to maintain its accuracy when using simulation settings that differ from those used

during fitting.

Similar observations were made in previous work in different contexts. In a reproducibility study involving

four different implementations of relative hydration free energy calculations, the authors found in many

cases statistically significant ΔΔG differences on the order of 0.2 kcal/mol [27]. Systematic differences of the
same order of magnitude were detected in a recent study comparing Monte Carlo and Molecular Dynamics

sampling for binding free energy calculations [24], although, in this case, differences in water models and

periodic boundary conditions might confound the analysis.

4.2 Bias is critical when comparing the efficiency of different methodologies
The results show that quantifying not only the variance but also the bias of a binding free energy method is

important to draw a complete picture of the efficiency of a method. The bias of the free energy predictions

varied substantially depending on the method and the system, and for calculations that are short with

respect to the correlation times, the bias can be greater or have the same order of magnitude of the variance.

For example, in CB8-G3, NS-DS/SB-long obtained a greater RMSE efficiency than HREX in spite of the similar

variance because the bias of OpenMM/HREX for CB8-G3 remained non-negligible for a substantial portion of

the calculation. This suggests that looking at the variance of the free energy estimate alone is insufficient to

capture the efficiency of a method, and the RMSE relative to the asymptotic binding free energy prediction

should be favored as the main statistic used in studies focusing on exploring and testing methodological

improvements.

Estimating the RMSE and bias is a more complicated problem than estimating the variance as it requires

the value of asymptotic free energy given by the model and thus to ascertain that the calculation has

converged. Visual inspection of the free energy trajectory is useful, but it can be misleading. Besides the

presence of unexplored relevant areas of configurational space, the noise in the trajectory can hide very

slow decays (see YANK calculation in CB8-G3). More recommendations about how to detect convergence

issues can be found in [113, 114].

On the other hand, a focus on quantifying the efficiency of free energy calculations in terms of RMSE could
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increase the attention paid to convergence issues as well as incentivize the creation of reference datasets

that could provide asymptotic free energies associated to specific input files without always requiring long

and expensive calculations. The latter would particularly benefit the field when the efficiency of a method

would need to be evaluated only for very short protocols (e.g. overnight predictions). This is, however,

conditional on identifying the source of the discrepancies between the predictions of different methods and

an asymptotic value can be agreed upon in the first place.

4.3 Multiple replicates are one route to avoiding underestimating the uncertainty
MBAR uncertainties and bootstrap uncertainties built with the blocking method were in most cases able to

estimate the standard deviation of the free energy prediction within confidence interval. Nevertheless, when

sampling is governed by rare events and systematically misses relevant areas of conformational space, data

from a single trajectory simply cannot contain sufficient information to estimate the uncertainty accurately.

An example is given by the CB8-G3 calculations performed by OpenMM/SOMD and NAMD/BAR, for which the

uncertainty estimates were underestimated by more than 1 kcal/mol. In these cases, replicate calculations

starting from independent conformations can offer a solution to or compensate for the problem. Relaxed

docked conformations can be a viable method to generate the independent conformations, although this

is not, in general, an easy task and multiple short replicates starting from the same or very similar initial

conformations can still cause the uncertainty to be underestimated. Moreover, given a limited amount

of computational resources, the number of replicate calculations should not be large enough to prevent

sampling of all the relevant time scales, which are strongly system-dependent.

In addition to a more accurate estimate of the free energy estimate, it has been argued that predictions

computed from an ensemble of independent calculations lead to more robust estimates [29, 115]. In

agreement with these results, the simple average of the five independent free energies is surprisingly robust

even when the single-replicate predictions do not agree quite well (SI Figures 5,9).

4.4 Shortcomings of the analysis and lesson learned for future studies
The bias estimation strategy favors short and unconverged calculations

Originally, the calculations run by the organizers (i.e., OpenMM/HREX and GROMACS/EE) were meant to

provide a reference estimate of the asymptotic free energy of the model that we could use to detect and

estimate systematic biases. However, because of the differences in setups and treatment of long-range

interactions adopted in the different submissions, this type of analysis was not possible. Instead, we

estimated the asymptotic free energy for each methodology as the average binding free energy of the 5

replicates after 100% of the computational cost. As a consequence, the bias is generally underestimated,

and long calculations and converged results are thus generally penalized in the calculation of the efficiency

statistic. Some of these differences could be minimized by picking settings to which most software packages

and methods will be able to adhere. For example, providing systems solvated in both cubic and elongated

orthorhombic boxes, and running reference calculations for both of them, could lower the barrier for PMF

calculations to enter the challenge without re-solvating the reference files. Moreover, using a truncated cutoff

instead of a switched cutoff could help as AMBER does not support switched cutoffs and different simulation

packages could use slightly different switching functions. Also, providing template input configuration files

for common simulation packages that encapsulate other settings such as PME parameters could reduce the

risk of running several methods with different settings.

