1	MYPT1 O-GlcNAcylation Dictates Timely Disjunction of Centrosomes
2	
3	Caifei Liu ^{1,*} , Yingxin Shi ^{1,*} , Xuewen Liu ² , Zhikai Xiahou ² , Jie Li ¹ , Zhongping
4	Tan ³ , Xing Chen ⁴ and Jing Li ^{1, §}
5	
6	¹ Beijing Key Laboratory of DNA Damage Response and College of Life Sciences,
7	Capital Normal University, Beijing 100048, China
8 9	² Department of Radiation Oncology, Hunan Cancer Hospital and The Affiliated
9 10	Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha,
11	PR China; Key Laboratory of Translational Radiation Oncology, Hunan 410006,
12	China
13	
14	³ Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking
15 16	Union Medical College, Beijing, 100050, China.
10	⁴ College of Chemistry and Molecular Engineering, Beijing National Laboratory for
18	Molecular Sciences, Peking-Tsinghua Center for Life Sciences, Synthetic and
19	Functional Biomolecules Center, and Key Laboratory of Bioorganic Chemistry and
20	Molecular Engineering of Ministry of Education, Peking University, Beijing 100871,
21	China.
22	
23	Running title: O-GlcNAc of MYPT1 regulates centrosome dynamics
24	*These authors contributed equally to this work.
25	
26	[§] To whom correspondence should be addressed:
27	Jing Li, ¹ Beijing Key Laboratory of DNA Damage Response, College of Life
28	Sciences, Capital Normal University, Beijing 100048, China, Phone: 86-10-68901692,
29	Fax: 86-10-68906307, E-mail:jing_li@mail.cnu.edu.cn
30	

- 31 Keywords: O-GlcNAcylation; O-linked N-acetylglucosamine (O-GlcNAc)
- 32 transferase (OGT); O-linked N-acetylglucosamine (O-GlcNAc); MYPT1 ; cell cycle ;
- 33 mitosis ; protein phosphorylation ; CDK1 ; PLK1 ; centrosome

35 ABSTRACT

36 The role of O-linked N-acetylglucosamine (O-GlcNAc) modification in the cell cycle 37 has been enigmatic. Previously, both O-GlcNAc transferase (OGT) and O-GlcNAcase 38 (OGA) disruption have been shown to derail the mitotic centrosome numbers, 39 suggesting that mitotic O-GlcNAc oscillation needs to be in concert with mitotic 40 progression to account for centrosome integrity. Here we attempted to address the 41 underlying molecular mechanism by both chemical approaches and biological assays, 42 and observed that Thiamet-G (OGA inhibitor) incubation strikingly elevated 43 centrosomal distances, suggestive of premature centrosome disjuction. These 44 aberrancies could be overcome by inhibiting Polo-like kinase 1 (Plk1), a mitotic 45 master kinase. Plk1 inactivation is modulated by the Myosin Phosphatase Targeting 46 Subunit 1 (MYPT1)-Protein Phosphatase 1 $c\beta$ (PP1 $c\beta$) complex. Interestingly, 47 MYPT1 is abundantly O-GlcNAcylated and the modified residues have been detected 48 in a recent O-GlcNAc profiling screen utilizing chemoenzymatic labeling and 49 bioorthogonal conjugation. We demonstrate that MYPT1 is O-GlcNAcylated at T577, 50 S585, S589 and S601, which antagonizes CDK1-dependent phosphorylation at S473, 51 subsequently attenuating the association between MYPT1 and Plk1, and promoting 52 PLK1 activity. Thus under high O-GlcNAc, Plk1 is untimely activated, conducive to 53 inopportune centrosome separation and disrupting the cell cycle. We propose that too 54 much O-GlcNAc is equally deleterious as too little O-GlcNAc, and a fine balance 55 between the OGT/OGA duo is indispensible for successful mitotic divisions.

