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Abstract  
The structure of the brain’s cortical folds varies considerably in human populations. Specific patterns of               
cortical variation arise with development and aging, and cortical traits are partially influenced by genetic               
factors. The degree to which genetic factors affect cortical folding patterning remains unknown, yet may be                
estimated with large-scale in-vivo brain MRI. Using multiple MRI datasets from around the world, we               
estimated the reliability and heritability of sulcal morphometric characteristics including length, depth,            
width, and surface area, for 61 sulci per hemisphere of the human brain. Reliability was assessed across                 
four distinct test-retest datasets. We meta-analyzed the heritability across three independent family-based            
cohorts (N > 3,000), and one cohort of largely unrelated individuals (N~9,000) to examine the robustness                
of our findings. Reliability was high (interquartile range for ICC: 0.65-0.85) for sulcal metrics. Most sulcal                
measures were moderately to highly heritable (heritability estimates = 0.3-0.7). These genetic influences             
vary regionally, with the earlier forming sulci having higher heritability estimates. The central sulcus, the               
subcallosal and the collateral fissure were the most highly heritable regions. For some frontal and temporal                
sulci, left and right genetic influences did not completely overlap, suggesting some lateralization of genetic               
effects on the cortex.  

Index Terms— Cortical folding, Heritability, Brain Imaging, Sulci Morphometry, Genetic Asymmetry,           
Imaging Genetics, Reliability 
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INTRODUCTION  
Understanding the mechanisms underlying brain structural and functional variations is essential for            
advancing neuroscience. Genetic drivers of brain differences are important to identify as potential risk              
factors for heritable brain diseases, and targets for their treatment. Large-scale neuroimaging consortia,             
including the Enhancing Neuro Imaging Genetics through Meta Analysis (ENIGMA ) consortium, have            1

identified common genetic variants that have small but significant associations with variations in brain              
morphology12. The same brain regions show, on average, consistent structural abnormalities in populations             
of individuals diagnosed with neuropsychiatric or neurodevelopmental disorders, including schizophrenia3,          
bipolar disorder4, major depressive disorder (MDD)5 , obsessive-compulsive disorder (OCD)6, ADHD 7, and            
autism spectrum disorder (ASD)8. Studies have even identified genetic correlations between the human             
brain structure and risk for disease 9–11.  
 
Enriched in neuronal cell bodies, the brain’s cortical gray matter is involved in almost all human cognitive                 
functions and behavior, including sensory perception and motor control 12

. Macroscale anatomical features             
of the human cortex can be reliably extracted from structural MRI scans, and among the most common are                  
regional thickness and surface area measures. These MRI-based features show robust alterations in several              
neurological, neurodevelopmental, and psychiatric disorders 5, influenced by both environmental and           
genetic variation 13–15.  
Gyrification, or folding of the cortical surface, takes place during brain development, forming sulci              
(“fissures”) and gyri (“ridges”) in the cortical gray matter. Gyrification is among the fundamental features               
of human and non-human primate brain anatomy 16,17 and occurs in an orchestrated pattern 17 that changes                 
during fetal life and into adolescence 18. The mechanisms of brain folding are not fully understood 19,20, but                  
the process is largely preserved among humans and non-human primates. The pattern of brain gyri (or                
sulci) tend to delimit areas with specific functions and are generally consistent across subjects 21–24. The                
complexity and inter-subject variability of brain gyrification are influenced by many factors, including             
genetically and environmentally influenced developmental, aging and pathological processes  25,26.  

Large-scale imaging studies have aimed to discover both common and rare genetic variants that contribute               
to brain variability as estimated using in-vivo brain scans, such as MRI27; genome-wide association studies               
(GWAS) find that, as with other complex traits, individual common variants typically explain less than 1%                
of the population variance, despite accounting for a large fraction of the variance in aggregate 1,10,28,29.                
Therefore, successful efforts to discover common variants that affect cortical structure require tens of              
thousands of scans, as well as independent samples for replication and generalization. Large-scale biobanks              
have amassed tens of thousands of MRI scans 30. Even so, replicating effects and ensuring generalizability                
of findings to other scanned populations, requires assurance that the brain measures being studied are               
reliably extracted across a variety of possible MRI scanning paradigms. Features must also be reliably               
extracted if effects are to be pooled across studies as in multisite consortia such as ENIGMA and CHARGE                 
.  2

Sulcal-based morphometry provides in-depth analyses of the brain’s cortical fissures, or folds, as seen on               
MRI. Measures of sulcal morphometry - including length, depth, width and surface area - among others -                 
have been associated with developmental maturation in adolescents 31, degenerative changes in the elderly              
31,32, and disorders such as schizophrenia 33,34, bipolar disorder 35 and autism spectrum disorder 36; altered                
fissuration is also found in several genetic disorders, such as Williams syndrome 37,38 where abnormal               
cortical patterns have known genetic influences. The depth of the central sulcus has been reported to be                 
highly heritable, and the degree of this heritability varies along the profile of the central sulcus 39. Effects                  
on sulcal patterns are partially independent of those on cortical thickness or surface area14,31. Here we set                 

1 http://enigma.ini.usc.edu/ 
2 http://www.chargeconsortium.com/ 
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out to understand the degree to which these additional, more in-depth, cortical features may be influenced                
by genetic factors, yet before studying the heritability of these features, a multisite effort is needed to assess                  
the reliability of measures derived from the automatic extraction of these sulci from MRI. 
 
Here, we perform an extensive reliability (N=110) and heritability (N=13,113) analysis. Reliability was             
estimated in data from four cohorts, totalling110 participants (19-61 years of age, 47% females on average)                
who underwent a T1-weighted brain MRI scan twice within three months. A subset of data from the Human                  
Connectome Project (HCP) and the Queensland Twin Imaging Study (QTIM) were used along with the               
Kennedy Krieger Institute - Multi-Modal MRI Reproducibility Resource (KKI) and the Open Access Series              
of Imaging Studies (OASIS) datasets for reproducibility analysis. We included datasets for which we would               
expect minimal or no structural changes between scans, so we limited the analysis to healthy individuals                
between the ages of 18 and 65, and ensured the inter-scan interval was less than 90 days. See Table S2 in                     
Supplementary Material for more details. 
 
We analyzed heritability in four independent cohorts, three with a family based design and one using                
single-nucleotide polymorphism (SNP) based heritability estimates. The cohorts included two twin-based           
samples (QTIM and HCP), one cohort of extended pedigrees (the Genetics of Brain Structure and Function;                
GOBS), and another of over 9,000 largely unrelated individuals (the UK Biobank). Heritability estimates              
are population specific, but here, our aim was to understand the heritability pattern across populations and                
demonstrate that genetic effects are consistently observed. We pooled information from all family based              
cohorts to estimate the generalized heritability values using meta- and mega-analytic methods 40,41.  
 
