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Abstract 29 

The potential of mesenchymal stem cells (MSCs) for tissue repair and regeneration has 30 

garnered great attention. While MSC interaction with microbes at sites of tissue damage and 31 

inflammation is likely, especially in the gut, the consequences of bacterial association have yet to 32 

be elucidated. This study investigated the effect of Salmonella enterica ssp enterica serotype 33 

Typhimurium on MSC trilineage differentiation path and mechanism. Through examination of 34 

key markers of differentiation, immunomodulatory regulators, and inflammatory cytokines, we 35 

demonstrated that Salmonella altered osteogenic and chondrogenic differentiation pathways in 36 

human and goat adipose-derived MSCs. Gene expression profiles defined signaling pathway 37 

alterations in response to Salmonella association not observed in epithelial cells. We uncovered 38 

significant differential expression (P < 0.05) of genes associated with anti-apoptotic and pro-39 

proliferative responses in MSCs during Salmonella challenge. These observations led us to 40 

conclude that bacteria, specifically Salmonella, induce pathways that influence functional 41 

differentiation trajectories in MSCs, thus implicating substantial microbial influence on MSC 42 

physiology and immune activity.  43 

Introduction 44 

Application of mesenchymal stem cells (MSCs) to regenerative medicine is an area of intensive 45 

research [1, 2]. In addition to a capacity for self-renewal and differentiation into cartilage, bone, 46 

and adipose tissue [3], MSCs home to sites of inflammation where they exhibit 47 

immunomodulatory functions via secretion of paracrine factors [4, 5]. In cooperation with 48 

recruited immune cells, MSCs moderate inflammation via expression of anti-inflammatory 49 

cytokines [6-8], inhibit T-lymphocyte activation, and alter macrophages to express a regulatory 50 

anti-inflammatory phenotype to increase phagocytic activity [5, 9]. Bacterial infections promote 51 

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted October 9, 2019. ; https://doi.org/10.1101/795617doi: bioRxiv preprint 

https://doi.org/10.1101/795617


 3 

 

inflammation and prompts MSCs to secrete anti-microbial peptides [10].  52 

Microbial access to MSCs is likely at mucus membranes where tissue turnover is high and 53 

immune-responsive cells infiltrate to control pathogens [11]. Inflammation, and subsequent 54 

destruction of intestinal epithelial cells induces MSC recruitment to facilitate tissue recovery 55 

[12]. While an apoptotic epithelial cell response to infection is well characterized [13], little is 56 

known about the consequences of bacterial association on the behavior of stem cells. Treatment 57 

of MSC with lipopolysaccharide (LPS) and Escherichia coli increases osteogenesis and 58 

decreases adipogenesis; conversely, stimulation with Staphylococcus aureus decreases 59 

osteogenesis and adipogenesis [14]. Recent discovery of invasion in MSCs by numerous bacteria 60 

common in the oral cavity and gut resulted in augmentation of MSC inhibition of T-cell 61 

proliferation and provides evidence of direct alteration of MSC immune function [15]. 62 

Maintenance of viability [15] and change in differentiation path [14] confirms that bacterial 63 

association with MSCs not only varies in comparison to epithelial cells, but also altered function 64 

beyond acute infection.  65 

Host detection of microbial presence is accomplished in part by Toll-like receptors (TLRs), 66 

which recognize bacterial components on their cell surface in epithelial cells are also expressed 67 

in MSCs [16, 17]. It is not clear how pathogens regulate these molecules in MSCs. Tomchuck et 68 

al. [18] reported the promotion of MSC migratory abilities, whereas a study by Pevsner-Fischer 69 

[19] found TLR activation shifts lineage commitment to proliferation.  70 

Salmonella pathogenesis in epithelial cells is primarily mediated via the type three-secretion 71 

system [20, 21], which injects effector proteins that lead to apoptosis. These proteins target a 72 

variety of host cell regulators, including the NFκB pathway, leading to an inflammatory 73 

environment that increases microbial internalization [21, 22]. Early transcription factors 74 
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implicated in MSC differentiation such as, peroxisome proliferator-activated receptor gamma 75 

(PPARG) [23] and secreted phosphoprotein 1 (SPP1) [24], are involved in inflammation, and 76 

may bridge cellular response to microbe-induced inflammation in MSCs. Previously unexplored 77 

differences between the infectious route in epithelial cells and the immunomodulatory changes in 78 

MSCs during host-pathogen interaction suggest substantial stem cell conditioning by Salmonella. 79 

These novel observations led our group to hypothesize that microbial modulation of the immune 80 

system in MSCs provides pathogens with an uncharted method of tissue infiltration, resulting in 81 

undescribed biological impact.  82 

In this study, it was hypothesized that human and goat MSCs internalize Salmonella that 83 

resulted MSC altered trajectories towards a pro-osteogenic commitment, in parallel with the 84 

induction of an anti-inflammatory, immunosuppressive cellular phenotype. Examination of 85 

differentiation markers, immunomodulatory regulators and inflammatory cytokines demonstrated 86 

that Salmonella was internalized without inducing MSC apoptosis that altered osteogenic and 87 

chondrogenic differentiation. This phenomenon extended to alter molecular mechanisms of cell 88 

survival, proliferation and immune regulation. These observations found microbial-specific 89 

alterations in MSC differentiation and inflammatory status to influence stem cell fate and 90 

functionality.  91 

Materials and Methods 92 

Cell culture 93 

Human adipose-derived mesenchymal stem cells (hASCs) were isolated by the laboratory of Dr. 94 

Dori Borjesson (University of California, Davis) and cultured in Minimum Essential Medium 95 

