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Abstract

Single-cell sequencing assay for transposase-accessible chromatin (scATAC-seq) is
the state-of-the-art technology for analyzing genome-wide regulatory landscape in
single cells. Single-cell ATAC-seq data are sparse and noisy. Analyzing such data
is challenging. Existing computational methods cannot accurately reconstruct
activities of individual cis-regulatory elements (CREs) in individual cells or rare
cell subpopulations. We present a new statistical framework, SCATE, that
adaptively integrates information from co-activated CREs, similar cells, and
publicly available regulome data to substantially increase the accuracy for
estimating activities of individual CREs. We show that using SCATE, one can
better reconstruct the regulatory landscape of a heterogeneous sample.

Keywords: single cell; chromatin; scATAC-seq; bioinformatics; statistical
modeling; machine learning; software; genomics; DNase-seq; gene regulation

Background
A cell’s regulome, defined as the activities of all cis-regulatory elements (CREs)

in its genome, contains crucial information for understanding how genes’ transcrip-

tional activities are regulated in normal and pathological conditions. Conventionally,

regulome is measured using bulk technologies such as chromatin immunoprecipita-

tion coupled with sequencing (ChIP-seq [1]), DNase I hypersensitive site sequencing

(DNase-seq [2]) and assay for transposase-accessible chromatin followed by sequenc-

ing (ATAC-seq [3]). These technologies measure cells’ average behavior in a biolog-

ical sample consisting of thousands to millions of cells. They cannot analyze each

individual cell. When a heterogeneous sample (e.g., a tissue sample) consisting of

multiple cell types or cell states is analyzed, these bulk technologies may miss im-

portant biological signals carried by only a subset of cells.

Recent innovations in single-cell genomic technologies make it possible to map

regulomes in individual cells. For example, single-cell ATAC-seq (scATAC-seq [4, 5])

and single-cell DNase-seq (scDNase-seq [6]) are two technologies for analyzing open

chromatin, a hallmark for active cis-regulatory elements, in single cells. Single-cell

ChIP-seq (scChIP-seq [7]), on the other hand, allows single-cell analysis of histone

modification. Technologies for simultaneously mapping open chromatin along with

other -omics modalities are also under active development (e.g., scNMT-seq [8], Pi-

ATAC [9], sci-CAR [10]). These single-cell technologies enable scientists to examine

a heterogeneous sample with an unprecedented cellular resolution, allowing them

to systematically discover and characterize unknown cell subpopulations.

Among the existing single-cell regulome mapping technologies, scATAC-seq is

the most widely used one due to its relatively simple and robust protocol and its
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unparalleled throughput for analyzing a large number of cells. It is adopted by the

Human Cell Atlas (HCA) Consortium as a major tool for characterizing regulatory

landscape of human cells ([11]).

Data produced by scATAC-seq are highly sparse. For instance, a typical human

scATAC-seq dataset contains 102–104 cells and 103–105 sequence reads per cell.

However, the number of CREs in the genome far exceeds 105. Thus, in a typical

cell, most CREs do not have any mapped read. For CREs with reads, the number

of mapped reads seldom exceeds two (Fig. 1A,B) because each locus has no more

than two copies of assayable chromatin per cell in a diploid genome. Also, existing

single-cell regulome mapping technologies including scATAC-seq destroy cells dur-

ing the assay. Thus, they only get a snapshot of a cell at one time point. However,

molecular events such as transcription factor (TF)-DNA binding and their dissocia-

tion are temporal stochastic processes. The steady-state activity of a CRE in a cell

is determined by the probability that such stochastic events occur over time. Since

probability is a continuous measure, the overall activity of a CRE in a cell should

be a continuous signal in principle. The sparse and nearly binary scATAC-seq data

collected for each CRE at one single time point therefore cannot accurately describe

the CRE’s continuous steady-state activity in a cell.

The discrete, sparse and noisy data pose significant data analysis challenges. Con-

ventional methods developed for bulk data cannot effectively analyze single-cell

regulome data [12, 13]. As a result, there is a pressing need for new computational

tools for single-cell regulome analysis. Recently, several single-cell regulome analysis

methods have been developed. They can be grouped into three categories based on

how they deal with the sparsity (Additional file 1: Table S1).

Methods in category 1, including chromVAR [12], SCRAT [13] and BROCKMAN

[14], tackle sparsity by aggregating reads from multiple CREs. Instead of analyzing

each CRE, they combine reads from CREs that share either a TF binding motif,

a k-mer, or a co-activation pattern in DNase-seq data from the Encyclopedia of

DNA Elements (ENCODE) [15, 16]. The aggregated data on motifs, k-mers, or

co-activated CRE pathways are then used as features to cluster cells or charac-

terize cell heterogeneity. To demonstrate the effect of combining CREs, Figure 1F

shows chromatin accessibility in cell line GM12878 computed using non-aggregated

data at each individual CRE, and Figure 1G shows accessibility computed using

SCRAT aggregated data (i.e., average normalized read count across CREs) for each

co-activated CRE pathway. After aggregation, the signal in scATAC-seq became

more continuous and showed higher correlation with the bulk DNase-seq-measured

accessibility. One major drawback of aggregating multiple CREs is the loss of CRE-

specific information. Thus, existing methods in this category do not analyze the

activity of each individual CRE.

Methods in category 2, including Dr.seq2 [17] and Cicero [18], tackle sparsity

by pooling multiple cells. Dr.seq2 [17] pools cells and applies MACS [19] to the

pooled pseudobulk sample to call peaks. Cicero [18] first pools the binary chromatin

accessibility profiles from similar cells to create pseudobulk samples. It then uses

the pseudobulk samples to study the pairwise correlation among different CREs.

Typically, scATAC-seq data pooled from multiple cells are more continuous than

data from a single cell, and the pooled data also correlate better with bulk data

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted October 7, 2019. ; https://doi.org/10.1101/795609doi: bioRxiv preprint 

https://doi.org/10.1101/795609
http://creativecommons.org/licenses/by-nc-nd/4.0/


Ji et al. Page 3 of 33

(Fig. 1A-C). Despite this, pooling cells does not fully eliminate sparsity, particularly

in a rare cell type with only a few cells. Also, pooling cells may result in loss of cell-

specific information. Thus, one may want to only pool cells that are highly similar

in order to better characterize a heterogeneous cell population. This could result

in grouping cells into many small cell clusters, each with only a few highly similar

cells. In that situation, pooling cells alone may not be enough for removing sparsity

and accurately estimating activities of individual CREs.

Methods in category 3 directly work with the peak-by-cell read count matrix or

its binarized version. For example, Scasat [20] converts the peak-by-cell read count

matrix into a binary accessibility matrix and uses this binary matrix to cluster cells.

Destin [21] applies weighted principal components and K-means clustering to the

binary accessibility matrix to cluster cells. scABC [22] uses the read count matrix

to cluster cells via a weighted K-medoids clustering algorithm. PRISM [23] uses the

binary accessibility matrix to compute cosine distance between cells and then uses

this distance to evaluate the degree of heterogeneity of a cell population. CisTopic

[24] models the binary accessibility matrix using Latent Dirichlet Allocation (LDA).

This approach views each cell as a mixture of multiple topics, and each topic is a

collection of peak regions and their usage preferences. The topic-cell and region-

topic vectors provide a low-dimensional representation of the data. Cells and peaks

are then clustered in this low-dimensional space. Category 3 methods typically are

designed for specific tasks such as clustering and assessment of sample variability

rather than estimating activities of individual CREs.

In summary, while existing methods provide tools for clustering cells, identifying

co-accessible CREs, and analyzing sample heterogeneity, they do not address the

fundamental issue of accurately reconstructing activities of each individual CRE

using sparse data. Knowing activities of each individual CRE is crucial for func-

tional studies. For example, such knowledge can be used to inform the selection

of CREs for knock-out or transgenic experiments. In order to facilitate accurate

reconstruction of CRE activities using scATAC-seq data, this article introduces a

new statistical and analytical framework SCATE (Single-Cell ATAC-seq Signal

Extraction and Enhancement). SCATE employs a model-based approach to inte-

grate three types of information: (1) co-activated CREs, (2) similar cells, and (3)

publicly available bulk regulome data. Unlike the existing methods that either ag-

gregate CREs (category 1) or cells (category 2) but not both, SCATE combines

both types of information. SCATE also uniquely uses public regulome data to en-

hance the analysis and adaptively optimizes the analysis resolution based on the

available information in the scATAC-seq data. SCATE is freely available as an open

source R package via GitHub. Compared to the existing methods, SCATE can more

accurately predict CRE activities and transcription factor binding sites using the

sparse data from a single cell (Fig. 1B,D) or a rare cell type as we shall demonstrate.