We estimated reliability and heritability for measures of each sulcus on the left and right hemisphere                
separately. As there is limited evidence for genetic lateralization across most of the human brain 42–44, we                 
also evaluated the heritability estimates of the measures for each sulcus averaged across the two               
hemispheres. This may lead to more stable measurements and, if the bilateral measures are influenced by                
similar genetic factors, then more stable measures could lead to better powered genetic studies. We also                
assessed the degree of genetic correlation between the measures across hemispheres. Sulci with limited              
genetic correlations between hemispheres may reveal novel insight into the brain’s lateralization and             
identify key biomarkers for relating lateralized traits, such as language and handedness, to brain structure 45.  
 
RESULTS 
 
Measurement reliability and its relationship to heritability . Table SA in the Supplementary            
Materials , reports the sulcal nomenclature, including both the abbreviations and full name for each sulcus.               
Reliability estimates can be found in Supplementary Tables S3-S5 for ICC and Supplementary Tables              
S6-S9 for the bias evaluation; heritability estimates are reported in Supplementary Tables S10-S21 for the               
univariate analysis and Supplementary Tables S22-S25 for the bivariate analysis. We summarize the             
results below. 
 
We evaluated the reliability of the sulcal measurements using two indices: (1) the intraclass correlation               
coefficient (ICC 46,47, equation 5), in both left and right hemispheres and after averaging bilateral measures;                
(2) the bias 48 (b, equation 4 ) computed as the difference between the sulcal shape measures for the two                  
scans divided by their averaged value. This index will give an estimate of consistency across subjects for                 
each cohort.  
 
Intraclass correlation (ICC) 
Overall, the meta-analysis showed an ICC interquartile range of 0.62 to 0.86 with the length as least robust                  
global metric tested across the full brain (Table 1, Figure 1-B ). Averaging left and right hemispheres                
improved the reliability across the brain for individual sulci;a higher fraction of sulci reached an acceptable                
ICC > 0.75, for all the descriptors (Figure 1-B) . 
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Table 1: Meta-analysis of ICC estimated from 4 independent cohorts for sulcal length, mean depth,               
width, and surface. Left and right hemisphere and bilaterally averaged Mean ± SD are reported with ICC                 
interquartile range [25% - 75%] across sulci. 

 
Meta-Analysis Length Mean Depth Width Surface Area 

Left 0.66 ± 0.15 
[0.61  - 0.76] 

0.72  ± 0.18 
[0.68 - 0.83] 

0.71  ± 0.14 
[0.62 - 0.82] 

0.73  ± 0.13 
[0.66 - 0.82] 

Right 0.65  ± 0.16 
[0.59 – 0.74] 

0.73  ± 0.14 
[0.66 – 0.82] 

0.71  ± 0.14 
[0.64 – 0.81] 

0.73  ± 0.13 
[0.67 - 0.81] 

Average 0.70  ± 0.17 
[0.66-0.79] 

0.77  ± 0.15 
[0.73-0.86] 

0.76  ± 0.11 
[0.69-0.83] 

0.76  ± 0.17  
[0.72 - 0.86] 

 

 
 
 

 
 

Figure 1: A) Sulcal-based meta-analysis of intraclass correlation (ICC) for bilaterally averaged sulcal              
measures. Sulcal length shows generally ‘good’ reproducibility, although no regions show ICC > 0.9 47.               
Mean depth shows ‘excellent’ reproducibility (ICC > 0.9) for: the inferior frontal sulcus (S.F.inf.) and the                
superior frontal sulcus (S.F.sup.); Sulcal width shows ‘excellent’ reproducibility for: intraparietal sulcus            
(F.I.P.), superior postcentral intraparietal superior sulcus (F.I.P.Po.C.inf.), central sulcus (S.C.), superior           
postcentral sulcus (S.Po.C.sup.). Surface area shows ‘excellent’ reproducibility for: the central sulcus            
(S.C.), subcallosal sulcus (S.Call.), anterior occipito-temporal lateral sulcus (S.O.T.lat.ant.). B) The           
intra-class correlation (ICC) for left, right and bilaterally averaged sulcal length, mean depth, width, and               
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surface area across the whole brain is plotted for four test-retest cohorts as well as the meta-analysis                 
across them KKI shows the highest ICC across sulci. 
 
The meta-analysis of ICC captures the variability in the reliability across cohorts for each sulcus (Sup.                
Figure S1, Figure S2 and Figure S3 ). Reliability measures depend to some extent on the cohort examined,                 
or the scanning acquisition parameters. For example, for QTIM, which was collected at 4 tesla, the ICC can                  
be classified as “good” (ICC > 0.75) for the left sulcal surface area of the collateral sulcus (F.Coll. ), but                   
“poor or moderate” (ICC<0.75) in OASIS for the same trait. Figure 1-A shows the meta-analysis of ICC                 
across the 4 cohorts. We also show the patterns for “good” (ICC >0.75) and “excellent” (ICC>0.9)                
reliability.  
For a detailed breakdown of the ICC for measures of sulci morphometry per cohort, please see Sup. Figure                  
S1 for the left hemisphere, Sup. Figure S2 , for the right, and Sup. Figure S3 for bilaterally averaged                  
measures. 
  
For the complete meta-analyzed ICC results, please see Supp. Figures S4-S7, for length, depth, width and                
surface area respectively, all of which are tabulated in Supp. Tables S5.  
 
For each sulcus, we averaged the reliability estimates across all 4 sulcal descriptors to find the most reliable                  
sulci overall. The central sulcus (S.C.) gave the most reliable sulcal measures, followed by the median                
frontal sulcus (S.F.median.), the intraparietal sulcus (F.I.P.), the occipito-temporal lateral sulcus           
(S.O.T.lat.ant.), the sylvian sulcus (S.C.sylvian), the sub-parietal sulcus (S.s.P.), the occipital lobe, and the              
superior temporal sulcus  (S.T.s.) (Supp. Figure S8). 
 
Bias (b) 
We explored test-retest consistency in terms of the ‘bias’ (b , equation 4) , with Bland-Altman analyses. As                 
in 48, overall the bias values showed high test-retest consistency of sulcal shape measures (Sup. Table S6 ).                 
Bias values greater than or equal to 0.1 are considered high, and were noted mainly for length estimates -                   
e.g. for the length of the left and right anterior/posterior sub-central ramus of the lateral fissure                
(F.C.L.r.sc.ant./post.), and the length of the left and right insula (See Supp. Table S7-S9 for bias estimates                 
across the left, right and bilaterally averaged sulcal metrics). Paralleling the higher ICC in bilaterally               
averaged measures, lower ‘bias’ estimates were obtained with individual sulcal measures averaged across             
the left and right hemispheres (Supp. Table S9 ). 
 
ICC and bias b of bilaterally averaged sulcal metrics were significantly negatively correlated for all metrics                
except for length, in particular rlength=-0.11 [p=0.07], rmean-depth=-0.14 [p=0.02], rwidth=-0.25 [p=4.6x10-5 ],           
rsurface-area=-0.25 [p=1.2x10-5 ], suggesting, as expected, that a lower bias between test and retest             
measurements relates to higher reproducibility as estimated by ICC. 
 