Alpha Modification (MEM-α, HyClone) with 20% fetal bovine serum (FBS, HyClone) and 1% 96 

penicillin-streptomycin (P/S, Gibco Life Technologies). Goat adipose-derived mesenchymal 97 
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stem cells (gASCs) were isolated by the laboratory of Dr. Matthew Wheeler (University of 98 

Illinois, Urbana-Champaign), as described by Monaco et al. [25], and expanded as described by 99 

Mohamad-Fauzi et al. [26]. ASCs were cultured in 5% CO2/37°C, used at passage six. Colonic 100 

epithelial cells (Caco-2; ATCC HTB-37) were obtained from American Type Culture Collection 101 

(Manassas, VA) and grown as described by Shah et al. [27].  102 

Bacteria culture 103 

Salmonella enterica ssp enterica serotype Typhimurium LT2 (ST), 14028S, serotype Enteritidis 104 

(BCW_4673), serotype Saint Paul (BCW_88) and serotype Newport (BCW_1378) were grown 105 

in Luria-Bertani (LB) broth (Teknova, Holister, CA) and incubated with shaking (200 rpm) at 106 

37°C. Cultures were grown as described by Kol et al. [15]. 107 

Quantification of microbe association 108 

Association was determined using the gentamicin protection assay [28] and modified by Kol et 109 

al. [15], with the following modifications: ASCs were plated (4 x 104) in a 96-well plate and 110 

incubated overnight; bacteria were suspended in serum-free medium (108 CFU/ml) and added to 111 

the ASCs (MOI 100:1). 112 

Transmission Electron Microscopy 113 

hASCs were plated on glass slides (Nalge Nuc International, Naperville, IL) and incubated for 2 114 

h with ST [15]. Preparation and completion of transmission electron microscopy (TEM) was 115 

conducted as outlined by Kol et al. [15].  116 

Differentiation  117 

Adipogenic and osteogenic differentiation was done using ASCs in 6-well plates at 2.5 x 105 118 

ASCs/well and incubated with ST for 1 h as described above. Chondrogenic differentiation was 119 

done in T-25 flasks at 3 x 105 ASCs/flask. Following treatment with gentamicin, ASCs were 120 
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washed with PBS and cultured for 48 hours in expansion medium to 70-80% confluence after 121 

which differentiation medium was added.  122 

Osteogenic differentiation assay 123 

ASCs were cultured in osteogenic medium, fixed, rinsed and visualized under light and phase 124 

microscopy as described in Mohamad-Fauzi et al. [26]. hASCs were cultured for 14 days, 125 

whereas gASCs were cultured for 21 days. Control, non-induced cells were cultured in 126 

expansion medium.  127 

Chondrogenic differentiation assay 128 

Chondrogenic differentiation was carried out as described by Zuk et al. [29]. Following ST 129 

incubation, 70-80% confluent cells were trypsinized and suspended in expansion medium for 14 130 

days and then processed and visualized as described by Mohamad-Fauzi et al. [26].  131 

Adipogenic differentiation assay 132 

Cells were cultured for 21 days in adipogenic induction medium, fixed, stained, and visualized as 133 

described by Mohamad-Fauzi et al. [26]. 134 

RNA extraction and cDNA synthesis 135 

ASCs were flash frozen prior to RNA extraction. For analysis of immunomodulatory factors, 136 

ASCs were plated in 6-well plates (3 x 105 cells/well) and incubated with ST as described above. 137 

Treatment with LPS (Sigma) was added at 10 ng/ml. MSCs were washed with PBS, and 138 

immediately lysed with TRIzol Reagent (Life Technologies). Total RNA was extracted as 139 

described by Mohamad-Fauzi et al. [26]. Total RNA (1 µg) was used for first-strand cDNA 140 

synthesis using SuperScript II Reverse Transcriptase (Life Technologies) and oligo-dT primers 141 

according to the manufacturer.  142 
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Quantitative RT-PCR 143 

Primers (Supplementary Tables 1-2) were designed using Primer3 if not obtained from 144 

references. All primers spanned exon junctions or included introns. mRNA expression was 145 

quantified using Fast SYBR Green reagent (Life Technologies) on the Bio-Rad CFX96 platform 146 

(95°C for 20 seconds, 40 cycles of 95°C for 3 s and 60°C for 30 s), followed by melt curve 147 

analysis. Gene expression was normalized to GAPDH using 2-ΔΔCT [30, 31]. Differences in 148 

differentiation gene expression were calculated as fold-changes relative to cells cultured in 149 

expansion medium (non-induced) and not treated with bacteria (non-treated). Inflammatory gene 150 

expression was calculated as fold-changes relative to non-treated control cells. Treatments were 151 

analyzed in pairwise comparisons using the Student's t-test on the software JMP (SAS Institute) 152 

(p ≤ 0.05). Data are presented as mean ± SEM with three biological and technical replicates.  153 

GeneChip expression analyses 154 

Caco-2 infection samples with Salmonella LT2 were conducted using Affymetrix HGU133Plus2 155 

GeneChip. Custom arrays containing all annotated coding and intergenic sequences of Salmonella 156 

enterica spp. enterica sv Typhimurium LT2 [32-34]. Data were normalized using MS-RMA [35] 157 

and analyzed using Significance Analysis of Microarrays (SAM) [33, 36]. 158 

hASC RNA sequencing  159 

Total RNA (1 µg) from hASCs was used to construct sequencing libraries with the Truseq 160 

Stranded Total RNA LT Kit (Illumina). Quality of RNA and constructed libraries was 161 

determined via 2100 Bioanalyzer. Libraries sequenced using an Illumina HiSeq2000 (BGI@UC 162 