The number of force evaluations can miss important information about the computational cost

In this work, we have focused the analysis on the number of energy/force evaluations as a measure of

the methods’ computational cost. In general, this is a very practical and fair measure of the cost of a

method. For example, unlike wall-clock or CPU time, it does not depend on hardware and the particular

implementation, which is compatible with the objective of this challenge in detecting fundamental differences

in efficiency between algorithms. Thus, even though implementation details might affect wall-clock/GPU

time dramatically, methods with a comparable number of energy/force evaluations might eventually be able

to be put on equal footing given enough developer time if it seemed warranted. Moreover, this measure
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treats both molecular dynamics and Monte Carlo strategies equally, which would not be possible if the cost

was measured, for example, in terms of simulation time (e.g., nanoseconds of simulation).

However, the number of force/energy evaluations can miss important details. It is insensitive to the

system size, and it assumes that the computational cost of all other components of the calculation is

negligible. Furthermore, while some sampling schemes require multiple evaluations of the Hamiltonian,

often it is not necessary to compute it in its entirety. For example, in multiple time scale MD and Monte

Carlo moves involving a reduced number of degrees of freedom, one only needs to compute a subset of

pairwise interactions. HREX requires the evaluation of multiple Hamiltonian at the same coordinates, but

only the parts of the Hamiltonian that change between intermediate state needs to be evaluated multiple

times. When the algorithms and setups differ, this may become important to take into account. For example,

double decoupling methods assigned the same computational cost to each time step of the complex and

solvent stages of the calculation, while REVO, APR, and NS-DS/SB ran only in one stage using a box of the

same or greater size of the complex so that one force evaluation for the latter methods on average is

practically more expensive than a force evaluation for double decoupling.

In future challenges, it might be useful to collect another simple but more precise measure of the

computational cost of a method based on a scaled version of the number of energy/force evaluations, with

the scaling factor depending on the number of particles that enters the evaluation. Moreover, instead

of requesting exactly 100 free energy estimates for each replicate, requesting free energy estimates that

are roughly equally spaced by a predetermined number of force/energy evaluations could make it simpler

to perform direct comparisons between all methods without requiring the comparison to a reference

calculation.

A larger and more varied test set is necessary to obtain a more comprehensive picture of the

methods’ efficiency

This first round of the challenge was created as a component of the SAMPL6 host-guest challenge, and we

created a minimal test set including both fragment-like and drug-like compounds. We believe this was a

beneficial decision. Fragment-like guests that converged relatively quickly such as OA-G3/G6 proved very

useful to debug systematic differences between methods while most of the methods problems or strengths

were unveiled from the calculations targeting CB8-G3, which has a greater size and generally proved to be

more challenging for free energy methods than the two octa-acid guests.

Expanding the test set to include one trivial system and a few more challenging systems could increase

the potential for learning and provide a more complete picture of the problems to address and the domain

of applicability of the different methods, especially as different approaches may have different strengths and

weaknesses. For example, HREX and EE could be less effective at improving convergence for systems with

a single dominant binding mode. On the other hand, systems with a buried binding pocket that remains

dry in both the holo and apo states could be less problematic for HREX and EE, which are challenged by

wetting/dewetting processes that occur at the “almost decoupled” state. At the same time, physical-pathway

methods such as APR and REVO might be less effective for receptor-ligand systems with buried binding

pockets, as an efficient unbinding path could require large reorganization of the receptor that might be

difficult to determine or sample.

For systems that are easier to converge, it might also be possible to increase the number of replicates

from five. The increased statistical power could be particularly helpful to resolve differences between

methods in efficiency, in estimated binding free energy predictions, and for the analysis of the uncertainty

estimates (e.g. blocking, bootstrap, and correlation analysis) since the standard deviation of the binding free

energy estimated from five replicates have large variance, which makes it hard to draw statistically significant

conclusions. For bigger systems, this may not be practical, but the number of replicates does not necessarily

have to be the same for all the tested systems.