Results
SCATE model for a single cell

SCATE begins with compiling a list of candidate CREs and grouping co-activated

CREs into clusters. Currently, most scATAC-seq data are generated from human

and mouse. For user’s convenience, for these two species we have constructed a
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Bulk DNase-seq Database (BDDB) consisting of normalized DNase-seq samples

from diverse cell types generated by the ENCODE project. For each species, we

compiled putative CREs using BDDB and clustered these CREs based on their co-

activation patterns across BDDB samples. Users may augment these precompiled

CRE lists by using SCATE-provided functions to (1) add and normalize their own

bulk and pseudo-bulk (obtained by pooling single cells) DNase-seq or ATAC-seq

samples to BDDB and then (2) re-detect and cluster CREs using the updated

BDDB. These functions can also be used to create CRE database for other species.

For human and mouse, saturation analyses show that BDDB covers most CREs one

would discover in a new DNase-seq or ATAC-seq dataset. On average, a new sample

only contributes <0.2% new CREs to our precompiled CRE lists (Additional file

2: Fig. S1). Thus, in order to save time and computation for CRE detection and

clustering, users may directly use the precompiled CRE lists in BDDB without

significant loss. In this article, our analyses using SCATE are all carried out using

these precompiled CREs as the input.

Given a list of CREs, their clustering structure, and scATAC-seq data from a

single cell, the SCATE model contains the following key components (Fig. 2A).

(1) Modeling a CRE’s cell-independent but CRE-specific baseline behavior using

publicly available bulk regulome data. By analyzing large amounts of ENCODE

DNase-seq data, we found that these bulk data contain invaluable information not

captured by the sparse single-cell data. In particular, our recent analysis of DNase-

seq data from diverse cell types shows that different CREs have different baseline

activities [25]. Some CREs tend to have higher activity levels than others regardless

of cell type (Fig. 1E: compare two CREs in blue boxes). As a result, the mean DNase-

seq profile across diverse cell types to a large extent can predict the DNase-seq profile

in a new cell type, even though such prediction is cell-type-invariant and cannot

capture cell-type-specific CRE activities. In [25], we found that the mean DNase-seq

profile correlates well with independently measured TF binding activities, indicating

that differences in the baseline activity among different CREs captured by the

mean DNase-seq profile are real biological signals rather than technical artifacts.

These highly reproducible CRE-specific baseline activities cannot be captured by

the sparse data in a single cell or by pooling a small number of cells (Fig. 1B,C,E).

Thus, in order to better reconstruct activities of each individual CRE from scATAC-

seq, SCATE explicitly models these cell-type-invariant but CRE-specific baseline

behaviors by fitting a statistical model to the large compendium of bulk DNase-seq

data in BDDB. This allows us to estimate the baseline mean activity (mi) and

variability (si) of each CRE i.

(2) Modeling a CRE’s cell-dependent activity by borrowing information from sim-

ilar CREs. We model the activity of CRE i in cell j, denoted as µi,j , by decomposing

it into two components: a cell-type invariant component that models the baseline

behavior (mi and si), and a cell-dependent component δi,j for modeling the CRE’s

cell-specific activity. In other words, log(µi,j) = mi + siδi,j . The cell-type invariant

component is learned from BDDB as described above. The cell-dependent compo-

nent is learned using scATAC-seq data in each cell. To do so, we leverage CREs’

clustering structure. Recall that co-activated CREs are grouped into clusters. We

assume that CREs in the same cluster have the same δi,j . Thus, information is
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shared across multiple co-activated CREs. Unlike other methods, we only share in-

formation through δi,j rather than assuming that µi,j is the same across similar

CREs. In our approach, two CREs in the same cluster have the same δ, but they

can have different activities (i.e., different µs) because of the difference in their

CRE-specific baseline behaviors.

(3) Bulk and single-cell data normalization. Since CREs’ baseline characteristics

are learned from bulk DNase-seq data but our goal is to model scATAC-seq data,

we need to reconcile differences between these two technologies. To do so, we as-

sume that µi,j is the unobserved true activity of CRE i in cell j one would obtain

if one could measure a bulk DNase-seq sample consisting of cells identical to cell

j. In scATAC-seq data, µi,j is distorted to become µsci,j due to technical biases in

scATAC-seq compared to bulk DNase-seq. These unknown technical biases are mod-

eled using a cell-specific monotone function hj(.) such that log(µsci,j) = hj(log(µi,j)).

The observed scATAC-seq read count data are then modeled using Poisson distribu-

tions with mean Ljµ
sc
i,j where Lj is cell j’s library size. The technical bias function

hj(.) normalizes scATAC-seq and bulk DNase-seq data. We developed a method to

estimate this unknown function by using CREs whose activities are nearly constant

across diverse cell types in BDDB. Once hj(.) is estimated, CRE activities δi,j and

µi,j can be inferred by fitting the SCATE model to the observed read count data.

(4) Adaptively optimizing the analysis resolution based on available data. In or-

der to examine the activity of each individual CRE, ideally one would hope to pool

as few CREs as possible. However, when data are sparse, pooling too few CREs

will lack the power to robustly distinguish biological signals from noise. Thus, the

optimal analysis should carefully balance these two competing needs. All existing

methods reviewed in category 1 pool CREs based on fixed and predefined pathways

(e.g., all motif sites of a TF binding motif). They do not adaptively tune the analysis

resolution based on the amount of available information. In SCATE, co-activated

CREs are grouped into K clusters. Information is shared among CREs in the same

cluster. We uniquely treat K as a tuning parameter and developed a cross-validation

procedure to adaptively choose the optimal K based on the available data. When

the data is highly sparse, SCATE will choose a small K so that each cluster contains

a large number of CREs. As a result, the activity of a CRE will be estimated by

borrowing information from many other CREs. This sacrifices some CRE-specific

information in exchange for higher estimation precision (i.e., lower estimation vari-

ance). When the data is less sparse and more CREs have non-zero read counts,

SCATE will choose a large K so that each cluster will contain a small number of

CREs. As a result, the CRE activity estimation will borrow information from only

a few most similar CREs, and more CRE-specific information will be retained.

(5) Postprocessing. After estimating CRE activities, we will further process all

genomic regions outside the input CRE list. SCATE will transform read counts at

these remaining regions to bring them to a scale normalized with the reconstructed

CRE activities. The transformed data can then be used for downstream analyses

such as peak calling, TF binding site prediction, or other whole-genome analyses.

SCATE for a cell population consisting of multiple cells

For a homogeneous cell population with multiple cells, we will pool reads from

all cells together to create a pseudo-cell. We will then treat the pseudo-cell as a
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single cell and apply SCATE to reconstruct CRE activities. Similar to Dr.seq2, this

approach combines similar cells to estimate CRE activities. Unlike Dr.seq2, we also

combine information from co-activated CREs and public bulk regulome data as

described above. Moreover, SCATE adaptively tunes the resolution for combining

CREs (i.e. the CRE cluster number K) which is lacking in other methods. As the

cell number in the population increases, the sparsity of the pseudo-cell will decrease

and the optimal analysis resolution chosen by SCATE typically will increase.

For a heterogeneous cell population, we first group similar cells into clusters.

SCATE is then applied to each cell cluster to reconstruct CRE activities by treating

the cluster as a homogeneous cell population (Fig. 2B). By default, SCATE uses

model-based clustering [26] to cluster cells, and the cluster number is automatically

chosen by the Bayesian Information Criterion (BIC). Since one clustering method

is unlikely to be optimal for all applications, we also provide users with the option

to adjust the cluster number or provide their own cell clustering. SCATE can be

run using user-specified cluster number or clustering results. For example, if users

believe that the default clustering does not sufficiently capture the heterogeneity,

they could increase the cluster number. In the most extreme case, if one sets the

cluster number equal to the cell number, each cluster will become a single cell.

We note that pooling cells in each cluster to create a pseudobulk sample does not

mean that the value of single-cell analysis is lost or that scATAC-seq can be replaced

by bulk ATAC-seq or DNase-seq. This is because bulk ATAC-seq or DNase-seq

analysis of a heterogeneous sample cannot separate different cell subpopulations or

discover new cell types. Even if one could use cell sorting to separate cells in a sample

by cell type and then apply bulk analysis to each cell type, the sorting relies on

known cell type markers and therefore cannot discover new cell types. By contrast, a

scATAC-seq experiment coupled with SCATE can identify and characterize different

cell populations including potentially new cell types in a heterogeneous sample.

Benchmark data

We compiled three datasets for method evaluation. Dataset 1 consists of human

scATAC-seq data from two different cell lines GM12878 (220 cells) and K562

(157 cells) generated by [4]. For this dataset, ENCODE bulk DNase-seq data for

GM12878 and K562 were used as the gold standard to evaluate signal reconstruc-

tion accuracy. Dataset 2 contains scATAC-seq data from human common myeloid

progenitor (CMP) cells (637 cells) and monocytes (83 cells) obtained from [27, 28].

We also obtained bulk ATAC-seq data from human CMP and monocytes generated

by [28] and used them as gold standard. Dateset 3 consists of mouse scATAC-seq

data from brain (3321 cells) and thymus (7775 cells) generated by [29]. For evalu-

ation, the ENCODE bulk DNase-seq data for mouse brain and thymus were used

as gold standard. In all evaluations, we removed the test cell types from the BDDB

before running SCATE in order to avoid using the same bulk regulome data in both

SCATE model fitting and performance evaluation.

