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Abstract 1 

It has been suggested that the brain controls hand movements via internal models that rely on visual 2 

and proprioceptive cues about the state of the hand. In active inference formulations of such models, 3 

the relative influence of each modality on action and perception is determined by how precise (reliable) 4 

it is expected to be. The ‘top-down’ affordance of expected precision to a particular sensory modality 5 

presumably corresponds to attention. Here, we asked whether increasing attention to (i.e., the precision 6 

of) vision or proprioception would enhance performance in a hand-target phase matching task, in which 7 

visual and proprioceptive cues about hand posture were incongruent. We show that in a simple 8 

simulated agent—using a neurobiologically informed predictive coding formulation of active 9 

inference—increasing either modality’s expected precision improved task performance under visuo-10 

proprioceptive conflict. Moreover, we show that this formulation captured the behaviour and self-11 

reported attentional allocation of human participants performing the same task in a virtual reality 12 

environment. Together, our results show that selective attention can balance the impact of (conflicting) 13 

visual and proprioceptive cues on action—rendering attention a key mechanism for a flexible body 14 

representation for action. 15 

 

Author summary 16 

When controlling hand movements, the brain can rely on seen and felt hand position or posture 17 

information. It is thought that the brain combines these estimates into a multisensory hand 18 

representation in a probabilistic fashion, accounting for how reliable each estimate is in the given 19 

context. According to recent formal accounts of action, the expected reliability or ‘precision’ of sensory 20 

information can—to an extent—also be influenced by attention. Here, we tested whether this 21 

mechanism can improve goal-directed behaviour. We designed a task that required tracking a target’s 22 

oscillatory phase with either the seen or the felt hand posture, which were decoupled by introducing a 23 

temporal conflict via a virtual reality environment. We first simulated the behaviour of an artificial 24 

agent performing this task, and then compared the simulation results to behaviour of human participants 25 
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performing the same task. Together, our results showed that increasing attention to the seen or felt hand 26 

was accompanied by improved target tracking. This suggests that, depending on the current behavioural 27 

demands, attention can balance how strongly the multisensory hand representation is relying on visual 28 

or proprioceptive sensory information. 29 

 

Keywords: action, active inference, attention, body representation, multisensory integration, precision, 30 

predictive coding 31 
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Introduction 32 

Controlling the body’s actions in a constantly changing environment is one of the most important tasks 33 

of the human brain. The brain solves the complex computational problems inherent in this task by using 34 

internal probabilistic (Bayes-optimal) models (Wolpert et al., 1998; Körding & Wolpert, 2004; Kilner 35 

et al., 2007; Shadmehr & Krakauer, 2008; Friston et al., 2010; Friston, 2011). These models allow the 36 

brain to flexibly estimate the state of the body and the consequences of movement, despite noise and 37 

conduction delays in the sensorimotor apparatus, via iterative updating by sensory prediction errors 38 

from multiple sources. The state of the hand, in particular, can be informed by vision and 39 

proprioception. Here, the brain makes use of an optimal integration of visual and proprioceptive signals, 40 

where the relative influence of each modality—on the final estimate—is determined by its relative 41 

reliability or precision, depending on the current context (van Beers et al., 1999, 2002; Foulkes & Miall, 42 

2000; Ingram et al., 2000; Sober & Sabes, 2005; Friston et al., 2010; Friston, 2012; Samad et al., 2015; 43 

Rohe & Noppeney, 2016).  44 

These processes can be investigated under an experimentally induced conflict between visual and 45 

proprioceptive information. The underlying rationale here is that incongruent visuo-proprioceptive cues 46 

about hand position or posture have to be integrated (provided the incongruence stays within reasonable 47 

limits), because the brain’s body model entails a strong prior belief that information from both 48 

modalities is generated by one and the same external cause; namely, one’s hand. Thus, a partial 49 

recalibration of one’s unseen hand position towards the position of a (fake or mirror-displaced) hand 50 

seen in an incongruent position has been interpreted as suggesting an (attempted) resolution of visuo-51 

proprioceptive conflict to maintain a prior body representation (Botvinick & Cohen, 1998; Pavani et 52 

al., 2000; Holmes et al., 2004, 2006; Tsakiris & Haggard, 2005; Makin et al., 2008; Heed et al., 2011; 53 

Limanowski & Blankenburg, 2016). 54 

Importantly, spatial or temporal perturbations can be introduced to visual movement feedback during 55 

action—by displacing the seen hand position in space or time, using video recordings or virtual reality. 56 

Such experiments suggest that people are surprisingly good at adapting their movements to this kind of 57 

perturbations; i.e., they adjust to the novel visuo-motor mapping by means of visuo-proprioceptive 58 
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recalibration or adaptation (e.g. Foulkes & Miall, 2000; Ingram et al., 2000; Balslev et al., 2004; Grafton 59 

et al., 2008; Bernier et al., 2009). Brain imaging studies have shown that during motor tasks involving 60 

the resolution of a visuo-proprioceptive conflict, one typically observes an increase in visual and 61 

multisensory activity (cf. Grefkes et al., 2004; Ogawa et al., 2007; Limanowski et al., 2017). 62 

Furthermore, the remapping required for this resolution is thought to be augmented by attenuation of 63 

proprioceptive activity (Balslev et al., 2004; Bernier et al., 2009; cf. Taub & Goldberg, 1974; Ingram 64 

et al., 2000). The conclusion generally drawn from these results is that visuo-proprioceptive 65 

recalibration (or visuo-motor adaptation) relies on temporarily adjusting the weighting of conflicting 66 

visual and proprioceptive information to enable adaptive action under specific prior beliefs about one’s 67 

‘body model’.  68 

The above findings—and their interpretation—can be accommodated within a hierarchical predictive 69 

coding formulation of active inference as a form of Bayes-optimal motor control, in which 70 

proprioceptive as well as visual prediction errors can update higher-level beliefs about the state of the 71 

body and thus influence action (Friston, 2010, 2012; Adams et al., 2013; Vasser et al., 2019). 72 

Hierarchical predictive coding rests on a probabilistic mapping from unobservable causes (hidden 73 

states) to observable consequences (sensory states), as described by a hierarchical generative model, 74 

where each level of the model encodes conditional expectations (‘beliefs’) about states of the world that 75 

best explains states of affairs encoded at lower levels (i.e., sensory input). The causes of sensations are 76 

inferred via model inversion. In other words, the model’s beliefs are updated to accommodate or 77 

‘explain away’ ascending prediction error (a.k.a. Bayesian filtering or predictive coding, Rao & Ballard, 78 

1999; Friston & Kiebel, 2009; Bastos et al., 2012). Active inference extends hierarchical predictive 79 

coding from the sensory to the motor domain in that the agent is now able to fulfil its model predictions 80 

via action (Perrinet et al., 2014). In brief, movement occurs because high-level multi- or amodal beliefs 81 

about state transitions predict proprioceptive and exteroceptive (visual) states that would ensue if e.g. a 82 

particular grasping movement was performed. Prediction error is then suppressed throughout the motor 83 

hierarchy (Kilner et al., 2007; cf. Grafton & Hamilton, 2007), ultimately by spinal reflex arcs that enact 84 

the predicted movement. This also implicitly minimises exteroceptive prediction error; e.g. the 85 
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predicted visual consequences of the action (Adams et al., 2013, Friston, 2011, Shipp et al., 2013). 86 