Davis, Sacramento, CA) with single-end 50 bp. Reads were aligned using the UCSC hg19 163 

human reference genome (ftp://igenome:G3nom3s4u@ussd-164 

ftp.illumina.com/Homo_sapiens/UCSC/hg19/Homo_sapiens_UCSC_hg19.tar.gz) and annotated 165 
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using "-a 10 --b2-very-sensitive -G". Read counts and normalization was done using Cufflinks 166 

package (version 2.2.0) with flags "-u -G". Tables from cuffnorm and cuffdiff imported into 167 

Ingenuity Pathway Analysis (IPA; Ingenuity Systems, version spring 2014). Sequence quality 168 

was examined using Phred [Supplementary Figure S1A-B].  169 

Ingenuity Pathway Analysis 170 

IPA was used to determine biological pathways associated with gene expression profiles. 171 

Networks represent molecular interaction based on the IPA knowledge database. Estimation of 172 

probable pathway association was determined Fisher’s exact test, and predicted direction change 173 

was decided by the IPA regulation z-score algorithm (z-score ≥ 2 and ≤ 2 means a function is 174 

significantly increased or decreased, respectively) [37].  175 

Results 176 

Microbial association with adipose-derived mesenchymal stem cells  177 

Human and goat ASCs were susceptible to Salmonella infection in vitro [Figure 1], 178 

which recapitulated previous observations in canine ASCs [15]. Total associated bacteria in both 179 

organisms were invasive; gASCs showed significantly higher invasion compared to human cells 180 

(P = 0.006) [Figure 1A]. Microbial association was not exclusive to ST; other Salmonella 181 

serotypes also invaded ASCs, as did other organisms as our group demonstrated previously [15], 182 

signifying a consistent trend in ASC vulnerability to common pathogens [Figure 1B]. Utilizing 183 

TEM, intracellular ST were observed 2 h post hASC-microbe co-incubation [Figure 1C-F]. Cells 184 

were not morphologically distressed nor apoptotic. In addition to invasion, ST adherence to 185 

hASC cell surface was observed; this intimate association is consistent with other non-186 

pathogenic bacteria that Kol et al. [15] also observed.  187 

As ST is the most common cause of enteric diarrhea, we limited additional studies to this  188 

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted October 9, 2019. ; https://doi.org/10.1101/795617doi: bioRxiv preprint 

https://doi.org/10.1101/795617


 9 

 

serotype. Following ST co-incubation, the expression of several immunomodulatory genes was 189 

investigated [Figure 1G-H]. Interleukin 8 and 6 (IL8, IL6), prostaglandin-endoperoxide synthase 190 

2 (PTGS2), nuclear factor of kappa light polypeptide gene enhancer in B-cells 1 (NFΚB1), 191 

transforming growth factor beta 1 (TGFB1), PPARG and SPP1 were selected. gASCs and 192 

hASCs treated with ST significantly increased IL8 expression (P ≤ 0.033, P ≤ 0.005, 193 

respectively). An increase in IL8 was also observed in LPS-treated gASCs (P ≤ 0.0001). LPS-194 

stimulated gASCs induced a significant increase in IL6 (P = 0.0001), PTGS2 (P = 0.0009), 195 

NFKB1 (P = 0.0002), PPARG (P = 0.0204), SPP1 (P = 0.037) and IL8 (P ≤ 0.0001) gene 196 

expression.  197 

A broader analysis of gene expression using RNAseq found 118 significantly 198 

differentially expressed genes in ST/hASCs interactions (P ≤ 0.05, FDR = 0.1). Canonical 199 

pathway analysis found hASCs treated with ST repressed cell death and survival genes 200 

associated with apoptosis [Figure 2]. TNF/FasL pathway analysis [Figure S2] established the 201 

muted apoptotic response in hASCs compared to Caco-2 cells following ST infection. Consistent 202 

with viability post ST association, induced genes in hASCs included repression of apoptosis, 203 

promotion of proliferation and multipotency [Figure 3.1]. Expression of heat shock protein B6 204 

(HSPB6) and MAP-predicted activation of v-akt murine thymoma viral oncogene homolog 1 205 

(AKT1) indicate promotion of hASC survival. HSPB6 inhibits apoptosis of murine tumor cells, 206 

and plays a role in cellular protection against oxidative damage [38, 39]. Activated in response to 207 

a variety of cues, AKT1 helps mediate cell survival and clonogenic potential [40-43].  208 

Upregulated in ST-treated hASCs [Figure 3.1], parathymosin (PTMS) is involved in 209 

molecular organization, differentiation and proliferation; nuclear translocation of PTMS is 210 

indicative of a pro-proliferative state [44, 45]. MAP predicted the repression of hedgehog 211 

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted October 9, 2019. ; https://doi.org/10.1101/795617doi: bioRxiv preprint 

https://doi.org/10.1101/795617


 10 

 

signaling (Hh), whose inhibition is reported to decrease MSC proliferation with no effect on 212 

differentiation capacity [46]. We observed an increase in expression of patched 2 (PTCH2), 213 

which influences epidermal differentiation and Hh activity, suggesting promotion of ASC 214 

proliferation [47]. 215 

Superoxide dismutase 3 (SOD3) is pivotal for management of cellular redox [48-50] and 216 

was induced in this study [Figure 3.2], which aligns with previous observations in INFγ/LPS-217 

activated microglial cells [48]. By promoting phagocytosis, EC-SOD facilitates bacteria 218 

clearance and elicits an anti-inflammatory response to LPS induced inflammation and pulmonary 219 

infection [51-53]. Interestingly, while Caco-2 cells strongly induced expression of TLR signaling 220 

which facilitates the LPS response following pathogen challenge, this observation was not seen 221 

in hASCs [Figure S3]. Using MAP, we focused on upstream regulators of SOD3, which may 222 

have been responsible for its activation [Figure 3.2]. Both SOX10 and heparin sulfate (HS), play 223 

a role in the maintenance of multipotency and self-renewal [54, 55]. Interferon gamma (INFG) 224 

influences the immunomodulatory effects of MSC, as INFG-activated MSCs suppress T-cells 225 

and provide the necessary signal for MSC immunosuppression [56].  226 

Analysis of trilineage differentiation post-microbial association Chondrogenic 227 