Heritability estimates for the brain’s cortical folding patterns.  
The profile of heritability (h 2) estimates were calculated for bilaterally averaged sulcal measures of length,               
mean depth, width and surface area for the three family based cohorts. Heritabilities of all measures were                 
estimated after adjusting for total intracranial volume (ICV), age, age2, sex and the interactions between sex                
and age and age2. Across descriptors and sulci, heritability estimates showed a similar pattern across the                
three family based cohorts, QTIM, HCP, GOBS (Supp. Figure S9 , Supp. Figure S10, Supp. Figure S11;                 
the GOBS cohort shows lower heritability, (h 2=0.3 ± 0.1), compared to QTIM (h 2 =0.4 ± 0.1) and HCP                 
(h2=0.4 ± 0.1), as might be expected for an extended pedigree design when compared to twin designs 49                  
(Supp. Figure S12) .  
 
The generalized heritability profile of cortical folding was obtained by meta-analyzing the estimates across              
these three independent family-design cohorts, and is highlighted in Figure 2a. Aggregate heritability             
estimates were also calculated in a mega-analytic manner, where 3,030 subjects from the family-based              
cohorts (QTIM, HCP and GOBS) were pooled together (after adjusting for covariates within cohort and               
normalizing across cohorts) before computing heritability as in previous works 40,41. As expected, we found               
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similarities between meta and mega-analysis derived heritability estimates as indicated by a significant             
Pearson’s correlation between these two approaches (r~0.84, p=10-3 -10-8 ; Supplementary Figure S13 ).           
Individual heritability estimates, standard errors and p-values for bilaterally averaged sulcal length, mean             
depth, width and surface area are tabulated in Supplementary Tables S10-S19 for each cohort, and in                
Supplementary Table S20-S21 for the meta- and mega-analyses.  
 
 
Using genome-wide complex trait analysis (GCTA), we estimated the heritability of sulcal variation in              
unrelated individuals of European ancestry from the UK Biobank and found many sulcal features for which                
the SNP-based heritability estimates were approximately 25% of the estimates derived from the family              
based studies, (h 2 =0.2 ± 0.1; Figure 2b . The heritability estimates for the UK Biobank are reported in                 
Supplementary TableS19)  
 
Overall, the pattern of heritability estimates were largely coherent between the family based and large-scale               
population studies. Among the sulcal descriptors analyzed, the width was the most heritable measurement,              
while the length was the least, showing significant heritability estimates for only sparse regions of the                
cortex. The heritability of sulcal length was more frequently significant when not adjusting for ICV, yet we                 
find minimal differences in the overall h2 estimates for sulcal depth and width before and after covarying                 
for ICV (Supp. Figure S14); this suggests that there are minimal independent genetic influences on sulcal                
length beyond the known genetic influences on ICV, which was used as a covariate in the results presented.  
 
Meta-analyzed heritability and reliability were significantly correlated for the family-based cohorts: r=0.36            
(pval=1x10-7 ) for sulcal length, r=0.31 (pval=4.1x10-6 ) for mean depth, r=0.26 (pval=7x10-5 ) for sulcal             
width and r=0.25 (pval=1x10-4 ) for surface area (Supp. Figure S15 ); for UK Biobank heritability and               
reliability were correlated for mean depth (r=0.43, pval=2x10-3 ) and sulcal width (r=0.38, pval=4x10-3 )             
(Supp. Figure S16), 
Few regions with “poor” reliability (ICC < 0.75) show significant heritability estimated with the meta               
analysis on bilaterally averaged measures. Among others, the length of the parieto-occipital fissur e (F.P.O.)              
[ICC=0.66, h2=0.18 (pval=1x10-5 )], the mean depth of the ascending ramus of the lateral fissure              
(F.C.L.r.asc.) [ICC=0.74, h2=0.2 (pval=2.2x10-6 )], the surface area of the anterior inferior frontal sulcus             
(S.F.inf.ant.) [ICC=0.65, h2=0.17 (pval=4.7x10-6 )] and the width of the calloso-marginal ramus of the             
lateral fissure (F.C.M.ant.) [ICC=0.63, h2=0.34 (pval=1x10-16 )] (Supp. Table S5 and Supp. Table S20).             
For UK Biobank, the length of S.T.pol. [ICC=0.70, h2=0.14 (pval=6x10-5 )], the width and the surface area                
for the insula, [ICC=0.65, h2=0.14 (pval=2.6x10-5 )] and [ICC=0.65, h2=0.16 (pval=3.8x10-6 )] respectively           
(Supp. Table S19). 
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Figure 2 Heritability estimates (h 2) for each bilaterally averaged sulcal descriptor are mapped. a) The               
results of the inverse-variance weighted meta-analysis of the heritability estimates across three family             
based cohorts QTIM, HCP, and GOBS highlight an overall heritability profile across 3,030 individuals. b)               
Heritability estimates (h 2) calculated from sulcal features extracted from MRI scans of 10,083 unrelated              
individuals scanned as part of the UK Biobank were calculated using the genome-wide complex trait               
analysis (GCTA) package. Regional sulcal metrics found to be significantly heritable in the large              
population sample largely overlap with those found to be most highly heritable across the family based                
studies. We highlight only regions that had significant heritability estimates in sulci that had an ICC > 0.75                  
(See Supp Table S3-S5 for sulcal-based values of ICC). Significant regions survived Bonferroni correction              
for multiple comparisons across all bilateral traits and regions (p < 0.05/(61*4)); darker red colors               
indicate higher heritability estimates. The left hemisphere was used for visualization purposes.  

 

Across the brain, the sulcal measurements were significantly heritable across cohorts, in particular for              
sulcal width. For sulcal width we found higher univariate heritability for the right hemisphere              
(h2=0.23±0.08) compared to the left hemisphere (h2=0.2±0.08) (paired t-test: 1.6x10-6 ). 

The heritability estimates for the global measures (i.e. the sum across sulci) of sulcal length, mean depth,                 
width and surface area (covarying for ICV, age, and sex variables) are also reported in Supplementary                
Figure S17 . QTIM, HCP and GOBS show similar trend across descriptor and hemispheres, except QTIM               
which had generally higher heritability for sulci on the right hemisphere compared to those on the left. 

Sulci that were significantly heritable across descriptors included the intraparietal sulcus, the occipital lobe,              
the subcallosal sulcus, the internal frontal sulcus, the orbital sulcus, the anterior inferior temporal sulcus               
and the polar temporal sulcus, among others; in total 15 sulci were significant in the meta analysis, and 19                   
for the mega analysis. (for the corresponding values of h 2 see Supplementary Table S20-S21) . 

Even though fewer sulci show significantly heritable estimates for their lengths, the heritability estimates              
for those sulci are not necessarily low and may be higher than that of width for a given sulcus. For example,                     
for the subcallosal sulcus, its length shows higher h2 than its width: h2 = 0.5 and 0.3 respectively                  
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(Supplementary Table S20). This suggests a more morphometric specific genetic signature, where            
regionally different measurements may pick up a genetic effect.  