Finally, we point out that the selection of systems for such convergence studies is not limited by the lack

of experimental data or a chemical synthesis route, and one is free to craft an optimal test system.
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4.5 Parallelization considerations
The analysis above does not account for the differences in the intrinsic levels of parallelization of the different

methods, but almost all methods can be completely or almost trivially parallelized over up to 40 parallel

processing units with the given protocols. APR, NAMB/BAR, and SOMD protocols use respectively 60, 64, and

40 windows, the last two numbers to be divided equally between complex and solvent stages. Each HREX

calculation ran more than 100 MC/MD parallel simulations, although the exchange step provides a bottleneck

for the simulation. Similarly, the protocol used for the REVO methodology employs 48 independent walkers

that can be run in parallel throughout the calculation, with a bottleneck occurring at the cloning/merging

stage of the adaptive algorithm. NS-DS/SB protocol used 10 independent equilibrium simulations for each

end state (i.e. bound and unbound states) that generate frames used to spawn nonequilibrium switching

trajectories in both directions. New NS trajectories can be started as soon as new equilibrium samples are

generated. Thus, because the nonequilibrium trajectory duration in this protocol is greater than the interval

between two equilibrium frame, the calculation can in principle have at least 40 independent simulations

running in parallel. The EE protocol submitted for this work is an exception as it does not use a parallelization

scheme, although maintaining and coordinating multiple independent expanded ensemble chains is in

principle possible [116].

Nevertheless, all calculations can also be trivially parallelized over the molecules in the set and over

eventual independent replicate calculations. Under perfect parallelization, or in the presence of negligible

bottlenecks, the relative efficiency is insensitive to the number of parallel processing units so we expect

the analysis in this work can be informative also in many common scenarios involving parallel computing

systems. However, these results should be careful re-interpreted in the presence of massively parallel

computational systems, in which the number of processing units does not provide a fundamental bottleneck.

For example, a large number of GPUs could be exploited better with protocols simulating many intermediate

states that can be simulated in parallel, such as those used by HREX and APR.

5 Conclusions
We have presented the results of the first round of the SAMPLing challenge from the SAMPL challenge series.

The design and execution of the challenge made apparent the need for a measure of efficiency for free

energy calculations capable of capturing both bias and uncertainty of the finite-length free energy estimates

and summarizing the performance of a method over a range of computational costs. The analysis framework

and efficiency statistics we introduced in this work allow formulation and evaluation of hypotheses regarding

the efficiency of free energy methods that can be verified meaningfully with the standard tools of statistical

inference. We applied this framework to seven free energy methodologies and compared their efficiency

and their level of agreement on a set of three host-guest systems parametrized by the same force field. The

analysis highlighted significant and system-dependent differences in the methods’ convergence properties

that depend on both the sampling strategies and the free energy estimator used. Overall, the study shows

that PMF and alchemical absolute binding free energy calculations can converge within reasonable computing

time for this type of system.

Surprisingly, we observed significant differences in the converged free energies for the different methods

ranging from 0.3 to 1.0 kcal/mol. These discrepancies are small enough that they would not have aroused

suspicion without the comparison of multiple independent methods, which stresses the utility and efficacy

of this type of study in detecting methodological problems. While we were able to isolate the origins of some

of these discrepancies, further work will be required to track down the causes of remaining discrepancies,

which might be attributable to small differences in the model (e.g. treatment of long-range interactions,

ionic strength), sampling issues of some of the methods, software package, or any combination of the above.

Notably, the discrepancies between methods are roughly half the size of the current reported inaccuracies of

leading free energy methods compared to experiment (roughly 1 kcal/mol). Eliminating these discrepancies

would therefore be very useful for the field to make further progress.

Although we decided to accept non-blinded submissions to increase the value of the study, future

rounds of the challenge should ideally be limited to blind predictions, in line with the other challenges
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within the SAMPL series. Moreover, we hope to include relative free energy methods and extend this

analysis framework to compare the efficiency of absolute and relative methods. This would allow us to

ask questions related to how the relative efficiency of the two approaches changes with the complexity of

the alchemical transformation. The lessons learned while organizing this first round of the challenge will

be useful to address the problems identified during the analysis. In particular, we hope to adopt a slightly

different measure of computational cost based on the number of force/energy evaluations that also takes

into account the system size, and increase the size and variety of the test set. Although an aspirational goal,

running on the same dedicated hardware would allow a meaningful comparison of the performance of the

different methods also in terms of CPU/GPU time, and analyze more closely the speedups obtained with

parallelization. Workflow-ized tools (e.g., Orion workflows, BioSimSpace workflows, HTBAC) could be helpful

in pursuing this direction.