Differentiation 228 

ST treatment did not abate ASCs ability to undergo chondrogenesis. In hASCs, 229 

differentiated cells migrated to form ridges that stained with Alcian Blue [Figure 4.2]. The 230 

morphological changes in gASCs were more advanced compared to human cells after ridge 231 

formation, cells aggregated, forming clumps that stained positive with Alcian Blue. Control, non-232 

induced cells remained in monolayer and exhibited minimal background staining. 233 

Expression of SRY (sex determining region Y)-box 9 (SOX9), which is essential for 234 
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cartilage formation [57] and encodes for a transcription factor that promotes cartilage-specific 235 

extracellular matrix components [58, 59], was measured 14-days post chondrogenic induction. In 236 

hASCs, SOX9 expression decreased (P = 0.04) in cells treated with ST [Figure 5.2]. Non-induced 237 

hASCs treated with ST showed no significant change in SOX9 expression. Chondrogenic 238 

induction increased SOX9 expression in hASCs compared to cells treated with control medium 239 

(P = 0.034). gASCs showed a significant decrease in SOX9 expression in induced and non-240 

induced ST-treated cells (P = 0.027, P = 0.039). There was a significant decrease in SOX9 241 

expression between gASCs treated with induction (P = 0.012).  242 

Adipogenic Differentiation 243 

ASCs cultured in adipogenic medium accumulated lipid-filled vacuoles that stained with 244 

Oil Red O [Figure 4.3]. Visually, no differences were observed between non-induced ST-treated 245 

cells and the controls, which did not yield lipid-filled adipocytes nor stain with Oil Red O.  246 

The lack of visual differentiation was further explored by examining expression of 247 

PPARG and fatty acid binding protein 4 (FABP4) 21 days post-induction, which should detect 248 

early events in adipogenesis [60, 61]. ST treatment of induced and non-induced hASCs did not 249 

change PPARG expression [Figure 5.3], a trend consistent with gASCs; however, a significant 250 

increase in PPARG expression in human and goat ASCs treated with differentiation vs. control 251 

medium (P ≤ 0.0001, P ≤ 0.0001) was observed, as expected.  252 

FABP4 is a fatty acid binding protein specific to mammalian adipose tissue [62, 63]. No 253 

significant difference was observed between induced ASCs treated with ST and non-treated 254 

control cells. Non-induced hASCs, but not gASCs, treated with ST displayed a significant 255 

increase in FABP4 expression (P = 0.019). Both species induced FABP4 in cells cultured in 256 

adipogenic induction medium [Figure 5.3] (P = 0.029, P ≤ 0.0001).  257 
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Osteogenic Differentiation 258 

ASCs induced with osteogenic medium post ST treatment underwent osteogenesis. 259 

Mineralized calcium deposits accumulated within the monolayer and stained with Alizarin Red S 260 

[Figure 4.1]. By visual comparison, no difference was apparent between ST-treated and non-261 

treated cells. ASCs cultured in control, expansion medium did not undergo calcium 262 

mineralization nor stain with Alizarin Red S, independent of ST treatment [Figure 4.1].  263 

Collagen type I alpha 1 (COL1A1), alkaline phosphatase (ALPL) and SPP1 expression 264 

were determined at the termination of differentiation. COL1A1 encodes for the major component 265 

of the most abundant collagen found in bone matrix [64]. In hASCs induced for osteogenesis, 266 

COL1A1 expression was significantly higher in ST-treated cells compared to controls (P = 267 

0.025) [Figure 5.1A]. No difference in expression was detected between non-induced ST-treated 268 

and control hASCs. There was a significant decrease in COL1A1 expression in hASCs treated 269 

with osteogenic induction vs. control medium (P ≤ 0.0001). gASCs displayed no significant 270 

change of COL1A1 expression in induced ST treated cells [Figure 5.1B]. There was a significant 271 

decrease in COL1A1 expression between gASCs treated with osteogenic induction vs. control 272 

medium (P = 0.018).  273 

ALPL, which provides phosphate ions for the production of bone mineral during matrix 274 

maturation [65-67], increased in induced hASCs (P = 0.02) as well as ST treated-induced 275 

hASCs. ALPL expression was 3.3-fold higher than in non-treated cells (P = 0.03) [Figure 5.1A]. 276 

In non-induced hASCs, no significant change in ALPL expression was detected following ST-277 

treatment. ALPL expression in gASCs was not detected.  278 

SPP1 is a non-collagenous bone protein expressed during the mineralization phase late in 279 

osteogenesis [68]. In hASCs, SPP1 was repressed in induced cells (P ≤ 0.0001). SPP1 280 
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expression was 4.3-fold higher in induced hASCs treated with ST compared to non-treated cells 281 

(P = 0.002). In non-induced hASCs, no difference in expression was observed between ST-282 

treated and control cells [Figure 5.1A]. In induced gASCs, no significant change in SPP1 283 

expression was observed in ST-treated cells. However, a 7.2-fold increase in SPP1 was observed 284 

in non-induced gASCs treated with ST compared to non-treated, non-induced controls (P ≤ 0.05) 285 