Crucially, all ascending prediction errors are precision-weighted based on model predictions (where 87 

precision corresponds to the inverse variance), so that a prediction error that is expected to be more 88 

precise has a stronger impact on belief updating. The ‘top-down’ affordance of precision can be 89 

associated with attention (Feldman & Friston, 2010; Edwards et al., 2012; Brown et al., 2013). The 90 

ensuing attentional set should have a fundamental implication for behaviour, as action should also be 91 

more strongly informed by prediction errors ‘selected’ by attention. In other words, the impact of visual 92 

or proprioceptive prediction errors on multisensory beliefs driving action should be regulated via ‘top-93 

down’ affordance of precision. One might therefore expect that the impact of visual or proprioceptive 94 

cues on action (and perception) should not only depend on factors like sensory noise, but may also be 95 

changed by directing the focus of selective attention to one or the other modality. 96 

Here, we used a predictive coding scheme (cf. Friston et al., 2010; Perrinet et al., 2014) to test this 97 

assumption. We simulated behaviour, under active inference, in a simple manual action task (Fig. 1) 98 

that required hand-target phase matching with prototypical grasping movements—based on visual or 99 

proprioceptive cues under visuo-proprioceptive conflict. Crucially, we included a condition in which 100 

proprioception had to be adjusted to maintain visual task performance and a converse condition, in 101 

which proprioceptive task performance had to be maintained in the face of conflicting visual 102 

information. This enabled us to address the effects reported in the visuo-motor adaptation studies 103 

reviewed above and studies showing automatic biasing of one’s own movement execution by 104 

incongruent action observation (Brass et al., 2001; Kilner et al., 2003). In our simulations, we asked 105 

whether changing the relative precision afforded to vision versus proprioception—which, presumably, 106 

corresponds to attention—would improve task performance (i.e., target matching with the respective 107 

instructed modality, vision or proprioception) in each case. We implemented this ‘attentional’ 108 

manipulation by adjusting the inferred precision of each modality, thus changing the degree with which 109 

the respective prediction errors drove model updating and action (see below). We then compared the 110 

results of our simulation with the actual behaviour and subjective ratings of attentional focus of healthy 111 

participants performing the same task in a virtual reality environment. We anticipated that participants, 112 

.CC-BY 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted October 7, 2019. ; https://doi.org/10.1101/795419doi: bioRxiv preprint 

https://doi.org/10.1101/795419
http://creativecommons.org/licenses/by/4.0/


7 

 

in order to comply with task instructions, would adopt an ‘attentional set’ (Posner et al., 1976; 1978; cf. 113 

Rohe & Noppeney, 2018) prioritizing the respective instructed target tracking modality over the task-114 

irrelevant one. In other words, the instructed tracking or response modality should become 115 

“situationally dominant” by attentional allocation (Kelso et al., 1975; cf.Warren & Cleaver, 2001; 116 

Redding et al., 1985). 117 

 

Figure 1. Task design and behavioural requirements. We used the same task design in the simulated and 

behavioural experiments, focusing on the effects of attentional modulation on hand-target phase matching via 

(near-)stationary, prototypical (i.e., well-trained) oscillatory grasping movements at 0.5 Hz. Participants (or the 

simulated agent) controlled a virtual hand model (seen on a computer screen) via a data glove worn on their unseen 

right hand. The virtual hand (VH) therefore represented seen hand posture (i.e., vision), which could be uncoupled 

from the real hand posture (RH; i.e., proprioception) by introducing a temporal delay (see below). The task 

required matching the phase of one’s right-hand grasping movements to the oscillatory phase of the fixation dot 

(‘target’), which was shrinking-and-growing sinusoidally at 0.5 Hz. In other words, participants had to 

rhythmically close the hand when the dot shrunk and to open it when the dot expanded. Our design was a balanced 

2 x 2 factorial design: The task was completed (or simulated) under congruent or incongruent hand movements: 

the latter were implemented by adding a lag of 500 ms to the virtual hand movements (Factor ‘congruence’). 

Furthermore, the participants (or the simulated agent) performed the task with one of two goals in mind: to match 

the movements of the virtual hand (VH) or of those of the real hand (RH) to the phase of the dot (Factor ‘instructed 

modality’). Note that whereas in the congruent conditions (VH cong, RH cong) both hand positions were identical, 

and therefore both hands’ grasping movements could simultaneously be matched to the target’s oscillatory phase 
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(i.e., the fixation dot’s size change), only one of the hands’ (virtual or real) movements could be phase-matched 

to the target in the incongruent conditions—necessarily implying a phase mismatch of the other hand’s 

movements. In the VH incong condition, participants had to adjust their movements to counteract the visual lag; 

i.e., they had to phase-match the virtual hand’s movements (i.e., vision) to the target by shifting their real hand’s 

movements (i.e., proprioception) out of phase with the target. Conversely, in the RH incong condition, participants 

had to match their real hand’s movements (i.e., proprioception) to the target’s oscillation, and therefore had to 

ignore the fact that the virtual hand (i.e., vision) was out of phase. The curves show the performance of an ideal 

participant (or simulated agent). 

 

Results 118 

Simulation results 119 

The simulated agent had to match the phasic size change of a central fixation dot (target) with the 120 

grasping movements of the unseen real hand (proprioceptive hand information) or the seen virtual hand 121 

(visual hand information). Under visuo-proprioceptive conflict (i.e., a phase shift between virtual and 122 

real hand movements introduced via temporal delay), only one of the hands could be aligned with the 123 

target’s oscillatory phase (see Fig. 1 for a detailed task description). The aim of our numerical analyses 124 

or simulations was to test whether—in the above manual phase matching task under perceived 125 

intersensory conflicts—increasing the expected precision of sensory prediction errors from the 126 

instructed modality (vision or proprioception) would result in improved task performance, whereas 127 

increasing the precision of prediction errors from the ‘distractor’ modality would impair it. Such a result 128 

would demonstrate that in an active inference scheme, behaviour under intersensory conflict can be 129 

augmented via top-down precision control; i.e., selective attention (cf. Feldman & Friston, 2010; 130 

Edwards et al., 2012; Brown et al., 2013).  131 

Figures 2-3 show the results of these simulations, in which an active inference agent performed the 132 

target matching task under the two kinds of instruction (virtual hand or real hand task; i.e., the agent 133 

had a strong prior belief that the visual or proprioceptive hand posture would track the target’s 134 

oscillatory size change) under congruent or incongruent visuo-proprioceptive mappings (i.e., where 135 
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incongruence was realized by temporally delaying the virtual hand’s movements with respect to the real 136 

hand). In this setup, the virtual hand corresponds to hidden states generating visual input, while the real 137 

hand generates proprioceptive input. 138 

 

Figure 2. Simulated behaviour of an agent performing the hand-target phase matching task under ideally 

adjusted model beliefs.  Each pair of plots shows the simulation results for an agent with a priori ‘ideally’ 

adjusted model beliefs about visuo-proprioceptive congruence; i.e., in the congruent tasks, the agent believed that 

its real hand generated matching seen and felt postures, whereas it believed that the same hand generated 

mismatching postures in the incongruent tasks. Each pair of plots shows the simulation results for one grasping 

movement in the VH and RH tasks under congruence or incongruence; the left plot shows the predicted sensory 

input (solid coloured lines; yellow = target, red = vision, blue = proprioception) and the true, real-world values 

(broken black lines) for the target and the visual and proprioceptive hand posture, alongside the respective sensory 

prediction errors (dotted coloured lines; blue = target, green = vision, purple = proprioception); the right plot (blue 

line) shows the agent’s action (i.e., the rate of change in hand posture, see Methods). Note that target phase 

matching is near perfect and there is practically no sensory prediction error (i.e., the dotted lines stay around 0). 