Analysis of a homogeneous cell population - a demonstration

We first demonstrate SCATE analysis of a homogeneous cell population using the

GM12878 and K562 data (Dataset 1) as an example. We applied SCATE to each
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cell type separately. For each cell type, we randomly sampled n (n = 1, 5, 10, 25,

50, 100, etc.) cells and pooled their sequence reads together to run SCATE. CRE

activities reconstructed by SCATE were compared with their activities measured

by bulk DNase-seq in the corresponding cell type.

Figure 3 shows the normalization function hj(.) learned by SCATE for normaliz-

ing scATAC-seq and the BDDB bulk DNase-seq data. Each scatter plot corresponds

to a pooled scATAC-seq sample. Different plots represent different cell numbers or

cell types. In these plots, each data point is a low-variability CRE with nearly con-

stant activity across BDDB samples. For each CRE, the read count in the pooled

scATAC-seq sample (Y-axis) versus the CRE’s baseline mean activity in BDDB (X-

axis) are shown. The red curve is the SCATE-fitted function (ehj(.)) for modeling

technical biases in scATAC-seq. Overall, scATAC-seq read counts were positively

correlated with CREs’ baseline activities at these low-variability CREs, and the

SCATE-fitted normalization functions were able to capture the systematic relation-

ship (i.e., technical biases) between the scATAC-seq and bulk DNase-seq data.

Figure 4 shows the number of CRE clusters adaptively chosen by SCATE. For

each cell type, there are four plots corresponding to SCATE analyses by pooling

different number of cells, with the cell number n shown on top of each plot. For

each n, n cells were randomly sampled from the scATAC-seq dataset and pooled.

SCATE was applied to the pooled data to automatically choose the CRE cluster

number. This procedure was repeated ten times. The histogram shows the empirical

distribution of the cluster number chosen by SCATE in these ten independent cell

samplings without using any information from the gold standard bulk DNase-seq.

As a benchmark, we also ran SCATE by manually setting the CRE cluster number

K to different values. For each K, we computed the Pearson correlation between the

SCATE-estimated CRE activities in scATAC-seq and the gold standard CRE activ-

ities in bulk DNase-seq. The dots in each plot show the correlation coefficients for

different Ks, also averaged across the ten independent cell samplings. The dot with

the largest correlation coefficient corresponds to the true optimal cluster number.

In real applications this true optimal cluster number would be unknown because

one would not have the bulk DNase-seq as the gold standard to help with choosing

K.

Figure 4 shows that the CRE cluster number automatically chosen by SCATE

(histogram) typically was close to the true optimal cluster number (the dot with

the highest correlation). For instance, for analyzing a single GM12878 cell, the

cluster number chosen by SCATE had its mode at 1250, and the true optimal

cluster number was 2500. For analyzing 220 GM12878 cells, the cluster number

chosen by SCATE had its mode at 521820, and the true optimal cluster number

was also 521820.

Figure 4 also shows that, as the cell number increases, both the true optimal CRE

cluster number and the cluster number chosen by SCATE also increase. Increasing

cluster number implies decreasing cluster size. Thus, SCATE adaptively changes

analysis resolution: as more data are available for each CRE, SCATE gradually

decreases the number of CREs in each cluster for information sharing. This allows

SCATE to maximally retain CRE-specific information.

Figure 5 compares SCATE-reconstructed scATAC-seq signal with bulk DNase-

seq signal in GM12878 and K562 in an example genomic region. The figure has six
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columns corresponding to different cell types and different pooled cell numbers. For

benchmark purpose, the figure also compares SCATE with a number of other meth-

ods, all run based on 200bp non-overlapping genomic windows. Here “Raw reads”

displays the scATAC-seq read count pooled across cells for each genomic window.

This approach is used by Dr.seq2. Raw read counts are also used by scABC to

characterize CRE activities in single cells, but scABC does not pool cells. “Binary”

converts read counts in each cell to a binary accessibility vector and then adds up

the binary accessibility vectors across cells. This approach is used by Cicero. Binary

accessibility is also used by Scasat, Destin, PRISM and cisTopic as their data ma-

trix. ChromVAR, SCRAT and BROCKMAN only analyze and report aggregated

CRE pathway activities rather than activities of individual CREs. Thus, they can-

not be compared here. However, for our previously developed SCRAT, we were

able to modify the codes to estimate CRE activities by directly using pathway ac-

tivities. This results in three methods, “SCRAT 500 CRE cluster”, “SCRAT 1000

CRE cluster” and “SCRAT 2000 CRE cluster” shown in the figure. Here, CREs

were clustered into 500, 1000 or 2000 clusters as in SCRAT using the bulk DNase-

seq data in BDDB. For each CRE cluster, the average normalized scATAC-seq read

count across all CREs in the cluster was calculated. It was then assigned back to

each CRE in the cluster to represent the estimated CRE activity. The “Raw reads”

method can be viewed as a special case of the “SCRAT CRE cluster” method when

the cluster number is equal to the CRE number (i.e., each CRE is a cluster). “Aver-

age DNase-seq” shows the average normalized read count profile of bulk DNase-seq

samples in BDDB. It reflects CRE’s baseline mean activity.

Figure 5 shows that SCATE-reconstructed scATAC-seq signals accurately cap-

tured the variation of CRE activities in bulk DNase-seq across different genomic

loci and different cell types, whereas CRE activities estimated using raw read counts,

binarized chromatin accessibility, or SCRAT CRE cluster methods all failed to ac-

curately capture the bulk DNase-seq landscape. Interestingly, SCATE was able to

use scATAC-seq data from one single cell to accurately estimate CRE activities in

bulk DNase-seq. By contrast, the raw read count and binary accessibility methods

both failed due to data sparsity (e.g., see regions in blue boxes). The SCRAT CRE

cluster method also failed because (1) it assigns the same activity to all CREs in the

same CRE cluster and ignores CRE-specific behaviors, and (2) it does not adap-

tively tune the analysis resolution as in SCATE to maximally retain CRE-specific

signals. The “Average DNase-seq” approach produced relatively continuous signals

and captured some variation across genomic loci in the GM12878 and K562 bulk

DNase-seq data. However, it was unable to capture cell-type-specific signals, such

as those shown in the blue boxes.

Analysis of a homogeneous cell population - a systematic evaluation

Next, we systematically evaluated SCATE and the other methods in all three bench-

mark datasets by treating the six test cell types as six homogeneous cell populations.

The evaluation was based on the correlation with gold standard bulk regulome data,

peak calling performance using reconstructed signals, and ability to predict tran-

scription factor binding sites (TFBSs). Note that even though each test cell type

could potentially be decomposed further into multiple cell subtypes, we could not
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conduct the analysis at the cell subtype level because the gold standard bulk reg-

ulome data for those cell subtypes are unavailable and the subtype label of each

cell is unknown. Thus, for benchmark purpose, here we defined “homogeneous” at

a coarser scale and view cells from each test cell type as homogeneous. This is

reasonable because according to statistical theory, cells in the same cell population

(regardless of the composition of the population) are exchangeable in the sense that,

without knowing the finer structure of the population, the expectation of the be-

havior of any cell randomly drawn from the population is equal to the population’s

bulk (mean) behavior.

In the first evaluation, we computed the Pearson correlation between the scATAC-

seq signals reconstructed by each method and the gold standard bulk signals across

all CREs. As one example, Figure 6A shows the results based on pooling scATAC-

seq data from 10 GM12878 cells. Among all methods, SCATE showed the highest

correlation with the bulk gold standard. We performed the same analysis on all

six test cell types by pooling different cell numbers. For each cell number, we re-

peated the analysis ten times using ten independent cell samplings. The median

performance of the ten analyses was then compared. Figure 6B shows that SCATE

consistently outperformed all the other methods and showed the strongest correla-

tion with the bulk gold standards in all test data. When the pooled cell number

was small, the improvement of SCATE over many methods was substantial. For

instance, for the analysis of one single Monocyte cell, the correlation was 0.22, 0.22,

0.57, 0.57 and 0.57 for Raw reads, Binary, SCRAT 500, 1000 and 2000 CRE cluster

methods, respectively. For SCATE, it was 0.67, representing an improvement of

18%∼205% over the other methods. Of note, the Average DNase-seq method per-

formed relatively well in this evaluation when the cell number was small. However,

as we will show later, the average DNase-seq profile cannot predict changes in CRE

activity between different cell types, but SCATE can.

In the second evaluation, we performed peak calling using scATAC-seq signals

reconstucted by SCATE and other methods. Peak calling is a common task in

DNase-seq or ATAC-seq data analyses. Its objective is to find genomic regions with

significantly enriched signals. We implemented a peak calling algorithm using a

moving average approach (see Methods) and applied it to signals reconstructed

by each method (SCATE, Raw reads, Binary, SCRAT CRE cluster, and Average

DNase-seq). In addition, we also performed peak calling by applying MACS2 [19] to

the pseudobulk sample obtained by pooling cells. The peak calling performance of

each method was evaluated using the sensitivity versus false discovery rate (FDR)

curve, where the “truth” was defined by the peaks called from the bulk gold standard

data. Here sensitivity is the proportion of true bulk peaks discovered by scATAC-

seq, and FDR is the proportion of scATAC-seq peaks that are false (i.e., not found

in bulk peaks). As one example, Figure 7A compares the sensitivity-FDR curves

of different methods when they were applied to the pooled scATAC-seq data from

25 GM12878 cells. For each curve, we computed the area under the curve (AUC).

Figure 7B systematically compares the AUCs of all methods in all six test cell types.