56 INTRODUCTION

57	The centrosomes are the primary microtubule-organizing centers that nucleate
58	the mitotic spindle apparatus to ensure subsequent faithful sister chromatid
59	segregation during mitosis. The centrosome cycle is tightly coordinated with other
60	cell cycle events ¹ , and its aberrancy could culminate in chromosome segregation
61	defects and aneuploidy ² . The entire centrosome cycle encompasses centrosome
62	duplication during S phase, disjunction in late G2 and further separation during
63	prophase or prometaphase, and eventual segregation into the two daughter cells.
64	Centrosomes duplicate in concomitant with DNA replication, after which the
65	sister centrosomes are glued together by two proteinaceous linkers, c-Nap1 and
66	rootletin 3,4 , as well as other components such as Cep68, Cep215 and LRRC45 5 .
67	C-Nap1, a large coiled-coiled protein, links rootletin to the centrioles so that the
68	centrosome pair is joined by fibrous polymers ³ . In late G2, the Never In Mitosis
69	(NIMA)-related serine/threonine kinase Nek2A phosphorylates and displaces c-Nap1
70	and rootletin, leading to disjoint centrosomes ⁶ . Centrosomal accumulation of Nek2A
71	is mediated by the Hippo pathway, among which sterile 20-like kinase 2 (Mst2) and
72	Salvador (Sav1) play critical roles. In particular, Mst2 phosphorylates and activates
73	Nek2A ⁷ . Upstream of Mst2 is the mitotic master kinase, Polo-like kinase 1 (PLK1) ⁸ .
74	Following centrosome disjunction, the kinesin Eg5 accounts for centrosome
75	positioning in the beginning of M phase. Cyclin-dependent kinase 1 (Cdk1)
76	phosphorylates and activates Eg5 at T927 by stimulating the engagement between

Eg5 and microtubules⁹. Independently, centrosomal localization of Eg5 requires

78	PLK1 ¹⁰ , which activates the NIMA-family kinase Nek9, leading to Eg5
79	phosphorylation at S1033 by the Nek9/6/7 complex 11 . Phosphorylated Eg5 then binds
80	centrosomal Targeting Protein for Xenopus kinesin-like protein 2 (TPX2), which is
81	also mediated by Nek9 ¹² . Besides mitosis, Eg5 also governs centrosome dynamics
82	during interphase ¹⁰ . Hence, the centrosomal role of Plk1 is two-fold : centrosome
83	disjunction via the PLK1-Mst2-Nek2A signaling cascade, and centrosome separation
84	through PLK1- Nek9/6/7- Eg5 ¹³ .
85	Besides centrosomes, PLK1 also orchestrates a multitude of cell cycle events,
86	including replication, mitotic entry, chromosome segregation and cytokinesis ^{4,14-16} . It
87	contains an N-terminal kinase domain and a C-terminal polo-box binding domain
88	(PBD). Phosphorylation of PLK1 at T210 at the T-loop is mediated by the Aurora
89	A-Bora complex ¹⁷ , resulting in dissociation of PBD from the kinase domain and thus
90	activating PLK1. Dephosphorylation of PLK1 is modulated by the protein
91	phosphatase 1 c β (PP1c β), targeted by the myosin phosphatase targeting subunit 1
92	(MYPT1) ¹⁸ . Specifically, CDK1 phosphorylates MYPT1 at Ser473, creating a
93	binding pocket between MYPT1 and the PBD of PLK1. Subsequently MYPT1
94	recruits PP1c β to dephosphorylate pT210 of PLK1 ¹⁸ . Such interaction at the
95	kinetochore destabilizes kinetochore-microtububle attachments ¹⁹ . Besides
96	phosphorylation, PLK1 is also methylated at K209 ^{20,21} , which vies with pT210 and
97	hence blocking Plk1 activity.

98	Due to the vital role of PLK1 in mitosis, MYPT1 is subject to multifaceted
99	regulations: the Hippo pathway kinase LATS1/WARTS phosphorylates MYPT1 at
100	S445 to inactivate PLK1 22 ; optineurin, another phosphatase, promotes MYPT1
101	activity ²³ ; checkpoint kinase 1 (CHK1) phosphorylates MYPT1 at S20, and
102	enhances MYPT1-PP1c β binding ²⁴ ; checkpoint kinase 2 (CHK2) phosphorylates
103	MYPT1 at S507 to attenuate pS473 ²⁵ .
104	Previous investigations have identified that MYPT1 is also subject to O-linked
105	N-acetylglucosamine (O-GlcNAc) modifications ²⁶ . O-GlcNAcylation is an emerging
106	post-translational modification (PTM) that integrates the metabolic signals with
107	transcription, nutrient sensing, stress responses and cell cycle events ^{27,28} . It is
108	catalyzed by the sole transferase O-GlcNAc transferase (OGT), and reversed by the
109	only O-GlcNAcase (OGA) ²⁷ . Chemical inhibitors of OGT [acetyl-5S-GlcNAc (5S-G)]
110	and OGA [Thiamet-G (TMG)] have been developed to interogate various biological
111	processes ²⁹ . During the cell cycle, O-GlcNAcylation levels fluctuate as the cells
112	proceed through different stages ³⁰ . In particular, both OGT and OGA overproduction
113	results in multipolar spindles ³¹ . However, myriad targets of O-GlcNAc and its
114	quintessential functions remain largely unexplored. Here we identify the O-GlcNAc
115	modified residues of MYPT1. We show that O-GlcNAcylation of MYPT1
116	antagonizes pS473, and results in its dissociation from PLK1. Elevated O-GlcNAc
117	levels thus fuel PLK1 activity towards centrosomes and render ill-timed centrosome
118	separation, disrupting the mitotic cell cycle.