33% (36% for mega-analysis) of the total number of bilaterally averaged sulci showed significant h2 for                
sulcal length, 57% (59% for mega-analysis) for mean depth, 67% (65% for mega-analysis) for width and                
62% (60% for mega-analysis) for the surface area. 6 sulci were significantly heritable for only one of the 4                   
descriptors (1 for mega-analysis). No sulcus show significant heritability for length only. 

Lateralized sulcal heritability estimates  

Genetic correlation across the hemispheres. Averaging brain-imaging derived traits across the left and             
right hemispheres, as above, has been shown to reduce noise due to measurement error in large scale,                 
multi-cohort efforts 1,3,28,50. Improvements in the signal-to-noise ratio may be essential for discovering             
single common variants that explain less than one percent of the overall variability in a trait. However, by                  
assessing left and right separately, we may be able to discover lateralized genetic effects if they exist.  
We confirmed here that the genetic correlations across the hemispheres of the brain for measures of the                 
same sulcus were significant (ρ G ~ 0.92 ± 0.10) (Supp Tables S22-S25). 
 
Figure 3 (left) shows the genetic correlation (ρG ) between left and right homologous regions for those sulci                 
that were significantly heritable in both left and right hemispheres (see Supplementary Table S22-S25)              
after Bonferroni correction (p<0.05/[115x4]). The genetic correlation across left and right is generally             
higher when examining the width of the sulci. The width of the central sulcus, the inferior frontal sulcus,                  
intermediate frontal sulcus, superior frontal sulcus, posterior lateral sulcus, the superior postcentral            
intraparietal superior sulcus and the intraparietal sulcus, and the surface of the occipital lobe show               
significant genetic correlations across all cohorts (see Supplementary Table S22-S24 ). 
 
In contrast, phenotypic correlations (ρ P) between the left and right indices were on average less than ρP <                  
0.5 in each cohort (Supplementary Figure S18 ). Sulcal width showed the highest (ρ P = 0.38 ± 0.15)                 
meta-analyzed correlation between left and right homologs compared to the other sulcal descriptors (0.29 ±               
0.07 for sulcal length, 0.30 ± 0.11 for mean depth and 0.33 ± 0.12 for surface area). 
 
In Figure 3 (right) , we map regions with significant genetic correlations between left and right sulcal                
measures, but only those for which the genetic correlation is statistically different from 1; i.e., the 95%                 
confidence interval surrounding the correlation estimate did not contain 1. These sulci represent brain              
regions that may have diverging genetic influences. In particular, the meta-analysis reveals that the              
occipital lobe, the intra-parietal lobe, the median frontal sulcus, the intermediate left frontal sulcus and the                
collateral sulcus may have lateralized genetic effects; sulcal length and mean depth did not show diverging                
genetic influences between the left and right hemispheres.  
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Figure 3: Left: The results of the meta-analysis across three family based cohorts testing the genetic                
correlation (ρ G) between measures from corresponding left and right hemispheres is shown. ρ G has been               
computed for those bilateral regions showing significant univariate heritability estimated with the            
meta-analysis as reported in Figure 2-a. Two sets of p-values are obtained when performing genetic               
correlations: a more traditional p-value comparing the correlation to the null, and another p-value              
comparing the genetic correlation to a perfect overlap, assessing the difference between the genetic              
correlation obtained and a correlation of 1. Only sulci showing a Bonferroni corrected significance              
comparing the correlation to the null for the tested regions and an overall ICC > 0.75 are highlighted.                  
Bonferroni correction was conducted using the number of regions meeting the required ICC, so p <                
0.05/[N], where N= 11 sulci for length + 31 for mean depth + 36 for width + 37 for surface area, for a                       
total of 115 traits. Regional heritability estimates are tabulated in Supplementary Table S10-S18 . Right:              
The -log 10(p-value) relative to the difference between the correlation (ρ G) and 1 is mapped (Supplementary               
Table S25 ) for only those regions showing significant genetic correlation as on the left side (ρ G ) . 
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Discussion 

Our study has four main findings: 1) many of the sulci common across individuals can be reliably                 
extracted, and some descriptors are more reliable than others; 2) cortical folding patterns are promising               
phenotypes for genetic analysis of cortical gyrification, yet some descriptors of sulci such as width may be                 
more genetically influenced than for example, length; 3) these genetic influences vary regionally, with the               
earlier forming sulci have higher heritability estimates; 4) sulcal analyses may provide insight into the               
lateralization of genetic effects influencing brain structure. 

Neuroimaging consortia such as ENIGMA 51 and CHARGE (http://www.chargeconsortium.com/) require         
the evaluation of traits that can be reliably extracted regardless of the type of MRI scanner and scanning                  
protocol used. Indeed, measurement error could lead to ceiling effect on heritability estimates, and genetic               
correlations. Highly heritable traits can be detected only if the traits are robustly measured 52 and low                 
reliability could lead to an underestimation of the true heritability 53. While heritability is a               
population-specific estimate, one main goal of the imaging genetics field is to identify genetic variants that                
affect brain structure and function in populations around the world. Therefore, we aimed to ensure our                
measures were reliable across different datasets, as well as heritable across different populations. 

Here we identified the most reliable sulcal regions in four independent cohorts with test-retest data. The                
ICC estimates the relation between within-subject variance and between-subjects variance, while the “bias”             
measure represents a subject-based index of consistency 54. Our results show high consistency between test               
and retest (“bias” < 0.154 on average) suggesting that the ICC could be affected by the homogeneity of the                   
population under study: lower ICC values are expected when variability in global brain size or age range is                  
limited. Combining several independent cohorts to assess the reliability of morphometric measures is             
beneficial. The meta-analysis of ICC measures estimated from these cohorts revealed that sulcal width was               
the most reliable metric among the descriptors analyzed. 

Since cortical thickness has been reported as highly reliable 55, the negative correlation between gray               
matter thickness and sulcal width shown in our study (Figure S22 ) supports the hypothesis that               
inter-subject variability, and by consequence sulcal labeling performance, affects the reliability of sulcal             
shape descriptors in addition to segmentation performance.  

Prior studies described the association between reproducibility and heritability of shape measures for             
different brain structures in the QTIM cohort 56. They found a correlation between reproducibility (ICC)               
and heritability, with a large percentage of traits showing “poor” reliability (ICC < 0.75) 56. Here we show                  
that most of the reliable sulcal shape descriptors are also under strong control. In four independent cohorts,                 
we replicated prior findings 39,57,58 and analyzing more than a hundred sulci across the brain, we                
demonstrated the metrics of the central sulcus shape as the most highly heritable traits 39,57,58. Heritability of                 
sulcal width was also higher for the right hemisphere than the left hemisphere, consistent with the                
hypothesis that there is less genetic control over the left hemisphere 59. 