In each plot, the analyses were run by pooling different numbers of cells, and the

median AUC from 10 independent cell samplings was plotted as a function of the

cell number. Once again, SCATE showed the best overall peak calling performance.
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When the cell number was small, the improvement was substantial. For analyzing

one Monocyte cell, for example, the AUC of SCATE was 0.4, whereas the AUCs

for the other methods (except for Average DNase-seq) were all below 0.21. Thus,

SCATE improved over these methods by 90% or more.

In the third evaluation, we used signals reconstructed by each method to predict

TFBSs. We evaluated 28 TFs in GM12878 and 29 TFs in K562 (Additional file

3: Table S2). As gold standard, we collected ChIP-seq peaks for these TFs from

the ENCODE [15]. For the other cell types, we did not find TF ChIP-seq data

suitable for evaluation. Therefore, our TFBS prediciton analysis was focused on

GM12878 and K562. To predict TFBSs of a TF, we mapped its motif sites in the

genome using CisGenome [30]. Genomic windows overlapping with motif sites were

sorted based on their reconstructed scATAC-seq signals. Windows with the highest

signals were labeled as predicted TFBSs (Figure 8A). Motif-containing windows that

overlap with TF ChIP-seq peaks were viewed as gold standard true TFBSs. Based

on this, we generated the sensitivity-FDR curve for each TF by gradually relaxing

the TFBS calling cutoff. As one example, Figure 8B shows the sensitivity-FDR

curves of different methods for predicting ELF1 binding sites by pooling scATAC-

seq data from 25 GM12878 cells. For each TF and cell type, we performed this

analysis using different cell numbers. For each cell number, the median area under

the sensitivity-FDR curve (AUC) of 10 independent cell samplings was computed.

As two examples, Figure 8C shows the AUCs for different methods as a function

of pooled cell number for two TFs: ELF1 in GM12878 and JUND in K562. Finally,

Figure 8D shows the average performance of all 28 TFs in GM12878 and 29 TFs in

K562. In all these analyses, SCATE robustly outperformed all the other methods.

The overall improvement was substantial (e.g., see K562 in Fig. 8D).

Analysis of a heterogeneous cell population - demonstration and systematic evaluation

To demonstrate the analysis of a heterogeneous cell population, we mixed GM12878

and K562 cells from Dataset 1 with different ratios to create synthetic samples with

different heterogeneity levels. Each synthetic sample had 100 cells representing a

mixture of GM12878 and K562 cells. The percentage of GM12878 cells was set to

x = 10%, 30% and 50%, respectively. For each percentage x, ten synthetic samples

were created using independently sampled cells. The median performance of each

method on the ten analyses was compared.

Each synthetic sample was analyzed by first clustering cells using the default cell

clustering algorithm in SCATE. SCATE and other methods were then used to esti-

mate CRE activities for each cell cluster. The number of cell clusters automatically

determined by SCATE in these samples ranged from 2-5 (Figure 9A). Figure 9B

shows one example in which cells were grouped into 2 clusters.

In order to evaluate whether the analysis can discover the true biology, we first

annotated each cell cluster based on its dominant cell type. A cell cluster was labeled

as “predicted GM12878” if over 70% of cells in the cluster were indeed GM12878

cells. Similarly, a cell cluster with ≥70% K562 cells was labeled as “predicted K562”.

All other clusters were labeled as “ambiguous”. For a given sample, if at least one

cell cluster was labeled as “predicted cell type X” (X = GM12878 or K562), we

say that cell type X was detected. Based on this definition, both GM12878 and
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K562 can be detected in all samples (Fig. 9C). Note that one cell type may be

identified by multiple cell clusters. Given the cell type annotation, we then compared

the regulome of each cell type reconstructed by SCATE and other methods. Since

all methods used the same cell clustering results, the comparison of their signal

reconstruction ability is a fair comparison. We conducted four types of comparisons.

First, we asked whether the regulome reconstructed by each method for each pre-

dicted cell type can accurately recover the cell type’s true regulome measured by

the gold standard bulk data. Take GM12878 as an example. For each cell cluster

predicted as GM12878, the Pearson correlation between the cluster’s reconstructed

scATAC-seq signal and the gold standard bulk GM12878 DNase-seq data was com-

puted. If a sample had two or more cell clusters predicted as GM12878, each cluster

was analyzed separately. The median correlation of all such clusters in ten indepen-

dent synthetic samples is shown in Figure 9D. SCATE again performed the best.

When the proportion of GM12878 cells in a sample was small, the improvement by

SCATE was larger. Figure 9E shows the same analysis for K562, but the perfor-

mance was shown as a function of GM12878 cell proportion. Figure 9F shows the

combined results. Here at each cell mixing proportion, the median scATAC-bulk

correlation of all cell clusters predicted either as GM12878 or K562 was shown. In

all these analyses, SCATE consistently performed the best.

Second, we conducted peak calling and evaluated each method’s ability to recover

true peaks in each cell type. Here the truth was defined as peaks called from the

gold standard bulk data, and the evaluation was conducted similar to Figure 7.

Figure 9G shows the median AUC of all cell clusters predicted either as GM12878

or K562 as a function of cell mixing proportion. SCATE robustly outperformed the

other methods.

Third, we compared different methods in terms of their ability to predict TFBSs.

TFBS prediction and evaluation were performed similar to Figure 8. The results

are shown in Figure 9H, in which the median AUC for each method is plotted as a

function of cell mixing proportion. SCATE produced the best prediction accuracy.

Last but not least, we applied different methods to predict differential CRE activ-

ities between different cell types, which is crucial for characterizing the regulatory

landscape of a heterogeneous sample. Here we collected all pairs of cell clusters that

were predicted as two different cell types (i.e., one cluster was “predicted GM12878”

and the other cluster was “predicted K562”; ambiguous cell clusters were excluded).

For each such pair, we computed the difference of reconstructed CRE activities be-

tween the two cell clusters. We then compared this predicted difference with the

true differential CRE activities derived from the gold standard bulk DNase-seq data

for GM12878 and K562. The Pearson correlation between the predicted and true

differential signals was calculated. As one example, Figure 10 shows the results for a

cell cluster pair in a synthetic sample in which 30% of cells was GM12878. SCATE

best recovered the differential CRE activities (Correlation = 0.43). Figure 9I shows

the median correlation across ten independent synthetic samples at each cell mixing

proportion. Once again, SCATE performed the best.

We note that the Average DNase-seq method completely failed for predicting

differential signals between two cell types (Correlation = 0) (Figs. 9I,10), even

though it performed relatively well for estimating CRE activities within one cell
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type, and peak calling and TFBS prediction in one cell type (Figs. 6,7,8,9F-H).

Similarly, each of the other methods may perform well in some datasets or analyses

but not in others. SCATE is the only method that robustly performed the best in

all our analyses.

Similar to GM12878 and K562 (Dataset 1), we also constructed heterogeneous

cell populations using the other two datasets (Datasets 2 and 3) and used them to

evaluate different methods. The results are shown in Figure 9J-O and Additional

file 2 - Figure S2. For these two datasets, we did not perform TFBS prediction due

to lack of gold standard ChIP-seq data. For estimating CRE activities (Fig. 9J,M),

peak calling (Fig. 9K,N) and predicting differential CRE activities (Fig. 9L,O),

SCATE again outperformed all the other methods. In many cases, the improvement

was substantial (e.g., Fig. 9K,L,N,O).

Analysis of scATAC-seq data from human hematopoietic differentiation

To further demonstrate and evaluate SCATE, we analyzed a scATAC-seq dataset

generated by [27] which consists of 1920 cells from 8 human hematopoietic cell

types for which corresponding bulk ATAC-seq data are available. These cell

types include hematopoietic stem cell (HSC), multipotent progenitor (MPP),

lymphoid-primed multipotent progenitor (LMPP), common myeloid progenitor

(CMP), common lymphoid progenitor (CLP), granulocyte-macrophage progenitor

(GMP), megakaryocyte-erythrocyte progenitor (MEP) and monocyte (Mono). In

this dataset, the true cell type label of each cell was known since cells were obtained

by cell sorting. Figure 11A shows the tSNE [31] plot of all cells color-coded by their

true cell types. In the plot, different cell types were distributed along three major dif-

ferentiation lineages (myeloid: HSC→MPP→(CMP or LMPP)→GMP→Mono; ery-

throid: HSC→MPP→CMP→MEP; lymphoid: HSC→MPP→LMPP→CLP), which

are consistent with known biology. For method evaluation, we analyzed all cells

together as a heterogeneous cell population and pretended that the cell type la-

bels were unknown. We also downloaded and processed bulk ATAC-seq data for

these 8 cell types from [28] and used them as the gold standard to assess regulome

reconstruction accuracy.