119 **RESULTS**

120 O-GlcNAc promotes aberrant centrosome separation via PLK1

- 121 Previously, both OGT and OGA overproduction has been linked with multi-polar
- 122 spindle ³¹. We sought to identify whether O-GlcNAc could also be linked with
- 123 centrosome dynamics. Strikingly, when HeLa cells were treated with TMG (OGAi),
- 124 the inter-centrosomal distance was significantly augmented four-fold (Fig. 1A),
- reminiscent of the phenotype of Nek2A overexpression or over-activation ^{4,32}. As the
- 126 centrosome cycle is tightly governed by PLK1, we attempted to inhibit PLK1. When
- 127 BI2536 (PLK1i) was adopted in conjuncture with TMG, the centrosomal distances
- shortened considerably (Fig. 1A-C). When BI2536 was utilized alone (Fig. 1A), the
- 129 cells reduced centrosomal distances as previously reported ⁴. These cytological
- 130 studies suggest that high O-GlcNAc culminates in premature centrosomal separation,
- 131 probably via PLK1.
- 132

133 MYPT1 is O-GlcNAcylated at T577, S585, S589 and S601.

- 134 Previous investigation has identified the inactivating phosphatase of PLK1 is
- 135 PP1c β , which is targeted by MYPT1¹⁸. Intriguingly, MYPT1 is O-GlcNAcylated²⁶.
- 136 Therefore we reasoned that O-GlcNAc might exert its effect through MYPT1.
- 137 First, we validated the interaction between MYPT1 and OGT through
- 138 biochemical assays. As shown in Fig. 2A, GST-OGT pulled-down HA-MYPT1 from
- 139 cell extracts. Then both OGT and MYPT1 proteins were purified from *E. coli*. Upon

140	incubation, His-C	GT pulled-dowr	n GST-MYPT1	(Fig. 2B)	, suggesting that th	he
-----	-------------------	----------------	-------------	-----------	----------------------	----

141 interact is direct.

142	Then we mapped which domain of MYPT1 interacts with OGT. As MYPT1 is a
143	relative large protein, we constructed several fragments of MYPT1 as previously
144	described: F1 (1-306), F2 (297-600), F3 (586-901) and F4 (886-1030) (Fig. 2C) ²⁴ . To
145	investigate which fragment interacts with OGT, recombinant full-length (FL) and
146	F1-F4 MYPT1 proteins were utilized in pulldown experiments, and the FL, F2 and F3
147	MYPT1 pulled-down Myc-OGT (Fig. 2D), suggesting that the potential modification
148	sites could be residing in F2 and F3.
149	A recent quantitative proteomic analysis of protein O-GlcNAc sites using an
150	isotope-tagged cleavable linker (isoTCL) strategy identified the potential O-GlcNAc
151	sites of MYPT1 to be T577, S585, S589 and S601 33 (Fig. 3 A-D), all of which locate
152	on F2 and F3. We constructed the T577A/S585A/S589A/S601A (4A) mutant
153	accordingly and assessed its effect. When HA-MYPT1-wild type (WT) and 4A
154	plasmids were transfected into cells, the 4A mutant significantly abrogated
155	O-GlcNAcylation (Fig. 4A), suggesting that these four amino acids are major
156	O-GlcNAc sites. Considering that MYPT1 is abundantly O-GlcNAcylated, and other
157	proteomic screens have also identified extra glycosylation sites ³⁴ , our results do not
158	exclude the possibility that there could be more O-GlcNAcylated residues on MYPT1.
159	

160 O-GlcNAcylation of MYPT1 antagonizes CDK1-dependent phosphorylation at

162 Since CDK1 phosphorylates MYPT1 at S473 during mitosis and create	2	Since	CDK1	phosphor	ylates N	IYPT1	at S473	during	mitosis	and	creates
---	---	-------	------	----------	----------	-------	---------	--------	---------	-----	---------