6 Detailed methods
6.1 Preparation of coordinates and parameters files
The protonation states of host and guest molecules were determined by Epik 4.0013 [117, 118] from the

Schrödinger Suite 2017-2 at pH 7.4 for CB8-G3 and pH 11.7 for OA-G3 and OA-G6. These values correspond

to the pH of the buffer adopted for the experimental measurements performed for the SAMPL6 host-

guest binding affinity challenge. For each host-guest system, 5 docked complexes were generated with

FRED [63, 64] using the OpenEye Toolkit 2017.6.1. Hosts and guests were parameterized with GAFF v1.8 [67]

and antechamber [119]. AM1-BCC [65, 66] charges were generated using OpenEye’s QUACPAC toolkit through

OpenMolTools 0.8.1. The systems were solvated in a 12 Åbuffer of TIP3P [68] water molecules using tleap

in AmberTools16 [120] shipped with ambermini 16.16.0. In order to make relative free energy calculations

between OA-G3 and OA-G6 possible, ParmEd 2.7.3 was used to remove some of the molecules from the

OA systems and reduce the solvation box to the same number of waters. This step was not performed

for the CB8-G3 system, and the 5 replicate calculations where simulated in boxes containing a different

number of waters. The systems’ net charge was neutralized with Na+ and Cl- ions using Joung-Cheatham

parameters [121]. More Na+ and Cl- ions were added to reach the ionic strength of 60 mM for OA-G3/G6

systems and 150 mM for CB8. Note that this ionic strength is likely to be different from the one used for

the experimental measurements, which was estimated to be 41 mM and 58 mM respectively. Systems

were minimized with the L-BFGS optimization algorithm and equilibrated by running 1 ns of Langevin

dynamics (BAOAB splitting [19], 1 fs time step) at 298.15 K with a Monte Carlo barostat set at 1 atm using

OpenMM 7.1.1 [72] and OpenMMTools [122]. Particle Mesh Ewald (PME) was used for long-range electrostatic

interactions with a cutoff of 10 Å. Lennard-Jones interactions used the same 10 Å cutoff and a switching

function with a switching distance of 9 Å. After the equilibration, the systems were serialized into the

OpenMM XML format. The rst7 file was generated during the equilibration using the RestartReporter object

in the parmed.openmm module (ParmEd 2.7.3). The AMBER prmtop and rst7 files were then converted

to PDB format by MDTraj 1.9.1 [123]. The files were converted to GROMACS, CHARMM, LAMMPS, and

DESMOND using InterMol [26] (Git hash f691465, May 24,2017) and ParmEd (Git hash 0bab490, Dec 11,

2017). The parameters and coordinates files were validated by comparing the potential energies of all

replicate conformations computed with the supported molecular simulation packages. Similarly to what

was found in [26], energies were generally within 1 kJ/mol from each other, except for those computed with

AMBER and CHARMM, which differed by about 2–4 kJ/mol. These discrepancies are explained almost entirely

by slightly different definition of the Coulomb constant, with AMBER and CHARMM adopting values that are

furthest away from each other for historical reasons, and, to a lesser extent, differences in Lennard-Jones

cutoff schemes and PME implementations. The contribution from these differences were generally expected

to cancel out at the end points of the thermodynamic cycles used for the prediction of the binding free

energies. The insensitivity to the Coulomb constant definition and PME parameters was confirmed for HREX

calculation with the OA-G3 system (see Table 2).

6.2 Free energy methodologies
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AMBER/APR

We used the attach-pull-release (APR) [90, 91] method to calculate absolute binding free energies of each

host-guest complex. We used 14 "attach" umbrella sampling windows, during which time host-guest complex

restraints are gradually applied, and 46 "pull" umbrella sampling windows to separate the host and guest. A

final, analytic "release" phase was applied to adjust the effective guest concentration to standard conditions

(1 M). Since CB8 has two symmetrically equivalent openings, and the APR method only pulls the guest out of

one opening, we have added an additional −RT ln(2) = −0.41 kcal/mol to the calculated binding free energy
to adjust for this additional equivalent entropic state.

The restraints were setup using our in-development Python package: pAPRika 0.0.3 (commit hash

e69f053). Six restraints (1 distance, 2 angles, and 3 dihedrals) were used to restrain the translational and

orientational degrees of freedom of the host relative to three positionally restrained dummy anchor atoms.

These restraints, which were constant throughout all APR windows, did not perturb the internal degrees of

freedom of the host. The distance force constant was set to 5.0 kcal/mol-Å2 and the angle force constant

to 100.0 kcal/mol-rad2. Three additional restraints were added, during the attach phase of APR, between

the dummy atoms and two guest atoms in order to orient the guest relative to the host and then separate

the two molecules by 18 Å, which was sufficient for reaching a plateau in the potential of mean force. The

distance and angle force constants for these restraints were the same as before.