 

Under congruent mapping (i.e., in the absence of visuo-proprioceptive conflict) the simulated agent 139 

showed near perfect tracking performance (Fig. 2). We next simulated an agent performing the task 140 

.CC-BY 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted October 7, 2019. ; https://doi.org/10.1101/795419doi: bioRxiv preprint 

https://doi.org/10.1101/795419
http://creativecommons.org/licenses/by/4.0/


10 

 

under incongruent mapping, while equipped with the prior belief that its seen and felt hand postures 141 

were in fact unrelated, i.e., never matched. Not surprisingly, the agent easily followed the task 142 

instructions and again showed near perfect tracking with vision or proprioception, under incongruence 143 

(Fig. 2). However, as noted above, it is reasonable to assume that human participants would have the 144 

strong prior belief—based upon life-long learning and association—that their manual actions generated 145 

matching seen and felt postures (i.e., a prior belief that modality specific sensory consequences have a 146 

common cause). Our study design assumed that this association would be very hard to update, and that 147 

consequently performance could only be altered via adjusting expected precision of vision vs 148 

proprioception (see Methods). 149 

Therefore, we next simulated the behaviour (during the incongruent tasks) of an agent embodying a 150 

prior belief that visual and proprioceptive cues about hand state were in fact congruent. As shown in 151 

Fig. 3A, this introduced notable inconsistencies between the agent’s model predictions and the true 152 

states of vision and proprioception, resulting in elevated prediction error signals. The agent was still 153 

able to follow the task instructions, i.e., to keep the (instructed) virtual or real hand more closely 154 

matched to the target’s oscillatory phase, but showed a drop in performance compared with the ‘ideal’ 155 

agent (cf. Fig. 2). 156 

We then simulated the effect of our experimental manipulation, i.e., of increasing precision of sensory 157 

prediction errors from the respective task-relevant (constituting increased attention) or task-irrelevant 158 

(constituting increased distraction) modality on task performance. We expected this manipulation to 159 

affect behaviour; namely by how strongly the respective prediction errors would impact model belief 160 

updating and subsequent performance (i.e., action). The key result of these simulations (Fig. 3A) was 161 

that increasing the log precision of vision or proprioception—the respective instructed tracking 162 

modality—resulted in reduced visual or proprioceptive prediction errors. This can be explained by the 163 

fact that these ‘attended’ prediction errors were now more strongly suppressed by model belief 164 

updating—and action. Conversely, one can see a complementary increase of prediction errors from the 165 

‘unattended’ modality.  166 
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Importantly, the above ‘attentional’ alterations substantially influenced hand-target phase matching 167 

performance (Fig. 3B). Thus, increasing the precision of the instructed task-relevant sensory modality’s 168 

prediction errors led to improved target tracking (i.e. a reduced phase shift of the instructed modality’s 169 

grasping movements from the target’s phase). In other words, if the agent attended to the instructed 170 

visual (or proprioceptive) cues more strongly, its movements were driven more strongly by vision (or 171 

proprioception)—which helped it to track the target’s oscillatory phase with the respective modality’s 172 

grasping movements. Correspondingly, increasing the precision of the ‘irrelevant’ (not instructed) 173 

modality in each case led to worse simulated tracking performance.  174 

The simulations also show that the amount of action itself was comparable across conditions (blue plots 175 

in Figs. 2-3; i.e., movement of the hand around the mean stationary value of 0.05), which means that 176 

the kinematics of the hand movement per se were not biased by attention. Action was particularly 177 

evident in the initiation phase of the movement and after reversal of movement direction (open-to-178 

close). At the point of reversal of movement direction, conversely, there was a moment of stagnation; 179 

i.e., changes in hand state were temporarily suspended (with action nearly returning to zero). In our 180 

simulated agent, this briefly increased uncertainty about hand state (i.e., which direction the hand was 181 

moving), resulting in a slight lag before the agent picked up its movement again, which one can see 182 

reflected by a small ‘bump’ in the true hand states (Figs. 2-3). These effects were somewhat more 183 

pronounced during movement under visuo-proprioceptive incongruence and prior belief in 184 

congruence—which indicates that the fluency of action depended on sensory uncertainty. 185 

In sum, these results show that attentional effects of the sort we hoped to see can be recovered using a 186 

simple active inference scheme; in that precision control determined the influence of separate sensory 187 

modalities—each of which was generated by the same cause, i.e., the same hand—on behaviour by 188 

biasing action towards cues from that modality. 189 
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Figure 3. Simulated behaviour of a ‘realistic’ agent performing the hand-target phase matching task. Here 

we simulated an agent performing the incongruent tasks under the prior belief that its hand generated matching 

visual and proprioceptive information; i.e., under perceived intersensory conflict. (A) The plots follow the same 

format as in Fig. 2. Note that, in these results, one can see a clear divergence of true from predicted visual and 

proprioceptive postures, and correspondingly increased prediction errors. The top row shows the simulation 

results for the default weighting of visual and proprioceptive information; the middle row shows the same agent’s 

behaviour when precision of the respective task-relevant modality (i.e., vision in the VH task and proprioception 

in the RH task) was increased (HA: high attention); the bottom row shows the analogous results when the precision 
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of the respective other, irrelevant modality was increased (HD: high distraction). Note how in each case, increasing 

(or decreasing) the log precision of vision or proprioception resulted in an attenuation (or enhancement) of the 

associated prediction errors (indicated by green and purple arrows for vision and proprioception, respectively). 

Crucially, these ‘attentional’ effects had an impact on task performance, as evident by an improved hand-target 

tracking with vision or proprioception, respectively. This is shown in panel (B): The curves show the tracking in 

the HA conditions. The bar plots represent the average deviation (phase shift or lag, in seconds) of the real hand’s 

(red) or the virtual hand’s (blue) grasping movements from the target’s oscillatory size change in each of the 

simulations shown in panel (A). Note that under incongruence (i.e., a constant delay of vision), reducing the phase 

shift of one modality always implied increasing the phase shift of the other modality (reflected by a shift of red 

and blue bars representing the average proprioceptive and visual phase shift, respectively). Crucially, in both RH 

and VH incong conditions, increasing attention (HA; i.e., in terms of predictive coding: the precision afforded to 

the respective prediction errors) to the task-relevant modality enhanced task performance (relative to the default 

setting, Def.), as evident by a reduced phase shift of the respective modality from the target phase. The converse 

effect was observed when the agent was ‘distracted’ (HD) by paying attention to the respective task-irrelevant 

modality. 