- 163 binding motif between MYPT1 and the PBD of PLK1¹⁸, we surmised that O-GlcNAc
- 164 of MYPT1 might interplay with pS473. To address this possibility, we used a
- phospho-specific antibody targeting pS473 that has been previously described and
 utilized ²⁵.
- 167 Then the WT and 4A plasmids are compared for the pS473 levels, and it is

significantly bolstered in the 4A mutant (Fig. 4B). When Noc was used to

- synchronize cells in the M phase, O-GlcNAc levels decreased while pS473 levels
- arose (Fig. 4C). As pS473 is mediated by CDK1, we adopted RO-3306 again, and
- 171 observed that RL2 levels decreased while pS473 levels increased in the
- 172 RO-3306-treated cells (Fig.4C). This is consistent with our conjecture that O-GlcNAc

antagonizes pS473. Lastly, we utilized the 5S-G inhibitor for OGT ²⁹, and 5S-G

- treatment substantially boosted pS473 levels of transfected HA-MYPT1(Fig. 4D). We
- also examined the effects of 5S-G on endogenous MYPT1. Noc treatment enhanced
- 176 pS473 levels, and Noc plus 5S-G elevated pS473 markedly (Fig. 4E). In contrast,
- 177 glucose plus TMG (TMG+Glu) treatment during Noc would down-regulate pS473
- 178 compared to Noc alone (Fig. 4F). Taken together, O-GlcNAc of MYPT1 attenuates
- 179 pS473.
- 180

O-GlcNAcylation inhibits MYPT1-PLK1 association 181

182	Since pS473 promotes MYPT1-PLK1 association ¹⁸ , we then explored the effect
183	of O-GlcNAc on the interaction between MYPT1 and PLK1 by treating the cells with
184	TMG+Glu to enhance O-GlcNAc ^{35,36} . As shown in Fig. 5A, Noc increased
185	PLK1-MYPT1 association discernably as reported ¹⁸ , but TMG+Glu together with
186	Noc obliterated PLK1-MYPT1 affinity.
187	As phosphorylated MYPT1 binds with PLK1-PBD 18 , we adopted GST
188	pulldown experiments using PLK1-PBD, and GST-PLK1-PBD modestly increased
189	binding with HA-MYPT1-4A (Fig. 5B). Then we employed FL-PLK1. When we
190	directly utilized the 4A mutant to coIP PLK1, the interaction between MYPT1 and
191	PLK1 substantially upregulated (Fig. 5C). When His-PLK1 was applied in pulldown
192	assays, 4A again manifested more robust association with PLK1(Fig. 5D). In sum, the
193	binding between PLK1 and MYPT1 was abolished during high O-GlcNAc.
194	
195	O-GlcNAcylation of MYPT1 enhances PLK1 activity
196	As the MYPT1 associates PLK1 to target PP1c β to dephosphorylate and
197	deactivate PLK1 ¹⁸ , stronger affinity could signify less activity. We took advantage of
198	the IP-phosphatase assay to examine PLK1 activity ^{22,24} . Cells were transfected with
199	Flag-MYPT1 and treated with Noc. Cells were also supplemented with TMG + Glu to
200	enrich for O-GlcNAc or not treated. When the anti-FLAG immunoprecipitates were
201	incubated with recombinant PLK1, the relative low O-GlcNAc group efficiently

202	dephosphorylated PLK1,	as detected by IB v	with PLK1-pT210	antibodies, but not the
-----	------------------------	---------------------	-----------------	-------------------------

203	high O-GlcN	Ac group	(Fig. 6A).
-----	-------------	----------	------------

204	MYPT1-4A mutants	were then	directly exp	ploited in	the IP-pl	hosphate a	assay. In

- 205 the absence of Noc, MYPT1-WT decreased PLK1 pT210 levels, and the MYPT1-4A
- 206 completely abolished PLK1-pT210 levels (Fig. 6B). This is consistent with our results
- 207 in Fig. 5C-D that MYPT1-4A partners with PLK1 in the absence of Noc treatment.
- 208 Collectively, our biochemical assays suggest that O-GlcNAcylated MYPT1 disjoins
- 209 PLK1 and promotes its kinase activity.
- 210

211 MYPT1-4A Suppresses the TMG-induced centrosome disjunction defects

212 Since the aforementioned results suggest that MYPT1 O-GlcNAcylation is a

- 213 pivotal regulator in centrosome separation, we undertook shMYPT1 to knockdown
- endogenous MYPT1 (Fig. 7A), so that the effects of MYPT1-4A could be directly
- 215 measured and observed after TMG incubation. As shown in Fig. 7B, the premature
- 216 centrosome separation phenotype is discernable in the sh*MYPT1* cells that bears
- 217 MYPT1-WT plasmids. But in the cells transfected with MYPT1-4A plasmids, the
- aberrancy is suppressed (Fig. 7C), in line with previous reports that PLK1
- 219 sequestration culminates in duplicated but unseparated centrosomes^{37,38}. Taken
- together, the 4A mutant fails to show the untimely centrosome separation phenotype,
- 221 probably due to PLK1 suppression.
- 222
- 223