Using its default cell clustering method, SCATE identified 14 cell clusters. To

evaluate the performance of this unsupervised analysis for recovering true biology,

we first assigned a cell type label for each cluster. A cluster was annotated as

“predicted cell type X” if the cluster contained at least two cells and the true cell

type label of ≥70% cells from the cluster was cell type X. Clusters that cannot be

annotated using this criterion were labeled as ambiguous. In this way, we were able

to unambiguously annotate 9 clusters. Since multiple clusters may be annotated

with the same cell type, these 9 annotated clusters corresponded to a total of 6

cell types (Fig. 11B). For these 9 clusters, one can evaluate signal reconstruction

accuracy because the bulk ATAC-seq data for the annotated cell type was available.

Each cluster was treated as a homogeneous cell population by SCATE and other

methods in our analysis (as one would do in real applications), even though the

cluster actually may not be pure and may contain cells from more than one cell

types. Figure 11D compares the Pearson correlation between the gold standard bulk

signal and the CRE activities reconstructed from scATAC-seq by different methods.
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Each boxplot contains 9 data points corresponding to the 9 cell clusters. Figure 11E

compares the peak calling performance (AUC under the sensitivity-FDR curve).

Figure 11F compares the accuracy for predicting differential CRE activities between

different cell types. Here each data point in the boxplot is a pair of cell clusters

annotated with two different cell types. The Pearson correlation between the gold

standard bulk differential signal and differential signal reconstructed from scATAC-

seq was computed and compared. In all these analyses, SCATE outperformed the

other methods. Figure 11J shows an example genomic region in a HSC cell cluster.

SCATE most accurately reconstructed the bulk ATAC-seq signal in HSC.

SCATE provides users with the flexibility to specify their own cell cluster number

or use their own cell clustering results. The software can reconstruct signals based on

user-provided cell cluster number or clustering structure. For instance, suppose one

is not satisfied with the default cell clustering and wants to increase the granularity

of clustering to make each cluster smaller and more homogeneous, one can manually

adjust the cluster number. To demonstrate, we increased the cluster number to 38

so that each cluster had approximately 50 cells on average. After rerunning SCATE,

24 of the 38 cell clusters can be unambiguously annotated, identifying a total of

7 cell types (Fig. 11C). As a comparison, the default analysis only unambiguously

identified 6 cell types. For the unambiguously annotated cell clusters, Figure 11G-I

compares the performance of different methods for reconstructing CRE activities,

peak calling, and estimating differential CRE activities between different cell types.

SCATE still delivered the best performance. Since the average cell cluster size be-

came smaller, the performance of some methods decreased substantially in some

analyses (e.g., the CRE reconstruction and peak calling accuracy for Raw reads

and Binary in Fig. 11G,H). In these cases, the benefit from SCATE was even more

obvious.

Discussions
In summary, SCATE provides a new tool for analyzing scATAC-seq data. Our

analyses show that it robustly outperforms the existing methods for reconstructing

activities of each individual CRE. In many cases, the gain can be substantial.

The main novelty of SCATE is its unique strategy to reconstruct CRE activities

from sparse data by (1) integrating data from both similar CREs and cells, (2)

leveraging the rich information provided by publicly available regulome data, and

(3) adaptively optimizing the analysis resolution based on available data. Coupled

with appropriate cell clustering, SCATE allows one to systematically characterize

the regulatory landscape of a heterogeneous sample via unsupervised identification

of cell subpopulations and reconstruction of their chromatin accessibility profile at

the single CRE resolution.

Since many methods for clustering cells using scATAC-seq data have been devel-

oped (Additional file 1: Table S1), cell clustering per se is not the focus of this article.

In principle, the SCATE model may be coupled with any cell clustering method.

While our implementation uses model-based clustering as the default, users are

provided with the option to use their own cell clustering results as the input for

SCATE.

The basic framework adopted by SCATE to improve the analysis of sparse data

by integrating multiple sources of information is general. In principle, a similar
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approach may also be used to analyze other types of single-cell epigenomic data

such as single-cell DNase-seq or ChIP-seq, and possibly single-cell Hi-C [32].

Our current implementation of SCATE is focused on identifying and character-

izing cell subpopulations. A future direction is to extend this framework to other

types of analyses such as pseudotime analysis [33] to allow the study of CRE activ-

ities along continuous pseudotemporal trajectories. Another future direction is to

develop new methods that utilize the improved CRE estimation to more accurately

reconstruct gene regulatory networks.

Methods
Single-cell ATAC-seq data preprocessing

Single-cell ATAC-seq data for GM12878 and K562 cells were obtained from GEO

(GSE65360) [4]; Single-cell ATAC-seq data for human hematopoietic cell types were

obtained from GEO (GSE96769) [27]; Single-cell ATAC-seq data for mouse brain

and thymus were obtained from GEO (GSE111586) [29]. For each cell, paired-

end reads were trimmed using the program provided by [4] to remove adaptor

sequences. Reads were then aligned to human (hg19) or mouse (mm10) genome

using bowtie2 with parameter -X2000. This parameter retains paired reads with

insertion up to 2000 base pairs (bps). PCR duplicates were removed using Picard

(http://broadinstitute.github.io/picard/).

Genome segmentation

Genome is segmented into 200 base pair (bp) nonoverlapping bins. Bins that overlap

with ENCODE blacklist regions are excluded from subsequent analyses since their

signals tend to be artifacts [34].

Bulk DNase-seq database (BDDB)

SCATE borrows information from large amounts of publicly available bulk DNase-

seq data to improve scATAC-seq analysis. We compiled a database consisting of

404 human and 85 mouse DNase-seq samples obtained from the ENCODE. Take

human as an example, we downloaded all ENCODE DNase-seq samples generated

by the University of Washington [15] in bam format. Files marked by ENCODE as

low quality (marked as “extremely low spot score” or “extremely low read depth”

by ENCODE) were filtered out. Technical replicates for each distinct cell type or

tissue were merged into one sample. This has resulted in 404 DNase-seq samples

representing diverse cell types (Additional file 4: Table S3). Mouse samples were

processed similarly (Additional file 5: Table S4).

Compiling cis-regulatory elements (CREs) using bulk data compendium

Given a species and a compendium of bulk regulome samples (e.g., DNase-seq sam-

ples in BDDB), SCATE systematically identifies CREs in the genome as follows.

Let yi,j denote the raw read count of bin i in sample j. Let Lj be sample j’s total

read count divided by 108 (i.e., the library size in the unit of hundred million. For

example, a sample with 200 million reads has Lj = 2). We normalize the raw read

counts by library size and log2-transform them after adding a pseudocount 1. This

results in normalized data ỹi,j = log2(yi,j/Lj + 1). Bin i is called a “signal bin”
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in sample j if (1) yi,j ≥ 10, (2) ỹi,j ≥ 5, and (3) ỹi,j is at least five times (three

times for mouse) larger than the background signal defined as the mean of ỹi,js in

the surrounding 100 kb region. If a bin is a signal bin in at least one bulk sample,

it is labeled as a “known CRE”. In this way, all genomic bins are labeled as either

“known CREs” or “other bins”. 522,173 known CREs for human and 475,865 known

CREs for mouse are identified using our bulk DNase-seq compendium. Locations

of these CREs are stored in SCATE and provided as part of the software package.

Saturation analysis shows that typically a new bulk sample from a new cell type

only contributes a small fraction (0.013 % for human and 0.18 % for mouse) of

new CREs to the known CRE list (Additional file 1: Fig. S1A). In the three bench-

mark scATAC-seq datasets used in this article, datasets 1, 2 and 3 would only add

0.050%, 0.0013%, and 0.063% new CREs, respectively, to our known CRE list. For

the human hematopoietic differentiation dataset used in the last Results section,

the scATAC-seq dataset would only add 0.118 % of new CREs to the known CRE

list (Additional file 1: Fig. S1B; the calculation was based on detecting CREs in

each cell type separately and then adding the union of all CREs from all cell types

in the scATAC-seq data to the known CRE list). This suggests that the majority

of a new sample’s regulome can be studied by analyzing the precompiled known

CREs, which can save user’s work on compiling and clustering their own CREs. In

this article, SCATE is demonstrated using our precompiled known CRE list, as the

performance curves and statistics do not change much by adding new CREs from

each scATAC-seq dataset to the analysis.

SCATE model for known CREs in a single cell

Consider scATAC-seq data from one single cell j. Given aligned sequence reads,

SCATE will estimate activities of known CREs first. Let yi,j denote the observed

read count for CRE i (i = 1, . . . , I) in cell j, and let µi,j denote the unobserved

true activity. Our goal is to infer the unobserved µi,j from the observed data yi,j .

We assume the following data generative model with three components.