[Figure 5.1B].  286 

Pretreatment of hASCs with ST followed by 14 days of osteogenic induction resulted in 287 

the differential expression of 1060 genes (data not shown). RNAseq-IPA regulation z-score 288 

algorithm identified associated downstream biological functions. Expression data projected the 289 

repression of genes associated with cell-to-cell signaling, inflammation and response to 290 

infectious disease [Figure 6.1], highlighting the potential anti-inflammatory phenotype of hASCs 291 

subjected to microbial association (P-value ≤ 0.05, z-score ≥ 2). 292 

ST treatment followed by osteogenic differentiation also influenced genes involved in 293 

cellular communication, migration and lineage commitment. Differentially expressed genes 294 

included stanniocalcin 1 (STC1) and mesenchyme homeobox 2 (MEOX2) [Figure 6.2]. MSCs 295 

secrete STC1 in response to apoptotic signals [69]. STC1 is reported to play a role in the 296 

suppression of inflammation and may act in the regulation of calcium and phosphate homeostasis 297 

[69, 70]. STC1 expression was downregulated in differentiated hASCs pre-treated with ST.  298 

Upregulated in ST treated osteogenic differentiated hASCs [Figure 6.2], chloride 299 

intracellular channel 4 (CLIC4) is induced during cellular stress and influences cell cycle arrest 300 

and apoptosis [71]. Intracellular chloride regulates cation transport and may be involved in 301 

cellular signaling; CLIC4 expression has been reportedly associated with Ca2+ induced 302 

differentiation of keratinocytes [71, 72]. Macrophage migration inhibitory factor (MIF) is 303 
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elevated during tissue injury and inhibits MSC migration [73, 74]. Our data showed 304 

downregulation of MIF expression [Figure 6.2]. Furthermore, adhesion to fibronectin through 305 

α5β1-integrin plays a part in the induction of MSC migration [75]. MSC expression of A1-3, B1, 306 

and B3/4 integrins has been reported; blocking of B1 decreased migration in bone marrow-307 

derived MSCs [76, 77]. We detected an increase in A3, A4 and B1 integrins [Figure S5].  308 

Induction of periostin (POSTN) following ST challenge [Figure 6.2] was observed. A 309 

regulator of Wnt/β-catenin signaling cascade and mediator of bone anabolism, POSTN increases 310 

in response to stress and tissue damage [78, 79]. Wnt pathway activity is regulated by 311 

extracellular factors, including heparin sulfate proteoglycans, and acts to control MSC 312 

proliferation and differentiation [80]. hASCs treated with ST prior to induction displayed 313 

downregulation of Wnt activator Secreted frizzled-related protein 1 (SFRP1) and induction of 314 

transcription factors JUN and AXIN2 [Figure S4A]. In addition, we observed a marked increase 315 

in the expression of TNFRSF11B [Figure S4B]. Also known as osteoprotegerin, TNFRSF11B is 316 

an anti-osteoclastogenic regulator, which is reported to augment osteogenesis [81].  317 

Ephrin-B2 (EFNB2) is involved in osteogenic commitment and is required for 318 

differentiation of osteoclasts and osteoblasts in vivo [82]. Upregulated in our data set [Figure 319 

6.2], the EFNB2 ligand and EPHB4 receptor are reportedly expressed on the surface of MSCs 320 

[82]. Increased expression of COL1A2 was also detected [Figure 6.2]. COL1A2 promotes cellular 321 

proliferation and osteogenesis, a response in part regulated by ERK/AKT1 pathway activation 322 

[83]. Activation of ERK mitogen activated protein kinase family (MAPK) drives the progression 323 

of osteoblasts via phosphorylation of transcription factors [77]. Overlay of hASC gene 324 

expression data illustrated upregulation of integrins involved in MAPK1 activation as well as 325 

intracellular signal transducer phosphatidylinositol-4,5-bisphosphate 3-kinase (PI3K) [Figure 326 
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S5].  327 

Consistent with MSC ability to influence the immune response, we detected expression 328 

of genes involved in MSC signaling and immunomodulation [Figure 6.2]. Cadherin 11 (CDH11) 329 

expression was upregulated in our dataset. TGFB treatment increases expression of CDH11 and 330 

subsequent calcium-dependent cell-to-cell interactions in MSCs [84]. Engagement of CDH11 on 331 

fibroblast-like synoviocytes (FLS) has been reported to produce inflammatory mediators IL6 and 332 

IL8 [84], though our transcriptome analysis did not indicate significant upregulation of either of 333 

these cytokines. Kol et al. demonstrated that ST augments cMSCs ability to inhibit T-cell 334 

proliferation [15]. In hASCs, we observed the differential expression of genes involved in the 335 

suppression of immune cells; IPA regulator analysis highlighted the potential inhibitory effect of 336 

ST-treated hASCs on phagocyte and granulocyte proliferation [Figure S6].  337 

Discussion  338 

 Microbial presence on host tissue presents a wide range of beneficial to pathogenic 339 

effects on cellular function. Intestinal bacteria have been shown to contribute to cellular 340 

proliferation and development; observation of host and microbe interactions during inflammatory 341 

and disease states have been imperative in refining our understating of healing and self-renewal 342 

signaling mechanisms [85]. Studies on pathogen interference on MSC functionality demonstrate 343 

the promising potential of stem cells as a mode of intercession for infection and inflammation. 344 

Yuan et al [86] illustrated the ability of bone marrow-derived MSCs to increase clearance of 345 

methicillin-resistant Staphylococcus aureus (MRSA) in a rat model; work by Maiti and 346 

colleagues show that MSC stimulation with MRSA resulted not only in changes to cell 347 

proliferation but also the induction of inflammatory markers [87]. Here, ASCs were susceptible 348 

to microbial infection in vitro with many types of Salmonella, suggesting this is a common 349 