DISCUSSION

225	In this study, we identify that O-GlcNAc regulates centrosome separation
226	through the MYPT1-PLK1 complex. We pinpoint the major O-GlcNAcylated sites of
227	MYPT1 to be S564, S566, T570 and S578 in human cells, and further delineate that
228	O-GlcNAc antagonizes pS473, hinders MYPT1-PLK1 association, thus boosting
229	PLK1 activity and hence centrosome disjunction (Fig. 7D). When MYPT1 fails to be
230	O-GlcNAcylated, as in the MYPT1-4A mutant, PLK1 activity is dampened (Fig. 6B).
231	MYPT1 is one of the most abundant O-GlcNAcylated proteins, and its
232	modification sites have been unveiled time and again in distinct proteomic studies
233	^{34,39,40} . Perhaps O-GlcNAc sites might not be conserved between humans and mice.
234	MYPT1 is found to be O-GlcNAcylated at S564, S566, T570 and S578 by mass
235	spectrometry in the mouse brain ⁴⁰ , but our data show in HeLa cells O-GlcNAc occurs
236	in T577, S585, S589 and S601. Previously, p53 is identified to be O-GlcNAcylated at
237	S149 41 , which is not conserved in mice either. The same also holds true for
238	phosphorylation. For instance, Ataxia-telangiectasia mutated (ATM), a vital sensor
239	protein for DNA damage signaling, is phosphorylated at S1981 and then activated in
240	humans, but mutation of S1987 (the mouse equivalent) does not hinder ATM function
241	in mice ^{42,43} . Thus extrapolating data across species needs extra caution, as the
242	function and sites of PTMs could be context-dependent.
243	Along the same vein, there could be more O-GlcNAc sites on MYPT1, as the
244	proteomic studies were carried out under disparate circumstances and using different

245	click chemistry methodologies ^{33,34,39,40} . As the O-GlcNAc modification is highly
246	dynamic, distinct sites could be modified in response to environmental cues.
247	O-GlcNAc could have multi-faceted effects on the centrosome. Both OGT and
248	OGA overexpression result in multi-polar spindles, which could be repressed by TMG
249	treatment ³¹ . NuMA (nuclear mitotic apparatus protein) is indispensible for spindle
250	pole formation and regulates spindle pole cohesion ^{44,45} . NuMA is O-GlcNAcylated
251	and its localization was led astray by OGT overexpression ⁴⁶ . Further investigations
252	reveal that O-GlcNAcylated NuMA interacts with Galectin-3, which is a prerequisite
253	for mitotic spindle cohesion and proper NuMA localization ⁴⁷ . Here we reveal that
254	centrosome dynamics is also governed by O-GlcNAcylation levels. As the
255	centrosome is pivotal for the mitotic process, O-GlcNAc is bound to modulate other
256	aspects of centrosome function.
257	Our results indicate that O-GlcNAcylated MYPT1 attenuates interaction with
258	PLK1 and thus promotes PLK1 activity. It is intriguing that overall PLK1 pT210
259	levels remain unaltered in OGT or OGA overproduction cells ^{31,46} . We did not detect
260	discernable difference either, in cells supplemented with TMG plus Glucose (data not
261	shown). This may seem paradoxical at first, but considering the versatile roles of
262	PLK1 during mitosis ^{4,14-16} , we could entertain the possibility that only a small pool of
263	PLK1 is regulated by MYPT1. First, although the overall activity of PLK1 is
264	upregulated during mitosis, CDK1 actually dampens PLK1 activity via MYPT1 in a
265	mitosis-specific fashion ¹⁸ . Secondly, the pool of PLK1 responsible for

266	kinetochore-microtubule attachment actually contains low PLK1 kinase activity
267	during metaphase so that microtubules could be dynamic ⁴⁸ . Therefore, irrespective of
268	the overall elevation of mitotic activity, the mitotic master kinase - PLK1 is perhaps
269	indeed fine-tuned in space and time. And O-GlcNAc, could be the sweet icing on the
270	cake.
271	
272	EXPERIMENTAL PROCEDURES
273	Cell culture, antibodies and plasmids
274	Cells were purchased from ATCC. Antibodies were as follows: anti-MYPT1
275	(Bethyl, # BL3866), anti-PLK1 (Zymed, #37-7100), PLK1-pT210 (BD Pharmingen,
276	#558400). Antibodies against pS473 were prepared as described before 25 and
277	manufactured by Beijing B&M Biotech Co., Ltd MYPT1 plasmids were described
278	before ⁴⁹ . MYPT1-4A plasmids were generated using specific primers (sequences
279	available upon request) following the manufacturer's instructions (QuickChange II,
280	Stratagene). His-OGT was from Dr. Yue Wang (Peking Univ.). The following
281	shRNA target sequences were used: shMYPT1: GTAACCCAGTGGACCATAATT.
282	
283	Immunoprecipitation (IP) and Immunoblotting (IB) assays
284	IP and IB experiments were performed as described before ⁵⁰ . The following

