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23

Abstract Approaches for computing small molecule binding free energies based on molecular simula-24

tions are now regularly being employed by academic and industry practitioners to study receptor-ligand25

systems and prioritize the synthesis of small molecules for ligand design. Given the variety of methods26

and implementations available, it is natural to ask how the convergence rates and final predictions of27

these methods compare. In this study, we describe the concept and results for the SAMPL6 SAMPLing28

challenge, the first challenge from the SAMPL series focusing on the assessment of convergence properties29

and reproducibility of binding free energy methodologies. We provided parameter files, partial charges,30

and multiple initial geometries for two octa-acid (OA) and one cucurbit[8]uril (CB8) host-guest systems.31

Participants submitted binding free energy predictions as a function of the number of force and energy32

evaluations for seven different alchemical and physical-pathway (i.e., potential of mean force and weighted33

ensemble of trajectories) methodologies implemented with the GROMACS, AMBER, NAMD, or OpenMM34

simulation engines. To rank the methods, we developed an efficiency statistic based on bias and variance35

of the free energy estimates. For the two small OA binders, the free energy estimates computed with36

alchemical and potential of mean force approaches show relatively similar variance and bias as a function of37

the number of energy/force evaluations, with the attach-pull-release (APR), GROMACS expanded ensemble,38

and NAMD double decoupling submissions obtaining the greatest efficiency. The differences between39

the methods increase when analyzing the CB8-quinine system, where both the guest size and correlation40
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times for system dynamics are greater. For this system, nonequilibrium switching (GROMACS/NS-DS/SB)41

obtained the overall highest efficiency. Surprisingly, the results suggest that specifying force field parameters42

and partial charges is insufficient to generally ensure reproducibility, and we observe differences between43

seemingly converged predictions ranging approximately from 0.3 to 1.0 kcal/mol, even with almost identical44

simulations parameters and system setup (e.g., Lennard-Jones cutoff, ionic composition). Further work will45

be required to completely identify the exact source of these discrepancies. Among the conclusions emerging46

from the data, we found that Hamiltonian replica exchange—while displaying very small variance—can be47

affected by a slowly-decaying bias that depends on the initial population of the replicas, that bidirectional48

estimators are significantly more efficient than unidirectional estimators for nonequilibrium free energy49

calculations for systems considered, and that the Berendsen barostat introduces non-negligible artifacts in50

expanded ensemble simulations.51

52

1 Introduction53

Predicting the binding free energy between a receptor and a ligand has attracted a great deal of attention54

due to its potential to speed up small-molecule drug discovery [1]. Among the methodologies that have been55

developed to carry out this task, physics-based methods employing classical force fields are starting to be56

routinely used in drug development projects and demonstrate success in real lead optimization scenarios [2–57

5]. These technologies are also often employed to obtainmechanistic insights into the physics of binding such58

as the discovery of binding poses [6] and pathways [7], or attempts at providing intuitive guidance on how to59

improve ligand binding potency [8]. However, the applicability domain of these models is currently limited60

to a narrow portion of the accessible chemical space for small molecules, and well-behaved protein-ligand61

systems that do not undergo significant conformational changes or solvent displacement on timescales62

larger than a few tens of nanoseconds [9, 10]. For this reason, much work has been directed at benchmarking63

and improving both the predictive accuracy and efficiency of these computational protocols [11–14]. The64

computational cost of a method, in particular, is a critical factor that enters the decision-making process65

both in academia and industry. For example, to achieve maximum impact in drug discovery, methods should66

achieve high-confidence predictions on a timescale sufficiently short to inform synthetic decisions—with67

increasingly rapid predictions in principle enabling quicker cycles of idea generation and testing. [2, 9, 10].68

More generally, unconverged results and systematic errors can compromise the assessment of the accuracy69

of a force field through fortuitous cancellation/amplification of error, with immediate consequences on the70

optimization of free energy protocols and molecular models. Determining which methods are capable of71

most rapidly reducing the error is thus critical to enable not only prospective studies in drug discovery, but72

also to carry out meaningful benchmarks and optimize molecular models with useful turnaround times.73

1.1 Multiple sources contribute to the error of the estimate74

In the rest of the work, we refer to the model of the system to include any element affecting the potential75

energy function we intend to simulate (e.g., force field, charge model, protonation states, ion concentrations).76

The model, together with the thermodynamic parameters (e.g., temperature, pressure) and the definition77

of the binding site completely determine the theoretical binding free energy ΔG� through the associated78

ratio of partition functions [15]. The output of a binding free energy method is a statistical estimate of the79

free energy, a random variable ΔG
calc

= ΔG� + �, which is an estimate of ΔG� up to an error � that generally80

depends on the method itself and the computational cost invested in the calculation. We consider a method81

to be efficient if it can quickly reduce the standard deviation of ΔG
calc
(i.e., std(ΔG

calc
) = std(�)) and its bias,82

which is defined as E[ΔG
calc
] − ΔG� = E[�], where the expected value is intended over multiple independent83

executions of the method of the same computational cost.84

Assuming a method is exact and correctly implemented, the major source of statistical error is arguably85

connected to the sampling strategy adopted by the method. Due to the rough potential energetic landscape,86

short molecular dynamics (MD) or Monte Carlo (MC) simulations (where for proteins, short can still be87

100s of ns) can miss entire areas of configurational space that contribute significantly to the partition88
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functions, or have insufficient time to accurately estimate the relative populations of the different free89

energy basins. This introduces bias into the affinity estimates. Enhanced sampling strategies such as90

metadynamics [16, 17], replica exchange [18–20], and expanded ensemble [21] methodologies are designed91

to increase the sampling efficiency along one or a few collective variables (CV), although their effectiveness92

strongly depends on the choice of the CV. Moreover, even in the limit of infinite sampling, common non-93

Metropolized sampling strategies such as Verlet integration and Langevin dynamics can introduce systematic94

bias due to the integration error. While the magnitude of this bias has not been studied extensively in free95

energy calculations of host-guest or protein-ligand systems, it was shown to be significant in simple systems96

depending on the size of time step, and choice of integrator [22, 23]. Finally, while many different free energy97

estimators (e.g., exponential averaging, BAR, MBAR, thermodynamic integration) are provably asymptotically98

unbiased and consistent, these behaviors break down for finite sample sizes, and their bias and variance99

decay differently as a function of the number of independent samples [24].100

1.2 Comparing the efficiency of methods requires eliminating confounding factors101

Any simulation parameter altering the potential energy landscape of the end states can alter the energetic102

barriers between metastable states and change the theoretical binding free energy ΔG� . The former impact103

the correlation times of the dynamics and thus the convergence rates of methods, while the latter makes104

it harder to detect systematic biases introduced by the methodologies. There are several examples in105

the literature noting differences in binding free energy predictions between different methods, but in106

which it was impossible to determine whether this was due to other differences in system preparation,107

insufficient sampling, or shortcomings of the methodology [25–28]. Consequently, it is important to test the108

methods on the same set of molecular systems, using the same model. The latter, in particular, requires109

specifying force field parameters and partial charges, but also other components of the simulation, such110

as ion concentrations and the treatment of long-range interactions (e.g. PME, reaction field, Lennard-Jones111

cutoff, dispersion correction). Treating long-range interactions equivalently is particularly challenging due to112

differences in functional forms, implementations, and options supported by the various software packages,113

including small discrepancies in the value of the Coulomb constant [29, 30]. Establishing a set of simulation114

settings that minimizes these differences does not prevent systematic bias due to sampling issues, but it115

makes it possible to detecting by comparing calculations performed with independent methods and/or116

starting from different initial configurations.117

Comparing multiple independent methods on the same set of systems currently requires substantial118

pooled technical expertise and coordination as well as significant computational resources. Confidently119

estimating the bias necessitates very long simulations and consensus between methods. Moreover, in the120

absence of a reliable strategy for uncertainty estimation, multiple independent replicates are vital for a121

correct ranking of performance of different methods. Previous work investigating the reproducibility of122

relative alchemical hydration free energy calculations across four molecular packages uncovered various123

issues and challenges in comparing across simulation packages and resulted in various bug fixes [30].124

However, the reproducibility and efficiencies of various simulation-based approaches has not yet been125

evaluated in the context of binding free energy calculations, which is the focus of this work.126

1.3 We need robust general strategies to measure the efficiency of binding free energy127

calculations128

While there are generally established ways of measuring the accuracy of free energy calculation protocols129

with respect to experimental measurements, there is no consensus or standard practice regarding how to130

measure the efficiency of a method. A study focusing on accuracy of free energy calculations typically ranks131

different protocols and methodologies using commonly adopted correlation and error statistics describing132

how well experimental affinities are predicted (e.g. R2, MUE, and RMSE) [25, 26, 31–34]. On the other hand,133

the efficiency of sampling strategies in the context of free energy calculations has been evaluated in many134

different ways in the past, none of which we found completely adequate for the goal of this challenge.135

In some cases, one or more system-specific collective variables associated with a slow degree of freedom136

can be directly inspected to verify thorough sampling [27, 35, 36]. This strategy requires extensive knowledge137
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of the system and is not generally applicable to arbitrary receptor-ligand systems. Moreover, free energy138

calculations commonly involve simulating the same system in multiple intermediate states—which are139

not always physical intermediates—that do not necessarily have the same kinetic properties. Commonly,140

quantitative comparisons of performance are based on the standard deviation of the free energy estimates141

after roughly the same computational cost [37–40]. This statistic, however, does not quantify the bias, which142

is, in general, not negligible. In principle, one can test the methods on a set of molecules composed of quickly143

converging systems, or the calculations can be run for a very long time in order to increase our confidence144

in the assumption that the bias has decayed to zero. However, neither of these two scenarios necessarily145

reflect the performance of the method in a real scenarios, which ordinarily involves complex receptor-146

ligand systems with long correlation times and simulations of a few nanoseconds per intermediate state.147

Alternatively, other statistics such as acceptance rate and mean first-passage time have been reported [39–148

41], but these statistics are method-specific, and not necessarily indicative of the error of the free energy149

estimate. Another common strategy to assess the efficiency of a method is the visual inspection of the decay150

of some error metric [42, 43], but this qualitative analysis is not scalable nor statistically quantifiable when151

the number of methods and systems considered increases. Finally, there is a large body of theoretical work152

focusing on the efficiency of estimators and protocols in free energy calculations [24, 37, 40, 42, 44, 45],153

but in many cases, they are difficult to apply to practical scenarios. The results rely on the assumption of154

independent samples and often focus on the asymptotic regime, both of which are conditions that may not155

apply in practice.156

1.4 Objectives of the SAMPL6 SAMPLing challenge157

In this work, we present the design and the results of the first round of the community-wide SAMPLing158

challenge. Our goal is to establish a statistical inference framework for the quantitative comparison of the159

convergence rates of modern free energy methods on a host-guest benchmark set. Moreover, we assess the160

level of agreement that can be reached by different methods and software packages when provided identical161

charges, force field parameters, systems, input geometries, and (when possible) simulation parameters.162

These objectives are distinct from the goal of the traditional SAMPL host-guest accuracy binding challenge,163

which instead focuses on the prediction of experimental values and ignores the computational cost of164

methods. Contrary to the accuracy challenge, which accepted data from widely different methods such as165

docking [46], QM [47] and QM/MM [48, 49] calculations, or movable type [50, 51] predictions, we limited the166

scope of this first round of the challenge to force field-based methodologies that should provide identical167

free energy estimates. With this first round, we lay the groundwork for future SAMPLing challenges and168

publish a protocol that can be used by independent studies that are similar in scope.169

2 Challenge design170

2.1 Selection of the three host-guest systems171

The host-guest systems used here are drawn from the SAMPL6 host-guest binding challenge [26]. We172

selected 5-hexenoic acid (OA-G3) and 4-methylpentanoic acid (OA-G6) as guest molecules of the octa-acid173

host (OA), and quinine (CB8-G3) for the cucurbit[8]uril (CB8) host (Figure 1). The three guests that were174

chosen for the challenge include molecules resembling typical druglike small molecules (i.e. CB8-G3) and175

fragments thereof (i.e OA-G3/G6). Quinine was an obvious choice for the former category as it is currently176

recommended as the second-line treatment for malaria by the World Health Organization [52]. Originally,177

two octa-acid guests with very similar structures were purposely included to make them easily amenable to178

relative free energy calculations. However, we did not receive any submission utilizing relative free energy179

calculations.180

Both supramolecular hosts have been extensively described in the literature [11, 53–56] and featured in181

previous rounds of the host-guest binding SAMPL challenge [25, 57, 58]. From the perspective of assessment182

of binding free energy methodologies, host-guest systems serve as attractive alternatives to protein-ligand183

systems as they generally do not undergo large conformational reorganizations and have limited number184

of atoms, which helps the exploration of larger timescales and reducing the uncertainty of the binding185
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Figure 1. Challenge overview and initial conformations of the host-guest systems featured in the SAMPLing
challenge. The three-dimensional structures of the two hosts (i.e. CB8 and OA) are shown with carbon atoms represented
in black, oxygens in red, nitrogens in blue, and hydrogens in white. Both the two-dimensional chemical structures of the

guest molecules and the three-dimensional structures of the hosts entering the SAMPLing challenge are shown in the

protonation state used for the molecular simulations. We generated five different initial conformations for each of the

three host-guest pairs through docking, followed by a short equilibration with Langevin dynamics. The three-dimensional

structure overlays of the five conformations for CB8-G3, OA-G3, and OA-G6 are shown from left to right in the figure with

the guests’ carbon atoms colored by conformation. Participants used the resulting input files to run their methods in five

replicates and submitted the free energy trajectories as a function of the computational cost. We analyzed the submissions

in terms of uncertainty of the mean binding free energy ΔG estimate and its bias with respect to the asymptotic free
energy ΔG� .
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affinity estimates. At the same time, this class of systems provides several well-understood challenges186

for standard simulation techniques. Hosts in the cucurbituril and octa-acid families have been found187

to bind ions and undergo wetting/dewetting processes governed by timescales on the order of a few188

nanoseconds [59, 60]. Moreover, the symmetry of CB8 and OA results in multiple equivalent (and often189

kinetically-separated) binding modes that have to be sampled appropriately or accounted for by applying190

a correction term [61]. Finally, ligands with net charges can introduce artifacts in alchemical free energy191

calculations when Ewald methods are used to model long-range electrostatic interactions. There are several192

approaches for eliminating these errors, but disagreements about the optimal strategy persist [62–65].193

2.2 Challenge overview194

As illustrated in Figure 1, we asked the participants to run five replicate free energy calculations for each of the195

three host-guest systems using predetermined force field and simulation parameters and starting from five196

different conformations that we made available in a GitHub repository (https://github.com/samplchallenges/197