Our results show variability of sulcal-based heritability patterns across sulcal descriptors in regions with              
“excellent” reliability (ICC > 0.9), confirming that not all the reliable traits are necessarily heritable 53.                
These sulcal descriptors may serve as biomarkers for genetically mediated brain disorders and serve as               
phenotypes for large-scale GWAS, enhancing the discovery of specific genomic variants that influence             
brain structure and disease risk. In particular, our findings suggest that sulci appearing early in brain                
development 60,61 that show high heritability such as the central sulcus, the Sylvian fissures, the               
parieto-occipital lobes and the superior temporal sulcus, may represent the optimal targets for a GWAS               
analysis. Indeed, we found a significant Pearson’s correlation between heritability averaged across sulcal             
descriptors and the appearance of sulci (in weeks)62 (Figure S19 , r=-0.62, p=0.0025). We also found the                
frontal lobe to be significantly heritable, together with the temporal sulcus, even though this region               
develops later (secondary sulci) 61.  

We partially confirmed the results obtained in 63. In particular, we found several medial frontal regions                
strongly heritable for sulcal surface area and width; our results confirm previous studies on the central                
sulcus 39, the temporal lobe 59 and the corpus callosum area 64 and are also in line with studies showing high                     

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted October 8, 2019. ; https://doi.org/10.1101/795591doi: bioRxiv preprint 

https://doi.org/10.1101/795591


 

estimated heritability in prefrontal and temporal lobes for cortical thickness and surface area 65–71,              
especially for sulcal mean depth and sulcal width. 

Across three independent family based cohorts, QTIM - an Australian cohort of young adult twins and                
siblings - HCP, a North American cohort of twins and siblings, and GOBS - a Mexican American cohort of                   
extended pedigrees, we found similar patterns of heritability for four descriptors of sulcal morphometry –               
length, depth, width, and surface area. Globally, we found sulcal heritability estimates of approximately              
0.3-0.4, similar to estimates in other species, including Papio baboons 57. Heritability estimates from GOBS               
were slightly lower than for QTIM or HCP, as expected for an extended pedigree design when compared to                  
twin designs 49. It has also been proposed that higher image quality, and therefore lower measurement error,                 
could lead to higher heritability estimates 72. GOBS and HCP volumes were acquired with a 3T scanner and                  
HCP has higher spatial resolution compared to GOBS. QTIM was acquired with slightly lower spatial               
resolution but at higher magnetic field strength (4T). Further analyses will be needed to investigate how the                 
SNR varies across QTIM, HCP and GOBS and how this affects heritability estimation72. SNP-based              
heritability estimated in the UK Biobank shows a similar pattern (Figure S20 ) across the brain, but with                 
lower h2 values compared to the family based cohorts. This might be due to the “missing heritability” effect                  
arising in the SNP-based heritability estimation 73.  

Sulcal length is the descriptor with the least number of sulci showing significant heritability, and is likely                 
more consistent throughout adult life. We found limited evidence for independent genetic influences on              
sulcal length once intracranial volume (ICV) was accounted for as a covariate.  

Apart from work by the ENIGMA Laterality group74, most published ENIGMA studies 1,28,41,75 performed              
analyses on pooled bilateral measures, averaging data from the left and right hemispheres; in fact,               
averaging the measures across hemispheres may provide more stable estimates, and higher signal-to-noise             
in measurements, yielding better power for genomic studies. To test whether this is acceptable when               
evaluating sulcal parameters, we performed a bivariate genetic analysis to estimate the genetic correlation              
between left and right sulcal measures. The sulcal measures showed not only significant heritability              
estimates when averaging the left and right hemispheres, but a strong genetic correlation was also observed                
between the contralateral measures for a subset of sulci. 

A genetic correlation between right and left hemispheres, indicates pleiotropy, suggesting that genetic             
influences underlying the structure and variability in the measures tend to overlap. In family-based studies               
using bivariate variance components analysis to determine the genetic correlation components of variance,             
when a significant genetic correlation is identified, the confidence interval around the genetic correlation              
often includes one, suggesting the underlying genetic influences of the measures were not statistically              
distinguished from each other. Incomplete pleiotropy is suggested when genetic correlations are significant,             
but the confidence intervals do not include one. While in SNP-based genetic correlation models, incomplete               
pleiotropy may be suggested over complete pleiotropy in the presence of measurement error, in a bivariate                
polygenic model, measurement error falls into the environmental component of variance and the             
environmental correlation, and therefore does not influence the maximum-likelihood estimate of the genetic             
correlation; i.e, measurement error makes it more difficult to reject the null hypothesis that the genetic                
correlation is one. Features that exhibit unique genetic influences in one hemisphere may reveal insights               
into the biological causes of brain lateralization that may play an important role in neurodevelopmental or                
psychiatric disorders. Evidence of less genetic control in the left hemisphere has been found in 59 and                 
confirmed in 62 where the authors found higher cortical gyrification complexity in the right hemisphere at                
an early development stage.  

Here we found genetic asymmetries in the frontal lobe (width) that have been reported to be reduced in                  
volumes in the right hemisphere when correlated with the duration of illness in schizophrenia 76. This may                 
relate to disorder-specific abnormalities seen in brain folding patterns rather than volume, as reported in a                
post-mortem study on schizophrenia 77. Significant genetic differences were also detected in sulci of the               
occipital lobe, a region which has been associated with Parkinson’s disease 78,79, posterior cortical atrophy               
(PCA), a disorder causing visual dysfunction, and logopenic aphasia 80.  

Some regions showing lateralization of genetic effects for sulcal descriptors, such as the collateral fissure               
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(sulcal surface area), show the same effect for other measures extracted from the cortex such as the cortical                  
surface area (Figure S21 ). However, for other regions, such as the occipital lobe, we find lateralization of                 
genetic factors for sulcal measures (width ) and not for regional cortical thickness or surface area measures.                
This suggests that sulcal descriptors could offer additional insights into brain lateralization, beyond more              
commonly collected metrics.  

The genetic influences on brain structure are regionally dependent, and differ according to the measurement               
under study. For example, the genetic correlations between cortical thickness and surface area are weak and                
negative14. In non-human primates, brain cortical folding was also found to be influenced by genetic factors                
largely independent of those underlying brain size 16,81. Measuring cortical folding through sulcal-based             
morphometry could therefore highlight brain metrics beyond thickness and surface area, and may             
complement these more traditional measures to reveal a deeper understanding of the genetic architecture of               
human brain structure. This may be particularly relevant for the sulcal width -the most heritable of the four                  
tested metrics. 

Given our results, conducting a GWAS of each hemisphere’s features for the most heritable features from                
the frontal, temporal and occipital regions, may provide insight into the biological mechanisms that drive               
the structure and function of each hemisphere, as well as hemispheric specialization. However, for most               
sulcal regions, the genetic architecture of the two hemispheres is largely correlated. The discovery and               
replication of specific genetic influences on brain structure requires very highly powered analyses,             
achievable through large-scale studies and collaboration. Harmonized imaging and genetic protocols,           
rigorous quality assurance, reproducibility assessments, along with statistical rigor are vital in these             
collaborative endeavors such as those by ENIGMA. We have made these customized protocols using              
BrainVISA software available at: http://enigma.ini.usc.edu/protocols/imaging-protocols/. 