1 Model for true activity. The unobserved µi,j is modeled as log(µi,j) =

mi+siδi,j . Here mi and si represent CRE i’s baseline mean activity and stan-

dard deviation (SD). They are used to model the locus-specific but cell-type-

independent baseline behavior of each CRE (i.e., the locus effects observed

in Figure 1E). Since these locus-specific effects cannot be reliably learned us-

ing sparse data or data from one cell type, we learn them using the bulk

data from diverse cell types in our bulk regulome data compendium (see be-

low). Once they are learned, mi and si are treated as known. The unknown

δi,j describes CRE i’s cell-specific activity after removing locus effects (i.e.,

δi,j =
log(µi,j)−mi

si
).

Due to data sparsity, accurately estimating δi,j using the observed data from

only one CRE in one cell is difficult. Thus, we impose additional structure on

δi,js to allow co-activated CREs to share information to improve the estima-

tion. We group CREs into K clusters based on their co-activation patterns

across cell types (see below). We assume that CREs in the same cluster share

the same δ. Mathematically, let δj = (δ1,j , . . . , δI,j)
T be a column vector

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted October 7, 2019. ; https://doi.org/10.1101/795609doi: bioRxiv preprint 

https://doi.org/10.1101/795609
http://creativecommons.org/licenses/by-nc-nd/4.0/


Ji et al. Page 16 of 33

that contains δi,js from all CREs in cell j. Let X be a I × K cluster mem-

bership matrix. Each entry of this matrix xik is a binary variable: xik = 1

if CRE i belongs to cluster k, and xik = 0 otherwise. Let βk,j denote the

common activity of all CREs in cluster k. Arrange βk,js into a column vec-

tor βj = (β1,j , . . . , βK,j)
T . Our assumption can be represented as δj = Xβj .

When the cluster number K is smaller than the CRE number I, imposing this

additional structure on δi,j reduces the number of unknown parameters from

I to K. As a result, it increases the average amount of information available

for estimating each parameter.

Note that in our model, two CREs with the same δ can still have different

activities (i.e., different µi,js) because log(µi,j) = mi + siδi,j . In other words,

SCATE allows co-activated CREs to share information through δ, but at

the same time it also allows each CRE to keep its own locus-specific baseline

characteristics. This is an important feature missing in other existing methods.

Another unique feature of SCATE is that we treat the cluster number K as

a tuning parameter and adaptively choose it based on available information

to optimize the analysis’ spatial resolution. Unlike SCATE, other existing

methods aggregate CREs based on known pathways. For them, K is fixed

and the analysis’ spatial resolution cannot be tuned and optimized.

2 Model for technical bias. Since the locus effects mi and si are learned from the

bulk data, we view µi,j as the activity one would obtain if one could measure

a bulk regulome sample (e.g., bulk DNase-seq) consisting of cells identical to

cell j. In scATAC-seq data, µi,j is distorted to become µsci,j due to technical

biases in single-cell experiments (e.g., DNA amplification bias). We model

these unknown technical biases using a cell-specific monotone function hj(.).

In other words, we assume log(µsci,j) = hj(log(µi,j)). We estimate the unknown

function hj(.) by comparing scATAC-seq data with the bulk regulome data

at CREs that show constant activity across different cell types (see below).

Once hj(.) is estimated, it is assumed to be known.

3 Model for observed read counts. We assume that the observed read count yi,j

is generated from a Poisson distribution with mean Ljµ
sc
i,j . Here Lj is the

total number of reads in cell j divided by 108. It is a cell-specific normalizing

factor to adjust for library size.

To summarize, our model assumes:

yi,j ∼ Poisson(Ljµ
sc
i,j)

log(µsci,j) = hj(log(µi,j))

log(µi,j) = mi + siδi,j

δj = Xβj

(1)

For a fixed cluster numberK, we fit the model as follows: (1) use the bulk regulome

data compendium to learn locus effects mi and si; (2) use scATAC-seq data and
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the bulk regulome data compendium to learn technical bias function hj(.) which

normalizes scATAC-seq data with the bulk regulome compendium used to learn

locus effects; (3) given mi, si and hj(.), use the observed data y to estimate β

which will determine δ and µ. The estimated µ provides the final estimates for

CRE activities.

In order to optimize the analysis’ spatial resolution, SCATE treats the cluster

number K as a tuning parameter. CREs are clustered at multiple granularity levels

corresponding to different Ks. As K increases, the average number of CREs per

cluster decreases. This increases spatial resolution because the cluster activity more

resembles the activity of individual CREs. However, increasing K also decreases

the amount of information for estimating the activity of each cluster, and thus the

estimates become noisier. We use a cross-validation approach to choose the optimal

K that balances spatial resolution and estimation uncertainty (see below).

Estimate locus effects mi and si

We estimate locus effects using the rich bulk data from diverse cell types in the

bulk regulome compendium. Let yi,j be the observed read count for genomic bin i

and bulk sample j (j = 1, . . . , J). Lj represents sample j’s library size in the unit

of hundred million. For each genomic bin i, locus effects are estimated using the

observed counts {yi,j : j = 1, . . . , J}. We model yi,j in bulk data as:

yi,j ∼ Poisson(Ljµi,j)

log(µi,j) = mi + siδi,j
(2)

This is similar to the single-cell model above but without the technical bias com-

ponent. Without additional constraints, mi and si are not identifiable since each

bin i has only J observed data points but J + 2 unknown parameters (i.e., mi, si,

and J different δi,js). Thus, we further assume δi,j ∼ N(0, 1). This is equivalent

to assuming that log(µi,j) for bin i is normally distributed, and mi and si are its

mean and SD respectively. This assumption is based on observing that CREs’ log-

normalized read counts after standardization (i.e. subtract mi and divide by si) are

approximately normally distributed (Additional file 2: Fig. S3). With this additional

constraint, mi and si become identifiable. Since maximum likelihood estimation for

all genomic bins in a big genome like human is computationally slow, SCATE em-

ploys the method of moments to estimate mi and si. Based on the model and

theoretical moments of Poisson and Lognormal distributions, the first and second

moments of yi,j/Lj are (see Additional file 6: Supplemental Note for derivations):

E

(
yi,j
Lj

)
= emi+

1
2 s

2
i

E

(
yi,j
Lj

)2

=
1

Lj
emi+

1
2 s

2
i +

[
emi+

1
2 s

2
i

]2
es

2
i

(3)

By matching the model-based moments to the empirical first two moments of

the observed yi,j/Ljs, we obtain the following closed-form estimates for mi and si

which can be computed efficiently:

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted October 7, 2019. ; https://doi.org/10.1101/795609doi: bioRxiv preprint 

https://doi.org/10.1101/795609
http://creativecommons.org/licenses/by-nc-nd/4.0/


Ji et al. Page 18 of 33

s̃i =

√√√√log

(∑
j(yi,j/Lj)

2/J −
∑
j(yi,j/L

2
j )/J

(
∑
j(yi,j/Lj)/J)2

)

m̃i = log

(∑
j(yi,j/Lj)

J

)
− s̃2i /2

(4)

In rare cases where
∑

j(yi,j/Lj)
2/J−

∑
j(yi,j/L

2
j )/J

(
∑

j(yi,j/Lj)/J)2
< 1, the estimates become:

s̃i = 0

m̃i = log

(∑
j(yi,j/Lj)

J

) (5)

Estimate technical bias function hj(.)

The cell-specific technical bias function hj(.) is estimated using known CREs whose

activities do not change much across cell types. All known CREs are sorted accord-

ing to s̃i estimated above which reflects their variability across diverse cell types

in the bulk regulome data compendium. We split m̃i into ten groups by its 10%,

20%, ..., 100% quantiles, and find 1000 CREs with the smallest s̃i in each group.

The union set of these 10000 CREs is a set H of “low-variability” CREs. For these

low-variability CREs, their activities are almost constant across cell types. Thus,

one can assume that their activities in a new cell are known and approximately

equal to m̃i, and the model for their scATAC-seq read counts in a new cell j can

be simplified to:

yi,j ∼ Poisson(Ljµ
sc
i,j)

log(µsci,j) = hj(log(µi,j)) ≈ hj(m̃i)
(6)

We estimate hj(.) using yi,js from these low-variability CREs. The function hj(.)

is monotonically increasing but has unknown form. We model it using monotone

spline [35] (splines2 package in R):

hj(x) = αj,0 +
T∑
t=1

αj,tIt(x) s.t. αj,t ≥ 0 (t = 1, ..., T )

Here It(x) are known I-spline basis functions (which are monotone functions [35])

and αj,ts are unknown regression coefficients. The constraints αj,t ≥ 0 make hj(.)

monotone and non-decreasing. The maximum likelihood estimates for coefficients

αj = {αj,t : t = 0, . . . , T} can then be obtained as:

α̃j = arg max
αj

∑
i∈H

[yi,j ∗ h(m̃i)− Ljeh(m̃i)] s.t. αj,t ≥ 0 (t = 1, ..., T ) (7)

To select the optimal set of basis functions, we try different settings of knots by

changing T . We set T = 1, 2, ..., 6, respectively, which sets the number of knots from

0 to 5. For each T , the t/T -th quantiles (t = 1, ..., T − 1) of m̃i are chosen as the

knots. Given the knots, the spline basis functions are then generated by splines2.