286 anti-FLAG M2 (Sigma) (1:1000), anti-Myc (1:1000), anti-PLK1 (1:1000),

primary antibodies were used for IB: anti-\beta-actin (1:10000), anti-HA (1:1000), and

285

287	anti-MYPT1	(1:1000),	PLK1-pT210	(1:500).	The	IP-phosphatase	assay	was
288	performed as	before ^{22,24} .						

289	Peroxidase-conjugated secondary antibodies were from JacksonImmuno
290	Research. Blotted proteins were visualized using the ECL detection system
291	(Amersham). Signals were detected by a LAS-4000, and quantitatively analyzed by
292	densitometry using the Multi Gauge software (Fujifilm). All western blots were
293	repeated for at least three times.

- 294
- 295 Cell Culture Treatment

- 296 Chemical utilization: Nocodazole (Noc) at 100 ng/ml for 16 hours; Ro 3306
- 297 (CDK1 inhibitor) at 2 µM for the time indicated; BI2536 (PLK1 inhibitor) at 100 nM

298 for two hours; Thiamet-G (TMG) (OGA inhibitor) at 5µM for 24 hrs ;

- 299 acetyl-5S-GlcNAc (5S-G) (OGT inhibitor) was used at 100µM (prepared at 50 mM in
- 300 DMSO) for 24 hrs [64].

301

- 302 Indirect Immunofluorescence
- 303 Indirect immunofluorescence staining was performed as described before 5^{0} .
- 304 Dilutions of primary antibodies were 1:1,000 for mouse anti-y-tubulin. Cell nuclei
- were stained with DAPI. Quantitation was performed with the software Image J. 305

306

307 **Abbreviations:**

308 PTI	 post-translationa 	1 modification;	O-GlcNAc,	O-linked	N-acetylglucosamine	e;
---------	---------------------------------------	-----------------	-----------	----------	---------------------	----

- 309 OGT, O-GlcNAc transferase; TMG, Thiamet-G; PBD, polo-box binding domain;
- 310 MYPT1, myosin phosphatase targeting subunit 1; Cdk1, Cyclin-dependent kinase 1;
- 311 PLK1, Polo-like kinase 1 ; 5S-G, acetyl-5S-GlcNAc; PP1cβ, protein phosphatase 1 c
- 312 β ; FL, full-length; ETD, Electron Transfer Dissociation

313

314 Acknowledgements

315 We thank Dr. Hai-Ning Du (Wuhan Univ.) and the Li laboratory for helpful 316 discussion. This work is supported by the National Natural Science Foundation of 317 China (NSFC) fund (31872720) and Capacity Building for Sci-Tech Innovation -318 Fundamental Scientific Research Funds (19530050137) to J. L.; NSFC (NOs. 319 21425204, 21672013 and 21521003) and the National Key Research and 320 Development Projects (NOs. 2016YFA0501500 and 2018YFA0507600) to X.C.; 321 NSFC (91853120) and the National Major Scientific and Technological Special 322 Project of China for "Significant New Drugs Development" (2018ZX09711001-013) 323 to Z. T.

324

325 **Competing interests**

326 The authors declare that they have no conflicts of interest with the contents of this327 article.

329 Author contributions

- 330 J. L., X.C. and Z.T. conceived the project and analyzed the data. C. L., Y. S., X. L., Z.
- 331 X. and Jie L. performed all the experiments. All authors reviewed and approved the
- 332 manuscript.