 

Empirical results 190 

We first analysed the post-experiment questionnaire ratings of our participants (Fig. 4) to the following 191 

two questions: “How difficult did you find the task to perform in the following conditions?” (Q1, 192 

answered on a 7-point visual analogue scale from “very easy” to “very difficult”) and “On which hand 193 

did you focus your attention while performing the task?” (Q2, answered on a 7-point visual analogue 194 

scale from “I focused on my real hand” to “I focused on the virtual hand”). For the ratings of Q1, a 195 

Friedman’s test revealed a significant difference between conditions (χ2
(3,69) = 47.19, p < 0.001). Post-196 

hoc comparisons using Wilcoxon’s signed rank test showed that, as expected, participants reported 197 

finding both tasks more difficult under visuo-proprioceptive incongruence (VH incong > VH cong, z(23) 198 

= 4.14, p < 0.001; RH incong > RH cong, z(23) = 3.13, p < 0.01). There was no significant difference in 199 

reported difficulty between VH cong and RH cong, but the VH incong condition was perceived as 200 

significantly more difficult than the RH incong condition (z(23) = 2.52, p < 0.05). These results suggest 201 
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that, per default, the virtual hand and the real hand instructions were perceived as equally difficult to 202 

comply with, and that in both cases the added incongruence increased task difficulty—more strongly 203 

so when (artificially shifted) vision needed to be aligned with the target’s phase. 204 

For the ratings of Q2, a Friedman’s test revealed a significant difference between conditions (χ2
(3,69) = 205 

35.83, p < 0.001). Post-hoc comparisons using Wilcoxon’s signed rank test showed that, as expected, 206 

participants focussed more strongly on the virtual hand during the virtual hand task and more strongly 207 

on the real hand during the real hand task. This was the case for congruent (VH cong > RH cong, z(23) 208 

= 3.65, p < 0.001) and incongruent (VH incong > RH incong, z(23) = 4.03, p < 0.001) movement trials. 209 

There were no significant differences between VH cong vs VH incong, and RH cong vs RH incong, 210 

respectively. These results show that participants focused their attention on the instructed target 211 

modality, irrespective of whether the current movement block was congruent or incongruent. This 212 

supports our assumption that participants would adopt a specific attentional set to prioritize the 213 

instructed target modality. 214 

 

Figure 4. Self-reports of task difficulty and intersensory attentional focus given by our participants. The 

bar plots show the mean ratings for Q1 and Q2 (given on a 7-point visual analogue scale), with associated standard 

errors of the mean. On average, participants found the VH and RH task more difficult under visuo-proprioceptive 

incongruence—more strongly so when artificially shifted vision needed to be aligned with the target’s phase (VH 

incong, Q1). Importantly, the average ratings of Q2 showed that participants attended to the instructed modality 

(irrespective of whether the movements of the virtual hand and the real hand were congruent or incongruent). 
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Next, we analysed the task performance of our participants; i.e., how well the virtual (or real) hand’s 215 

grasping movements were phase-matched to the target’s oscillation (i.e., the fixation dot’s size change) 216 

in each condition. Note that under incongruence, better target phase-matching with the virtual hand 217 

implies a worse alignment of the real hand’s phase with the target, and vice versa. As predicted (Fig. 1; 218 

and as confirmed by the simulation results, Figs. 2-3), we expected an interaction between task and 219 

congruence: participants should show a better target phase-matching of the virtual hand under visuo-220 

proprioceptive incongruence, if the virtual hand was the instructed target modality (but no such 221 

difference should be significant in the congruent movement trials, since virtual and real hand 222 

movements were identical in these trials). All of our participants were well trained (see Methods), 223 

therefore our task focused on average performance benefits from attention (rather than learning or 224 

adaptation effects). 225 

The participants’ average tracking performance is shown in Figure 5. A repeated-measures ANOVA on 226 

virtual hand-target phase-matching revealed significant main effects of task (F(1,22) = 31.69, p = 0.00001) 227 

and congruence (F(1,22) = 173.42, p = 3.38e-12) and, more importantly, a significant interaction between 228 

task and congruence (F(1,22) = 50.69, p = 0.0000003). Post-hoc t-tests confirmed that there was no 229 

significant difference between the VH cong and RH cong conditions (t(23) = 1.19, p = 0.25), but a 230 

significant difference between the VH incong and RH incong conditions (t(23) = 6.59, p = 0.000001). In 231 

other words, in incongruent conditions participants aligned the phase of the virtual hand’s movements 232 

significantly better with the dot’s phasic size change when given the ‘virtual hand’ than the ‘real hand’ 233 

instruction. Furthermore, while the phase shift of the real hand’s movements was larger during VH 234 

incong > VH cong (t(23) = 9.37, p = 0.000000003)—corresponding to the smaller phase shift, and 235 

therefore better target phase-matching, of the virtual hand in these conditions—participants also 236 

exhibited a significantly larger shift of their real hand’s movements during RH incong > RH cong (t(23) 237 

= 4.31, p = 0.0003). Together, these results show that participants allocated their attentional resources 238 

to the respective instructed modality (vision or proprioception), and that this was accompanied by 239 

significantly better target tracking in each case—as expected based on the active inference formulation, 240 

and as suggested by the simulation results. 241 
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Figure 5. Task performance of our participants. Left: Average normalized trajectories of the real hand’s (red) 

and the virtual hand’s (blue) grasping movements relative to the oscillation of the target (pulsating fixation dot, 

grey) in each condition. The individual participant’s average normalized trajectories in each condition are shown 

as thin lines. In the congruent conditions, the virtual hand’s and the real hand’s movements were identical, whereas 

the virtual hand’s movements were delayed by 500 ms in the incongruent conditions. Right: The bar plot shows 

the corresponding average deviation (lag in seconds) of the real hand (red) and the virtual hand (blue) from the 

target in each condition, with associated standard errors of the mean. Crucially, there was a significant interaction 

effect between task and congruence; participants aligned the virtual hand’s movements better with the target’s 

oscillation in the VH incong > RH incong condition (and correspondingly, the real hand’s movements in the RH 

incong > VH incong condition), in the absence of a significant difference between the congruent conditions. 

Bonferroni-corrected significance: **p < 0.01, ***p < 0.001. 

 

Discussion 242 

We have shown that behaviour in a manual hand-target phase matching task, under visuo-proprioceptive 243 

conflict, benefits from adjusting the balance of visual versus proprioceptive precision by increased 244 

attention to either task-relevant modality. Our results generally support a predictive coding formulation 245 

of active inference, where visual and proprioceptive cues affect multimodal beliefs that drive action—246 

depending on the relative precision afforded to each modality (Friston et al., 2010; Brown et al., 2013). 247 

Firstly, a simulated agent exhibited better phase matching when the expected sensory precision of the 248 
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instructed ‘task-relevant’ modality (i.e., attention to vision or proprioception) was increased relative to 249 

the ‘task-irrelevant’ modality. This effect was reversed when attention was increased to the ‘task-250 

irrelevant’ modality, effectively corresponding to cross-modal distraction. These results suggest that 251 

more precise sensory prediction errors have a greater impact on belief updating—which in turn guide 252 

goal-directed action. Our simulations also suggested that intersensory conflict—and its possible partial 253 

resolution—was based on a prior belief that one’s hand movements generate matching visual and 254 

proprioceptive sensations. In an agent holding the unrealistic belief that visual and proprioceptive 255 

postures are per default unrelated, no evidence for an influence of intersensory conflict on target 256 

tracking was observed. Secondly, the self-report ratings of attentional allocation and the behaviour 257 

exhibited by human participants performing the same task, in a virtual reality environment, suggested 258 

an analogous mechanism: Our participants reported shifting their attention to the respective instructed 259 

modality (vision or proprioception)—and they were able to correspondingly align either vision or 260 

proprioception with an abstract target (oscillatory phase) under intersensory conflict. Together, our 261 

results suggest a tight link between precision control, attention, and multisensory integration in action—262 

conforming to the principles of reciprocal message passing under hierarchical predictive coding for 263 

active inference, whereby the brain can choose how much to rely on specific sensory cues, and how 264 

strongly to resolve these prediction errors by action, in a given context. 265 

Previous work on causal inference models has shown that Bayes-optimal cue integration can explain a 266 

variety of multisensory phenomena under intersensory conflict, including the recalibration of the less 267 

precise modality onto the more precise one (van Beers et al., 1999; Deneve et al., 2001; Ernst & Banks, 268 