The T with the smallest Bayesian information criterion (BIC) is chosen to obtain

the optimal set of basis functions.
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Estimate β, δ and µ

Once the locus effects mi and si and technical bias function hj(.) are estimated,

SCATE treats them as known and will then estimate β. Suppose CREs are grouped

into K clusters. The activity for cluster k in cell j, βk,j , can be estimated using the

observed read counts in cell j for all CREs in the cluster. When data are sparse

(particularly for clusters with small number of CREs), the maximum likelihood

estimate can be unreliable due to its high variance. Thus, consistent with our bulk

regulome data model, we impose a prior distribution on βk,j to help regularize its

estimation: βk,j ∼ N(0, 1). We then estimate βk,j using its posterior mode:

β̃k,j = arg max
β

∑
i∈C(k)

[yi,jhj(mi + siβ)− Ljehj(mi+siβ)]− β2/2

Here C(k) represents the set of CREs in cluster k. The above optimization involves

only one variable β, and thus the computation is not expensive. Estimation of

different βk,js are handled separately.

Given β̃k,j , δi,j and µi,j can be derived using model (1).

Analysis at multiple spatial resolution levels (i.e., multiple Ks)

SCATE analyzes data at multiple spatial resolution levels by setting the cluster

number K to different values. To do so, known CREs are clustered based on their

co-activation patterns across all samples in the bulk regulome data compendium.

Before clustering, CREs’ normalized data ỹi,j are organized as a matrix. Rows of

the matrix correspond to CREs and columns correspond to samples. Each row is

standardized to have zero mean and unit SD. Then CREs (i.e., rows) are clus-

tered hierarchically at multiple granularity levels. A naive hierarchical clustering of

522,173 CREs (475,865 CREs for mouse) is difficult because it requires computing

a distance matrix on the order of 500, 000 × 500, 000. To make the computation

tractable, SCATE employs a three-stage clustering approach.

• Stage 1: CREs are grouped into 5000 clusters using K-means clustering (Eu-

clidean distance). Each cluster contains approximately 100 CREs that show

similar cross-sample activity patterns. For each cluster, the mean activity of

all CREs in each sample is computed. It is then standardized to have zero

mean and unit SD across samples.

• Stage 2: To obtain coarser clusters, the 5000 clusters from stage 1 are grouped

hierarchically using hierarchical clustering (Euclidean distance, complete ag-

glomeration) based on their mean activity profile. In this way, CREs are hi-

erarchically grouped into 5000, 2500, 1250, 625, 312 and 156 clusters.

• Stage 3: To obtain fine-grained clusters, for each cluster obtained in Stage 1,

hierarchical clustering is applied to split CREs in that cluster into smaller

clusters. In this way, each cluster from Stage 1 can be divided into 2, 4, 8, ...

subclusters until each subcluster contains only one CRE.

CREs’ clustering structure for human and mouse obtained using our DNase-seq

compendium is stored and provided as part of the SCATE package. Users can use

it directly without recomputing them.
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Optimizing spatial resolution (K) by cross-validation

SCATE optimizes the spatial resolution of the analysis by choosing the optimal

K via cross-validation. For a given K, after clustering CREs, CREs are randomly

partitioned into a training set (90% CREs) and a testing set (10% CREs). Next,

for each cluster k, CREs in the training set are used to estimate βk,j which is

the common activity of all CREs in that cluster. Using the estimated β̃k,j , the

log-likelihood of the test CREs in cluster k can be computed according to model

(1) because they share the same βk,j with training CREs in the same cluster. We

perform the same calculations for all clusters and obtain the median log-likelihood

of all testing CREs.

The above procedure is run for different values of K. The cluster number K with

the largest median log-likelihood in test data is selected as the optimal K.

Postprocessing – SCATE for other genomic bins in a single cell

After estimating activities of known CREs, SCATE will analyze all other bins in

the genome. These bins fall into two classes. First, some bins have zero scATAC-

seq read count across all cells. For these bins, µi,j is estimated to be zero. Second,

the remaining bins have at least one read in the scATAC-seq data. For these bins,

we estimate µi,j using a predictive machine learning approach xgboost (eXtreme

Gradient Boosting [36]) where the response variable is the SCATE signal µ̃i,j and

the predictors are normalized read count yi,j/Lj , mi and si. The model is trained

using known CREs. The trained model is then applied to bins not included in the

known CRE list to make predictions. This will transform the read counts at these

bins to a scale consistent with the reconstructed activities for known CREs.

SCATE for multiple cells

When a scATAC-seq dataset contains multiple cells, we first cluster cells using a

method similar to our previously published method SCRAT [13]. Before clustering

cells, CREs are grouped into 5000 clusters using BDDB as before. For each cell,

the average activity of all CREs in each CRE cluster is calculated as in SCRAT.

This transforms the scATAC-seq data in each cell into a feature vector consisting of

5000 CRE cluster activities. After quantile normalizing features across cells, features

with low-variability across cells are filtered out. To identify low-variability features,

for each feature we calculate the mean and SD of its activity across cells. Using

the means and SDs of all features, we fit a polynomial regression with degree=3

to describe the relationship between the SD (response) and mean (independent

variable). Features for which the observed SD is smaller than the expected SD (from

the fitted model) given the mean activity are filtered out. Among the remaining

high-variability features, we retain those that have non-zero read count in at least

10% of cells. PCA is then performed on the retained features. The top 50 principal

components are then used to perform tSNE. The model-based clustering (mclust

in R) [26] is used to perform clustering on tSNE space with default settings. The

cluster number is chosen based on the Bayesian Information Criterion in mclust. If

users do not want to use the default cluster number or clustering method, SCATE

also provides an option to allow them to specify the cluster number by their own

or use their own clustering results from other algorithms.
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After cell clustering, each cluster consists of a set of similar cells and represents

a relatively homogeneous cell subpopulation. SCATE will estimate the regulome

profile of each cluster. For each cluster, reads from all cells are pooled together

to create a pseudo-cell. The SCATE model for a single cell described above is

then applied to the pseudo-cell to estimate CRE activities. The estimated regulome

profile of the pooled sample typically will achieve higher spatial resolution than a

single cell since (1) the pseudo-cell contains data from more than one cell and (2)

SCATE automatically tunes the spatial resolution based on available information.

The output of SCATE is the estimated regulome profile for each cell subpopulation.

Peak calling and evaluation

A moving average approach is used to call peaks from the reconstructed regulome

profile. Given a moving window size 2W + 1, the moving average signal for each

200 bp bin is calculated as the average signal of the bin and its 2W neighboring

bins (W bins on the left and W bins on the right). By default, W = 1 which

amounts to averaging signals from 3 bins spanning 600 bp in total. In parallel, we

also calculate the average signal of 2W + 1 randomly selected bins (not necessarily

neighboring bins) for 100000 times to construct a background distribution for the

moving average signal. For a genomic bin with moving average signal s, the false

discovery rate (FDR) is estimated as the proportion of background distribution

larger than s divided by the observed proportion of genomic bins with signals larger

than s. Genomic bins with FDR smaller than 0.05 are identified and consecutive

bins are merged into peaks. Peaks are ranked by FDR. For peaks tied with the same

FDR, they are ranked further by the moving average signals.

For evaluation, peaks called using signals constructed by different methods are

compared with peaks called using bulk regulome data. In the evaluation, we also

assessed MACS peak calling on pooled cells. MACS is run with settings –nomodel

–extsize 147.

TFBS prediction

TF motifs are downloaded from JASPAR [37] (Additional file 3: Table S2). These

motifs were mapped to the genome using CisGenome with likelihood ratio cutoff =

100. Narrow peak files of the corresponding ChIP-seq data in GM12878 and K562

are downloaded from ENCODE. For each TF and cell type, genomic bins with motif

were ranked based on reconstructed scATAC-seq signals to predict TFBSs. Genomic

bins with motif that overlap with ChIP-seq peaks are used as gold standard.

Processing of benchmark bulk DNase-seq and ATAC-seq data

The benchmark bulk DNase-seq data for GM12878 and K562 (Dataset 1) are

obtained from ENCODE. Bulk ATAC-seq data for human CMP and monocytes

(Dataset 2) and human hematopoietic cell types in the last example are obtained

from GEO under accession GSE74912. Bulk DNase-seq data for mouse brain and

thymus (Dataset 3) are obtained from ENCODE.

Bulk DNase-seq samples are processed using the same protocol as DNase-seq data

processing in BDDB. For ATAC-seq sample, reads are aligned to human genome

hg19 using bowtie with parameters (-X 2000 -m 1). PCR duplicates are removed

by Picard (http://broadinstitute.github.io/picard/). The aligned reads are used to

obtain bin read counts.