 
Materials and Methods  
 
Participants and MRI Imaging 
 
QTIM (Queensland Twin Imaging study): 1,008 right-handed participants 82, 370 females and 638 males              
were studied, including 376 dizygotic (DZ) and 528 monozygotic (MZ) twins (one set of DZ triplets) and                 
104 siblings, with an average age of 22.7 ± 2.7 years [range: 18–30]. T1-weighted images were acquired on                  
a 4 T Bruker Medspec scanner with an inversion recovery rapid gradient echo sequence. Acquisition               
parameters were: inversion/repetition/echo time (TI/TR/TE) = 700/1500/3.35 ms; flip angle = 8 degrees;             
with an acquisition matrix of 256 × 256; voxel size= 0.94 x 0.90 x 0.94 mm3. 
 
HCP (Human Connectome Project): 816 participants 83, 362 females and 454 males, average age, 29.1 ±                
3.5 years [range: 22–36]. These included 412 siblings, 205 dizygotic (DZ) and 199 monozygotic (MZ)               
twins and triplets. T1-weighted images were acquired using a 3T Siemens scanner. MRI parameters:              
(TI/TR/TE) = 1000/2400/2.14 ms; flip angle = 8 degrees; voxel size = 0.7 mm isotropic, acquisition matrix                 
= 224 × 224. The subset of test-retest scans includes all right-handed subjects. 
 
GOBS ( Genetics of Brain Structure and Function project) : A total of 1,205 Mexican-American             
individuals from extended pedigrees (71 families, average size 14.9 [1–87] people) were included in the               
analysis. 64% of the participants were female and ranged in age from 18 to 97 (mean ± SD: 47.1 ± 14.2)                     
years. Individuals in this cohort have actively participated in research for over 18 years and were randomly                 
selected from the community with the constraints that they are of Mexican-American ancestry, part of a                
large family, and live within the San Antonio region. Imaging data were acquired at the UTHSCSA                
Research Imaging Center on a Siemens 3 T Trio scanner (Siemens, Erlangen, Germany). Isotropic (800               
µm) 3D Turbo-flash T1-weighted images were acquired with the following parameters: TE/TR/TI =             
3.04/2100/785 ms, flip angle = 13 degrees. Seven images were acquired consecutively using this protocol               
for each subject and the images were then co-registered and averaged to increase the signal-to-noise ratio                
and reduce motion artifacts 84.  
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UK Biobank: Analyses were conducted on the 2017 imputed genotypes restricted to variants present in the                
Haplotype Reference Consortium 85,86. UK Biobank bulk imaging data were made available under             
application #11559 in July 2017. We analyzed 10,083 participant (4807 females), mean age= 62.4 ± 7.3                
years [range: 45–79]. Voxel matrix: 1.0x1.0x1.0 mm - acquisition matrix: 208x256x256. 3D MP-RAGE,             
TI/TR=880/2000 ms, sagittal orientation, in-plane acceleration factor=2. Raw MRI data were processed            
using the ENIGMA FreeSurfer and sulcal analysis protocols. Following processing, all images were             
visually inspected for FreeSurfer quality control of grey/white matter classifications. The central sulcus             
segmented and labeled by BrainVISA was also visually controlled for labeling quality for all subjects.  
 
KKI (Kennedy Krieger Institute - Multi-Modal MRI Reproducibility Resource) : Twenty-one healthy            
volunteers with no history of neurological conditions (10 F, 22–61 years old) were recruited. All data were                 
acquired using a 3 T MRI scanner (Achieva, Philips Healthcare, Best, The Netherlands) with body coil                
excitation and an eight-channel phased array SENSitivity Encoding (SENSE) head-coil for reception. All             
scans were completed during a 2-week interval. The resulting dataset consisted of 42 “1-h” sessions of 21                 
individuals. MP-RAGE T1-weighted scans were acquired with a 3D inversion recovery sequence:            
(TR/TE/TI = 6.7/3.1/842 ms) with a 1.0 × 1.0 × 1.2 mm3 resolution over a field of view of 240 × 204 × 256                        
mm acquired in the sagittal plane. The SENSE acceleration factor was 2 in the right–left direction.                
Multi-shot fast gradient echo (TFE factor = 240) was used with a 3-s shot interval and the turbo direction                   
being in the slice direction (right–left). The flip angle was 8 degrees. No fat saturation was employed 87,                  
https://www.nitrc.org/projects/multimodal/. 
 
OASIS: This test-retest reliability data set contains 20 right-handed subjects (19–34 years old) without              
dementia imaged on a subsequent visit within 90 days of their initial session. MPRAGE T1-weighted scans                
were acquired on a 1.5-T Vision scanner (Siemens, Erlangen, Germany): (TR/TE/TI = 9.7/4.0/20 ms) with               
an in-plane resolution of 1.0 × 1.0 × mm2 resolution over a FOV of 256 × 256 mm acquired in the sagittal                      
plane. Thickness/gap= 1.25/0 mm; flip angle = 10 degrees. (https://www.oasis-brains.org/) 88. 
 
 
 

Table S1 : Genetic Analysis: demographics for the 4 cohorts analyzed in this study  

Cohort 
N 

(%F) 
Ethnicity 

Age in years 

(mean +/- stdev [range
Relatedness 

QTIM 1,008 
(37%) Caucasian 22.7 ± 2.7 [18–30] 

376 DZ 
528 MZ 

104 Siblings 

HCP 816 
(44%) 

Mixed 
US population 29.1 ± 3.5 [ 22–36] 

205 DZ 
199 MZ 

412 Siblings 

GOBS 1205 
(64%) 

Mexican 
American 47.1 ± 14.2 [18–97] 71 families 

UKBB 10,083
(47%) Caucasian       62.4 ± 7.3 [45–79] Unrelated 
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 Table S2: Cohorts analyzed for the test-retest study. HCP and QTIM were used for the reproducibility                
analysis as they were representative of subjects examined in the genetic analysis. Among publicly available               
datasets we selected KKI and OASIS, as in 48 , based on age (18< age <65) and inter-scan interval (<90                   
days) 
 

  Cohorts Age Range 
(mean) 

No subject
(%F) 

Inter- 
scan 

Interval 
(days) 

 
Field 

Strength
[T] 

 

 
Voxel size 

[mm]3 

KKI 22 – 61 (31.8) 21 (48%) 14 3 [1 x 1 x 1.2] 
HCP 24 - 35 (30.1) 35 

(44%) 
90 3 [0.7 x 0.7 x 0.7] 

OASIS 19 - 34 (23.3) 20 
(60%) 

90 1.5 [1.0 x 1.0 x1.25] 

QTIM 21 – 28 (23.2) 34 
(37%) 

90 4 [0.94 x 0.98 x0.98] 

 
 

MRI image processing and sulcal extraction. 