SAMPL6/tree/master/host_guest/SAMPLing) in the form of input files compatible with common molecular198

simulation packages (i.e., AMBER, CHARMM, DESMOND, GROMACS, LAMMPS, and OpenMM). Participants199

were asked to submit binding free energy estimates and, optionally, associated uncertainty estimates as200

a function of the computational cost of their methodologies. More specifically, the submitted data was201

required to report 100 free energy estimates computed at regular intervals using the first 1%, . . . , 100% of202

the samples, which was defined as the amount of samples collected after 1%, . . . , 100% of the combined203

total number of force and energy evaluations performed for the calculation.204

To rank the performance of methods, we used a measure of efficiency developed in this work (described205

in the next section) based on estimates of bias and uncertainty of the predictions obtained from the replicate206

data. To facilitate the analysis, participants were asked to run the same number of force and energy207

evaluations for all the five replicate calculations of the same system, although the total number of force208

and energy evaluations could be different for different systems and different methods. Besides the total209

number of force and energy evaluations, the submissions included also wall-clock time and, optionally, total210

CPU/GPU time for each replicate as measures of the computational cost. However, due to the significant211

differences in the hardware employed to run the simulations, this information was not considered for the212

purpose of comparing the performance of different methods.213

2.3 Development of an efficiency statistic for free energy methods214

In order to rank performance of methods using standard statistical inference tools, we developed a statistic215

that captures our meaning of efficiency. Unlike what standardly used in the literature (see Section 1.3), we216

require a measure of the (in)efficiency of a free energy methodology that can simultaneously (1) take into217

account both bias and variance of the free energy estimate, (2) summarize the performance of a method218

over a range of computational costs of interest, (3) easily be computed without previous system-specific219

knowledge (e.g. knowledge of the slowest degrees of freedom).220

Mean error as an inefficiency statistic221

In this section, we propose a measure of efficiency of method X based on the time-averaged root mean222

square error (RMSE) of the bidning free energy predicted by method X, ΔGX , with respect to the theoretical223

binding free energy determined by the model, ΔG�224

Ecmin ,cmax [RMSE(ΔGX(c))] =
∫ cmax
cmin

RMSE(ΔG
X
(c))dc

c
max

− c
min

(1)

where [c
min
, c
max

] is the range of computational cost of interest, and225

RMSE(ΔG
X
(c)) =

√

E
[

(

ΔG
X
(c) − ΔG�

)2
]

=
√

[

std(ΔG
X
(c))

]2 +
[

bias(ΔG
X
(c))

]2
(2)

where the expected value, standard deviation, and bias functions are intended over all possible realizations226

(i.e. replicates) of the free energy calculation after investing a computational cost c. This metric satisfies all227
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our requirements. Given the large differences in hardware among the submissions, we chose to measure228

the computational cost in number of force/energy evaluations rather than CPU or wall-clock time.229

More generally, we can consider themean error
Ew[err(ΔGX(c))] = ∫

∞

0
w(c) err(ΔG

X
(c))dc (3)

∫

∞

0
w(c)dc = 1

where the normalized weight function w(c) can be chosen to limit the average over a finite range of c (i.e.
setting w(c) = 0 outside some interval), or based on the uncertainty of the estimate of the error statistic err,
or also to satisfy other constraints such as the inclination of investing c to obtain a free energy prediction
within a workflow. In the analysis, we always chose a uniform weight function as in Eq. (1), but we also report

the statistics computed using the standard deviation and absolute bias error functions

std(ΔG
X
(c)) =

√

E[(ΔG
X
(c) − E[ΔG

X
(c)])2]

|

|

bias(ΔG
X
(c))|

|

= |

|

E[ΔG
X
(c) − ΔG�]|| = |

|

E[ΔG
X
(c)] − ΔG�

|

|

(4)

The relative efficiency is a robust statistic when data span different ranges of computational cost230

The mean error of two methods is sensitive to the interval [c
min
, c
max

] considered, and thus it can be directly231

compared only if computed for the same interval of computational cost (see Appendix 1 and SI Figure 4 in232

the supporting information). However, the calculations submitted by participants have very different lengths,233

and computing the statistic on the largest range of computational cost shared by all methods would mean234

discarding between 50% and 75% of the data points for most submissions.235

Instead, if we have free energy trajectories from a collection of methods A, B, ... spanning different ranges236

of c, but there is one method Z for which we have data covering the whole range, we can compute the relative237

efficiency of all methodologies with respect to Z starting from the ratio of the mean errors238

eerr,X∕Z = −log10

(

EwX [err(ΔGX(c))]
EwX [err(ΔGZ (c))]

)

= −log10

(∫ cmax,X
cmin,X

err(ΔGX(c))dc

∫ cmax,X
cmin,X

err(ΔGZ (c))dc

)

(5)

where err is std, bias, or RMSE, X = A, B, ..., and the weight functionwX is uniform on the interval [cmin,X , cmax,X]239

covered by the data available for method X. The base 10 logarithm ensures eerr,X∕Z = −eerr,Z∕X and facilitates240

interpretation of the statistic: A relative efficiency eX∕Z of +1 (-1) means that the total error of X is one order241

of magnitude smaller (greater) than the total error of Z over the same range of computational cost. We call242

this the relative efficiency of method X as it increases inversely proportional to its mean error. Note that243

the mean error of Z entering the definition is computed with the same weight function (i.e. over the same244

interval), which cancels out with the numerator to leave the ratio of the error function areas.245

If the methods error decay proportionally to the same function of c, the relative efficiency in Eq. (5) is246

robust to the range of computational cost considered (see Appendix 1 in the supporting information for247

details). In practice, the statistic seem to be relatively robust to differences in computational cost ranges248

for most methods (SI Figure 5) with fluctuations that are within the statistical uncertainty of the estimates249

(SI Figure 6). We thus use the relative efficiency to compare and rank the performance of the methods250

entering the challenge.251

2.4 File preparation and information available to participants252

The protocol used to prepare the input files is described in the Detailed Methods section. Briefly, for253

each host-guest system, five different binding poses were selected among the top-scoring predictions of254

OpenEye’s FRED rigid docking facility [66, 67]. Any docked pose whose guest coordinates had a root mean255

square deviation (RMSD) less than 0.5 Å with respect to any of the previously accepted docked poses was256

discarded. This process generated a set of reasonable bound structures with RMSD between any pair of257

binding poses ranging between 0.72-2.58 Å for CB8-G3 and 1.33-2.01 Å for OA-G3. We then parametrized258

the systems with AM1-BCC charges [68, 69] and GAFF [70] after solvation in TIP3P [71] water molecules259
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with Na+ and Cl- ions added to neutralize the host-guest net charge and reach a 150 mM ionic strength for260

CB8 and 60 mM for OA-G3/G6. Finally, we relaxed each replicate with 1 ns of Langevin dynamics to obtain261

the initial conformations shown in Figure 1. The five conformations of each host-guest pair generally differ262

both in their positioning within the symmetric binding site and torsion angles. In particular, all rotatable263

bonds in the guests adopt at least two different dihedral conformations, with the exception of the bonds264

connecting the carbon in position 4 in OA-G6 to the two methyl groups, and the two carbon-carbon rotatable265

bonds composing the secondary alcohol linkage connecting the quinoline moiety and the quinuclidine266

ring of CB8. The input files for different simulation programs were generated and validated with InterMol.267

Similarly to what was found in [29], the potential energies computed with different packages for the same268

structures were generally within 1 kJ/mol from each other, except for those computed with AMBER and269

CHARMM, which differed by about 2–4 kJ/mol from the others. These results were obtained after tampering270

with the default settings to make the options as similar as possible. Slightly different Coulomb constants271

are responsible for approximately 70% of the discrepancies, with AMBER and CHARMM adopting values272

that are furthest away from each other. The remaining 30% is explained by differences in Lennard-Jones273

cutoff schemes and PME implementations. The contribution from these differences to binding free energy274

is not trivial predict, but it is expected to be negligible with respect to statistical error and mostly cancel275

out at the end states of the thermodynamic cycle. The insensitivity to the Coulomb constant definition276

and PME parameters was confirmed for Hamiltonian replica exchange calculation with the OA-G3 system277

(see SI Table 1). A detailed breakdown of the energy components in the different packages can be found278

at https://github.com/samplchallenges/SAMPL6/tree/master/host_guest/SAMPLing. The input files were279

uploaded to the public GitHub repository together with details on the setup protocol and general instructions280

about the challenge (https://github.com/samplchallenges/SAMPL6/blob/master/SAMPLing_instructions.md).281

The instructions also included the recommended values for the simulation parameters known to affect282

the theoretical binding free energy (e.g., temperature, pressure, Lennard-Jones cutoff, Particle Mesh Ewald283

settings) in order to minimize factors that could confound the analysis of systematic differences in free284

energy predictions between methods.285

2.5 Timeline and organization286

Initially, the SAMPL6 SAMPLing Challenge was designed as a blind challenge with deadline Jan 19, 2018. This287

round included data for the methods referred to below as OpenMM/HREX, GROMACS/EE, OpenMM/SOMD,288

and OpenMM/REVO. However, OpenMM/SOMD and OpenMM/REVO submissions were affected by two289

trivial bugs in the calculation setup and the analysis respectively that were corrected after the deadline.290

Moreover, initial disagreement between OpenMM/HREX and GROMACS/EE, which were originally designated291

to serve as reference calculations to determine eventual systematic biases arising from methodological292

issues, prompted us to perform additional calculations. For these reasons, and to further increase the293

opportunities for learning, we elected to extend the study to more methodologies after the initial results of294

the calculations were made public and to focus the analysis on the non-blind calculations.295

3 Results296

3.1 Overview of free energy methodologies entering the challenge297

Seven different free energy methodologies based on alchemical or physical binding pathways and imple-298

mented using AMBER [72], GROMACS [73], NAMD [74], or OpenMM [75] entered the challenge. Four of these299

(referred to in the following as GROMACS/EE, NAMD/BAR, OpenMM/HREX, and OpenMM/SOMD) used the300

double decoupling methodology [15], and mainly differ in the enhanced sampling strategies and protocols301

employed. The other three submissions are based on the potential of mean force (AMBER/APR), alchemical302

nonequilibrium switching (GROMACS/NS-DS/SB), or weighted ensemble (OpenMM/REVO) frameworks. All of303

the entries computed standard free energies of binding with respect to a standard concentration of 1 M.304

In this section, we give a brief overview of the participating free energy methodologies, focusing on305

their main differences. More details about the methodologies and protocols can be found in Detailed306

Methods section and in the method description within the submission files available on the public repository307

8 of 39

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted January 3, 2020. ; https://doi.org/10.1101/795005doi: bioRxiv preprint 

https://github.com/samplchallenges/SAMPL6/tree/master/host_guest/SAMPLing
https://github.com/samplchallenges/SAMPL6/blob/master/SAMPLing_instructions.md
https://doi.org/10.1101/795005
http://creativecommons.org/licenses/by/4.0/


at https://github.com/samplchallenges/SAMPL6/tree/master/host_guest/Analysis/Submissions/SAMPLing.308

Detailed accounts of the results obtained by OpenMM/SOMD and OpenMM/REVO have also been published309

separately [76, 77] along with detailed accounts of the methodologies they employed.310

Importantly, in spite of the focus of this challenge on reproducibility and the best efforts of the organizers311

and participants, small differences in the model, and thus in the theoretical asymptotic free energy of312

each method, were introduced in the calculations. This was mostly due to fundamental differences in313

methodologies and software packages. A brief summary of the main differences affecting the models is314

included at the end of the section.315

Double decoupling316

The challenge entries with identifier OpenMM/HREX, GROMACS/EE, NAMD/BAR, and OpenMM/SOMD are317

based on the double decoupling framework[15] for alchemical absolute free energy calculations, which is318

arguably the most common approach for current absolute alchemical free energy calculations. All three319

methodologies estimated free energies and their uncertainties using the multistate Bennet acceptance ratio320

(MBAR) estimator [78] after decorrelating the data, but they differ mainly in the enhanced sampling strategy321

(or lack thereof) used to collect the data and details of the protocol employed.322

OpenMM/HREX used Hamiltonian replica exchange (HREX) [20] to enhance the sampling as implemented323

in the YANK package [79, 80]. The protocol was based on the thermodynamic cycle in SI Figure 12. Guest324

charges were annihilated (i.e. intramolecular electrostatic interactions were turned off) before decoupling325

soft-core Lennard-Jones interactions [81] (i.e. intramolecular interactions were preserved during the al-326

chemical transformation) between host and guest. Since all guests had a net charge, a randomly selected327

counterion of opposite charge was decoupled with the guest to maintain box neutrality during the al-328

chemical transformation. A harmonic restraint between the centers of mass of host and guest was kept329

active throughout the calculation to prevent the guest to escape the binding site, and the end-points of the330

thermodynamic cycles were reweighted to remove the bias introduced by the restraint in the bound state by331

substituting the harmonic restraint potential to a square well potential. Each iteration of the algorithm was332

composed of Langevin dynamics augmented by Monte Carlo rigid translation and rotation of the guest and333

by a Hamiltonian global exchange step (i.e. the exchange was not limited to neighbor states) using the Gibbs334

sampling approach [82]. The pressure was controlled by a Monte Carlo barostat.335

GROMACS/EE employed the weighted expanded ensemble (EE) enhanced sampling strategy [21]. The336

calculation was performed in the NVT ensemble, and comprised two separate stages, referred to as equili-337

bration and production. During equilibration, the Wang-Landau algorithm [83, 84] was used to adaptively338

converge to a set of expanded ensemble weights that were then used and kept fixed in the production339

stage. The data generated using the Wang-Landau algorithm is out-of-equilibrium and non-stationary data,340

so only the samples generated in the production phase were used for the estimation of the free energy341

through MBAR, which requires equilibrium samples. The equilibration stage was carried out only for a342

single replicate, and the same equilibrated weights were used to initialize the other four calculations. We343

analyzed two separate submissions, identified as GROMACS/EE and GROMACS/EE-fullequil, which differ344

exclusively in whether the computational cost of the equilibration is “amortized” among the 5 replicas (i.e.345

the cost is added to each replicate after dividing it by 5) or added fully to each of the 5 replicates respectively.346

The alchemical protocol uses 20 states to annihilate the electrostatic interactions followed by 20 states to347

annihilate Lennard-Jones. Two restraints attached to the center of mass of host and guest were used in the348

complex phase: A flat-bottom restraint, which was kept activated throughout the calculation, and a harmonic349

restraint that was activated during the annihilation of the Lennard-Jones interactions to rigidify the guest350

in the decoupled state. The Rocklin charge [63] correction was used to remove the effect of the artifacts351

introduced by alchemically decoupling a molecule with a net charge. The correction amounted to -0.0219352

and -0.0302 kcal/mol for OA-G3 and OA-G6 respectively.353

OpenMM/SOMD used the implementation in Sire/OpenMM6.3 [75, 85]. The protocol used 24 interme-354

diate thermodynamic states for CB8-G3 and 21 states for OA-G3/G6 that were simulated independently355