References

335	1	Vertii, A., Hehnly, H. & Doxsey, S. The Centrosome, a Multitalented
336	1	Renaissance Organelle. <i>Cold Spring Harb Perspect Biol</i> 8 ,
337		doi:10.1101/cshperspect.a025049 (2016).
338	2	Silkworth, W. T., Nardi, I. K., Paul, R., Mogilner, A. & Cimini, D. Timing of
339	-	centrosome separation is important for accurate chromosome segregation. <i>Mol</i>
340		<i>Biol Cell</i> 23 , 401-411, doi:10.1091/mbc.E11-02-0095 (2012).
341	3	Bahe, S., Stierhof, Y. D., Wilkinson, C. J., Leiss, F. & Nigg, E. A. Rootletin
342	5	forms centriole-associated filaments and functions in centrosome cohesion. J
343		<i>Cell Biol</i> 171 , 27-33, doi:10.1083/jcb.200504107 (2005).
344	4	Mardin, B. R., Agircan, F. G., Lange, C. & Schiebel, E. Plk1 controls the
345	т	Nek2A-PP1gamma antagonism in centrosome disjunction. <i>Curr Biol</i> 21 ,
345 346		1145-1151, doi:10.1016/j.cub.2011.05.047 (2011).
340 347	5	van Ree, J. H., Nam, H. J. & van Deursen, J. M. Mitotic kinase cascades
348	5	orchestrating timely disjunction and movement of centrosomes maintain
348 349		chromosomal stability and prevent cancer. <i>Chromosome Res</i> 24 , 67-76,
350		doi:10.1007/s10577-015-9501-9 (2016).
350 351	6	Hardy, T. <i>et al.</i> Multisite phosphorylation of C-Nap1 releases it from Cep135
	0	to trigger centrosome disjunction. J Cell Sci 127 , 2493-2506,
352		doi:10.1242/jcs.142331 (2014).
353	7	
354	7	Mardin, B. R. <i>et al.</i> Components of the Hippo pathway cooperate with Nek2
355		kinase to regulate centrosome disjunction. <i>Nat Cell Biol</i> 12 , 1166-1176,
356	0	doi:10.1038/ncb2120 (2010).
357	8	Barr, F. A., Sillje, H. H. & Nigg, E. A. Polo-like kinases and the orchestration
358		of cell division. <i>Nat. Rev. Mol. Cell. Biol.</i> 5 , 429-440, doi:10.1038/nrm1401
359	0	(2004).
360	9	Blangy, A. <i>et al.</i> Phosphorylation by p34cdc2 regulates spindle association of
361		human Eg5, a kinesin-related motor essential for bipolar spindle formation in
362		vivo. <i>Cell</i> 83 , 1159-1169 (1995).
363	10	Smith, E. <i>et al</i> . Differential control of Eg5-dependent centrosome separation
364		by Plk1 and Cdk1. <i>EMBO J</i> 30 , 2233-2245, doi:10.1038/emboj.2011.120
365		(2011).
366	11	Bertran, M. T. et al. Nek9 is a Plk1-activated kinase that controls early
367		centrosome separation through Nek6/7 and Eg5. EMBO J 30, 2634-2647,
368		doi:10.1038/emboj.2011.179 (2011).
369	12	Eibes, S. et al. Nek9 Phosphorylation Defines a New Role for TPX2 in
370		Eg5-Dependent Centrosome Separation before Nuclear Envelope Breakdown.
371		<i>Curr Biol</i> 28 , 121-129 e124, doi:10.1016/j.cub.2017.11.046 (2018).
372	13	Wang, G., Jiang, Q. & Zhang, C. The role of mitotic kinases in coupling the
373		centrosome cycle with the assembly of the mitotic spindle. J Cell Sci 127,
374		4111-4122, doi:10.1242/jcs.151753 (2014).