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted October 7, 2019. ; https://doi.org/10.1101/795609doi: bioRxiv preprint 

https://doi.org/10.1101/795609
http://creativecommons.org/licenses/by-nc-nd/4.0/


Ji et al. Page 22 of 33

Software

SCATE is freely available as an open source R package via GitHub and licensed

under the MIT License:

https://github.com/zji90/SCATE

In terms of computational time, compiling CREs and clustering CREs typically

take 1-2 days. Given the CRE list and CREs’ clustering structure, running SCATE

to reconstruct regulome approximately takes 5 minutes per cell cluster on a com-

puter with 10 computing cores (2.5 GHz CPU/core) and a total of 20GB RAM.
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Figure 1 Background and motivation. (A)-(D): an example genomic region showing chromatin
accessibility in GM12878 and K562 measured by different methods including (A) bulk DNase-seq,
(B) scATAC-seq from one single cell, (C) scATAC-seq by pooling 100 cells, (D)
SCATE-reconstructed scATAC-seq signal from one single cell. (E): Illustration of CRE-specific
baseline activities using the same genomic region. Bulk DNase-seq data from multiple different
cell types show that some loci tend to have higher activity than others regardless of cell type (e.g.
compare the two loci in blue boxes). (F): At the individual CRE level, the correlation between the
log-normalized scATAC-seq read count in one GM12878 cell and the log-normalized bulk GM12878
DNase-seq signal is low (Pearson correlation = 0.394). Each dot is a CRE. (G): After aggregating
multiple CREs based on co-activated CRE pathways by SCRAT, the correlation between the CRE
pathway activities in one GM12878 cell and the bulk GM12878 DNase-seq signal (both at
log-scale) is substantially higher (Pearson correlation = 0.696). Each dot is a CRE pathway.
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Figure 2 SCATE overview. (A): SCATE model for a single cell. (B): SCATE model for multiple
cells.
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Figure 3 Normalization of scATAC-seq and bulk DNase-seq data. The scATAC-seq read counts
versus baseline mean activities are shown for low-variability CREs in GM12878 (top panel) and
K562 (bottom panel). Each blue dot is a low-variability CRE, defined as a CRE with almost
constant activity across diverse cell types in BDDB bulk DNase-seq samples. Different plots
correspond to analyses based on pooling different number of cells. In each plot, the red curve is
the technical bias function fitted by SCATE.
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Figure 4 Adaptive tuning of analysis resolution. The number of CRE clusters automatically
chosen by SCATE via cross-validation (histogram) is compared with the true optimal CRE cluster
number determined by external information from the gold standard bulk DNase-seq data (dots).
Different plots correspond to different cell types and pooled cell number. In each plot, the
histogram shows the CRE cluster number chosen by SCATE in 10 independent cell samplings.
The dots show the true correlation between the gold standard bulk DNase-seq signal and the
SCATE-reconstructed scATAC-seq signal (both at log-scale) at each CRE cluster number,
averaged across the 10 cell samplings. The dot with the highest correlation is the true optimal
cluster number.
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Figure 5 Comparison of different methods in an example genomic region. Each row is a
method, each column corresponds to a different cell type or pooled cell number. All columns show
the same genomic region. The blue boxes highlight two CREs. The left CRE occurs in both
GM12878 and K562. It cannot be detected by Raw reads, Binary and SCRAT CRE cluster
methods in a single cell, but can be detected by Average DNase-seq and SCATE. The right CRE
is K562-specific. It cannot be detected by Average DNase-seq but can be detected by SCATE.
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Figure 6 Correlation between reconstructed and true CRE activities. (A): Scatterplots showing
true bulk CRE activities vs. CRE activities estimated by different methods in an analysis that
pools 10 GM12878 cells. In this analysis, both activities are at log-scale. (B): The correlation
between the scATAC-seq reconstructed and true bulk regulome for different methods. Each plot
corresponds to a test cell type. In each plot, the correlation is shown as a function of the pooled
cell number.
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Figure 7 Peak calling performance. (A): The sensitivity versus FDR curve is shown for different
peak calling methods in an analysis that pools 25 GM12878 cells. (B): The area under the
sensitivity-FDR curve (AUC) is shown as a function of pooled cell number for different methods.
Each plot corresponds to a different test cell type.
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Figure 8 TFBS prediction performance. (A): An illustration of TFBS prediction in an example
genomic region. The region contains a genomic bin with ELF1 motif and high
SCATE-reconstructed CRE activity in GM12878. The bin is predicted as a ELF1 binding site. The
prediction can be validated by ELF1 ChIP-seq peak in GM12878. (B): An example sensitivity
versus FDR curve for comparing different methods for predicting ELF1 TFBSs in an analysis that
pools 25 GM12878 cells. (C): Two examples (ELF1 in GM12878 and JUND in K562) that
illustrate the method comparison across different cell numbers. In each example, analyses are
performed by pooling different numbers of cells. The median AUC under the sensitivity-FDR curve
from 10 independent cell samplings is shown as a function of pooled cell number. (D): The
averaged AUC across all TFs is shown as a function of pooled cell number in GM12878 and K562
respectively.
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Figure 9 Analyses of a heterogeneous cell population. (A): Distribution of cell cluster numbers
obtained by SCATE for synthetic samples with different cell mixing proportions. GM12878 and
K562 cells are mixed at different proportions. For each mixing proportion, 10 synthetic samples
are created and analyzed. (B): An example tSNE plot showing clustering of cells in a synthetic
sample. (C): At each cell mixing proportion, the frequency that each cell type is detected in the
10 synthetic samples is shown. (D)-(F): The correlation between the scATAC-seq reconstructed
and true bulk regulome in (D) GM12878, (E) K562, and (F) GM12878 and K562 combined for
different methods is shown as a function of cell mixing proportion (GM12878 cell percentage). (G):
The peak calling AUC (GM12878 and K562 combined) vs. cell mixing proportion. (H): The TFBS
prediction AUC (GM12878 and K562 combined) vs. cell mixing proportion. (I): The correlation
between the scATAC-seq reconstructed and true bulk differential log-CRE activities is shown as a
function of cell mixing proportion. (J)-(L): Similar analyses in samples consisting of human CMP
and monocyte cells, including (J) correlation between reconstructed and true bulk log-CRE
activities, (K) peak calling AUC, and (L) correlation between predicted and true differential
log-CRE activities. (M)-(O): Similar analyses in samples consisting of mouse thymus and brain
cells, including (M) correlation between reconstructed and true bulk log-CRE activities, (K) peak
calling AUC, and (L) correlation between predicted and true differential log-CRE activities.
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Figure 10 An example of predicting differential CRE activities. Scatterplots showing true bulk
differential log-CRE activities vs. differential log-CRE activities estimated by different methods in
an analysis of a synthetic sample consisting of 30 GM12878 and 70 K562 cells.
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Figure 11 Analysis of human hematopoietic differentiation cell types. (A): tSNE plot showing
cells color-coded by their true cell types. (B): tSNE plot showing cells color-coded by their
predicted cell types. Using the default setting, SCATE grouped cells into 14 clusters (numbers in
the plot indicate cluster centers). The clusters that can be unambiguously linked to a cell type are
color-coded by cell type. (C): Similar to (B), but cells are clustered using user-specified cluster
number (38 clusters). (D)-(F): Regulome reconstruction performance of different methods in the
default analysis, including (D) correlation between reconstructed and true bulk log-CRE activities,
(E) peak calling AUC, and (F) correlation between predicted and true differential log-CRE
activities. (G)-(I): Regulome reconstruction performance using user-specified cluster number (38
clusters), including (G) correlation between reconstructed and true bulk log-CRE activities, (H)
peak calling AUC, and (I) correlation between predicted and true differential log-CRE activities.
(J): Comparison of different methods in an example genomic region in HSC cell cluster in the
default analysis.
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Additional files
Additional file 1 — Table S1

A comparison between SCATE and other existing methods.

Additional file 2 — Figures S1-S3

Figure S1: Saturation analysis of BDDB CRE lists. (A): As one increases the number of DNase-seq samples in the

BDDB database, the proportion of new CREs contributed by adding a new sample gradually decreases. (B): The

scATAC-seq datasets analyzed in this study would only add 0.0013%-0.118% new CREs to the precompiled CRE list

in BDDB.

Figure S2: Analyses of a heterogeneous cell population created using (A) Dataset 2 and (B) Dataset 3. In each

dataset, the left plot shows distribution of cell cluster numbers obtained by SCATE for synthetic samples with

different cell mixing proportions. For each mixing proportion, 10 synthetic samples were created and analyzed. The

right plot shows the frequency that each cell type is detected in the 10 synthetic samples at each cell mixing

proportion.

Figure S3: The empirical distribution (histogram) of the log-normalized read counts in human BDDB after

standardization (i.e., subtract the mean and divide by SD of each CRE) can be fitted well with a normal distribution

(red curve).

Additional file 3 — Table S2

List of TF binding motifs used in the study with their JASPAR accession numbers.

Additional file 4 — Table S3

List of human bulk DNase-seq samples in BDDB.

Additional file 5 — Table S4

List of mouse bulk DNase-seq samples in BDDB.

Additional file 6 — Supplementary Note

Derivation of moment estimators for mi and si
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