(i.e. without enhanced sampling methods) with a velocity Verlet integrator and a 2 femtosecond time-step356

for 20 ns each and a Monte Carlo barostat. Unlike the other submissions, which constrained only bonds357
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involving hydrogen atoms, here all bonds were constrained to their equilibrium values in the host and guest358

molecules. The temperature was controlled with an Andersen thermostat [86] set at a collision frequency of359

10 ps−1, and pressure control was achieved with a Monte Carlo Barostat and isotropic box scaling moves360

were attempted every 25 time steps. In the complex leg of the calculation, a flat-bottom distance restraint361

between one atom of the guest and four atoms of the host was kept active throughout the calculation. This362

is the only submission using a generalization of the Barker-Watts reaction field [87, 88] to model long-range363

electrostatic interactions instead of Particle Mesh Ewald. Reaction field models usually require larger cutoffs364

to be accurate for relatively large systems due to the assumption that everything beyond the cutoff can365

be modeled as a uniform dielectric solvent. Consequently, a 12 Å cutoff was used both for Coulomb and366

Lennard-Jones interactions instead of the 10 Å cutoff employed by the other methods.367

Finally, NAMD/BAR calculations were based on the implementation in NAMD 2.12 [74]. In this case as368

well, the intermediate states were simulated independently with no enhanced sampling strategy and a369

flat-bottom restraint was used in the complex phase of the calculation. However, 32 � states were used370

in which the Lennard-Jones interactions were decoupled in equidistant windows between 0 and 1, and371

the charges were turned off simultaneously over the � values 0–0.9 for CB8-G3 and 0–0.5 for OA-G3 and372

OA-G6. The second schedule was the result of a protocol optimization to work around an issue in which373

convergence was impaired by a sodium ion binding tightly the carboxylic group of the OA guests in earlier374

pilot calculations. A non-interacting particle having the same charge as the guest was created during the375

annihilation of the Coulomb interactions to maintain the charge neutrality of the box. [65, 89]. The system376

was propagated with Langevin dynamics using a Nosé–Hoover barostat to control the pressure [65, 89]. Free377

energy estimates and uncertainties were computed with the BAR estimator.378

Nonequilibrium alchemical calculations379

In GROMACS/NS-DS/SB, the binding free energies were predicted with alchemical nonequilibrium switching380

calculations using a strategy referred to previously as double-system/single-box [90]. In this approach, two381

copies of the guest are simulated in the same box, one of which is restrained to the binding site of the host382

by a set of restraints as described by Boresch [91]. In addition, a harmonic positional restraint is applied383

to each of the guest molecules to keep them at a distance of 25 Å from one another. The first guest is384

decoupled simultaneously with the coupling of the second guest in order to keep the net charge of the box385

neutral during the alchemical transformation. For each replicate, the calculation was carried out first by386

collecting equilibrium samples from the two endpoints of the transformation. A total of 50 frames were387

extracted from each equilibrium simulation at an interval of 400 ps, and each snapshot was used to seed a388

rapid nonequilibrium alchemical transformation of a fixed duration of 500 ps in both directions. For CB8-G3,389

a second protocol, here referred to as GROMACS/NS-DS/SB-long, was also applied in which 100 snapshots390

were extracted from each equilibrium simulation at an interval of 200 ps, and each nonequilibrium trajectory391

had a duration of 2000 ps. Ten independent calculations were run for each of the 5 initial conformations, and392

a bi-directional estimator BAR, based on Crook’s fluctuation theorem [92], was used to estimate the binding393

free energy after pooling all work values from all the independent runs. The uncertainty of ΔG for each394

initial conformation was instead estimated by computing the standard error from the ten independent free395

energy estimates. Because this approach required two copies of the guest and a box large enough to sample396

distances between host and guest of 25 Å, the complexes were re-solvated. The force field parameters were397

taken from the challenge input files. However, both with CB8-G3 and OA-G3/G6, the ion concentration was398

set to 100 mM, which is different than the reference input files. Unfortunately, we realized this after the399

calculations were already completed.400

Potential of mean force401

AMBER/APR followed the attach-pull-release (APR) [93, 94] methodology to build a potential of mean force402

profile along a predetermined path of unbinding. The method was implemented in the pAPRika software403

package based on AMBER [72]. Briefly, the method is divided into three stages. In the “attach” stage, the404

guest in the binding pocket is gradually rigidified and oriented with respect to the pulling direction in 14405

intermediate states through the use of 3 restraints. An additional 46 umbrella sampling windows were406
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used to pull the host and guest apart to a distance of 18 Å. A final semi-analytical correction was applied to407

compute the cost of releasing the restraints and obtain the binding free energy at standard concentration.408

The analysis was carried out using thermodynamic integration, and the uncertainties were determined using409

an approach based on blocking and bootstrap analysis. As in the case of GROMACS/NS-DS/SB, the method410

required larger solvation boxes than the cubic ones provided by the challenge organizers, in order to reach411

sufficiently large distances between host and guest. Therefore, the initial five complex conformations were412

re-solvated in an orthorhombic box, elongated in the pulling direction, of TIP3P waters with Na+ and Cl- ions.413

The resulting ionic strength differed from the provided files by about 2–5 mM, but the force field parameters414

were identical.415

Weighted ensemble of trajectories416

The OpenMM/REVO method predicted binding and unbinding kinetic rates with a particular weighted ensem-417

ble approach named reweighting of ensembles by variation optimization [77, 95] (REVO) as implemented in418

the wepy package (https://github.com/ADicksonLab/wepy) using OpenMM [75]. The calculation was carried419

out by maintaining a set of 48 independent walkers generating MD trajectories starting from bound and420

unbound states, the latter defined with a distance between host and guest above 10 Å. At each cycle of the421

algorithm, some of the walkers are cloned or merged in order to maximize a measure of trajectory variation422

given by the weighted sum of all-to-all distances between walkers. For unbinding trajectories, the distance423

between two walkers was defined as the RMSD of the system coordinates after aligning the host, while424

rebinding trajectories used a measure of distance based on the RMSD with respect to the reference unbound425

starting structure. The k
on
and k

off
rates were estimated directly from the weights of the "reactive" unbinding426

and rebinding trajectories, and the free energy of binding was computed from the ratio of the rates.427

Summary of main differences in setups and models428

While force field parameters and charges were identical in all calculations, there are small differences among429

the models used by the different methods. The challenge instructions suggested the settings for simulation430

parameters that are traditionally not included in parameter files. In particular, most calculations were431

performed at a temperature and pressure of 298.15 K and 1 atm respectively, using particle mesh Ewald432

(PME) [96] with a cutoff of 10 Å, and employing a Lennard-Jones cutoff of 10 Å with a switching function433

between 9 Å and 10 Å. Because of methodological and technical reasons, however, not all simulations were434

run using these settings. In particular, AMBER does not support switching function so AMBER/APR used a 9 Å435

truncated cutoff instead, and OpenMM/SOMD supports only reaction field for the treatment of long-range436

electrostatic interactions. Moreover, even when the suggested settings were used, software packages differ437

in the supported options and parameter values such as PME mesh spacing and spline order, or the exact438

functional form of the Lennard-Jones switching function. In addition, all the bonds in OpenMM/SOMD were439

constrained to their equilibrium value, while all the other calculations constrained only the bonds involving440

hydrogen. Finally, the APR and NS-DS/SB methodologies required a larger solvated box than the cubic one441

provided by the organizers. Host and guests were thus re-solvated, and while the force field parameters and442

charges were preserved, the resulting ion concentrations in the box were slightly different from the original443

files.444

3.2 Converged estimates and identical force field parameters do not ensure agreement445

among methods446

Absolute free energy calculations can converge to sub-kcal/mol uncertainties in host-guest447

systems448

The final predictions of the submitted methods are shown in Table 1, Figure 2, and SI Figure 7 in terms of449

the average binding free energy of the five replicate calculations with 95% t-based confidence intervals.450

With the exception of OpenMM/REVO, the five independent replicate calculations of each method starting451

from different initial conformations are always within 0.1–0.4 kcal/mol for OA-G3, and 0.1–0.6 kcal/mol for452

OA-G6 (see also SI Table 3). All methods achieved this level of convergence for the two octa-acid systems453

in less than 400 ⋅ 106 force/energy evaluations (i.e. the equivalent of 800 ns of aggregate MD simulations454
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with a 2 fs integration time step) that can be parallelized over more than 40 processes in all methods455

with the exception of GROMACS expanded ensemble (see Discussion for more details on parallelization).456

The agreement between replicates of the same method is generally worse for CB8-G3. Nevertheless, all457

CB8-G3 predictions of OpenMM/HREX and GROMACS/NS-DS/SB-long are within 0.4 kcal/mol after 2000 ⋅ 106458

force/energy evaluations (i.e. the equivalent of 4 �s of MD with a 2 fs time step), which suggests that absolute459

free energy calculations can indeed achieve convergence for this class of systems in reasonable time given460

widely available computational resources.461

Identical force field parameters and charges do not guarantee agreement among methods462

Although the predictions of different methods are roughly within 1 kcal/mol, the methods sometimes463

yield statistically distinguishable free energies. For example, OpenMM/REVO tended towards significantly464

more negative binding free energies than those predicted by the other methods by about 5-6 kcal/mol,465

and the final predictions of OpenMM/SOMD for OA-G3 were between 0.5 and 1.0 kcal/mol more positive466

than the other alchemical and PMF methods. NAMD/BAR and OpenMM/SOMD also generally obtained467

very negative binding free energies for CB8-G3, but in these two cases, the large statistical uncertainty468

suggests that the calculations are not close to convergence (i.e. the replicate calculations do not agree).469

This could be a reflection of the smaller number of energy evaluations used for these submissions (see470

Table 1). AMBER/APR also obtained free energy predictions for OA-G3 and OA-G6 that are significantly471

different than the predictions from OpenMM/HREX, GROMACS/EE, and NAMD/BAR by 0.2-0.5 kcal/mol.472

Finally, GROMACS/NS-DS/SB-long and AMBER/APR differ in their predictions for CB8-G3 by 0.8 ± 0.6 kcal/mol.473

The origin of the discrepancies between free energy predictions is unclear474

In several cases, the interpretation of these results is confounded by differences in simulation parameters475

and setups. For example, without more data, it is impossible to distinguish whether the systematic bias476

observed in OpenMM/SOMD is due to sampling issues or the use of reaction field instead of PME or a477

Lennard-Jones cutoff of 12 Å instead of 10 Å. Multiple explanations are also possible for the other observed478

discrepancies. Firstly, simulation engines generally differ in the implementation details of the long-range479

treatment strategies. For example, AMBER does not support switched Lennard-Jones cutoff as the AMBER480

family of force fields was fit with a truncated cutoff. As a consequence, APR calculations were run using481

a truncated 9 Å cutoff. In principle, the default values and the algorithms used to determine parameters482

such as the PME grid spacing and error tolerance can also have an impact on the free energies. Secondly,483

discrepancies may arise from small differences in the model. Specifically, in order to allow for sufficiently484

great distances between host and guest in the unbound state, the solvation boxes for APR and NS-DS/SB485

were regenerated and have a slightly different ionic strength, which is known to affect the binding free486

energy of host-guest systems. Finally, even for these relatively simple systems, differences in sampling, such487

as those arising from unsurmounted energetic barriers and different numerical integration schemes, could488

have affected the convergence of the calculations and introduced non-negligible biases respectively.489

We investigated most of these hypotheses focusing on APR and HREX, which showed systematic and490

statistically distinguishable differences of 0.3–0.4 kcal/mol in the final free energies for all systems. The491

choice of focusing on these two methods was mainly due to technical feasibility as we considered it possible492

to run further HREX calculations after minimizing the differences in setups and other simulation parameters.493

However, switching to a truncated 9 Å caused the HREX calculations to increase even further the discrepancies494

from 0.4 ± 0.1 to 0.7 ± 0.1, while the HREX calculations resulted insensitive to differences in PME parameters,495

ionic strength, integrator discretization, Coulomb constant, and restraint employed. Detailed results of the496

sensitivity analysis of HREX can be found in Appendix 2. Although other explanations exist, it is possible that497

the observed discrepancies between AMBER/APR and OpenMM/HREX are the results of subtle differences498

or bugs in the software packages, or of an area of relevant configurational space that is systematically499

undersampled, which was found to be a problem in host-guest systems both with umbrella sampling [97]500

and alchemical approaches [98]. A version of APR implemented with OpenMM is close to be completed and501

might prove useful in determining whether the differences are caused by the methods or the simulation502

package.503
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Figure 2. Mean free energy, standard deviation, and bias as a function of computational cost. The trajectories and
shaded areas in the top row represent the mean binding free energies and 95% t-based confidence intervals computed

from the 5 replicate predictions for CB8-G3 (left column), OA-G3 (center), and OA-G6 (right) for all submissions, excluding

OpenMM/REVO. The same plot including OpenMM/REVO can be found in SI Figure 7. The second and third rows show the

standard deviation and bias, respectively, as a function of the computational effort. Given the differences in the simulation

parameters between different methods, the finite-time bias is estimated assuming the theoretical binding free energy of

the calculation to be the final value of its mean free energy. This means that the bias eventually goes to zero, but also that

the bias can be underestimated if the simulation is not converged.

Further work will be required to establish the exact source of the persistent deviation between seemingly504

well-converged calculations.505

3.3 Bias and variance of free energy estimates can vary greatly with methods and506

protocols507

We estimated standard deviation, bias, and RMSE relative efficiencies for all methods and built bias-corrected508

and accelerated (BCa) bootstrap [99] 95% confidence intervals (see also Detailed Methods for details). We509

used the total combined number of force and energy evaluations to measure the computational cost, and510

OpenMM/HREX was used as a reference for the calculation of the relative efficiencies because it was the511

longest calculation and could thus provide free energy estimates for all the computational cost intervals512

required to estimate the statistics. The resulting relative efficiencies with confidence intervals are represented513
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Table 1. Average binding free energy predictions, computational cost, and relative efficiencies of all methods.
Final average binding free energy predictions in kcal/mol computed from the five independent replicate calculations with

95% t-based confidence intervals. The computational cost is reported in millions of force and energy evaluations per

replicate calculation. Relative efficiencies of a method X are reported with respect to OpenMM/HREX as eerr,X∕OpenMM/HREX
as defined by Eq. (5). The lower and upper bound of the 95% confidence intervals bootstrap estimates for the relative

efficiencies are reported as subscript and superscript respectively.