2002; Körding et al., 2007; Ma & Pouget, 2008; Kayser & Shams, 2015; Samad et al., 2015; Rohe & 269 

Noppeney, 2016, 2018). Our work advances on these findings by showing that fine-tuning the expected 270 

precision of two conflicting sources of bodily information (i.e., seen or felt hand posture) enhances the 271 

accuracy of goal-directed action (i.e., target tracking) with the respective ‘attended’ modality. Thus, we 272 

did not model hierarchical causal perceptual inference (we implemented a prior belief about a single 273 

cause of seen and felt hand postures in our model), but a simple case of active inference. Specifically, 274 

we showed that action itself was influenced by instructed attentional allocation, via augmentation of the 275 
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impact of sensory prediction errors on model estimates of the ‘attended’ modality relative to the 276 

‘unattended’ one. 277 

Previous simulation studies—using a predictive coding formulation of active inference—have 278 

demonstrated that cued reaching movements to visual targets rely on a flexible balance of visual and 279 

proprioceptive precision (Friston et al., 2010; Friston, 2012; cf. Perrinet et al., 2014). Recently, 280 

experimental evidence for context dependent precision-modulation during action has been provided by 281 

a demonstration of a compensatory increase in sensory precision when participants were eye-tracking 282 

a noisy visual target stimulus (Adams et al., 2015). Our results complement these demonstrations by 283 

showing a context-dependent effect of attentional alteration of visual versus proprioceptive precision 284 

on behaviour under intersensory conflict. 285 

More generally, our results support the notion that an endogenous attentional ‘set’ (Posner et al., 1978) 286 

can influence the precision afforded to vision or proprioception during action, and thus to prioritize 287 

either modality for a current behavioural context. Several studies have shown that visuo-proprioceptive 288 

recalibration is context dependent in that either vision or proprioception may be the ‘dominant’ 289 

modality—with corresponding recalibration of the ‘non-dominant’ modality (Warren & Cleaves, 1971; 290 

Kelso et al., 1975; Posner et al., 1976; Redding et al., 1985; Foulkes & Miall, 2000; Ingram et al., 2000; 291 

Foxe & Simpson, 2005; Cressman & Henriques, 2009; Rand & Heuer, 2019). Thus, our results lend (at 292 

least tentative) support to arguments that visuo-proprioceptive (or visuo-motor) adaptation and 293 

recalibration can be enhanced by increasing the precision of visual information (attending to vision; cf. 294 

Kelso et al., 1975; Posner et al., 1976). Notably, our results also suggest that the reverse can be true; 295 

i.e., that visuo-proprioceptive recalibration can be counteracted by increasing one’s attention to 296 

proprioception. In sum, our results suggest that updating the predictions of a ‘body model’ affects goal-297 

directed action. However, as it has been suggested that prediction updating may happen without control 298 

updating (Mathew et al., 2018), future work could establish whether the effects observed in our study 299 

can have long-lasting impact on the (generalizable) learning of motor control.  300 

A noteworthy difference between our simulation results and the result of the behavioural experiment 301 

was that our participants exhibited a more pronounced shift of their real movements in the ‘real hand’ 302 
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condition (which partly aligned the delayed virtual hand with the target’s phase). This effect was 303 

reminiscent of the behaviour of our simulated agent under ‘high distraction’ (i.e., attention to the task-304 

irrelevant modality) and occurred despite the fact that, as indicated by the ratings, participants focused 305 

on their real hand and tried to comply with the task instructions. Interestingly, however, our participants 306 

reported the ‘real hand’ task to be easier than the ‘virtual hand’ task under visuo-proprioceptive 307 

incongruence—which suggests that they did not notice their ‘incorrect’ behavioural adjustment. In 308 

contrast, the simulated agent even showed slightly better RH than VH alignment—this can be explained 309 

by the fact that proprioception was ‘naturally’ the modality driving movement, while the vision was 310 

experimentally delayed (which had to be inferred by the agent). 311 

One tentative interpretation of the much stronger visual bias in the behavioural experiment is possible 312 

in light of predictive coding formulations of shared body representation and self-other distinction; i.e., 313 

the relative balance between visual and proprioceptive prediction errors to decide whether ‘I am 314 

observing an action’ or whether ‘I am moving’ (Kilner et al., 2003, 2007; Friston, 2012; cf. Vasser et 315 

al., 2019). Generally, visual prediction errors have to be attenuated during action observation to prevent 316 

actually performing (i.e., mirroring) the observed movement (Friston, 2012). However, several studies 317 

have demonstrated ‘automatic’ imitative tendencies during action observation, reminiscent of 318 

‘echopraxia’, which are extremely hard to inhibit—for example, seeing an incongruent finger or arm 319 

movement biases participants’ own movement execution (Brass et al., 2001; Kilner et al., 2003). In a 320 

predictive coding framework, this can be formalized as an ‘automatic’ update of multimodal beliefs 321 

driving action by precise (not sufficiently attenuated) visual body information (cf. Kilner et al., 2007). 322 

Such an interpretation would be in line with speculations that participants in visuo-motor conflict tasks 323 

attend to vision, rather than proprioception, if not instructed otherwise (Kelso et al., 1975; Posner et al., 324 

1976; Kelso, 1979; cf. Redding et al., 1985). Whether or not such effects—an ‘automatic’ influence of 325 

a seen visual hand posture that is incongruent (note that this could mean leading or lagging in our case) 326 

to the felt one—can account for our behavioural results could be clarified by future work. Likewise, an 327 

interesting question is whether these effects could perhaps be reduced by actively ignoring or ‘dis-328 

attending’ (Clark, 2015; Limanowski, 2017) away from vision. An analogous mechanism has been 329 
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tentatively suggested by observed benefits of proprioceptive attenuation—thereby increasing the 330 

relative impact of visual information—during visuo-motor adaptation and visuo-proprioceptive 331 

recalibration (Taub & Goldberg, 1974; Ingram et al., 2000; Balslev et al., 2004; Bernier et al., 2009; cf. 332 

Limanowski et al., 2015a,b; Zeller et al., 2016). These questions should best be addressed by combined 333 

behavioural and brain imaging experiments, to illuminate the neuronal correlates of the (supposedly 334 

attentional) precision weighting in the light of recently proposed implementations of predictive coding 335 

in the brain (Bastos et al., 2012; Shipp et al., 2013; Shipp, 2016). 336 

It should be noted that our results need to be validated by future work using more complicated 337 

movement tasks (here, we focused on a simple, well-trained grasping movement), different target 338 

modalities (we used a visual, albeit non-spatial target), and more biophysically realistic models of motor 339 

(hand movement) control. Moreover, we interpret our simulation and empirical results in terms of 340 

evidence for top-down precision modulation, which corresponds to the process of ‘attention’ within the 341 

active inference account of predictive coding (Feldman & Friston, 2010; Edwards et al., 2012; Brown 342 

et al., 2013). This interpretation needs to be applied with some caution to the behavioural results, as we 343 

can only infer any attentional effects from the participants’ self-reports. We assume that participants 344 

monitored their behaviour continuously, but with the present data we cannot rule out that movements 345 

might have been executed automatically between discrete time points at which behaviour was 346 

monitored. Future work could therefore use explicit measures of attention, perhaps supplemented by 347 

forms of supervision, to validate behavioural effects. Finally, our experimental design is not able to 348 

disentangle the (likely interdependent) effects of sensory noise and attention (i.e., expected precision). 349 