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted October 9, 2019. ; https://doi.org/10.1101/795617doi: bioRxiv preprint 

https://doi.org/10.1101/795617


 16 

 

characteristic, especially when taken with the observations of Kol et al. [15]. Our specific 350 

investigation of ST resulted in changes in the expression of prototypical gene markers of 351 

differentiation and inflammation, but not apoptosis. 352 

Fiedler et al. [14] found continuous treatment with heat-inactivated E. coli slightly 353 

increased ALPL activity in hASCs; heat-inactivation may have diminished the effect of bacterial 354 

exposure. The migration of MSCs to sites of inflammation, where bacterial interaction may be 355 

transient, could potentiate a narrow window of opportunity for microbial association. The use of 356 

viable bacteria and shorter exposure time in this study may better mimic the physiological 357 

conditions in which MSCs interact with microbes. We observed internalization of ST within 60 358 

minutes of co-incubation; additional investigation is required to evaluate ST presence throughout 359 

extended culture periods. ST pre-treatment did not abate the ability of ASCs to differentiate, but 360 

did affect the expression of genes involved in osteogenesis and chondrogenesis.  361 

ST treatment had a significant effect on osteogenic differentiation. In congruence with 362 

Fiedler et al. [14], we observed an increase in ALPL expression in ST-treated hASCs induced for 363 

osteogenesis. Increase in ALPL expression is consistent with the finding at 10 days post-364 

osteogenic induction in LPS-treated hASCs [16]. ALPL was not detected in gASCs, as cells were 365 

harvested 21 days post-induction when the mineralization phase was likely occurring [88] and 366 

ALPL expression may have decreased [67, 88].  367 

Consistent with the lack of ALPL, upregulation of SPP1 (a late marker of osteogenesis) 368 

[88, 89], was observed in ST-treated gASCs. In addition to osteogenic commitment, the 6-369 

glycosylated phosphoprotein SPP1 has a significant role in cellular stress and immunity. As an 370 

inflammatory mediator, SPP1 is reported as anti-inflammatory in acute colitis, while having an 371 

opposite effect in chronic disease status [90, 91]. Plasma levels of SPP1 are elevated in Crohn's 372 
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disease and SPP1-deficient mice have an impaired ability to clear Listeria monocytogenes [90, 373 

92]. The upregulation of SPP1 observed implies a diverse series of biological effect on MSC 374 

physiology. It is probable that the involvement of SPP1 in response to microbe-induced 375 

inflammation results in the influence of ASCs towards osteogenesis.  376 

Differential marker expression following ST treatment was heavily observed in non-377 

induced ASCs. Upregulation of SPP1 was observed in ST-treated, non-induced gASCs, but not 378 

in induced cells. It is possible that the osteoinductive effect of ST treatment in induced ASCs 379 

was masked, as the medium contained additives that strongly induce osteogenesis. Pevsner-380 

Fischer et al. [19] observed a differential effect of LPS treatment on non-induced MSCs 381 

compared to induced. Thus, the upregulation of osteogenic markers in non-induced cells 382 

highlight the direct influence of microbial treatment on ASC lineage commitment.  383 

We observed a concomitant decrease in chondrogenic differentiation in response to ST 384 

treatment, as shown by a decrease in SOX9 expression in ASCs. To our knowledge, this is the 385 

first report on the direct effect of bacterial association on MSC chondrogenesis. SOX9 is 386 

required for commitment to chondrogenic lineage, thus murine SOX9-null cells do not express 387 

markers of chondrogenesis [93]. Osteogenesis and chondrogenesis are tightly coupled processes 388 

[94], both regulated by proteins in the TGFβ superfamily [95]. An inverse relationship between 389 

osteogenic and chondrogenic differentiation has been demonstrated; microRNAs targeting genes 390 

important for osteogenesis were upregulated during chondrogenesis, and vice versa [96]. This 391 

further supports the premise that ASCs pre-exposed to ST prior to induction favor characteristics 392 

of osteogenic lineage commitment.  393 

Exposure to whole bacteria and microbial components are sufficient to influence ASC 394 

signaling. MSC response to microbial components is mediated by Toll-like receptors (TLRs); 395 
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hASCs express TLR1-6 and TLR9 [16]. TLR4 agonist LPS is a key component of the Salmonella 396 

cell wall [97]. LPS influences osteogenesis in hASCs and bone marrow-derived MSCs (BM-397 

MSCs) by increasing mineralization, ALP activity, and expression of osteogenic markers [14, 16, 398 

98, 99]. It is possible that LPS-induced changes in differentiation are mediated by TLRs and 399 

thus, dependent on NFKB1 activation [99, 100]. In this study, we did not observe upregulation of 400 

NFKB1 expression following ST challenge or significant induction of genes involved in TLR 401 

signaling pathway. As a rapid responder, NFKB1 proteins are available and inactive; activity 402 

depends on phosphorylation-dependent degradation of NFKB1 inhibitors, thus the lack of change 403 

in mRNA expression is not unexpected [101].  404 

While the conditions of this study did not lead to an observed induction of TLR gene 405 

expression, previous reports highlight the role of TLR activation in MSC physiology. TLR2 406 

activation inhibited spontaneous adipogenic differentiation and increased osteogenesis in non-407 

induced mouse BM-MSCs, but inhibits trilineage differentiation in induced cultures [19]. The 408 

upregulation of osteogenic markers in non-induced ST treated ASCs in this study supports this 409 

observation. Furthermore, TLR-activated MSCs recruit immune cells; TLR-activated 410 

macrophages secreted oncostatin M, a cytokine that induces osteogenic and inhibits adipogenesis 411 

in BM-MSCs [102]. MSCs deficient in myeloid differentiation primary response 88 (MYD88), 412 

which is crucial for TLR signaling [103], lack both osteogenic and chondrogenic potential [19], 413 

providing further evidence for linking microbe-induced TLR signaling and osteochondrogenic 414 

pathway induction.  415 

Initiation of epithelial inflammation and rapid induction of pro-inflammatory cytokines 416 

via calcium-mediated activation of NFKB1 in response to Salmonella is documented [104, 105]. 417 