CB8-G3 OA-G3 OA-G6
Method Δ G

[kcal/mol]
neval
[×106]

estd e
|bias| eRMSE

Δ G
[kcal/mol]

neval
[×106]

estd e
|bias| eRMSE

Δ G
[kcal/mol]

neval
[×106]

estd e
|bias| eRMSE

AMBER/APR -10.5 ± 0.6 2135 -0.6
−0.4
−0.9 -0.4

0.0
−0.8 -0.5

−0.1
−0.6 -6.3 ± 0.1 458 -0.1

0.1
−0.3 0.7

0.9
0.5 0.0

0.2
−0.2 -6.8 ± 0.1 305 0.1

0.3
0.0 0.35

0.47
0.28 0.2

0.3
0.1

GROMACS/EE -6.6 ± 0.1 210 0.2
0.8
0.0 0.5

0.7
0.2 0.3

0.5
0.1 -7.0 ± 0.1 212 -0.1

0.1
−0.2 0.32

0.39
0.27 0.01

0.09
0.02

GROMACS/EE-fullequil -6.6 ± 0.1 261 0.05
0.52
0.04 0.5

0.7
0.3 0.2

0.4
−0.1 -7.0 ± 0.1 271 -0.2

0.2
−0.3 0.0

0.4
−0.2 -0.1

0.1
−0.3

GROMACS/NS-DS/SB -11.4 ± 0.4 1202 -0.1
0.1
−0.3 0.5

0.8
0.2 0.2

0.3
0.0 -6.4 ± 0.2 450 -0.1

0.0
−0.2 0.1

0.3
−0.2 0.06

0.00
−0.17 -7.1 ± 0.2 450 -0.1

0.2
−0.3 -0.2

0.1
−0.5 -0.1

0.1
−0.3

GROMACS/NS-DS/SB-long -11.3 ± 0.2 2202 0.1
0.2
−0.1 0.5

0.8
0.4 0.25

0.32
0.21

NAMD/BAR -13.0 ± 1.0 657 -0.8
−0.2
−0.9 0.2

0.7
−0.3 -0.18

0.08
−0.40 -6.8 ± 0.07 657 0.2

0.5
0.0 0.9

1.1
0.7 0.4

0.5
0.1 -7.28 ± 0.08 657 0.1

0.3
−0.4 0.3

0.6
−0.3 0.1

0.3
−0.2

OpenMM/REVO -16.0 ± 1.0 1920 -1.1
−0.9
−1.3 -0.9

−0.6
−1.3 -1.0

−0.7
−1.3 -11.0 ± 2.0 1920 -1.3

−1.1
−1.5 -1.4

−0.8
−1.8 -1.4

−1.0
−1.6 -12.0 ± 1.0 1920 -1.3

−1.1
−1.7 -1.9

−1.7
−2.1 -1.50

−1.42
−1.66

OpenMM/SOMD -14.0 ± 2.0 460 -0.8
−0.2
−1.0 0.5

0.8
0.3 -0.3

0.0
−0.5 -5.7 ± 0.1 420 -0.2

0.0
−0.5 0.2

0.6
−0.1 -0.1

0.1
−0.3 -7.0 ± 0.3 420 -0.3

0.0
−0.5 -0.1

0.3
−0.6 -0.3

−0.1
−0.4

OpenMM/HREX -10.8 ± 0.2 3327 0.0 0.0 0.0 -6.71 ± 0.05 2789 0.0 0.0 0.0 -7.18 ± 0.06 2615 0.0 0.0 0.0

in Table 1.514

The methods displayed system-dependent performance515

Overall, no method emerged as a superior choice in all three systems, but double decoupling, potential of516

mean force, and nonequilibrium switching all proved to be solid approaches to obtained precise binding517

free energy estimates for the host-guest systems considered. Indeed, GROMACS/NS-DS/SB (nonequilibrium518

switching with double-system/single box), NAMD/BAR (double decoupling), and AMBER/APR (potential of519

mean force) obtained the greatest RMSD efficiency for CB8-G3, OA-G3, and OA-G6 respectively. In general,520

however, all methods showed larger uncertainty and slower convergence for CB8-G3 than for OA-G3/G6521

(Figure 2), and the differences among the methods’ performance, which were relatively small for the two522

octa-acid systems, increased for CB8-G3. For example, with GROMACS/EE, it was not possible to equilibrate523

the expanded ensemble weights within the same time used for OA-G3/G6. Moreover, OpenMM/SOMD524

and NAMD/BAR replicate calculations could not converge the average free energy to uncertainties below525

1 kcal/mol, and OpenMM/HREX and AMBER/APR displayed a significant and slowly decaying bias. Contrarily,526

GROMACS/NS-DS/SB, which generally obtained a slightly negative relative efficiency in OA-G3/G6, performed527

significantly better than any other methods with CB8-G3 and obtained variance similar to OpenMM/HREX528

but smaller total bias.529

Enhanced-sampling strategies can increase convergence rates in systems with long correlation530

times531

The four double decoupling methods performed similarly for the two octa-acid systems, while differences532

in performance widened with CB8-G3, which featured the largest guest molecule in the set and generally533

proved to be more challenging for free energy methods than OA-G3/G6. OpenMM/HREX obtained much534

smaller uncertainties and bias with CB8-G3 than both OpenMM/SOMD and NAMD/BAR, whose replicates535

seem far from converging to a single prediction. Looking at the individual replicate free energy trajectories536

for CB8-G3 (SI Figure 9), one notices that both OpenMM/SOMD and NAMD/BAR produced a few relatively537

flat trajectories that differ by 3-4 kcal/mol. Further OpenMM/SOMD repeats suggest that the replicate538

disagreement is not determined by the initial conformations, and it is more likely caused by long mixing539

times of the system (SI Table 5). The difference in performance with respect to OpenMM/HREX for CB8-G3540

might then be explained by the Hamiltonian replica exchange strategy, which is in agreement with previous541

studies on cucurbit[7]uril [100]. On the other hand, NAMD/BAR and GROMACS/EE obtained the greatest542

relative efficiencies for OA-G3/G6, and, while their difference in efficiency is not statistically significant, it is543
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worth noticing that NAMD/BAR did not employ enhanced sampling methodologies. This suggests that the544

impact of enhanced sampling strategies based on Hamiltonian exchange might be significant in absolute545

free energy calculations only for transformations and systems with long correlation times.546

Nonequilibrium switching trajectories (the NS protocol) also seemed to be effective in working around547

problematic energetic barriers in CB8-G3 associated with the alchemical transformation. In particular,548

NS-DS/SB-long, which used longer nonequilibrium switching trajectories, slightly improved the efficiency of549

the method in CB8-G3. This suggests that collecting fewer nonequilibrium switching trajectories to achieve a550

narrower nonequilibrium work distribution can be advantageous in some regimes.551

As a final note, NAMD/BAR generally obtained a greater efficiency than OpenMM/SOMD in OA-G3/G6,552

which also did not use any enhanced sampling approach. It is unclear whether this difference is due to553

the number of intermediate states (32 for NAMD/BAR, 21 for OpenMM/SOMD), the initial equilibration of554

2 ns performed by NAMD/BAR, or the long-range electrostatics model (PME for NAMD/BAR and reaction555

field for OpenMM/SOMD). It is clear, however, that two different but reasonable protocols can result in very556

different efficiencies. As a confirmation of this, the NAMD/BAR submission for OA-G3/G6 used an optimized557

� schedule turning off charges linearly between � values 0.0–0.5 rather than 0.0–0.9 as done in the first batch558

of calculations. The new � schedule considerably improved the convergence over the original protocol, which559

was causing long mixing times due to sodium ions binding tightly the carboxylic group of the OA guests.560

Equilibrating expanded ensemble weights can increase efficiency when running replicates561

In the two octa-acid systems, OpenMM/HREX and GROMACS/EE-fullequil achieved similar efficiencies,562

although the latter obtained a better absolute bias relative efficiency with OA-G3. GROMACS/EE obtained,563

however, a greater RMSE relative efficiency when the cost of equilibrating the expanded ensemble weights564

is amortized over the five replicate calculations. This strategy is thus attractive when precise uncertainty565

estimates through replicate calculations are required. These observations, however, are limited to the566

two OA systems as the expanded ensemble weights equilibration stage did not converge in sufficient time567

for CB8-G3. Finally, we note that differences in the details of the protocols between GROMACS/EE and568

OpenMM/HREX may explain the greater efficiency of the former.569

In the expanded ensemble strategy, the weights attempt to bias the probability of jumping from a state570

to another in order to sample all intermediate states equally. In the presence of bottlenecks, this helps571

to reduce the round trip time along the alchemical � variable, which in turn can help reducing correlation572

times of the sampled binding poses in the bound state. Moreover, while OpenMM/HREX decoupled a573

counterion of opposite charge to the guest to maintain the neutrality of the simulation box, GROMACS/EE574

corrected for Coulomb finite-size effects arising with PME using an analytical correction [63]. While the575

approach decoupling the counterion does not introduce approximations, the process of discharging an ion576

is accompanied by solvent reorganization, which could impact the statistical efficiency of the calculation.577

Finally, GROMACS/EE annihilated Lennard-Jones (LJ) interactions (i.e. intra-molecular LJ forces were turned578

off in the decoupled state) while OpenMM/HREX decoupled them (i.e. intra-molecular LJ interactions were579

left untouched). The choice of decoupling versus annihilating has two effects on convergence, and these580

may work in opposite directions. On one hand, annihilating the LJ could increase the thermodynamic length581

of the transformation, which was found to be directly connected to the minimum theoretical variance of the582

free energy estimate [40]. On the other hand, annihilation of internal LJ interactions might remove some583

energy barriers separating metastable states, which could help reducing correlation times.584

Estimating binding free energies via estimation of binding kinetics was an order of magnitude585

less efficient than predicting binding free energies directly586

OpenMM/REVO employed a dramatically different approach for free energy prediction, calculating estimates587

of the binding kinetics through direct sampling of the binding and unbinding processes. The free energies588

obtained using the ratio of the binding and unbinding rates had larger uncertainties and showed a significant589

systematic bias with respect to other methodologies, although the ranking of the compounds agrees with590

the other submissions. The slow unbinding process may be responsible for the large variance and bias591

observed in REVO. Indeed, REVO calculations collected a total of 1.92 �s per system per replicate, which592
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Figure 3. Comparison of bidirectional and unidirectional free energy estimators of the same nonequilibrium
work switching data. Average free energy estimates obtained by different estimators from the same nonequilibrium
work data collected for CB8-G3 (left), OA-G3 (center), and OA-G6 (right) as a function of the number of energy/force

evaluations. The average and the 95% t-based confidence interval (shaded areas) are computed from the 5 replicate

calculations. BAR and BAR-long correspond to the GROMACS/NS-DS/SB and GROMACS/NS-DS/SB-long submissions in

Figure 2, and utilize the bidirectional Bennett acceptance ratio estimator based on the Crooks fluctuation theorem [101].
Jarzynski-Forward/Reverse are the free energy estimates computed through unidirectional estimators derived from the

Jarzynski equality using only the nonequilibrium work values accumulated in the forward/reverse direction respectively.

The Gaussian-Forward/Reverse trajectories are based on the Crooks fluctuation theorem and the assumption of normality

of the forward/reverse nonequilibrium work distribution, as described in [102]. Unidirectional estimators can introduce

significant instabilities and bias in the estimates.

should allow obtaining reasonably robust statistics for the binding process, whose mean first passage time593

(MFPT) estimated by the method for the three systems was between 36±6 and 150±50 ns [77]. On the other594

hand, the MFPT estimates for the unbinding process yielded by the method were 6±4 �s for OA-G3, 2.1±0.5 s595

for OA-G6, and 800±200 s for CB8-G3, which is significantly beyond the reach of the data accumulated for596

the prediction, and suggests that further simulation is required to obtain a better estimate of k
off
and ΔG.597

Another possible element that may have affected the asymptotic free energies is the size of the simulation598

box, which was relatively small for this type of calculation and made it difficult to sample long distances599

between host and guest in the unbound state, which can artificially lower the unbinding rate. Despite the600

smaller efficiency in predicting the binding free energy, this method was the only one among the submissions601

capable of providing information on the kinetics of binding.602

3.4 Unidirectional nonequilibrium work estimators can be heavily biased and603

statistically unstable604

We verified how the choice of the estimator can impact the convergence of the free energy estimate in605

nonequilibrium switching calculations. In particular, besides the bi-directional BAR estimates discussed606

above (GROMACS/NS-DS/SB and GROMACS/NS-DS/SB-long), we computed binding free energies of the host-607

guest systems using uni-directional estimator based on Jarzynski’s equality [103] in both forward and reverse608

directions and the estimator presented in [102], which is based on Jarzynski’s equality and the assumption609

of normality of the nonequilibrium work distribution. No extra simulation was run to obtain these new610

estimates. Rather, the same nonequilibrium data produced by the GROMACS/NS-DS/SB and GROMACS/NS-611

DS/SB-long protocols were re-analyzed using the unidirectional estimators. Their associated computational612

cost was halved to account for the fact that the method required to generate only nonequilibrium switching613

trajectories in one direction. As can be seen in Figure 3 and in SI Table 3, the efficiency of unidirectional614

estimators is significantly smaller than one obtained with BAR in all cases but GROMACS/NS-Jarz-F for OA-G3,615
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Figure 4. OA-G3 volume distribution, restraint radius distributions, and binding free energy dependency on the
binding site definition. Box volume empirical distributions obtained by NPT simulations using the Monte Carlo barostat
implemented in OpenMM (right) and the Berendsen barostat implemented in GROMACS (left) at 298 K. The continuous

blue (�MD(V|1atm)) and orange (�MD(V|100atm)) lines represent Gaussian kernel density estimates of volume distributions
sampled with simple molecular dynamics at a constant pressure of 1 atm and 100 atm respectively. The green distribution

is obtained by reweighting �MD(V|1 atm) to 100 atm. The red densities (�MD(V|1 atm)) represent the volume distribution
sampled in the bound state by the enhanced sampling algorithm (i.e., expanded ensemble for the Berendsen barostat

and HREX for the Monte Carlo barostat). The expected distribution is predicted correctly only from the volumes sampled

using the Monte Carlo barostat, while the Berendsen barostat samples distributions of similar mean but much smaller

fluctuations. Moreover, the expanded ensemble algorithm introduce artifacts in the volumes sampled by the Berendsen

barostat.

where the sign of the RMSE relative efficiency is not statistically significant. In particular, the estimator616

based on the Gaussian approximation of the work distribution can be significantly unstable for both the617

forward (e.g. CB8-G3) and the reverse (e.g. OA-G3) directions. This may be due to the Gaussian estimator’s618

linear dependency on the work variance, which makes its free energy estimate sensitive to rare events619

that do not affect Jarzynski’s estimator. For example, the average free energy profile obtained for OA-G3620

with the Gaussian estimator in the reverse direction (i.e. Gaussian-Reverse) displays a "saw-like" pattern621

with large and sudden jumps in the average free energy that are due to single rare events with large work622

dissipation which substantially increase the variance of the work distribution (SI Figure 10). The work variance623

subsequently gradually decreases when more regular events are introduced. Moreover, all unidirectional624

estimates for CB8-G3 are significantly biased, and none of them agree with the bidirectional estimates within625

statistical uncertainty. In general, this data suggests that collecting nonequilibrium switching trajectories in626

both directions is worth the cost of generating samples from the equilibrium distributions at both endpoints627

of the alchemical transformations.628

3.5 The Berendsen barostat introduces artifacts in expanded ensemble calculations629

Initially, the GROMACS/EE free energy calculations were performed in the NPT ensemble, but these converged630

to different binding free energies than the reference OpenMM/HREX calculations performed with YANK. In631

order to understand the origin of this discrepancy, we looked into the differences in the protocols adopted by632

the two methods that could have affected the asymptotic binding free energies. In particular, we examined633

the robustness of the reweighting step used by YANK at the end points to remove the bias introduced by634

the harmonic restraint (see also Detailed methods section), the sensitivity of the calculations to the PME635

parameters (i.e. FFT grid, error tolerance, and spline order), and the barostat employed.636