All equilibration and production simulations were carried out with the GPU-capable pmemd.cuda MD

engine in the AMBER 18 package [69]. The OA systems were re-solvated with 3000 waters and the CB8

systems were re-solvated with 2500 waters in a orthorhombic box elongated in the pulling direction to

enable distances between the host and guest necessary to carry out the potential of mean force calculation.

Force field parameters and charges of the host-guest systems were not altered in the operation. Equilibration

consisted of 500 steps of energy minimization and enough NPT simulation such that 1 ns could be completed

without the simulation box dimensions changing beyond AMBER limits (up to 10 ns total). All simulations

used a time step of 2 fs, with a Langevin thermostat and a Monte Carlo barostat. The nonbonded cutoff was

set to 9.0 Å, and the default AMBER PME parameters were employed.

For the OA-G3 simulations, we performed 10 ns of sampling per window. For the OA-G6 simulations, we

performed 15 ns of sampling per window. For the CB8-G3 simulations, we performed 70 ns of sampling

per window. In all cases, we used thermodynamic integration to compute the binding free energies. To

compute the uncertainties, we used blocking analysis to calculate the mean and standard error of dU∕d�
in each window, where U is the potential energy and � is the reaction coordinate. We then created 1000
bootstrapped splines through points sampled off the distribution determined by the dU∕d� mean and
standard error of the mean for each window, used trapezoidal integration for the total free energy for each

spline, and computed the mean and standard deviation of the free energies from the bootstrap samples.

GROMACS/NS-DS/SB and GROMACS/NS-DS/SB-long

The estimates were obtained with alchemical nonequilibrium free energy calculations using GROMACS

2018.3 [70] as described in [87]. Briefly, both legs of the thermodynamic cycle were carried out in the same

box: i.e. one guest molecule was decoupled from the solvent while another copy was coupled while in the

host binding pocket. The two guest molecules were placed 2.5 nm apart and restrained with a single position

restraint on one of their heavy atoms. For the guest molecule bound to the host, a set of restraints as

described by Boresch [88] (1 distance, 2 angles, 3 dihedrals) was applied. A force constants of 10 kcal/mol-Å2

was applied to the distance, and constants of 10 kcal/mol-rad2 were applied to the angles.

First, both end-states (A: bound guest coupled and unrestrained, unbound guest decoupled; B: bound

guest decoupled and restrained, unbound guest coupled) were simulated using 10 simulations of 20 ns each

(20.2 ns for CB8), for a total of 400 ns of equilibrium sampling (404 ns for CB8). Each of these 20 simulation

boxes had been previously built from the input files provided by the organizer by re-solvating the host-guest

systems and randomly placing ions in the box at a concentration of 0.1 M, followed by minimization with

10000 steps of steepest descent. The re-solvation was a necessary step to enable sufficient distance between

the host and guest in the unbound state and did not alter the force field parameters of hosts and guests.

However, differently from the challenge input files, Cl- and Na+ ions were added to the simulation to reach a

32 of 43

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted October 7, 2019. ; https://doi.org/10.1101/795005doi: bioRxiv preprint 

https://doi.org/10.1101/795005
http://creativecommons.org/licenses/by/4.0/


Preprint ahead of submission — October 5, 2019

100 mM concentration.

For the OA systems, 50 frames were extracted from each of the equilibrium simulations at an interval

of 400 ps. Thus, in total 500 frames were extracted from the equilibrium simulations of each of the two

end-states. For the CB8 systems, 100 frames were extracted from each of the equilibrium simulations every

200 ps, for a total of 1000 frames. The extracted snapshots were used to spawn rapid nonequilibrium

alchemical transitions between the end-states. In the nonequilibrium trajectories, the Hamiltonian between

the two end states was constructed by linear interpolation.

The alchemical transitions were performed in both directions (A->B and B->A) in 500 ps per simulation

for the OA systems, and in 1000 ps for the CB8 systems. A second submission identified by GROMACS/NS-

DS/SB-long used a 2000 ps nonequilibrium trajectory instead and only for CB8-G3. For the unbound guest,

charges were annihilated (i.e. intra-molecular electrostatics was turned off) and Lennard-Jones interactions

were decoupled (i.e. intra-molecular sterics was left untouched) at the same time, using a soft-core potential

for both. The same protocol was used for the bound guest except that also the Boresch restraints were

switched on/off during the nonequilibrium transitions by linearly scaling the force constants. The two

positional restraints attached to the two copies of the guest were left activated throughout the calculation.