A dose-dependent increase in IL8 secretion was reported in human BM-MSCs following LPS 418 
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treatment [106]. A hallmark of IL8 is the capacity for a variety of cells, including MSCs, to 419 

rapidly express and secrete IL8 [107]. IL8 can inhibit osteoclasts bone resorption activity, and 420 

stimulates osteoclast motility [108, 109]. Upregulation of IL8 was detected after 14 days of 421 

osteogenic media treatment [108]. In additional support of the coordination between 422 

inflammatory and differentiation pathways, co-incubation with ST significantly increased IL8 423 

expression in hASCs and gASCs.  424 

Coordination between inflammation and lineage commitment likely involves various 425 

small molecules. A pleiotrophic cytokine, IL6 is involved in innate tissue response to injury and 426 

maintenance of undifferentiated MSCs status, and IL6 expression decreases during osteogenic 427 

differentiation [110]. While mature osteoblasts displayed enhanced osteogenic differentiation, 428 

primitive MSCs experienced a decrease in proliferation following IL6 treatment [111], implying 429 

that IL6 influence on osteogenesis is complex and dependent on the status of targeted MSCs. In 430 

this study, a significant increase in IL6 expression was observed in LPS-treated gASCs. A 431 

similar trend was noted in ST-treated gASCs and hASCs, although not statistically significant. 432 

This suggests that ASC response to ST infection influences the secretion of small molecules 433 

capable of cross-talk between inflammatory and differentiation pathways.  434 

The transcriptome of hASCs post ST association alludes to a physiological shift in favor 435 

of cell survival and proliferation. Under oxidative stress, MSCs display a reduced ability to 436 

repair tissue and an increased propensity towards senescence [112, 113]. These conditions 437 

decrease MSC capacity for osteogenesis in favor of adipogenic commitment [113]. Through 438 

upregulation of redox mediators, hASCs appear to respond and mitigate oxidative stress, helping 439 

to insure cell viability, multipotency, and promote immune suppression. As versatile immune 440 

privileged cells, MSCs presented with microbial challenge may function as a safeguard, 441 
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contributing to an anti-inflammatory environment, which allows time and an atmosphere 442 

conducive for infection clearance by resident phagocytes. However, it is unlikely that hASC 443 

response to ST is without physiological consequences, as influence of inflammatory mediators 444 

on lineage commitment appears to prime hASCs towards a pro-osteogenic phenotype.  445 

The direct association of ASCs with ST influences key modulators of trilineage 446 

differentiation. We illustrate that, as the pathways dictating MSC response to injury, microbial 447 

products and inflammation overlap with the regulation of cellular differentiation, exposure to 448 

bacteria alters lineage commitment. However, the extent and mechanisms responsible for 449 

eliciting changes in MSC differentiation due to microbial interaction have yet to be fully 450 

described. As ASCs are currently in contention as a powerful model for understanding the 451 

complex interaction of pathogenesis, inflammation and calcification, further investigation into 452 

the complex relationship between bacterial association and ASC physiology is imperative, as we 453 

have established that this association results in distinctive changes to MSC physiology.  454 
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Figure Legends: 735 
Figure 1: Microbial Association with human and goat ASCs (A-F). ASCs presented a 736 

uniform pattern of Salmonella enterica ssp enterica serotype Typhimurium LT2 (ST) 737 

infection, the total associated bacteria were invaded, gASC show significantly higher invasion 738 

compared to human cells (A). ASCs susceptibility to invasion was not exclusive to ST, 739 

association patterns were microbe specific; 35%, 12% Salmonella enterica ssp enterica serotype 740 

Typhimurium 14028, and 25%, 100% Salmonella enterica ssp enterica serotype Enteritidis 741 

(BCW_4673) were invaded in goat and human ASCs respectively (B). In gASCs, 35% 742 

Salmonella enterica ssp enterica serotype Newport (BCW_1378) and in hASCs, 7% of 743 

Salmonella enterica ssp enterica serotype Saint Paul (BCW_88) were invaded (B). Intracellular 744 

ST was observed by TEM two hours post MSC co-incubation (D-F), consistent with control non-745 

treated hASCs (C), ST infected cells showed no signs of cellular toxicity (D-F). ST adherence to 746 

hASC was observed at various sites (E-F). Expression of immunomodulatory factors in ASCs 747 

post-microbial association (G-H). Quantitative PCR analysis of IL6, PTGS2, NFKB1, TGFB1, 748 

PPARG, SPP1, and IL8 expression in (G) goat and (H) human ASCs treated with ST or LPS. 749 

Data is presented as fold change (± SEM) in relative to expression levels in non-treated cells 750 

(“C”) (fold change ~1, indicated by the dotted line). Statistical significance of P < 0.05 is 751 

denoted by an asterisk (*), and P < 0.01 denoted by two asterisks (**). 752 

Figure 2: Downstream trends analysis of differentially expressed genes in hASCs post 753 

microbial challenge. The IPA regulation z-score algorithm was used to identify biological 754 

functions expected to increase or decrease based on the gene expression changes described in our 755 

dataset. Predictions base on p-value and z-score; positive z-score implies an increase in the 756 

predicted function, a negative z-score a decrease (z-score ≥ 2 or ≤ −2 represented by orange 757 

dotted lines). P-values ≤ 0.05 (red dots determined by Fischer's exact test), illustrate a significant 758 
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association between a given biological function and genes differentially expressed in our dataset 759 