 
Anatomical images (T1-weighted) were corrected for intensity inhomogeneities and segmented into gray            
and white matter tissues using FreeSurfer (http://surfer.nmr.mgh.harvard.edu/); segmentations and regional          
labels were quality controlled using ENIGMA protocols for outlier detection and visual inspection             
(http://enigma.ini.usc.edu/protocols/imaging-protocols/). BrainVISA (http://brainvisa.info) was run for      
sulcal extraction, identification, and sulcal-based morphometry. Morphologist 2015, an image processing           
pipeline included in BrainVISA, was used to quantify sulcal parameters. Briefly, the Morphologist 2015              
segmentation pipeline computes left and right hemisphere masks, performs gray and white matter             
classification, reconstructs a gray/white surface and a spherical triangulation of the external cortical             
surface, independently for both hemispheres. However, to improve sulcal extraction and build on current              
protocols used by hundreds of collaborators within ENIGMA, quality controlled FreeSurfer outputs            
(orig.mgz, ribbon.mgz, and talairach.auto) were directly imported into the pipeline to avoid re-computing             
several steps, including intensity inhomogeneity correction and gray/white matter classification89. Sulci           
were then automatically labeled according to a pre-defined anatomical nomenclature of 62 sulcal labels for               
the left hemisphere and 61 sulcal labels for the right hemisphere 90,91.  
 
Sulci descriptors and quality control. Analyzing the shape of the cortex through sulcal-based             
morphometry allows us to quantify the geometry of a sulcus in terms of several distinct and complementary                 
descriptors, consisting of length, mean depth, surface area and width (or fold opening) of all extracted and                 
labeled sulci. Cortical thickness and surface area have been found highly heritable and largely genetically               
correlated 13,92. Moreover, specific genetic loci associated with cortical surface area and thickness are              
involved in cortical development 2. Cortical thickness, surface area, and folding tend to exhibit different               
age-related trajectories 93,94. In particular, cortical thickness is determined by the horizontal layers in the               
cortical mantle, surface area reflects the number of radial columns perpendicular to the pial surface94 and                
sulcal shape relates to the microstructure of the neuronal sheets and to the local axonal connectivity within                 
a cortical region, which may influence the degree of folding16.  
The length of a sulcus is measured in millimeters as the geodesic length of the junction between a sulcus                   
and the hull of the brain. The mean depth corresponds to the average of the depth across all the vertices                    
along the bottom of a sulcus (the depth of a vertex located at the bottom of a sulcus is defined as the                      
geodesic distance along the sulcus to the brain hull). The surface area is the total area of the sulcal surface.                    
The enclosed CSF volume divided by the sulcal surface area gives the width, a gross approximation of the                  
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average width of the CSF in the fold 58.  
To further quality control the extracted sulcal measures and identify subjects whose sulci were not               
optimally identified, we consider as outliers those subjects showing, for a particular sulcus, abnormal              
values for at least one of the descriptors. That is, for a given sulcus, the z-score across subjects is computed                    
for each descriptor. The set of subjects showing an absolute z-score greater than 2.5 for one or more                  
descriptor were discarded from further analysis 95. This led to discard ~ 3% of subjects for each sulcus. An                   
outlier for one sulcus has been included in the analysis for the other sulci if the absolute z-score was less                    
than 2.5. 
 
Univariate and bivariate quantitative genetic analyses. 
 
The relative influences of genetic and environmental factors on human traits can be estimated by modeling                
the known genetic relationship between individuals and relating it to observed covariance in measured              
traits; in twin studies, monozygotic (MZ) twin pairs - who typically share all their common genetic variants                 
- are compared to dizygotic (DZ) twin pairs, who share, on average, 50%. The same principle can be used                   
for extended pedigrees, in which a large number of individuals have varying degrees of relatedness. Here,                
we use both twins and extended pedigrees to estimate the heritability of these in-depth cortical sulcal                
measures. For a given cohort of participants, the narrow-sense heritability (h 2 ) is defined as the proportion                
of the observed variance in a trait (σ 2p ) that can be attributed to additive genetic factors (σ 2g): .h2 = σ2

p

σ2
g   

 
As part of the ENIGMA consortium, we developed image-processing protocols based on BrainVISA             
software (http://brainvisa.info/web/index.html) 90,91,96 to identify sulci and extract common descriptors          
(Section 3.2 ). Using SOLAR-ECLIPSE imaging genetics tools       
(http://www.nitrc.org/projects/se_linux) 97, we investigated the heritability profile of sulci across the           
whole brain: 62 on the left and 61 on the right hemisphere. 
 
Variance components methods, implemented in the Sequential Oligogenic Linkage Analysis Routines           
(SOLAR) software package 97, were used for all genetic analyses. Heritability (h 2 ) is the proportion of total                 
phenotypic variance accounted for by additive genetic factors and is assessed by contrasting the observed               
phenotypic covariance matrix with the covariance matrix predicted by kinship. High heritability indicates             
that the covariance of a trait is greater among more closely related (genetically similar) individuals; here,                
for example, monozygotic twins as compared to dizygotic twins and siblings.  
Prior to testing for the significance of heritability, sulcal descriptor values for each individual are adjusted                
for a series of covariates. We estimated the influence of specific variables (additive genetic variation, and                
covariates including intracranial volume, sex, age, age2, age × sex interaction, age2 × sex interaction) to                
calculate heritability and its significance (p -value) for accounting for a component of each trait's variance               
within this population.  
The significance threshold for heritability analysis of individual sulci was set to be p≤ (0.05/m), where m =                  
61 (number of bilateral sulci) times 4 (number of measurements). m = 123 when left and right sulcal                  
heritability is estimated. This reduced the probability of Type 1 errors associated with multiple              
measurements. 
 
Classical quantitative genetic models were used to partition the phenotypic correlation (ρP ) between the left               
and the corresponding right sulcal measures into the genetic (ρG ), and a unique environmental (ρE)               
components, for each pair of traits. Just as with the univariate model, the bivariate phenotype of an                 
individual is modeled as a linear function of kinship coefficients that express relatedness among all               
individuals within the cohort (MZ twins share all their additive genetic information and DZ twins and                
siblings share on average 50%). The significance of ρG and ρE were estimated from the likelihood ratio test                  
when comparing the model to ones where the correlation components are constrained to be zero 97–99. This                 
estimates ρG and ρE and their standard errors. The significance of these coefficients is determined by a z-test                  
of their difference from zero. If ρG differs significantly from zero then a significant proportion of the traits’                  
covariance is influenced by shared genetic factors.  
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In this case, we tested another model where the genetic correlation factor ρG is fixed to 1. Fixing ρG to 1                     
suggests that the additive genetic components comprising the two traits overlap completely, and there is no                
detectable unique genetic composition for the individual traits. Once again, the log-likelihood of this model               
is compared to one where the parameters are freely optimized. If ρG is not found to significantly differ from                   
1, then we cannot reject the hypothesis that both heritable traits are driven by the same set of genetic                   
factors. If ρG is significantly different from 0 and significantly different from 1, then the traits share a                  
significant portion of their variance, however each is also likely to be partially driven by a unique set of                   
genetic factors. 
 