All simulations used Langevin dynamics with a 2 fs time step with constrained hydrogen bonds. Periodic

boundary conditions and Particle Mesh Ewald were employed with a cutoff of 10 Å, interpolation order of

5, and tolerance of 10−4. A cutoff of 10 Å with a switching function between 9 Å and 10 Å was used for the

Lennard-Jones interactions. An analytical dispersion correction for energy and pressure was also used to

account for the dispersion energy. The Langevin thermostat was set at 298.15 K and a Parrinello-Rahman

barostat [124] was employed to maintain the pressure at 1 atm.

The binding free energy was estimated with pmx [125] from the set of nonequilibrium work with the

BAR [126, 127] estimator after pooling all the data from the ten independent calculations. Uncertainties

were instead estimated by computing the standard error of the ten individual BAR estimates.

GROMACS/EE and GROMACS/EE-fullequil

The free energy of bindings were obtained with the double decoupling method [12] using the expanded

ensemble enhanced-sampling methodology [18] implemented in GROMACS 2018.3 [70]. Charges were

turned off completely before removing Van der Waals interactions in both the complex and the solvent

phase. Both Coulomb and Lennard-Jones interactions were annihilated (i.e. intra-molecular interactions

were turned off). Two restraints were used during the complex phase of the calculation: a flat-bottom

restraint with radius 1.5 nm and spring constant 1000 kJ/mol-nm2, and a harmonic restraint with spring

constant 1000 kJ/mol-nm2. Both restraints were attached to the centers of mass of host and guest, but while

the flat-bottom restraint remained throughout the simulation, the harmonic restraint was incrementally

activated while the Lennard-Jones interactions were removed. In the bound state, the flat-bottom distance

between the centers of mass remained always smaller than the 1.5 nm radius necessary to have a non-zero

potential.

Because of instabilities and bias introduced by the Berendsen barostat during the expanded ensem-

ble calculation, all the simulations were performed in NVT using the average volume sampled by the

OpenMM/HREX calculations performed with YANK. V-rescale temperature was used to keep the temperature

at 298.15 K, and and bonds to hydrogen atoms were constrained using the SHAKE algorithm. We used the

md-vv integrator, a velocity Verlet integrator, with time steps of 2 fs. Metropolized Gibbs Monte Carlo moves

between all intermediate states [79] were performed every 100 time steps based on weights calculated

with the Wang–Landau (WL) algorithm as described below. The metropolized Gibbs move in state space

proposes jumps to all states except the current state, with a rejection step to satisfy detailed balance. An

equal number of time steps were allocated to production simulations of complex and solvent systems for

each free energy estimate. A cutoff of 10Å was used for nonbonded interactions with a switching function

between 9 Å and 10 Å for Lennard-Jones forces. Particle Mesh Ewald used an interpolation order of 5 and a

tolerance of 10−5. A sample .mdp file can be found in the submission at https://github.com/samplchallenges/

SAMPL6/blob/master/host_guest/Analysis/Submissions/SAMPLing/NB006-975-absolute-EENVT-1.txt.

The expanded ensemble calculation was divided into two stages: an equilibration stage, in which the
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expanded ensemble weights were adaptively estimated, and a production stage that generated the data

used to compute the submitted free energy estimates and in which the weights were kept fixed. In the

equilibration stage, the weights are adaptively estimated using the Wang-Landau algorithm [80, 81]. For all

systems an absolute value of the initial Wang–Landau incrementor was set to 2 kBT. Weights were updated at

each step, and the increment amount was reduced by a factor of 0.8 each time a flat histogram was observed,

meaning that the ratio between the least visited and most visited states since the last change in the weight

increment was less than 0.7. The process of updating the weights was halted when the incrementing amount

fell below 0.001 kBT. Equilibration of the weights was only ran on a single starting conformation out of five

for each host-guest pair. The weight of the fully coupled state is normalized to zero, meaning that the weight

of the uncoupled state corresponds to the free energy of the process. The last stage of the simulation,

during which period the expanded ensemble weights were no longer updated, was termed the "production"

stage since it was the only part of the trajectory used to calculate the final free energy change. Once the

Wang–Landau incrementor reached a value of 0.001 kBT the simulation was stopped, MBAR was ran on

simulation data obtained while the Wang–Landau incrementor was between values of 0.01 and 0.001 kBT,

and the resulting free energies were used to set the weights for the production simulations for all starting

conformation of a host-guest pair.