After verifying that the reweighting step and the PME parameters did not impact significantly the free637

energies predicted by the two methods (SI Figure 2 and SI Table 6), we investigated the effect of the638

barostat on the asymptotic binding free energy. OpenMM used Metropolis-Hastings Monte Carlo molecular639

scaling barostat [104, 105] while GROMACS a continuous scaling (or Berendsen) barostat [106]. Because640

17 of 39

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted January 3, 2020. ; https://doi.org/10.1101/795005doi: bioRxiv preprint 

https://doi.org/10.1101/795005
http://creativecommons.org/licenses/by/4.0/


of implementation issues, only the Berendsen barostat was compatible with both expanded ensemble641

simulations and bond constraints at the time simulations were run. It is known that the Berendsen barostat642

does not give the correct volume distribution [107, 108], but in most cases, expectations of variables643

relatively uncorrelated to the volume fluctuations, such as energy derivatives in alchemical variables, might644

be expected to be essentially unaffected. We thus re-ran both methods in NVT, first with different and645

then identical PME parameters. If the NVT calculation is run at the average NPT volume, we expect the646

NVT and NPT binding free energy predictions to be essentially identical as, in the thermodynamic limit,647

dG = dA + d(pV ), where G and A are the Gibbs (NPT) and Helmholtz (NVT) free energies respectively, and648

we expect 1 atm⋅ΔV , where V is the change in volume on binding, to be negligible. The box vectors used649

for the NVT calculations were selected from the OpenMM/HREX NPT trajectories in order to obtain the650

volume closest to the average NPT volume. The changes introduced by the different PME parameters were651

not statistically significant (SI Table 6), but we found that the discrepancies between the methods vanished652

without the barostats. In particular, OpenMM/HREX yielded free energies identical to those obtained at653

NPT, whereas the expanded ensemble predictions for OA-G3 decreased by 0.6 kcal/mol, suggesting that the654

Berendsen barostat was responsible for generating artifacts in the simulation.655

To obtain further insight, we performed molecular dynamics simulations of OA-G3 at 1 atm and 100 atm656

in NPT using the GROMACS Berendsen barostat and the OpenMM Monte Carlo barostat. We found that the657

Berendsen barostat generated volume distributions with much smaller fluctuations and slightly different658

means than the MC barostat. At 1 atm, the mean of the Berendsen and MC barostat distributions are659

80.250 ± 0.006 nm3 and 80.286 ± 0.004 nm3 respectively (errors here are two times the standard error660

of the mean). In contrast to the MC barostat, reweighting the distribution generated by the Berendsen661

barostat at 1 atm with the weight e�(100atm−1atm)V fails to recover the 100 atm distribution (Figure 4), which662

confirms that the Berendsen barostat did not sample correctly the expected volume fluctuations in the NPT663

ensemble. Moreover, the volume distribution sampled in the bound state by the Berendsen barostat during664

the expanded ensemble calculations is quite different from that obtained through simple MD simulations,665

with thicker right tails and mean 80.298 ± 0.008 nm3. The apparent shift to the right is consistent with the666

volume expansion observed in the neighbor intermediate states during the expanded ensemble calculations667

(SI Figure 8), which suggests that the artifacts might be introduced by the random walk along states. In668

principle, we expect the difference in binding free energy due to the different barostats to be approximately669

p(ΔV MC − ΔV B), where ΔV MC∕B is the change in volume on binding from according to the MC or Berendsen670

barostat, as indicated. However, because the mean volume for the Berendsen and MC barostats are different671

even for the simple MD simulation, it is not completely clear whether a difference in free energy would still672

be present without the expanded ensemble algorithm. In fact, the mean bound state volume obtained by673

the Berendsen barostat during the expanded ensemble calculation is closer to the MC mean volume than674

the one obtained with MD. Further free energy calculations using the Berendsen barostat but independent �675

windows might be helpful in clarifying this issue.676

3.6 Estimators of the free energy variance based on correlation analysis can677

underestimate the uncertainty678

Since participants also submitted uncertainty estimates for each of the five replicate calculations, we were679

able to verify how accurately the different uncertainty estimators could reproduce the true standard deviation680

of the ΔG estimates, here referred to as std(ΔG), from a single run. OpenMM/HREX, GROMACS/EE, and681

SOMD estimated the single-replicate uncertainties from the asymptotic variance estimator of MBAR after682

decorrelating the potential based on estimates of the integrated autocorrelation time. AMBER/APR instead683

used blocking analysis to compute the mean and standard error of dU/d� in each window. These statistics684

were then used to generate 1000 bootstrapped splines, and the uncertainty was determined by computing685

the standard deviation of the free energies from the thermodynamic integration of the bootstrapped splines.686

Finally, GROMACS/NS-DS/SB estimated the uncertainties by running an ensemble of 10 independent non-687

equilibrium switching calculations for each of the 5 replicate calculations and computing their standard688

deviations. We built ŝ(ΔG), our best estimate of std(ΔG), with 95% confidence intervals for each method by689

computing the standard deviation of the five replicated free energy predictions. Under the assumption of690
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normally-distributed ΔG, ŝ(ΔG) is distributed according to ŝ(ΔG) ∼ �N−1std(ΔG)∕(N − 1), where N = 5 is the691

number of replicates [109], which makes it trivial to build confidence intervals around ŝ(ΔG).692

Under this statistical analysis, the single-replicate trajectories of most methods are within the confidence693

interval of ŝ(ΔG) (SI Figure 9). In particular, the standard deviations of the single GROMACS/NS-DS/SB694

replicate calculations generally agree within statistical uncertainty to our best estimate. This is probably695

expected as both are based on independent calculations. The AMBER/APR uncertainty estimates based on696

bootstrapping also agree well with the replicate-based estimate, especially in the final part of the trajectory.697

We note, however, that the MBAR standard deviation estimate based on autocorrelation analysis statistically698

underestimates ŝ(ΔG) in OpenMM/SOMD, and, in general, it shows a marked tendency to be on the lower699

end of the confidence interval also in OpenMM/HREX and GROMACS/EE. These observations are consistent700

with those of a prior comparison of the autocorrelation and blocking analysis methods [94]. Similarly, the701

BAR standard deviation in the NAMD/BAR submission did well for the two octa acids, but the uncertainty702

was significantly underestimated for the CB8-G3, in which the true standard deviation was on the order of703

1.2 kcal/mol. Curiously, the MBAR uncertainties are almost identical across the five replicates in all three704

submissions using them and for all systems. This is in contrast not only to bootstrap- and replicate-based705

methods but also to the BAR uncertainty estimates submitted by NAMD/BAR, which seem to yield estimates706

that are more sensitive to differences in the single free energy trajectories.707

In order to verify if the performance of the MBAR uncertainties was due to an inadequate decorrelation708

of the samples, we analyzed again the HREX data after raising the interval used for subsampling from709

approximately 2.8 ps to 5, 10, 20, 50, 100 and 200 ps. In this case, the equilibration time, and thus the710

number of initial iterations discarded, was determined as two times the statistical inefficiency. As SI Figure 11711

shows, setting the statistical inefficiency to 5 ps is sufficient for the single-replicate uncertainty to fall within712

the best estimate confidence interval, and arguably, the agreement becomes slightly better with greater713

values of statistical inefficiency. However, the single-replicate uncertainties are still almost identical across714

the five replicates even for the estimates obtained with statistical inefficiency set at 200 ps, in which, due715

to the limited number of samples, the individual free energy trajectories are quite different and show716

very different errors. Thus, while the error computed through autocorrelation analysis is within statistical717

uncertainty of the standard deviation, the estimates seem insensitive to the particular realization of the free718

energy trajectory.719

3.7 The initial bias of HREX is explained by the starting population of the replicas720

The initial conformation can bias the free energy in systems with long correlation times721

In all three host-guest systems, we noticed that the OpenMM/HREX free energy trajectories were significantly722

biased at the beginning of the calculation. The problem was particularly evident for the CB8-G3 system, for723

which the performance of methods was generally poorer, and a lot of computational effort was required724

for the bias to decay in comparison to OA-G3 and OA-G6. Figure 5 shows that the initial bias of CB8-G3725

gradually disappears when an increasing amount of data from the initial portion of the calculation is ignored726

during the analysis. This suggests the initial conditions to be the cause of the bias. This becomes apparent727

when realizing that the HREX free energy trajectory in Figure 5 observed after discarding 2000 iterations728

can be interpreted as from HREX calculations starting from different initial conditions. What is peculiar729

about this equilibration process is the consistent sign of the observed bias (i.e. E
[

ΔGX
]

− ΔG� < 0), which730

remains negative even after several thousands iterations are removed (1000 iterations corresponding to731

the equivalent of 131 ns of aggregate simulation from all replicas). The same trend is observed both for732

OA-G3 and OA-G6, although the correlation times governing the equilibration process appear much smaller733

in these two cases than with CB8-G3.734

Initializing all replicas with a bound structure might be the cause of the negative sign of the bias735

Decomposing the free energy in terms of contributions from complex and solvent legs of the HREX calculation736

shows that the finite-time bias is entirely attributable to the complex phase (SI Figure 13). As it is common to737

do with multiple-replica methodologies, all HREX replicas were seeded with the same initial conformation,738

which, for the complex phase, was obtained by equilibrating the docked structures for 1 ns in the bound state.739
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Figure 5. Initiating the HREX calculation from a single conformation introduces significant bias that slowly
relaxes as the system reaches equilibrium. Mean (top row) and standard deviation (bottom row) of the five replicate
free energy trajectories as a function of the simulation length computed after discarding an increasing number of initial

iterations going from 1000 (purple) to 24000 (light green) for the three host-guest systems. The trajectories are plotted

starting from the last discarded iteration. The initial bias is consistently negative, and it decays faster in OA-G3/G6 than in

CB8-G3, in which correlation times are longer. Ignoring the beginning of the trajectory removes the bias.

The so-obtained initial structure is representative of the bound state, and we expect it to decorrelate quickly740

in the decoupled state thanks to the missing steric barriers and the Monte Carlo rotations and translations741

performed by YANK. On the other hand, the intermediate states might require a long time to relax the initial742

conformation, during which the generated samples will be closer to the bound state distribution than if they743

had been sampled from the intermediate states equilibrium distribution. Under these conditions, the free744

energy estimator will predict the bound state to have a lower negative free energy. A detailed explanation of745

this last fact can be found in Appendix 3 in the supporting information.746

An alternative explanation for the negative sign of the bias relies on the increase in entropy that often747

accompany the transformation from the bound to the decoupled state. This is usually attributed to the748

larger phase space available to receptor and ligand and to solvent reorganization [110], and, in this instance,749

it is confirmed by the entropy/enthalpy decomposition of the predicted free energy (SI Figure 14). The750

hypothesis relies on the assumption that the larger phase space available in the decoupled state would751

require thorough sampling to be estimated correctly, which would be impossible at the beginning of the752

calculation when the estimate would be computed from a small number of correlated samples. As a result,753

the difference in entropy between the end states would initially be underestimated, and the binding free754

energy would become more positive as the number of samples enables a more precise prediction. However,755

this hypothesis seems unlikely, at least in this case, as it does not explain why ignoring the initial part of the756

calculation would result in an unbiased estimate since the beginning of the free energy trajectory would still757

be based on an equivalently small number of samples. The large fluctuations of the estimated entropy and758

potential energy trajectories, which are in the range of 10-20 kcal/mol (SI Figure 14) against a bias of less759

than 2 kcal/mol, hinder the direct verification of the two hypotheses, but further investigation of the cause760

and sistematicity of the negative bias across different receptor-ligand systems is currently ongoing.761

Relevance for other methods762

While, for reason of data availability, we focused on HREX here, it should be noted that, in principle, this is763

not a problem confined to the HREX methodology, and most free energy trajectories generated by alchemical764
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Bound water molecules distribution
by state in CB8-G3-0

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

n bound waters

A B

Figure 6. Bound water molecules inducemetastability in HREX replicas with CB8-G3. (A) Histograms of the number
of bound water by thermodynamic state. The color maps the progression of the alchemical protocol from the bound

state (purple) to the discharged state (blue), where all the charges are turned off but Lennard-Jones interactions are still

active, and decoupled state (yellow). The number of bound waters has a peaked distribution around 0-2 for most of the

alchemical protocol, and it rapidly shifts to the right in the near-decoupled state. (B) Superposition of the trajectories of
the number of bound waters and the state index for replica 1 and 5 of the OpenMM/HREX calculation for CB8-G3-0 (top)

and autocorrelation function computed from the time series of the number of bound waters (dark colors) and replica

state indices (light colors) for CB8-G3-0 (blue), OA-G3-0 (green), and OA-G6-0 (red) (bottom). Each autocorrelation function

was computed as the average of the correlation functions estimated for each replica trajectory [39, 111]. Replicas remain

stuck in the near-decoupled states for several nanoseconds. CB8-G3 exhibits much longer correlation times for both time

series than the two OA systems.

methods show an initial upward trend in all three host-guest systems that may be due to one of these765

two explanations. In fact, the bias of HREX in CB8-G3 seems to decay faster than other multiple-replica766

double decoupling methods (i.e., NAMD/BAR and OpenMM/SOMD), whose free energy estimates are still767

significantly more negative when compared to more converged estimates (e.g., APR, HREX, NS-DS/SB) at768

the same computational cost (Figure 2). This is consistent with our hypothesis as the enhanced sampling769

strategy should help reducing correlation times of the intermediate states as well. Indeed, while we could770

not identify a specific physical collective variable responsible for the slow decorrelation of the intermediate771

states, the correlation time of the replica state index is consistent with the bias decay time in CB8-G3 and772

OA-G3/G6 (Figure 6).773

The data suggest that cheap methods for the determination of sensible initial conformations for the774

intermediate states may improve considerably the efficiency of HREX in systems with long correlation times.775