(P ≤ 0.05).  760 

Figure 3.1: Network displays interactions between genes regulating cell cycle, cellular 761 

assembly and organization that were differentially expressed in hASCs treated for sixty 762 

minutes with ST compared with untreated control. Upregulated genes are colored in shades 763 

of red, down regulated in shades of green (P ≤ 0.05). IPA inserted Genes in white because they 764 

are connected to this network; dashed and solid lines denote indirect and direct relationships 765 

between molecules. The IPA molecule activity predictor assessed the activity of molecules 766 

strongly connected to this network; blue and orange colored molecules are predicted to have 767 

decreased and increased activity, respectively.  768 

Figure 3.2: Up regulation of superoxide dismutase 3 (SOD3) in hASCs following microbial 769 

challenge. The IPA molecule activity predictor assessed the activity of molecules strongly 770 

connected to SOD3 (colored in shade or red); orange colored molecules are predicted to have an 771 

increased activity, based on the increased expression of SOD3 in our dataset. IPA inserted Genes 772 

colored in white because they are connected to this network; dashed and solid lines denote 773 

indirect and direct relationships between molecules. 774 

Figure 4: Trilineage staining of human and goat ASCs. Alizarin Red S staining of osteogenic 775 

differentiation in ASCs post-microbial association (4.1). hASCs (A-D) were cultured in 776 

osteogenic differentiation medium for 14 days, whereas gASCs (E-H) for 21 days and stained 777 

with Alizarin Red S. ASCs cultured in osteoinductive medium stained positive for calcium, (A-B 778 

and E-F, respectively), but did not stain when cultured in control medium (C-D and G-H, 779 

respectively), regardless of ST treatment. Representative images are shown in phase contrast at 780 

40X magnification (scale bars represent 500 μm). Figure 4.2. Alcian Blue staining of 781 
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chondrogenic differentiation in ASCs post-microbial association. Human (A-D) and goat (E-H) 782 

ASCs were cultured in chondrogenic differentiation medium for 14 days, and subsequently 783 

stained with Alcian Blue. Cellular condensation, as well ridge and micromass formations that 784 

stain positive was observed in human and goat ASCs induced for chondrogenesis (A-B and E-F, 785 

respectively), independent of ST treatment. Some background staining was observed in ST-786 

treated and non-treated cells cultured in control medium, but cells remained in monolayer (C-D 787 

and G-H, respectively). Representative images are shown in phase contrast at 40X magnification 788 

(scale bars represent 500 μm). Figure 4.3 Oil Red O staining of adipogenic differentiation in 789 

ASCs post-microbial association. hASCs (A-D) and gASCs (E-H) were cultured in adipogenic 790 

induction medium for 21 days, and stained with Oil Red O. Accumulation of cytoplasmic lipid 791 

droplets were observed in ASCs induced for adipogenesis (A-B and E-F, respectively), 792 

independent of ST treatment. ST-treated and non-treated ASCs cultured in control medium did 793 

not yield lipid-positive cells (C-D and G-H, respectively). Representative images are shown in 794 

bright field at 200X magnification (scale bars represent 100 μm). 795 

Figure 5: ASC expression of trilineage differentiation markers. Figure 5.1 Expression of 796 

osteogenic markers in ASCs post-microbial association. Quantitative PCR analysis of COL1A1, 797 

ALPL and SPP1 gene expression in A) human and B) goat ASCs induced with osteogenic 798 

differentiation medium and/or treated with S.T. Figure 5.2 Expression of chondrogenic markers 799 

post-microbial association. Quantitative PCR analysis of SOX9 expression in A) human and B) 800 

goat ASCs induced with chondrogenic differentiation medium and/or treated with S.T. Figure 801 

5.3 Expression of adipogenic markers in ASCs post-microbial association. Quantitative PCR 802 

analysis of PPARG and FABP4 expression in A) human and B) goat ASCs induced with 803 

adipogenic induction medium and/or treated with ST. Data is presented as fold change (± SEM) 804 
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relative to expression levels in non-treated, non-induced cells (fold change ~1, indicated by the 805 

dotted line). Statistical significance of P < 0.05 is denoted by an asterisk (*), and P < 0.01 806 

denoted by two asterisks (**). 807 

Figure 6.1: Downstream trends analysis of differentially expressed genes in hASCs induced 808 

towards osteogenesis post microbial challenge. The IPA regulation z-score algorithm was used 809 

to identify biological functions expected to increase or decrease based on the gene expression 810 

changes observed in our dataset. Predictions base on p-value and z-score; positive z-score 811 

implies an increase in the predicted function, a negative z-score a decrease (z-score ≥ 2 or ≤ −2 812 

represented by orange dotted lines). P-values ≤ 0.05 (red dots determined by Fischer's exact test), 813 

illustrate a significant association between a given biological function and genes differentially 814 

expressed in our dataset (P ≤ 0.05).  815 

Figure 6.2: Network displays interactions between genes involved in cell signaling, 816 

migration and differentiation that were differentially expressed in hASCs induced towards 817 

an osteogenic lineage following ST challenge. Up-regulated genes are colored in shades of red, 818 

down-regulated in shades of green. Genes in white were inserted by IPA because they are 819 

connected to this network; dashed and solid lines denote indirect and direct relationships 820 

between molecules. The IPA molecule activity predictor assessed the activity of molecules 821 

strongly connected to this network; blue and orange colored molecules are predicted to have 822 

decreased and increased activity, respectively.  823 

 824 
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