Reported values were obtained by running MBAR on production simulation data. The submissions

GROMACS/EE and GROMACS/EE-fullequil differ only in whether the computational cost of the equilibration

is added in its entirety to each of the five replicate calculations (GROMACS/EE-fullequil) or whether it is

ammortized over the replicates (GROMACS/EE).

NAMD/BAR

The alchemical free energy calculations were performed using the double decoupling method as imple-

mented in NAMD 2.12 [71]. The NAMD protocol utilized a total number of 32 equidistant � windows, that are
simulated independently for 20 ns/window with Langevin dynamics using a 2 fs time step and coupling coef-

ficient of 1.0 ps−1. The Lennard-Jones interactions are linearly decoupled from the simulation in equidistant

windows between 0 and 1, while the charges were turned off together with LJ over the � values 0-0.9 for
CB8-G3 and 0-0.5 for OA-G3 and OA-G6. During the complex leg of the simulation a flat-bottom restraint

with a wall constant of 100 kcal/mol/Å2 was applied to prevent the guest from drifting away from the host.

A non-interacting particle having the same charge of the guest was created during the annihilation of the

Coulomb interactions in order to maintain the charge neutrality of the box [62, 86]. Before collecting samples

for the free energy estimation, each window was equilibrated for 2 ns. The pressure was maintained at

1 atm using a modified Nosé–Hoover method implemented in NAMD, in which Langevin dynamics is used to

control fluctuations in the barostat [128, 129]. The Langevin piston utilized an oscillation period of 100 fs

and a damping time scale of 50 fs. Long range electrostatic interactions were treated with the following

PME parameters: PME tolerance = 10−6, PME spline order 4, and PME grid = 48x48x48. The cutoff for both

Lennard-Jones and PME was set to 10 Å, and the switching distance was set to 9 Å. The free energy of each

replicate calculation and their uncertainties were computed with BAR using ParseFEP [130] Tcl plugin (version

2.1) for VMD 1.9.4a29.

OpenMM/HREX

The free energy calculations and analysis were performed with YANK 0.20.1 [76, 77] and OpenMMTools

0.14.0 [122] powered by OpenMM 7.2.0 [72]. The protocol followed the double decoupling methodology [12]

using the thermodynamic cycle in SI Figure 4 . In both phases, we first annihilated the guest charges (i.e.

intra-molecular electrostatics was turned off) and then decoupled the soft-core (1-1-6 model) Lennard Jones

interactions [78] (i.e. intra-molecular sterics was left untouched). The spacing and number of intermediate

states was determined automatically for the three systems by the trailblaze algorithm implemented in

YANK [76]. This resulted in a protocol with a total of 69 and 62 intermediate states for the complex and

solvent phase respectively of CB8-G3, 59 and 54 states for OA-G3, and 55 and 52 states for OA-G6. Since all

guests had a net charge, a counterion of opposite charge was decoupled with the guest to maintain the box

neutrality at each intermediate state and avoid artifacts introduced by finite-size effects with Particle Mesh
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Ewald.

Hamiltonian replica exchange [17] was used to enhance sampling of the binding modes. Each iteration

of the algorithm was composed by a metropolized rigid translation, using a Gaussian proposal of mean 0

and standard deviation 1 nm, and a random rotation of the ligand followed by 1 ps of Langevin dynamics

(BAOAB splitting [19], 2 fs timestep, 10/ps collision rate). A Monte Carlo barostat step was performed every

25 integration steps to maintain a pressure of 1 atm. All hydrogen bonds were constrained. The Hamiltonian

exchange step was carried out after each iteration by performing K4 metropolized Gibbs sampling steps [79],

where K is the number of intermediate states in the protocol. At the beginning of each iteration, velocities
for all replicas were randomly re-sampled from the Boltzmann distribution. In all calculations, we ran 40000

iterations of the algorithm (i.e. 40 ns of MD per replica) for both the complex and solvent calculation for a

total MD propagation of 5.24 �s, 4.52 �s, and 4.28 �s for each of the five replicates of CB8-G3, OA-G3, and
OA-G6 respectively. An analytical dispersion correction for the long-rage Lennard-Jones interactions was

added during the simulation for all atoms except the alchemically-softened atoms for optimization reason.

The contribution of the guest to the dispersion correction was instead found by reweighting the end states.