Therefore, another important question for future research is the potential attentional compensation of 350 

experimentally added sensory noise (e.g., via jittering or blurring the visual hand or via tendon vibration 351 

in the proprioceptive domain, cf. Jaeger et al., 1979), whereby it should be remembered that these 352 

manipulations may in themselves be ‘attention-grabbing’ (Beauchamp et al., 2010). 353 
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Methods 354 

Task design 355 

We used the same task design in the simulations and the behavioural experiment (see Fig. 1). For 356 

consistency, we will describe the task as performed by our human participants, but the same principles 357 

apply to the simulated agent. We designed our task as a non-spatial modification of a previously used 358 

hand-target tracking task (cf. Limanowski et al., 2017). The participant (or simulated agent) had to 359 

perform repetitive grasping movements paced by sinusoidal fluctuations in the size of a central fixation 360 

dot (sinusoidal oscillation at 0.5 Hz). Thus, this task was effectively a phase matching task, which we 361 

hoped to be less biased towards the visual modality due to a more abstract target quantity (oscillatory 362 

size change vs spatially moving target, as in previous studies). The fixation dot was chosen as the target 363 

to ensure that participants had to fixate the centre of the screen (and therefore look at the virtual hand) 364 

in all conditions. Participants (or the simulated agent) controlled a virtual hand model via a data glove 365 

worn on their unseen right hand (details below). In this way, vision (seen hand position via the virtual 366 

hand) could be decoupled from proprioception (felt hand position). In half of the movement trials, 367 

temporal delay of 500 ms between visual and proprioceptive hand infromation was introduced by 368 

delaying vision (i.e., the seen hand movements) with respect to proprioception (i.e., the unseen hand 369 

movements performed by the participant or agent). In other words, the seen and felt hand positions were 370 

always incongruent (phase-shifted) in these conditions. Crucially, the participant (agent) had to perform 371 

the phase matching task with one of two goals in mind: to match the target’s oscillatory phase with the 372 

seen virtual hand movements (vision) or with the unseen real hand movements (proprioception). This 373 

resulted in a 2 x 2 factorial design with the factors ‘visuo-proprioceptive congruence’ (congruent, 374 

incongruent) and ‘instructed modality’ (vision, proprioception). 375 

Simulations 376 

We based our simulations on predictive coding formulations of active inference as situated within a free 377 

energy principle of brain function, which has been used in many previous publications to simulate 378 

perception and action (e.g. Friston et al., 2010; Friston, 2012; Brown & Friston, 2013; Perrinet et al., 379 
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2014; Adams et al., 2015). Here, we briefly review the basic assumptions of this scheme (please see the 380 

above literature for details).  381 

Hierarchical predictive coding rests on a probabilistic mapping of hidden causes to sensory 382 

consequences, as described by a hierarchical generative model, where each level of the model encodes 383 

conditional expectations (‘beliefs’; which here refer to subpersonal or non-propositional Bayesian 384 

beliefs in the sense of Bayesian belief updating and belief propagation; i.e., posterior probability 385 

densities) about states of the world that best explains states of affairs encoded at lower levels or—at the 386 

lowest sensory level—sensory input. Thus, the hierarchy provides a deep model of how current sensory 387 

input is generated from causes in the environment; where increasingly higher-level beliefs represent 388 

increasingly abstract (i.e., hidden or latent) states of the environment. The generative model therefore 389 

maps from unobservable causes (hidden states) to observable consequences (sensory states). Model 390 

inversion corresponds to inferring the causes of sensations; i.e., mapping from consequences to causes. 391 

Operationally, this inversion rests upon the minimisation of free energy or ‘surprise’ approximated in 392 

the form of prediction error. In other words, prediction errors are used to update expectations to 393 

accommodate or ‘explain away’ ascending prediction error. This corresponds to Bayesian filtering or 394 

predictive coding (Rao & Ballard, 1999; Friston & Kiebel, 2009; Bastos et al., 2012)—which, and the 395 

linear assumptions, is formally identical to linear quadratic control in motor control theory (Todorov, 396 

2008). In such an architecture, descending connections convey predictions suppressing activity in the 397 

cortical level immediately below, and ascending connections return prediction error (i.e., sensory data 398 

not explained by descending predictions). Crucially, the ascending prediction errors are precision-399 

weighted (where precision corresponds to the inverse variance), so that a prediction error that is afforded 400 

a greater precision has a stronger impact on belief updating. 401 

Active inference extends hierarchical predictive coding from the sensory to the motor domain; i.e., by 402 

equipping standard Bayesian filtering schemes (a.k.a. predictive coding) with classical reflex arcs that 403 

enable action (e.g., a hand movement) to fulfil predictions about hidden states of the world. In brief, 404 

desired movements are specified in terms of prior beliefs about state transitions (policies), which are 405 

then realised by action; i.e., by sampling or generating sensory data that provide evidence for those 406 
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beliefs (Perrinet et al., 2014). Thus, action is also driven by optimisation of the model via suppression 407 

of prediction error: movement occurs because high-level multi- or amodal prior beliefs about behaviour 408 

predict proprioceptive and exteroceptive (visual) states that would ensue if the movement was 409 

performed (e.g., a particular limb trajectory). Prediction error is then suppressed throughout a motor 410 

hierarchy; ranging from intentions and goals over kinematics to muscle activity (Kilner et al., 2007; cf. 411 

Grafton & Hamilton, 2007). At the lowest level of the hierarchy, spinal reflex arcs suppress 412 

proprioceptive prediction error by enacting the predicted movement, which also implicitly minimises 413 

exteroceptive prediction error; e.g. the predicted visual consequences of the action (Adams et al 2013, 414 

Friston 2011, Shipp et al 2013). Thus, via embodied interaction with its environment, an agent can 415 

reduce its model’s free energy (‘surprise’ or, under specific assumptions, prediction error) or, in other 416 

words, maximise Bayesian model evidence. Put succinctly, all action is in the service of self-evidencing 417 

(Hohwy, 2016). 418 

Following the above notion of active inference, one can describe action and perception as the solution 419 

to coupled differential equations describing the dynamics of the real world (boldface) and the behaviour 420 

of an agent (italics, cf. Friston et al., 2010 for details).  421 

 (1) 

 

The first pair of coupled stochastic (i.e., subject to random fluctuations ωx, ων) differential equations 422 

describes the dynamics of hidden states and causes in the world and how they generate sensory states. 423 

Here, (s, x, ν, a) denote sensory input, hidden states, hidden causes and action in the real world, 424 

respectively. The second pair of equations corresponds to action and perception, respectively—they 425 

constitute a (generalised) gradient descent on variational free energy, known as an evidence bound in 426 

machine learning (Winn & Bishop, 2005). The differential equation describing perception corresponds 427 

to generalised filtering or predictive coding. The first term is a prediction based upon a differential 428 

𝒔 =  𝒈(𝒙, 𝒗, 𝒂) + 𝝎𝑣 

𝒙̇ =  𝒇(𝒙, 𝒗, 𝒂) + 𝝎𝑥 

𝑎̇ =  − 𝜕𝑎𝐹(𝑠̃, 𝜇) 

𝜇̇ =  𝐷𝜇 − 𝜕𝜇̃𝐹(𝑠̃, 𝜇) 
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operator D that returns the generalised motion of conditional (i.e., posterior) expectations about states 429 

of the world, including the motor plant (vector of velocity, acceleration, jerk, etc.). Here, the variables 430 

(s̃, μ̃, a) correspond to generalised sensory input, conditional expectations and action, respectively. 431 