Moreover, a better trade-off between bias and variance in the final estimate could be achieved with better776

strategies for automatic equilibration detection or by reducing the number of intermediate states (69 for the777

complex and 62 for the solvent in the CB8-G3 HREX calculations), which directly impact the total number of778

energy evaluations spent equilibrating the replicas.779

3.8 Water binding/unbinding in CB8-G3 might contribute to long correlation times in780

HREX781

In order to get insights into the origin of the large uncertainties generally obtained by the double decoupling782

submissions for the CB8-G3 system, we analyzed the correlation times of various collective variables (CV)783

in the complex phase of the OpenMM/HREX calculations. Figure 6 shows that the number of waters in784

the binding site of CB8-G3 is metastable and correlate with the state index of the replicas (where each785

replica of the Hamiltonian replica exchange calculation can explore multiple states). The number of bound786

waters was computed by counting the water molecules with at least one atom within the convex hull of787

the heavy atoms of CB8. The metastability along replica trajectories depicted in Figure 6B is connected788

to a rapid shift towards greater numbers of the distribution of bound waters near the decoupled state789
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(Figure 6A). This contrasts with the discharging step, where the only evident change is a change in the mode790

of the bound water histogram from 2 to 0. The shift in mode is consistent with the observed distribution of791

restrained distance between host and guest (SI Figure 2), which suggests that the guest tends to crawl into792

the hydrophobic binding site in the discharged state to compensate for the loss of the polar interactions with793

water. Histograms of the number of bound waters for OA-G3 and OA-G6 (SI Figure 16) show similar features794

to that of CB8-G3, but the mean number of bound waters in the decoupled state is smaller (i.e. 4.84 water795

molecules) due to the smaller volume of the octa-acid binding site. Moreover, the statistical inefficiency796

computed from the correlation function of the state index, which was previously found to correlate well with797

the uncertainty of free energy estimates in Harmiltonian replica exchange calculations [39], is about five798

times smaller for OA-G3/G6 (1208.8 ps and 1371.0 ps) than for CB-G3 (6572.3 ps). This is consistent with the799

slower convergence generally observed for the latter set of calculations.800

While these results prove only the existence of correlation between the metastabilities in the number801

of bound waters and the state indices along a replica trajectory in the CB8-G3 calculations, it is plausible802

to hypothesize that water molecules displaced by the quinine when the Lennard-Jones interactions are803

re-coupled, alongside eventual steric clashes with the host binding site, might contribute significantly to804

hindering the replica exchange step with obvious negative effects on the ability of the HREX algorithm to805

enhance sampling. This is consistent with the faster replica exchange mixing observed for OA-G3/G6 as806

coupling the guest would have to displace a smaller number of bound waters than CB8-G3 due to the smaller807

volume of the guests. No other CV we analyzed had statistical inefficiencies on the same order of magnitude808

as those observed for the bias decay time shown in Figure 5. In particular, both the host-guest distance809

restrained by the harmonic potential and the distance between the alchemically-decoupled counterion and810

the guest seem to decorrelate quickly along replica trajectories, with estimated statistical inefficiencies never811

exceeding 50 ps. Possibly, an increased number of intermediate states close to the decoupled state might812

enhance the replica exchange acceptance rates for CB8-G3 and reduce the statistical inefficiency of the state813

index.814

3.9 Methods generally overestimated the host-guest binding free energies with respect815

to experimental measurements816

Accuracy with respect to experiments was not the focus of this study, but the input files for the challenge817

were created using a quite typical setup, and it is thus interesting to compare the converged predictions to818

the corresponding experimental data collected for the accuracy host-guest challenge [26, 112, 113]. The ITC819

measurements yielded binding free energies of -6.45 +- 0.06 kcal/mol for CB8-G3, -5.18 +- 0.02 kcal/mol for820

OA-G3, and -4.97 +- 0.02 for OA-G6. In comparison, the well-converged computational results were more821

negative on average by -4.4, -1.2, and -2.1 kcal/mol respectively, in line with what was observed for other822

methods employing the GAFF force field in the SAMPL6 host-guest accuracy challenge [26]. It should be823

noted that the ionic strengths of SAMPLing systems (i.e., 150 mM for CB8-G3 and 60 mM for OA-G3/G6)824

were slightly higher than in experimental conditions (estimated to be 57.8 mM for CB8-G3 and 41.25 mM825

for OA-G3/G6) used for the host-guest binding challenge, and previous evidence revealed the host-guest826

binding free energies to be sensitive to concentration and composition of the ions. In a recent SOMD827

calculations performed for the SAMPL6 accuracy challenge, removing the ions modeling ionic strength of the828

experimental buffer (i.e. going from 150 mM for CB8-G3 and 60 mM OA-G3/G6 to 0 mM) caused the ΔG829

prediction to shift by -4.87 ± 2.42, 1.37 ± 0.50, and 1.48 ± 0.48 for CB8-G3, OA-G3, and OA-G6 respectively830

(computed as the average of three runs ± standard error of the mean) [76]. In particular, the estimated831

binding free energy for OA-G3 obtained without buffer ions agreed with the experimental measurement832

within uncertainty. It is unlikely for the ion concentrations to be the sole responsible for the overestimated833

binding affinities. The sign of the shift for CB8-G3 described above is not consistent with the hypothesis,834

and a negative mean error was very consistent across GAFF submissions employing different buffer models.835

Nevertheless, the order of magnitude of these shifts suggests that ionic strengths cannot be neglected.836
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4 Discussion837

4.1 Disagreements between methodologies impact force field development and838

evaluation839

In many cases, methods obtained statistically indistinguishable predictions with very high precision. The840

agreement between methodologies is quite good for OA-G6, where essentially all estimates are within841

0.4 kcal/mol. On the other hand, despite the focus of the study on reproducibility, some of the methods842

yielded predictions that significantly deviated from each other by about 0.3 to 1.0 kcal/mol. This directly843

raises a problem with force field evaluation and development since it implies that the accuracy afforded844

by a given set of forcefield parameters (and thus the value of the loss function used for their training) can,845

in practice, be affected significantly by the software package, methodological choices, and/or details of846

simulation that are considered to have negligible impact on the predictions (e.g., switched vs truncated847

cutoff, treatment of long-range interactions, ion concentrations). Trivially, this also implies that we should848

not expect a force field to maintain its accuracy when using simulation settings that differ from those used849

during fitting.850

Similar observations were made in previous work in different contexts. In a reproducibility study involving851

four different implementations of relative hydration free energy calculations, the authors found in many852

cases statistically significant ΔΔG differences on the order of 0.2 kcal/mol [30]. Systematic differences of the853

same order of magnitude were detected in a recent study comparing Monte Carlo and Molecular Dynamics854

sampling for binding free energy calculations [27], although, in this case, differences in water models and855

periodic boundary conditions might confound the analysis.856

4.2 Bias is critical when comparing the efficiency of different methodologies857

The results show that quantifying not only the variance but also the bias of a binding free energy method is858

important to draw a complete picture of the efficiency of a method. The bias of the free energy predictions859

varied substantially depending on the method and the system, and for calculations that are short with860

respect to the correlation times, the bias can be greater or have the same order of magnitude of the variance.861

For example, in CB8-G3, NS-DS/SB-long obtained a greater RMSE efficiency than HREX in spite of the similar862

variance because the bias of OpenMM/HREX for CB8-G3 remained non-negligible for a substantial portion of863

the calculation. This suggests that looking at the variance of the free energy estimate alone is insufficient to864

capture the efficiency of a method, and the RMSE relative to the asymptotic binding free energy prediction865

should be favored as the main statistic used in studies focusing on exploring and testing methodological866

improvements.867

Estimating the RMSE and bias is a more complicated problem than estimating the variance as it requires868

the value of asymptotic free energy given by the model and thus to ascertain that the calculation has869

converged. Visual inspection of the free energy trajectory is useful, but it can be misleading. Besides the870

presence of unexplored relevant areas of configurational space, the noise in the trajectory can hide very871

slow decays (see YANK calculation in CB8-G3). More recommendations about how to detect convergence872

issues can be found in [114, 115].873

On the other hand, a focus on quantifying the efficiency of free energy calculations in terms of RMSE could874

increase the attention paid to convergence issues as well as incentivize the creation of reference datasets875

that could provide asymptotic free energies associated to specific input files without always requiring long876

and expensive calculations. The latter would particularly benefit the field when the efficiency of a method877

would need to be evaluated only for very short protocols (e.g. overnight predictions). This is, however,878

conditional on identifying the source of the discrepancies between the predictions of different methods and879

an asymptotic value can be agreed upon in the first place.880

4.3 Multiple replicates are one route to avoiding underestimating the uncertainty881

MBAR uncertainties and bootstrap uncertainties built with the blocking method were in most cases able to882

estimate the standard deviation of the free energy prediction within confidence interval. Nevertheless, when883

sampling is governed by rare events and systematically misses relevant areas of conformational space, data884
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from a single trajectory simply cannot contain sufficient information to estimate the uncertainty accurately.885

An example is given by the CB8-G3 calculations performed by OpenMM/SOMD and NAMD/BAR, for which the886

uncertainty estimates were underestimated by more than 1 kcal/mol. In these cases, replicate calculations887

starting from independent conformations can offer a solution to or compensate for the problem. Relaxed888

docked conformations can be a viable method to generate the independent conformations, although this889

is not, in general, an easy task and multiple short replicates starting from the same or very similar initial890

conformations can still cause the uncertainty to be underestimated. Moreover, given a limited amount891

of computational resources, the number of replicate calculations should not be large enough to prevent892

sampling of all the relevant time scales, which are strongly system-dependent.893

In addition to a more accurate estimate of the free energy estimate, it has been argued that predictions894

computed from an ensemble of independent calculations lead to more robust estimates [32, 116]. In895

agreement with these results, the simple average of the five independent free energies is surprisingly robust896

even when the single-replicate predictions do not agree quite well (SI Figures 9,11).897

4.4 Shortcomings of the analysis and lesson learned for future studies898

The bias estimation strategy favors short and unconverged calculations899

Originally, the calculations run by the organizers (i.e., OpenMM/HREX and GROMACS/EE) were meant to900

provide a reference estimate of the asymptotic free energy of the model that we could use to detect and901

estimate systematic biases. However, because of the differences in setups and treatment of long-range902

interactions adopted in the different submissions, this type of analysis was not possible. Instead, we903

estimated the asymptotic free energy for each methodology as the average binding free energy of the 5904

replicates after 100% of the computational cost. As a consequence, the bias is generally underestimated,905

and long calculations and converged results are thus generally penalized in the calculation of the efficiency906

statistic. Some of these differences could be minimized by picking settings to which most software packages907

and methods will be able to adhere. For example, providing systems solvated in both cubic and elongated908

orthorhombic boxes, and running reference calculations for both of them, could lower the barrier for PMF909

calculations to enter the challenge without re-solvating the reference files. Moreover, using a truncated cutoff910

instead of a switched cutoff could help as AMBER does not support switched cutoffs and different simulation911

packages could use slightly different switching functions. Also, providing template input configuration files912

for common simulation packages that encapsulate other settings such as PME parameters could reduce the913

risk of running several methods with different settings.914

The number of force evaluations can miss important information about the computational cost915

In this work, we have focused the analysis on the number of energy/force evaluations as a measure of916

the methods’ computational cost. In general, this is a very practical and fair measure of the cost of a917

method. For example, unlike wall-clock or CPU time, it does not depend on hardware and the particular918

implementation, which is compatible with the objective of this challenge in detecting fundamental differences919

in efficiency between algorithms. Thus, even though implementation details might affect wall-clock/GPU920

time dramatically, methods with a comparable number of energy/force evaluations might eventually be able921

to be put on equal footing given enough developer time if it seemed warranted. Moreover, this measure922

treats both molecular dynamics and Monte Carlo strategies equally, which would not be possible if the cost923

was measured, for example, in terms of simulation time (e.g., nanoseconds of simulation).924

However, the number of force/energy evaluations can miss important details. It is insensitive to the925

system size, and it assumes that the computational cost of all other components of the calculation is926

negligible. Furthermore, while some sampling schemes require multiple evaluations of the Hamiltonian,927

often it is not necessary to compute it in its entirety. For example, in multiple time scale MD and Monte928

Carlo moves involving a reduced number of degrees of freedom, one only needs to compute a subset of929

pairwise interactions. HREX requires the evaluation of multiple Hamiltonian at the same coordinates, but930

only the parts of the Hamiltonian that change between intermediate state needs to be evaluated multiple931

times. When the algorithms and setups differ, this may become important to take into account. For example,932

double decoupling methods assigned the same computational cost to each time step of the complex and933
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solvent stages of the calculation, while REVO, APR, and NS-DS/SB ran only in one stage using a box of the934

same or greater size of the complex so that one force evaluation for the latter methods on average is935

practically more expensive than a force evaluation for double decoupling.936

In future challenges, it might be useful to collect another simple but more precise measure of the937

computational cost of a method based on a scaled version of the number of energy/force evaluations, with938

the scaling factor depending on the number of particles that enters the evaluation. Moreover, instead939

of requesting exactly 100 free energy estimates for each replicate, requesting free energy estimates that940

are roughly equally spaced by a predetermined number of force/energy evaluations could make it simpler941

to perform direct comparisons between all methods without requiring the comparison to a reference942

calculation.943

A larger and more varied test set is necessary to obtain a more comprehensive picture of the944

methods’ efficiency945

This first round of the challenge was created as a component of the SAMPL6 host-guest challenge, and we946

created a minimal test set including both fragment-like and drug-like compounds. We believe this was a947

beneficial decision. Fragment-like guests that converged relatively quickly such as OA-G3/G6 proved very948

useful to debug systematic differences between methods while most of the methods problems or strengths949

were unveiled from the calculations targeting CB8-G3, which has a greater size and generally proved to be950

more challenging for free energy methods than the two octa-acid guests.951

Expanding the test set to include one trivial system and a few more challenging systems could increase952

the potential for learning and provide a more complete picture of the problems to address and the domain953

of applicability of the different methods, especially as different approaches may have different strengths and954

weaknesses. For example, HREX and EE could be less effective at improving convergence for systems with955

a single dominant binding mode. On the other hand, systems with a buried binding pocket that remains956

dry in both the holo and apo states could be less problematic for HREX and EE, which are challenged by957

wetting/dewetting processes that occur at the “almost decoupled” state. At the same time, physical-pathway958

methods such as APR and REVO might be less effective for receptor-ligand systems with buried binding959

pockets, as an efficient unbinding path could require large reorganization of the receptor that might be960

difficult to determine or sample.961

For systems that are easier to converge, it might also be possible to increase the number of replicates962

from five. The increased statistical power could be particularly helpful to resolve differences between963

methods in efficiency, in estimated binding free energy predictions, and for the analysis of the uncertainty964

estimates (e.g. blocking, bootstrap, and correlation analysis) since the standard deviation of the binding free965

energy estimated from five replicates have large variance, which makes it hard to draw statistically significant966

conclusions. For bigger systems, this may not be practical, but the number of replicates does not necessarily967

have to be the same for all the tested systems.968

Finally, we point out that the selection of systems for such convergence studies is not limited by the lack969

of experimental data or a chemical synthesis route, and one is free to craft an optimal test system.970