Some considerations should be made regarding the measurement error of the traits analyzed here: ρG is the                 
correlation between the latent genetic effects on the two traits irrespective of the proportion of phenotypic                
variance these latent effects explain (i.e., heritability). Measurement error, which is uncorrelated between             
individuals regardless of their relatedness, falls into the environmental component and environmental            
correlations. Measurement error therefore influences h2, ρE , ρP  but definitely never ρG .  
In practice, measurement error does make ρG harder to estimate, because low heritability means that the                
underlying genetic effects cannot be estimated with much precision. This causes the standard error of the                

estimate to increase, but critically, doesn't change its maximum-likelihood estimate systematically. So,ρg              
measurement error makes it harder to reject the null hypothesis that ρG =1.  
Moreover, the bivariate polygenic model used here to estimate the left-right genetic correlation is a linear                
function of laterality (L-R). Indeed, the genetic variance of L-R is  
 

σ (L) (R)   2
G + σ2

G − 2 × ρG × √σ (L) (R)2
G × σ2

G  

 
Where and are the genetic variance for the left and right traits. The phenotypic variance is (L)σ2

G  (R)σ2
G               

similarly defined so that the heritability of L-R can be obtained. But if L-R shows significant                
heritability, it could be because: 1) genetic overlap is incomplete and/or 2) L and R have unequal genetic                  
variances. So, studying laterality is not recommended here because 1) and 2) are confounded. 
 
Meta-analysis of additive genetic variance 
 
Meta-analysis calculate weighted mean heritability (h2) and standard error estimates based on            
measurements from individual cohorts 40,41. We weight the heritability from each cohort by the heritability               
standard error, as extracted from the variance component model of SOLAR. The heritability weighted by               
standard error  40,41 is: 
 

(S)        (1)  h2
MA−SE =

∑
 

j
sej

−2

·h (S)∑
 

j
sej

−2
j
2

 

Where S=1 to  indexes the sulci and  indexes the cohorts.N S , 2,  j = 1  3  
 
Mega-analysis of additive genetic variance 
 
While meta-analyses compute first the heritability independently for each cohort and then combine the              
results, mega-analyses combine first different cohorts and then run a single computation for heritability              
evaluation. We use a program (polyclass) , developed for SOLAR 100 for mega-analysis of heritability on               
sulci descriptors 41,101. This function fits the model after combining the pedigrees of QTIM, HCP and GOBS                 
into a single pedigree (for more details see 40,41).  
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Meta-analysis of genetic correlation 
 
A meta-analysis of genetic correlation is calculated weighting the genetic correlation computed for each              
cohort by its sample size: 

 

(S)          (2)ρG−MA =
∑
 

j
N sub(j)

(S)·N∑
 

j
ρGj

2
sub(j)

 

 
Where S=1 to  indexes the sulci,  indexes the cohorts and  is the sample size of cohort j .N S ..3  j = 1 N sub(j)  
To combine p-values in a meta-analysis we used the Edgington's method which represents a compromise               
between methods more sensitive to largest p-values (e.g. Pearson’s method) and methods more sensitive to               
smallest p-values (e.g. Fisher’s method) 102,103: 
 
 

       (3)eta p alue  k )C1 k )C2 ...M − v =   k!
Sk

− ( − 1 k!
(S−1)k

+ ( − 2 k!
(S−2)k

 
 
where S is the sum of o-values and k the number of tests (i.e. k=3 cohorts in our study). The corrective                     
additional terms are used as long as the number subtracted from S in the numerator is less than S. All the                     
p-values in the meta-analyses estimated were computed using this method. 
 
SNP-based heritability analysis 
 
We used Genome-wide Complex Trait Analysis (GCTA) 104 to calculate the heritability from the individual               
genotypes . Genotypes on the autosomal chromosomes were used to calculate the genetic relationship              
matrix (GRM) with GCTA 104. Heritability, was calculated using a linear mixed model, with age, sex, ICV,                 
and the first four genetic components from multidemential scaling analysis as fixed covariates; we also               
covaried for the presence of any diagnosed neurological or psychiatric disorder. In our analysis, we               
excluded participants with non-European ancestry, missing genotypes or phenotypes, and mismatched sex            
information. 
 
Reliability analysis 
 
Sulcal measurement reliability. To evaluate the reliability of the sulcal shape descriptors we analyzed              
their variability, or reproducibility error, across the test–retest (TRT) sessions for each of the 4 TRT                
cohorts. For each MRI scan there are several sources of variability, including variability from hydration               
status, variability due to slightly different acquisitions in the two sessions (head position change in the                
scanner, motion artifacts, scanner instability, etc.), and finally variability due to the imaging processing              
methods themselves. 
  
There could also be variability in the reliability estimates depending on the type of MRI system used                 
(vendor, model, acquisition parameters), so it is important to address the issue of reliability across a variety                 
of platforms. We used 2 indices of reliability: 1) the dimensionless measure of absolute percent bias of                 
descriptor, b, ( sulcal length, mean depth, width and surface area) of a sulcus with respect to its average; 2)                    
the intraclass correlation coefficient (ICC). b  is computed as follows: 
 
b=100×[test−retest]/[(retest+test)/2]     (4) 
 
The estimation of the means is more robust than the estimation of the variance from the signed differences,                  
in particular for smaller sets of subjects. The distributions of sulcal measurement differences plotted the               
mean across sessions were examined with a Bland–Altman analysis 105. These plots show the spread of                
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data, the bias (i.e. mean difference) and the limits of agreement (± 1.96 SD), and were used to confirm that                    
the distributions were approximately symmetric around zero and to check for possible outliers. While the               
ICC estimates the relation between within-subject variance and between-subjects variance, b offers a             
subject-based index that might be used to find outliers. If scan and rescan are perfectly reliable, b should be                   
equal to zero. The cases where b  is greater than 0.1, as in  48 are considered unreliable. 
 
The intraclass correlation coefficient (ICC) was computed to quantify the reproducibility for sulcal-based             
measurements. ICC is defined as  

  
 

CC           (5)I =  
σ2

BS
σ + σ2

BS
2
W S

 

 
 
providing an adequate relation of within-subject (σ2WS) and between-subject (σ2BS ) variability 46,106,107.  
The ICC estimates the proportion of total variance that is accounted for by the σ2BS . Values below 0.4 are                   
typically classified as ‘poor’ reproducibility, between 0.4 and 0.75 as ‘fair to good’, and higher values as                 
‘excellent’ reproducibility 47. 
  
Equation 5 was used to estimate the ICC for each sulcal descriptor, independently for each cohort. The four                  
cohorts were then combined into a meta-analysis ( ), similar to equation 1, in order to account        ICCMA−SE          
for intra-site variability end to better estimate the sulcal reliability: 
 

(S)        (6)  ICC  
MA−SE =

∑
 

j
sej

−2

·ICC(S)∑
 

j
sej

−2

 

 
where indexes the cohorts. The standard error (SE) was computed like SE = ICC/ Z, where Z , 2, ,  j = 1  3 4                  
is obtained from a normal distribution knowing the p-value. was computed only if the          ICCMA−SE      
cohort-based ICC computed with equation 5 was estimated for at least 3/4 cohorts.  
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