Generalised coordinates of motion, denoted by the ~ notation, correspond to a vector representing the 432 

different orders of motion (position, velocity, acceleration, etc.) of a variable. The differential equations 433 

above are coupled because sensory states depend upon action through hidden states and causes (x, ν) 434 

while action a(t) = a(t) depends upon sensory states through internal states μ̃. Neurobiologically, these 435 

equations can be considered to be implemented in terms of predictive coding; i.e., using prediction 436 

errors on the motion of hidden states—such as visual or proprioceptive cues about hand position—to 437 

update beliefs or expectations about the state of the lived world and embodied kinematics. 438 

By explicitly separating hidden real-world states from the agent’s expectations as above, one can 439 

separate the generative process from the updating scheme that minimises free energy. To perform 440 

simulations using this scheme, one solves Eq. 1 to simulate (neuronal) dynamics that encode conditional 441 

expectations and ensuing action. The generative model thereby specifies a probability density function 442 

over sensory inputs and hidden states and causes, which is needed to define the free energy of sensory 443 

inputs: 444 

 (2) 

 

This probability density is specified in terms of nonlinear functions of hidden states and causes (f(i), g(i)) 445 

that generate dynamics and sensory consequences, and Gaussian assumptions about random 446 

fluctuations (ωx
(i), ων

(i)) on the motion of hidden states and causes. These play the role of sensory noise 447 

𝑠 =  𝑔(1)(𝑥(1), 𝑣(1)) + 𝜔𝑣
(1)

 

𝑥̇(1) =  𝑓(1)(𝑥(1), 𝑣(1)) + 𝜔𝑥
(1)

 

⋮ 

𝑣(𝑖−1) =  𝑔(𝑖)(𝑥(𝑖), 𝑣(𝑖)) + 𝜔𝑣
(𝑖)

 

𝑥̇(𝑖) =  𝑓(𝑖)(𝑥(𝑖), 𝑣(𝑖)) + 𝜔𝑥
(𝑖)

 
 

⋮ 
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or uncertainty about states. The precisions of these fluctuations are quantified by (Πx
(i), Πν

(i)), which are 448 

the inverse of the respective covariance matrices. 449 

Given the above form of the generative model (Eq. 2), we can now write down the differential equations 450 

(Eq. 1) describing neuronal dynamics in terms of prediction errors on the hidden causes and states as 451 

follows: 452 
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 (3) 

 

The above equation (Eq. 3) describes recurrent message passing between hierarchical levels to suppress 453 

free energy or prediction error (i.e., predictive coding, cf. Friston & Kiebel, 2009; Bastos et al., 2012). 454 

Specifically, error units receive predictions from the same hierarchical level and the level above. 455 

Conversely, conditional expectations (‘beliefs’, encoded by the activity of state units) are driven by 456 

prediction errors from the same level and the level below. These constitute bottom-up and lateral 457 

messages that drive conditional expectations towards a better prediction to reduce the prediction error 458 

in the level below—this is the sort of belief updating described in the introduction.  459 

Finally, we can now add action as the specific sampling of predicted sensory inputs. As noted above, 460 

along active inference, high-level beliefs (conditional expectations) elicit action by sending predictions 461 

down the motor (proprioceptive) hierarchy to be unpacked into proprioceptive predictions at the level 462 

of (pontine) cranial nerve nuclei and spinal cord, which are then ‘quashed’ by movement so that 463 

predicted movements are enacted to ‘fulfil’ predictions. 464 
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(4) 

 

In our case, the generative process and model used for simulating the target tracking task are 465 

straightforward (using just a single level) and can be expressed as follows: 466 

  (5) 

 

The first pair of equations describe the generative process; i.e., a noisy sensory mapping from hidden 467 

states and the equations of motion for states in the real world. In our case, the real-world variables 468 

comprised two hidden states xt (the state of the target) and xh (the state of the hand), which generate 469 

sensory inputs; i.e., proprioceptive sp and visual sv cues about hand posture , and visual cues about the 470 

target’s size st. Note that to simulate sinusoidal movements—as used in the experimental task—sensory 471 

cues pertaining to the target and hand are mapped via sine functions of the respective hidden states (plus 472 

random fluctuations). Both target and hand states change linearly over time, and become sinusoidal 473 

movements via the respective sensory mapping from causes to sensory data. We chose this solution in 474 

our particular case for a straightforward implementation of phase shifts (visuo-proprioceptive 475 

incongruence) via subtraction of a constant term from the respective sensory mapping (v, see below). 476 

Thus, the target state xt is perturbed by hidden causes at a constant rate (tt = 1/40), i.e., it linearly 477 

increases over time. This results in one oscillation of a sinusoidal trajectory via the sensory mapping 478 

𝑎̇ =  − 𝜕𝑎𝐹 = −(𝜕𝑎𝜀𝑣̃
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sin(xt)—corresponding to one growing-and-shrinking of the fixation dot, as in the behavioural 479 

experiment—during 2 seconds (the simulations proceeded in time bins of 1/120 seconds, see Fig. 2). 480 

The hand state is driven by action a with a time constant of ta = 16.67 ms, which induced a slight 481 

‘sluggishness’ of movement mimicking delays in motor execution. Action thus describes the rate of 482 

change of hand posture along a linear trajectory—at a rate of 0.05 per time bin—which again becomes 483 

an oscillatory postural change (i.e., a grasping movement) via the sinusoidal sensory mapping. The 484 

hidden cause v modelled the displacement of proprioceptive and visual hand posture information in a 485 

virtue of being subtracted within the sinusoidal sensory mapping from the hidden hand state to visual 486 

sensory information sin(xt-v). In other words, v = 0 when the virtual hand movements were congruent, 487 

and v = 0.35 (corresponding to about 111 ms delay) when the virtual hand’s movements were delayed 488 

with respect to the real hand. Note that random fluctuations in the process generating sensory input 489 

were suppressed by using high precisions on the errors of the sensory states and motion in the generative 490 

process (exp(16) = 8886110). This can be thought of as simulating the average response over multiple 491 

realizations of random inputs, under any particular precisions assumed by the generative model. If 492 

random fluctuations are introduced into the generative process, each solution or realized response itself 493 

becomes a random variable. Therefore, the single movement we simulated in each condition may be 494 

interpreted as a participant-specific average over realizations; i.e., in which the effects of random 495 

fluctuations are averaged out (cf. Perrinet et al., 2014; Adams et al., 2015). This ensured that our 496 

simulations reflect systematic differences depending on the parameter values chosen to reflect 497 

alterations of sensory attention via changing parameters of the agent’s model (as described below). 498 

The second pair of equations describe the agent’s generative model of how sensations are generated 499 

using the form of Eq. 2. These define the free energy in Eq. 1 and specify behaviour (under active 500 

inference). The generative model has the same form as the generative process, with the important 501 

exceptions that there is no action and the state of the hand is driven by the displacement between the 502 

hand and the target xt – xh. In other words, the agent believes that its grasping movements will follow 503 

the target’s oscillatory size change, which is itself driven by some unknown force at a constant rate (and 504 

thus producing an oscillatory trajectory as in the generative process). This effectively models (the 505 
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compliance with) the task instruction, under the assumption that participants already know about the 506 

oscillatory phase of the target; i.e., they have been well trained. Importantly, this formulation models 507 

the ‘real hand’ instruction; under the ‘virtual hand’ instruction, the state of the hand was driven by xt – 508 