The analysis of the samples was performed with the MBAR estimator [75] with PyMBAR 3.0.3. We

computed the statistical inefficiency of the data by estimating the correlation time of the time series of

the traces of the K ×K MBAR energy matrix U (i) computed at each iteration i, where the matrix element
Ujl(i) is the reduced potential of the sample generated by state j at iteration i and evaluated in state l. The
statistical inefficiency was then used to discard the burn-in data by maximizing the number of effective

samples as described in [131] and to subsample the time series in order to decorrelate the data before

running MBAR. In the complex phase, the guest was restrained throughout the calculation into the binding

site through a single harmonic restraint connecting the center of mass of the heavy atoms of host and guest

with a spring constant of 0.2 kcal/(mol ⋅ Å2) for CB8-G3 and 0.17 (mol ⋅ Å2) for OA-G3/G6. Following the

double decoupling approach, an analytical correction was added to bring the affinity in units of standard

concentration and correct for the restraint volume in the decoupled state. However, because the restraint

was activated in the bound state as well, we also used MBAR to reweight the samples to remove the bias

introduced by the harmonic potential. Samples whose restrained distance (i.e. the distance between the

host and guest centers of mass) was above a specific threshold were discarded. This is equivalent to

reweighting the data to a state having a restraint following a square well potential, where the energy is either

zero or infinity, with a radius equal to the distance threshold. The distance threshold was determined by

selecting the 99.99-percentile distance sampled in the bound state, which resulted in 4.5830673 Åfor CB8-G3,

5.773037 Åfor OA-G3, and 6.0628217 Å for OA-G6. The YANK input file used for the calculation can be found

at https://github.com/samplchallenges/SAMPL6/blob/master/host_guest/SAMPLing/YANK_input_script.yaml.

The number of energy evaluations used to determine the computational cost of the method was

computed for each iteration as MDcost + MCcost + MBARcost, where MDcost is the number of force evaluations

used to propagate the system (i.e. 1 ps/2 fs = 500 force evaluations), MCcost are the number of energy

evaluations performed for acceptance/rejection of the MC rotation and translation (4 energy evaluations),

and MBARcost is the number of energy evaluations necessary to compute the MBAR free energy matrix at

each iteration. We set MBARcost = K ×K , where K is both the number of states and the number of replicas.
This is an overestimation as YANK computes the energies of each replica for all states by recomputing only

the parts of the Hamiltonian that change from state to state.

6.3 Estimation of the relative efficiency
We considered the standard deviation, absolute bias, and RMSE error statistics in Eq. (2) to compute

respectively the relative efficiencies e
std
, e
bias
, e
RMSE
. The relative efficiencies of all methods were estimated

with respect to OpenMM/HREX, which was the longest calculation and could provide free energy predictions

at all the computational costs intervals required to estimate the statistics. We used a uniform weight

w(c) = const. for all methods, and, because we have data available for only 100 computational costs over
the interval [c

min,X , cmax,X], we interpolated the error statistic for the other values of c and approximated the
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average over the number of energy evaluations with

Ew[errX(c)] =
1

c
max,X − cmin,X + 1

cmax,X
∑

c=cmin,X

errX(c) ≈
1

c
max,X − cmin,X

trapz
(

errX(c), cmin,X , cmax,X
)

(8)

where trapz(⋅) represent the quadrature integral of the error function performed with the trapezoidal rule
over the considered interval of c. The denominator does not affect the relative efficiency as it cancels out in
Eq. (6).

The population mean E[ΔG(c)] and standard deviation std(ΔG(c)) of the binding free energy predictions
at computational cost c were estimated as usual with the sample mean ΔG(c) and the sample standard
deviation S(c) respectively calculated using the five independent replicates

ΔG(c) = 1
Nc

Nc
∑

j=1
ΔG(j)(c)

S(c) =

√

√

√

√
1

Nc − 1

Nc
∑

j=1

[

ΔG(j)(c) − ΔG(c)
]2

(9)

where Nc = 5 is the number of independent measures at computational cost c.
However, estimating the error statistics defined in Eq. (2) requires estimates of the asymptotic free energy

ΔG� , which is necessary for the bias. This is problematic due to the different levels of convergence and the

lack of agreement between methods. We estimated the bias assuming ΔG�,X = ΔGX(cmax,X), where cmax,X
is the total computational cost of the calculation for method X, which is equivalent to assuming that the
free energy estimate has converged. As a consequence, the bias is generally underestimated, and longer

calculations are penalized in computing the relative absolute bias and RMSE efficiency.

To estimate 95% confidence intervals for the relative efficiency measures we used the arch 4.6.0 Python
library [132] to run the bias-corrected and accelerated (BCa) bootstrap method by resampling free energy

trajectories with replacement. The acceleration parameter was estimated with the jackknife method.
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