4.5 Parallelization considerations971

The analysis above does not account for the differences in the intrinsic levels of parallelization of the different972

methods, but almost all methods can be completely or almost trivially parallelized over up to 40 parallel973

processing units with the given protocols. APR, NAMB/BAR, and SOMD protocols use respectively 60, 64, and974

40 windows, the last two numbers to be divided equally between complex and solvent stages. Each HREX975

calculation ran more than 100 MC/MD parallel simulations, although the exchange step provides a bottleneck976

for the simulation. Similarly, the protocol used for the REVO methodology employs 48 independent walkers977

that can be run in parallel throughout the calculation, with a bottleneck occurring at the cloning/merging978

stage of the adaptive algorithm. NS-DS/SB protocol used 10 independent equilibrium simulations for each979

end state (i.e. bound and unbound states) that generate frames used to spawn nonequilibrium switching980

trajectories in both directions. New NS trajectories can be started as soon as new equilibrium samples are981

generated. Thus, because the nonequilibrium trajectory duration in this protocol is greater than the interval982

25 of 39

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted January 3, 2020. ; https://doi.org/10.1101/795005doi: bioRxiv preprint 

https://doi.org/10.1101/795005
http://creativecommons.org/licenses/by/4.0/


between two equilibrium frame, the calculation can in principle have at least 40 independent simulations983

running in parallel. The EE protocol submitted for this work is an exception as it does not use a parallelization984

scheme, although maintaining and coordinating multiple independent expanded ensemble chains is in985

principle possible [117].986

Nevertheless, all calculations can also be trivially parallelized over the molecules in the set and over987

eventual independent replicate calculations. Under perfect parallelization, or in the presence of negligible988

bottlenecks, the relative efficiency is insensitive to the number of parallel processing units so we expect989

the analysis in this work can be informative also in many common scenarios involving parallel computing990

systems. However, these results should be careful re-interpreted in the presence of massively parallel991

computational systems, in which the number of processing units does not provide a fundamental bottleneck.992

For example, a large number of GPUs could be exploited better with protocols simulating many intermediate993

states that can be simulated in parallel, such as those used by HREX and APR.994

4.6 Relevance and future plans for relative free energy calculations995

Unfortunately, we did not receive any relative free energy submission for this round of the challenge.996

However, the data reported here has implications for relative calculations as well. Given that enhanced997

sampling strategies based on Hamiltonian exchange had little or no impact on efficiency for the octa-acid998

systems, we expect a relative calculation to be significantly more efficient than two absolute calculations in999

computing a ΔΔG value for the simple OA-G3 to OA-G6 transformation that we set up. For the same reason,1000

we would expect enhanced and non-enhanced relative methods to perform similarly for the OA-G3 to OA-G61001

transformation. On the contrary, a relative transformation involving a systemwith long correlation times such1002

as CB8-G3 might benefit more from enhanced sampling strategies and be less sensitive to the initial bound1003

conformation. Finally, while cancellation of error might help, we expect to observe discrepancies between1004

different packages and/or methods also for relative calculations as, with the exception of OpenMM/HREX1005

and AMBER/APR, the ΔΔG between methods does not appear to be systematic.1006

In future rounds of the challenge, we are interested in probing the boundaries of applicability of this1007

technology, particularly in the presence of ligands or alchemical transformations requiring exploration of1008

multiple, kinetically-separated binding modes. For these cases, state-of-the-art methods in both absolute1009

and relative calculations often rely on scaling selected Coulomb, Lennard-Jones, and/or torsional terms of1010

the Hamiltonian to lower the energetic barriers between relevant conformations [35, 118] Typically, the1011

optimal choice for the range of scaling factors and the subset of the systems to enhance is very system-1012

dependent, not known a priori, and essentially determined by a trade-off between shortening mixing times1013

and simulating extra intermediate states sharing poor overlap with the end states of the transformation.1014

In this sense, absolute methods such as HREX and EE bring this trade-off to an extreme by turning off1015

completely receptor-ligand electrostatics and sterics interactions. This enables dramatic changes in binding1016

pose, such as the upside-down flip of CB8-G3, at the cost of introducing states with poor overlap with the1017

end states, although without usually modifying torsions or receptor atoms that would reduce the overlap1018

even further. Again, careful selection of the receptor-ligand systems will be fundamental to determine under1019

which conditions protocols favoring sampling or statistical efficiency would result in faster convergence.1020

5 Conclusions1021

We have presented the results of the first round of the SAMPLing challenge from the SAMPL challenge series.1022

The design and execution of the challenge made apparent the need for a measure of efficiency for free1023

energy calculations capable of capturing both bias and uncertainty of the finite-length free energy estimates1024

and summarizing the performance of a method over a range of computational costs. The analysis framework1025

and efficiency statistics we introduced in this work allow formulation and evaluation of hypotheses regarding1026

the efficiency of free energy methods that can be verified meaningfully with the standard tools of statistical1027

inference. We applied this framework to seven free energy methodologies and compared their efficiency1028

and their level of agreement on a set of three host-guest systems parametrized by the same force field. The1029

analysis highlighted significant and system-dependent differences in the methods’ convergence properties1030

that depend on both the sampling strategies and the free energy estimator used. Overall, the study shows1031
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that PMF and alchemical absolute binding free energy calculations can converge within reasonable computing1032

time for this type of system.1033

Surprisingly, we observed significant differences in the converged free energies for the different methods1034

ranging from 0.3 to 1.0 kcal/mol. These discrepancies are small enough that they would not have aroused1035

suspicion without the comparison of multiple independent methods, which stresses the utility and efficacy1036

of this type of study in detecting methodological problems. While we were able to isolate the origins of some1037

of these discrepancies, further work will be required to track down the causes of remaining discrepancies,1038

which might be attributable to small differences in the model (e.g. treatment of long-range interactions,1039

ionic strength), sampling issues of some of the methods, software package, or any combination of the above.1040

Notably, the discrepancies between methods are roughly half the size of the current reported inaccuracies of1041

leading free energy methods compared to experiment (roughly 1 kcal/mol). Eliminating these discrepancies1042

would therefore be very useful for the field to make further progress.1043

Although we decided to accept non-blinded submissions to increase the value of the study, future rounds1044

of the challenge should ideally be limited to blind predictions, in line with the other challenges within the1045

SAMPL series. The lessons learned while organizing this first round of the challenge will be useful to address1046

the problems identified during the analysis. In particular, we hope to adopt a slightly different measure1047

of computational cost based on the number of force/energy evaluations that also takes into account the1048

system size, and increase the size and variety of the test set. Although an aspirational goal, running on1049

the same dedicated hardware would allow a meaningful comparison of the performance of the different1050

methods also in terms of CPU/GPU time, and analyze more closely the speedups obtained with parallelization.1051

Workflow-ized tools (e.g., Orion workflows, BioSimSpace workflows, HTBAC) could be helpful in pursuing this1052

direction.1053

6 Detailed methods1054

6.1 Preparation of coordinates and parameters files1055

The protonation states of host and guest molecules were determined by Epik 4.0013 [119, 120] from the1056

Schrödinger Suite 2017-2 at pH 7.4 for CB8-G3 and pH 11.7 for OA-G3 and OA-G6. These values correspond1057

to the pH of the buffer adopted for the experimental measurements performed for the SAMPL6 host-guest1058

binding affinity challenge. For each host-guest system, 5 docked complexes were generated with rigid1059

docking using FRED [66, 67] in the OpenEye Toolkit 2017.6.1. Binding poses with a root mean square1060

deviation less than 0.5 Å with respect to any of the previously generated binding poses were discarded. Hosts1061

and guests were parameterized with GAFF v1.8 [70] and antechamber [121]. AM1-BCC [68, 69] charges were1062

generated using OpenEye’s QUACPAC toolkit through OpenMolTools 0.8.1. The systems were solvated in a1063

12 Åbuffer of TIP3P [71] water molecules using tleap in AmberTools16 [122] shipped with ambermini 16.16.0.1064

In order to make relative free energy calculations between OA-G3 and OA-G6 possible, ParmEd 2.7.3 was1065

used to remove some of the molecules from the OA systems and reduce the solvation box to the same1066

number of waters. This step was not performed for the CB8-G3 system, and the 5 replicate calculations1067

where simulated in boxes containing a different number of waters. The systems’ net charge was neutralized1068

with Na+ and Cl- ions using Joung-Cheatham parameters [123]. More Na+ and Cl- ions were added to reach1069

the ionic strength of 60 mM for OA-G3/G6 systems and 150 mM for CB8. Note that this ionic strength is likely1070

to be different from the one used for the experimental measurements, which was estimated to be 41 mM1071

and 58 mM respectively. Systems were minimized with the L-BFGS optimization algorithm and equilibrated1072

by running 1 ns of Langevin dynamics (BAOAB splitting [22], 1 fs time step) at 298.15 K with a Monte Carlo1073

barostat set at 1 atm using OpenMM 7.1.1 [75] and OpenMMTools [124]. Particle Mesh Ewald (PME) was1074

used for long-range electrostatic interactions with a cutoff of 10 Å. Lennard-Jones interactions used the same1075

10 Å cutoff and a switching function with a switching distance of 9 Å. After the equilibration, the systems1076

were serialized into the OpenMM XML format. The rst7 file was generated during the equilibration using the1077

RestartReporter object in the parmed.openmmmodule (ParmEd 2.7.3). The AMBER prmtop and rst7 files1078

were then converted to PDB format by MDTraj 1.9.1 [125]. The files were converted to GROMACS, CHARMM,1079

LAMMPS, and DESMOND using InterMol [29] (Git hash f691465, May 24,2017) and ParmEd (Git hash 0bab490,1080
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Dec 11, 2017).1081

6.2 Free energy methodologies1082

AMBER/APR1083

We used the attach-pull-release (APR) [93, 94] method to calculate absolute binding free energies of each1084

host-guest complex. We used 14 "attach" umbrella sampling windows, during which time host-guest complex1085

restraints are gradually applied, and 46 "pull" umbrella sampling windows to separate the host and guest. A1086

final, analytic "release" phase was applied to adjust the effective guest concentration to standard conditions1087

(1 M). Since CB8 has two symmetrically equivalent openings, and the APR method only pulls the guest out of1088

one opening, we have added an additional −RT ln(2) = −0.41 kcal/mol to the calculated binding free energy1089

to adjust for this additional equivalent entropic state.1090

The restraints were setup using our in-development Python package: pAPRika 0.0.3 (commit hash1091

e69f053). Six restraints (1 distance, 2 angles, and 3 dihedrals) were used to restrain the translational and1092

orientational degrees of freedom of the host relative to three positionally restrained dummy anchor atoms.1093

These restraints, which were constant throughout all APR windows, did not perturb the internal degrees of1094

freedom of the host. The distance force constant was set to 5.0 kcal/mol-Å2 and the angle force constant1095

to 100.0 kcal/mol-rad2. Three additional restraints were added, during the attach phase of APR, between1096

the dummy atoms and two guest atoms in order to orient the guest relative to the host and then separate1097

the two molecules by 18 Å, which was sufficient for reaching a plateau in the potential of mean force. The1098

distance and angle force constants for these restraints were the same as before.1099

All equilibration and production simulations were carried out with the GPU-capable pmemd.cuda MD1100

engine in the AMBER 18 package [72]. The OA systems were re-solvated with 3000 waters and the CB81101

systems were re-solvated with 2500 waters in a orthorhombic box elongated in the pulling direction to1102

enable distances between the host and guest necessary to carry out the potential of mean force calculation.1103

Force field parameters and charges of the host-guest systems were not altered in the operation. Equilibration1104

consisted of 500 steps of energy minimization and enough NPT simulation such that 1 ns could be completed1105

without the simulation box dimensions changing beyond AMBER limits (up to 10 ns total). All simulations1106

used a time step of 2 fs, with a Langevin thermostat and a Monte Carlo barostat. The nonbonded cutoff was1107

set to 9.0 Å, and the default AMBER PME parameters were employed.1108

For the OA-G3 simulations, we performed 10 ns of sampling per window. For the OA-G6 simulations, we1109

performed 15 ns of sampling per window. For the CB8-G3 simulations, we performed 70 ns of sampling1110

per window. In all cases, we used thermodynamic integration to compute the binding free energies. To1111

compute the uncertainties, we used blocking analysis to calculate the mean and standard error of dU∕d�1112

in each window, where U is the potential energy and � is the reaction coordinate. We then created 10001113

bootstrapped splines through points sampled off the distribution determined by the dU∕d� mean and1114

standard error of the mean for each window, used trapezoidal integration for the total free energy for each1115

spline, and computed the mean and standard deviation of the free energies from the bootstrap samples.1116

GROMACS/NS-DS/SB and GROMACS/NS-DS/SB-long1117

The estimates were obtained with alchemical nonequilibrium free energy calculations using GROMACS1118

2018.3 [73] as described in [90]. Briefly, both legs of the thermodynamic cycle were carried out in the same1119

box: i.e. one guest molecule was decoupled from the solvent while another copy was coupled while in the1120

host binding pocket. The two guest molecules were placed 2.5 nm apart and restrained with a single position1121

restraint on one of their heavy atoms. For the guest molecule bound to the host, a set of restraints as1122

described by Boresch [91] (1 distance, 2 angles, 3 dihedrals) was applied. A force constants of 10 kcal/mol-Å21123

was applied to the distance, and constants of 10 kcal/mol-rad2 were applied to the angles.1124

First, both end-states (A: bound guest coupled and unrestrained, unbound guest decoupled; B: bound1125

guest decoupled and restrained, unbound guest coupled) were simulated using 10 simulations of 20 ns each1126

(20.2 ns for CB8), for a total of 400 ns of equilibrium sampling (404 ns for CB8). Each of these 20 simulation1127

boxes had been previously built from the input files provided by the organizer by re-solvating the host-guest1128

systems and randomly placing ions in the box at a concentration of 0.1 M, followed by minimization with1129
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10000 steps of steepest descent. The re-solvation was a necessary step to enable sufficient distance between1130

the host and guest in the unbound state and did not alter the force field parameters of hosts and guests.1131

However, differently from the challenge input files, Cl- and Na+ ions were added to the simulation to reach a1132

100 mM concentration.1133

For the OA systems, 50 frames were extracted from each of the equilibrium simulations at an interval1134

of 400 ps. Thus, in total 500 frames were extracted from the equilibrium simulations of each of the two1135

end-states. For the CB8 systems, 100 frames were extracted from each of the equilibrium simulations every1136

200 ps, for a total of 1000 frames. The extracted snapshots were used to spawn rapid nonequilibrium1137

alchemical transitions between the end-states. In the nonequilibrium trajectories, the Hamiltonian between1138

the two end states was constructed by linear interpolation.1139

The alchemical transitions were performed in both directions (A->B and B->A) in 500 ps per simulation1140

for the OA systems, and in 1000 ps for the CB8 systems. A second submission identified by GROMACS/NS-1141