(xh – v), reflecting the fact that any perceived visual delay (i.e., the inferred displacement of vision from 509 

proprioception v) should now also be compensated to keep the virtual hand aligned with the target’s 510 

oscillatory phase under incongruence; the initial value for v was set to represent the respective 511 

information about visuo-proprioceptive congruence, i.e., 0 for congruent movement conditions and 0.35 512 

for incongruent movement conditions. We defined the agent’s model to entertain a prior belief that 513 

visual and proprioceptive cues are normally congruent (or, for comparison, incongruent). This was 514 

implemented by setting the prior expectation of the cause v to 0 (indicating congruence of visual and 515 

proprioceptive hand posture information), with a log precision of 3 (corresponding to about 20.1). In 516 

other words, the hidden cause could vary, a priori, with a standard deviation of about exp(-3/2) = 0.22. 517 

This mimicked the learned association between seen and felt hand positions (under a minimal degree 518 

of flexibility), which is presumably formed over a lifetime and very hard to overcome and underwrites 519 

phenomena like the ‘rubber hand illusion’ (Botvinick & Cohen, 1998; see Introduction). 520 

Crucially, the agent’s model included a precision-weighting of the sensory signals—as determined by 521 

the active deployment of attention along predictive coding accounts of active inference. This allowed 522 

us to manipulate the precision assigned to proprioceptive or visual prediction errors (Πp, Πv) that, per 523 

default, were given a log precision of 3 and 4, respectively (corresponding to 20.1 and 54.6, 524 

respectively). This reflects the fact that vision usually is afforded a higher precision than proprioception 525 

in hand position estimation (e.g. van Beers et al., 1999; cf. Kelso et al., 1975). To implement increases 526 

in task-related (selective) attention, we increased the log precision of prediction errors from the 527 

instructed modality (vision or proprioception) by 1 in each case (i.e., by a factor of about 2.7); in an 528 

alternative scenario, we tested for incorrect allocation of attention to the non-instructed or ‘distractor’ 529 

modality by increasing the precision of the appropriate prediction errors. We did not simulate increases 530 

in both sensory precisions, because our study design was tailored to investigate selective attention as 531 

opposed to divided attention. Note that in the task employed, divided attention was precluded, since 532 
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attentional set was induced via instructed task-relevance; i.e., attempted target phase-matching. In other 533 

words, under incongruence, only one modality could be matched to the target. The ensuing generative 534 

process and model are, of course, gross simplifications of a natural movement paradigm. However, this 535 

formulation is sufficient to solve the active inference scheme in Eq. 1 and examine the agent’s behaviour 536 

under the different task instructions and, more importantly, under varying degrees of selectively 537 

enhanced sensory precision afforded by an attentional set.  538 

Experiment 539 

26 healthy, right-handed volunteers (15 female, mean age = 27 years, range = 19-37, all with normal or 540 

corrected-to-normal vision) participated in the experiment, after providing written informed consent. 541 

Two participants were unable to follow the task instructions during training and were excluded from 542 

the main experiment, resulting in a final sample size of 24. The experiment was approved by the local 543 

research ethics committee (University College London) and conducted in accordance with the usual 544 

guidelines. 545 

During the experiment, participants sat at a table wearing an MR-compatible data glove (5DT Data 546 

Glove MRI, 1 sensor per finger, 8 bit flexure resolution per sensor, 60 Hz sampling rate) on their right 547 

hand, which was placed on their lap under the table. The data glove measured the participant’s finger 548 

flexion via sewn-in optical fibre cables; i.e., each sensor returned a value from 0 to 1 corresponding to 549 

minimum and maximum flexion of the respective finger. These raw data were fed to a photorealistic 550 

virtual right hand model (cf. Limanowski et al., 2017), whose fingers were thus moveable with one 551 

degree of freedom (i.e., flexion-extension) by the participant, in real-time. The virtual reality task 552 

environment was instantiated in the open-source 3D computer graphics software Blender 553 

(http://www.blender.org) using a Python programming interface, and presented on a computer screen 554 

at about 60 cm distance (1280 x 1024 pixels resolution). 555 

The participants’ task was to perform repetitive right-hand grasping movements paced by the oscillatory 556 

size change of the central fixation do, which continually decreased-and-increased in size sinusoidally 557 

(12 % size change) at a frequency of 0.5 Hz; i.e., this was effectively a phase matching task (Fig. 1). 558 
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The participants had to follow the size changes with right-hand grasping movements; i.e., to close the 559 

hand when the dot shrunk and to open the hand when the dot grew. In half of the movement trials, an 560 

incongruence between visual and proprioceptive hand information was introduced by delaying the 561 

virtual hand’s movements by 500 ms with respect to the movements performed by the participant. In 562 

other words, the virtual hand and the real hand were persistently in incongruent (mismatching) postures 563 

in these conditions. The delay was clearly perceived by all participants. 564 

Participants performed the task in trials of 32 seconds (16 movement cycles; the last movement was 565 

signalled by a brief blinking of the fixation dot), separated by 6 second fixation-only periods. The task 566 

instructions (‘VIRTUAL’ / ‘REAL’) were presented before each respective movement trials for 2 567 

seconds. Additionally, participants were informed whether in the upcoming trial the virtual hand’s 568 

movements would be synchronous (‘synch.’) or delayed (‘delay’). The instructions and the fixation dot 569 

in each task were coloured (pink or turquoise, counterbalanced across participants), to help participants 570 

remember the current task instruction during each movement trial. Participants practised the task until 571 

they felt confident, and then completed two runs of 8 min length. Each of the four conditions ‘virtual 572 

hand task under congruence’ (VH cong), ‘virtual hand task under incongruence’ (VH incong), ‘real 573 

hand task under congruence’ (RH cong), and ‘real hand task under incongruence’ (RH incong) was 574 

presented 3 times per run, in randomized order. 575 

To analyse the behavioural change in terms of deviation from the target (i.e., phase shift from the 576 

oscillatory size change), we averaged and normalized the movement trajectories in each condition for 577 

each participant (raw data were averaged over the four fingers, no further pre-processing was applied). 578 

We then calculated the phase shift as the average angular difference between the raw averaged 579 

movements of the virtual or real hand and the target’s oscillatory pulsation phase in each condition, 580 

using a continuous wavelet transform. The resulting phase shifts for each participant and condition were 581 

then entered into a 2 x 2 repeated measures ANOVA with the factors task (virtual hand, real hand) and 582 

congruence (congruent, incongruent) to test for statistically significant group-level differences. Post-583 

hoc t-tests (two-tailed, with Bonferroni-corrected alpha levels to account for multiple comparisons) 584 

were used to compare experimental conditions. 585 
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After the experiment, participants were asked to indicate—for each of the four conditions separately—586 

their answers to the following two questions: “How difficult did you find the task to perform in the 587 

following conditions?” (Q1, answered on a 7-point visual analogue scale from “very easy” to “very 588 

difficult”) and “On which hand did you focus your attention while performing the task?” (Q2, answered 589 

on a 7-point visual analogue scale from “I focused on my real hand” to “I focused on the virtual hand”). 590 

The questionnaire ratings were evaluated for statistically significant differences using a nonparametric 591 

Friedman’s test and Wilcoxon’s signed-rank test (with Bonferroni-corrected alpha levels to account for 592 

multiple comparisons) due to non-normal distribution of the residuals. 593 
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Supporting Information Legends 

Raw data recorded during the two experimental runs for each participant. Each data file contains the 

real and virtual finger values (recorded by the data glove) alongside timing and experimental 

condition information. Please see the file ‘VariableCoding’ for details on variable names.  
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