DS/SB-long used a 2000 ps nonequilibrium trajectory instead and only for CB8-G3. For the unbound guest,1142

charges were annihilated (i.e. intra-molecular electrostatics was turned off) and Lennard-Jones interactions1143

were decoupled (i.e. intra-molecular sterics was left untouched) at the same time, using a soft-core potential1144

for both. The same protocol was used for the bound guest except that also the Boresch restraints were1145

switched on/off during the nonequilibrium transitions by linearly scaling the force constants. The two1146

positional restraints attached to the two copies of the guest were left activated throughout the calculation.1147

All simulations used Langevin dynamics with a 2 fs time step with constrained hydrogen bonds. Periodic1148

boundary conditions and Particle Mesh Ewald were employed with a cutoff of 10 Å, interpolation order of1149

5, and tolerance of 10−4. A cutoff of 10 Å with a switching function between 9 Å and 10 Å was used for the1150

Lennard-Jones interactions. An analytical dispersion correction for energy and pressure was also used to1151

account for the dispersion energy. The Langevin thermostat was set at 298.15 K and a Parrinello-Rahman1152

barostat [126] was employed to maintain the pressure at 1 atm.1153

The binding free energy was estimated with pmx [127] from the set of nonequilibrium work with the1154

BAR [128, 129] estimator after pooling all the data from the ten independent calculations. Uncertainties1155

were instead estimated by computing the standard error of the ten individual BAR estimates.1156

GROMACS/EE and GROMACS/EE-fullequil1157

The free energy of bindings were obtained with the double decoupling method [15] using the expanded1158

ensemble enhanced-sampling methodology [21] implemented in GROMACS 2018.3 [73]. Charges were1159

turned off completely before removing Van der Waals interactions in both the complex and the solvent1160

phase. Both Coulomb and Lennard-Jones interactions were annihilated (i.e. intra-molecular interactions1161

were turned off). Two restraints were used during the complex phase of the calculation: a flat-bottom1162

restraint with radius 1.5 nm and spring constant 1000 kJ/mol-nm2, and a harmonic restraint with spring1163

constant 1000 kJ/mol-nm2. Both restraints were attached to the centers of mass of host and guest, but while1164

the flat-bottom restraint remained throughout the simulation, the harmonic restraint was incrementally1165

activated while the Lennard-Jones interactions were removed. In the bound state, the flat-bottom distance1166

between the centers of mass remained always smaller than the 1.5 nm radius necessary to have a non-zero1167

potential.1168

Because of instabilities and bias introduced by the Berendsen barostat during the expanded ensem-1169

ble calculation, all the simulations were performed in NVT using the average volume sampled by the1170

OpenMM/HREX calculations performed with YANK. V-rescale temperature was used to keep the temperature1171

at 298.15 K, and and bonds to hydrogen atoms were constrained using the SHAKE algorithm. We used the1172

md-vv integrator, a velocity Verlet integrator, with time steps of 2 fs. Metropolized Gibbs Monte Carlo moves1173

between all intermediate states [82] were performed every 100 time steps based on weights calculated1174

with the Wang–Landau (WL) algorithm as described below. The metropolized Gibbs move in state space1175

proposes jumps to all states except the current state, with a rejection step to satisfy detailed balance. An1176

equal number of time steps were allocated to production simulations of complex and solvent systems for1177

each free energy estimate. A cutoff of 10Å was used for nonbonded interactions with a switching function1178

between 9 Å and 10 Å for Lennard-Jones forces. Particle Mesh Ewald used an interpolation order of 5 and a1179
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tolerance of 10−5. A sample .mdp file can be found in the submission at https://github.com/samplchallenges/1180

SAMPL6/blob/master/host_guest/Analysis/Submissions/SAMPLing/NB006-975-absolute-EENVT-1.txt.1181

The expanded ensemble calculation was divided into two stages: an equilibration stage, in which the1182

expanded ensemble weights were adaptively estimated, and a production stage that generated the data1183

used to compute the submitted free energy estimates and in which the weights were kept fixed. In the1184

equilibration stage, the weights are adaptively estimated using the Wang-Landau algorithm [83, 84]. For all1185

systems an absolute value of the initial Wang–Landau incrementor was set to 2 kBT. Weights were updated at1186

each step, and the increment amount was reduced by a factor of 0.8 each time a flat histogram was observed,1187

meaning that the ratio between the least visited and most visited states since the last change in the weight1188

increment was less than 0.7. The process of updating the weights was halted when the incrementing amount1189

fell below 0.001 kBT. Equilibration of the weights was only ran on a single starting conformation out of five1190

for each host-guest pair. The weight of the fully coupled state is normalized to zero, meaning that the weight1191

of the uncoupled state corresponds to the free energy of the process. The last stage of the simulation,1192

during which period the expanded ensemble weights were no longer updated, was termed the "production"1193

stage since it was the only part of the trajectory used to calculate the final free energy change. Once the1194

Wang–Landau incrementor reached a value of 0.001 kBT the simulation was stopped, MBAR was ran on1195

simulation data obtained while the Wang–Landau incrementor was between values of 0.01 and 0.001 kBT,1196

and the resulting free energies were used to set the weights for the production simulations for all starting1197

conformation of a host-guest pair.1198

Reported values were obtained by running MBAR on production simulation data. The submissions1199

GROMACS/EE and GROMACS/EE-fullequil differ only in whether the computational cost of the equilibration1200

is added in its entirety to each of the five replicate calculations (GROMACS/EE-fullequil) or whether it is1201

ammortized over the replicates (GROMACS/EE).1202

NAMD/BAR1203

The alchemical free energy calculations were performed using the double decoupling method as imple-1204

mented in NAMD 2.12 [74]. The NAMD protocol utilized a total number of 32 equidistant � windows, that are1205

simulated independently for 20 ns/window with Langevin dynamics using a 2 fs time step and coupling coef-1206

ficient of 1.0 ps−1. The Lennard-Jones interactions are linearly decoupled from the simulation in equidistant1207

windows between 0 and 1, while the charges were turned off together with LJ over the � values 0-0.9 for1208

CB8-G3 and 0-0.5 for OA-G3 and OA-G6. During the complex leg of the simulation a flat-bottom restraint1209

with a wall constant of 100 kcal/mol/Å2 was applied to prevent the guest from drifting away from the host.1210

A non-interacting particle having the same charge of the guest was created during the annihilation of the1211

Coulomb interactions in order to maintain the charge neutrality of the box [65, 89]. Before collecting samples1212

for the free energy estimation, each window was equilibrated for 2 ns. The pressure was maintained at1213

1 atm using a modified Nosé–Hoover method implemented in NAMD, in which Langevin dynamics is used to1214

control fluctuations in the barostat [130, 131]. The Langevin piston utilized an oscillation period of 100 fs1215

and a damping time scale of 50 fs. Long range electrostatic interactions were treated with the following1216

PME parameters: PME tolerance = 10−6, PME spline order 4, and PME grid = 48x48x48. The cutoff for both1217

Lennard-Jones and PME was set to 10 Å, and the switching distance was set to 9 Å. The free energy of each1218

replicate calculation and their uncertainties were computed with BAR using ParseFEP [132] Tcl plugin (version1219

2.1) for VMD 1.9.4a29.1220

OpenMM/HREX1221

The free energy calculations and analysis were performed with YANK 0.20.1 [79, 80] and OpenMMTools1222

0.14.0 [124] powered by OpenMM 7.2.0 [75]. The protocol followed the double decoupling methodology [15]1223

using the thermodynamic cycle in SI Figure 4 . In both phases, we first annihilated the guest charges (i.e.1224

intra-molecular electrostatics was turned off) and then decoupled the soft-core (1-1-6 model) Lennard Jones1225

interactions [81] (i.e. intra-molecular sterics was left untouched). The spacing and number of intermediate1226

states was determined automatically for the three systems by the trailblaze algorithm implemented in1227

YANK [79]. This resulted in a protocol with a total of 69 and 62 intermediate states for the complex and1228
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solvent phase respectively of CB8-G3, 59 and 54 states for OA-G3, and 55 and 52 states for OA-G6. Since all1229

guests had a net charge, a counterion of opposite charge was decoupled with the guest to maintain the box1230

neutrality at each intermediate state and avoid artifacts introduced by finite-size effects with Particle Mesh1231

Ewald.1232

Hamiltonian replica exchange [20] was used to enhance sampling of the binding modes. Each iteration1233

of the algorithm was composed by a metropolized rigid translation, using a Gaussian proposal of mean 01234

and standard deviation 1 nm, and a random rotation of the ligand followed by 1 ps of Langevin dynamics1235

(BAOAB splitting [22], 2 fs timestep, 10/ps collision rate). A Monte Carlo barostat step was performed every1236

25 integration steps to maintain a pressure of 1 atm. All hydrogen bonds were constrained. The Hamiltonian1237

exchange step was carried out after each iteration by performing K4 metropolized Gibbs sampling steps [82],1238

where K is the number of intermediate states in the protocol. At the beginning of each iteration, velocities1239

for all replicas were randomly re-sampled from the Boltzmann distribution. In all calculations, we ran 400001240

iterations of the algorithm (i.e. 40 ns of MD per replica) for both the complex and solvent calculation for a1241

total MD propagation of 5.24 �s, 4.52 �s, and 4.28 �s for each of the five replicates of CB8-G3, OA-G3, and1242

OA-G6 respectively. An analytical dispersion correction for the long-range Lennard-Jones interactions was1243

added during the simulation for all atoms except the alchemically-softened atoms for optimization reason.1244

The contribution of the guest to the dispersion correction was instead found by reweighting the end states.1245

The analysis of the samples was performed with the MBAR estimator [78] with PyMBAR 3.0.3. We1246

computed an estimate of the statistical inefficiency of the sampling process in order to decorrelate the1247

HREX samples. The statistical inefficiency was estimated from the correlation function of the time series of1248

the traces of the K ×K MBAR energy matrix U (i) computed at each iteration i, where the matrix element1249

Ujl(i) is the reduced potential of the sample generated by state j at iteration i and evaluated in state l. The1250

resulting statistical inefficiencies were 2.74 ± 0.03 ps, 2.9 ± 0.3 ps, and 2.84 ± 0.3 ps for CB8-G3, OA-G3,1251

and OA-G6 respectively (uncertainties are given as the standard deviation of the statistical inefficiencies1252

over replicates). The statistical inefficiency was then used to discard the burn-in data by maximizing the1253

number of effective samples as described in [133] and to subsample the data before running MBAR. In1254

the complex phase, the guest was restrained throughout the calculation into the binding site through a1255

single harmonic restraint connecting the center of mass of the heavy atoms of host and guest with a spring1256

constant of 0.2 kcal/(mol ⋅ Å2) for CB8-G3 and 0.17 (mol ⋅ Å2) for OA-G3/G6. Following the double decoupling1257

approach, an analytical correction was added to bring the affinity in units of standard concentration and1258

correct for the restraint volume in the decoupled state. However, because the restraint was activated1259

in the bound state as well, we also used MBAR to reweight the samples to remove the bias introduced1260

by the harmonic potential. Samples whose restrained distance (i.e. the distance between the host and1261

guest centers of mass) was above a specific threshold were discarded. This is equivalent to reweighting1262

the data to a state having a restraint following a square well potential, where the energy is either zero1263

or infinity, with a radius equal to the distance threshold. The distance threshold was determined by1264

selecting the 99.99-percentile distance sampled in the bound state, which resulted in 4.5830673 Åfor CB8-G3,1265

5.773037 Åfor OA-G3, and 6.0628217 Å for OA-G6. The YANK input file used for the calculation can be found1266

at https://github.com/samplchallenges/SAMPL6/blob/master/host_guest/SAMPLing/YANK_input_script.yaml.1267

The number of energy evaluations used to determine the computational cost of the method was1268

computed for each iteration as MDcost + MCcost + MBARcost, where MDcost is the number of force evaluations1269

used to propagate the system (i.e. 1 ps/2 fs = 500 force evaluations), MCcost are the number of energy1270

evaluations performed for acceptance/rejection of the MC rotation and translation (4 energy evaluations),1271

and MBARcost is the number of energy evaluations necessary to compute the MBAR free energy matrix at1272

each iteration. We set MBARcost = K ×K , where K is both the number of states and the number of replicas.1273

This is an overestimation as YANK computes the energies of each replica for all states by recomputing only1274

the parts of the Hamiltonian that change from state to state.1275

6.3 Estimation of the relative efficiency1276

We considered the standard deviation, absolute bias, and RMSE error statistics in Eq. (2, 4) to compute1277

respectively the relative efficiencies e
std
, e
bias
, e
RMSE
. The relative efficiencies of all methods were estimated1278
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with respect to OpenMM/HREX, which was the longest calculation and could provide free energy predictions1279

at all the computational costs intervals required to estimate the statistics. We used a uniform weight1280

w(c) = const. for all methods, and, because we have data available for only 100 computational costs over1281

the interval [c
min,X , cmax,X], we interpolated the error statistic for the other values of c and approximated the1282

average over the number of energy evaluations with1283

Ew[errX(c)] =
1

c
max,X − cmin,X + 1

cmax,X
∑

c=cmin,X

errX(c) ≈
1

c
max,X − cmin,X

trapz
(

errX(c), cmin,X , cmax,X
)

(6)

where trapz(⋅) represent the quadrature integral of the error function performed with the trapezoidal rule1284

over the considered interval of c. The denominator does not affect the relative efficiency as it cancels out in1285

Eq. (5).1286

The population mean E[ΔG(c)] and standard deviation std(ΔG(c)) of the binding free energy predictions
at computational cost c were estimated as usual with the sample mean ΔG(c) and the sample standard
deviation S(c) respectively calculated using the five independent replicates

ΔG(c) = 1
Nc

Nc
∑

j=1
ΔG(j)(c)

S(c) =

√

√

√

√
1

Nc − 1

Nc
∑

j=1

[

ΔG(j)(c) − ΔG(c)
]2

(7)

where Nc = 5 is the number of independent measures at computational cost c.1287

However, estimating the error statistics defined in Eq. (2, 4) requires estimates of the asymptotic free1288

energy ΔG� , which is necessary for the bias. This is problematic due to the different levels of convergence1289

and the lack of agreement between methods. We estimated the bias assuming ΔG�,X = ΔGX(cmax,X), where1290

c
max,X is the total computational cost of the calculation for method X, which is equivalent to assuming that1291

the free energy estimate has converged. As a consequence, the bias is generally underestimated, and longer1292

calculations are penalized in computing the relative absolute bias and RMSE efficiency.1293

To estimate 95% confidence intervals for the relative efficiency measures we used the arch 4.6.0 Python1294

library [134] to run the bias-corrected and accelerated (BCa) bootstrap method by resampling free energy1295

trajectories with replacement. The acceleration parameter was estimated with the jackknife method.1296
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