375	14	Zitouni, S., Nabais, C., Jana, S. C., Guerrero, A. & Bettencourt-Dias, M.
376	17	Polo-like kinases: structural variations lead to multiple functions. <i>Nat Rev Mol</i>
377		<i>Cell Biol</i> 15 , 433-452, doi:10.1038/nrm3819 (2014).
378	15	Song, B., Liu, X. S. & Liu, X. Polo-like kinase 1 (Plk1): an Unexpected Player
379	15	in DNA Replication. <i>Cell division</i> 7 , 3, doi:10.1186/1747-1028-7-3 (2012).
380	16	Li, J., Wang, J., Jiao, H., Liao, J. & Xu, X. Cytokinesis and cancer: Polo loves
381	10	ROCK'n' Rho(A). J. Genet. Genomics. 37 , 159-172,
382		doi:10.1016/S1673-8527(09)60034-5 (2010).
383	17	Seki, A., Coppinger, J. A., Jang, C. Y., Yates, J. R. & Fang, G. Bora and the
384	17	kinase Aurora A cooperatively activate the kinase Plk1 and control mitotic
385		entry. <i>Science</i> 320 , 1655-1658, doi:10.1126/science.1157425 (2008).
386	18	Yamashiro, S. <i>et al.</i> Myosin phosphatase-targeting subunit 1 regulates mitosis
387	10	by antagonizing polo-like kinase 1. <i>Dev. Cell</i> 14 , 787-797,
388		doi:10.1016/j.devcel.2008.02.013 (2008).
389	19	Dumitru, A. M. G., Rusin, S. F., Clark, A. E. M., Kettenbach, A. N. &
390		Compton, D. A. Cyclin A/Cdk1 modulates Plk1 activity in prometaphase to
391		regulate kinetochore-microtubule attachment stability. <i>Elife</i> 6 ,
392		doi:10.7554/eLife.29303 (2017).
393	20	Feldman, M., Vershinin, Z., Goliand, I., Elia, N. & Levy, D. The
394		methyltransferase SETD6 regulates Mitotic progression through PLK1
395		methylation. Proc Natl Acad Sci U S A 116 , 1235-1240,
396		doi:10.1073/pnas.1804407116 (2019).
397	21	Li, W. et al. A methylation-phosphorylation switch determines Plk1 kinase
398		activity and function in DNA damage repair. Sci Adv 5, eaau7566,
399		doi:10.1126/sciadv.aau7566 (2019).
400	22	Chiyoda, T. et al. LATS1/WARTS phosphorylates MYPT1 to counteract
401		PLK1 and regulate mammalian mitotic progression. J Cell Biol 197, 625-641,
402		doi:10.1083/jcb.201110110 (2012).
403	23	Kachaner, D. et al. Plk1-dependent phosphorylation of optineurin provides a
404		negative feedback mechanism for mitotic progression. Mol Cell 45, 553-566,
405		doi:10.1016/j.molcel.2011.12.030 (2012).
406	24	Hu, X. et al. Chk1 modulates the interaction between myosin phosphatase
407		targeting protein 1 (MYPT1) and protein phosphatase 1cbeta (PP1cbeta). Cell
408		<i>Cycle</i> 17 , 421-427, doi:10.1080/15384101.2017.1418235 (2018).
409	25	Nai, S. et al. Chk2-dependent phosphorylation of myosin phosphatase
410		targeting subunit 1 (MYPT1) regulates centrosome maturation. Cell Cycle, 1-9,
411		doi:10.1080/15384101.2019.1654795 (2019).
412	26	Cheung, W. D., Sakabe, K., Housley, M. P., Dias, W. B. & Hart, G. W.
413		O-linked beta-N-acetylglucosaminyltransferase substrate specificity is
414		regulated by myosin phosphatase targeting and other interacting proteins. J
415		Biol Chem 283, 33935-33941, doi:10.1074/jbc.M806199200 (2008).
416	27	Hart, G. W., Slawson, C., Ramirez-Correa, G. & Lagerlof, O. Cross talk

417		between O-GlcNAcylation and phosphorylation: roles in signaling,
418		transcription, and chronic disease. Annu Rev Biochem 80, 825-858,
419		doi:10.1146/annurev-biochem-060608-102511 (2011).
420	28	Yang, X. & Qian, K. Protein O-GlcNAcylation: emerging mechanisms and
421	20	functions. <i>Nat Rev Mol Cell Biol</i> 18 , 452-465, doi:10.1038/nrm.2017.22
422		(2017).
423	29	Gloster, T. M. <i>et al.</i> Hijacking a biosynthetic pathway yields a
424	27	glycosyltransferase inhibitor within cells. <i>Nat Chem Biol</i> 7 , 174-181,
425		doi:10.1038/nchembio.520 (2011).
426	30	Liu, C. & Li, J. O-GlcNAc: A Sweetheart of the Cell Cycle and DNA Damage
427	50	Response. <i>Front Endocrinol (Lausanne)</i> 9 , 415,
428		doi:10.3389/fendo.2018.00415 (2018).
429	31	Tan, E. P., Caro, S., Potnis, A., Lanza, C. & Slawson, C. O-linked
430	51	N-acetylglucosamine cycling regulates mitotic spindle organization. <i>J Biol</i>
431		<i>Chem</i> 288 , 27085-27099, doi:10.1074/jbc.M113.470187 (2013).
432	32	Chen, C. H. <i>et al.</i> Characterization of Cep85 - a new antagonist of Nek2A that
433	52	is involved in the regulation of centrosome disjunction (vol 128, pg 3290,
434		2015). Journal of Cell Science 128 , 3837-3837, doi:10.1242/jcs.180463
435		(2015). <i>Journal of Cell Science</i> 126 , <i>3637-3637</i> , doi:10.1242/jcs.166463
436	33	Qin, K. <i>et al.</i> Quantitative Profiling of Protein O-GlcNAcylation Sites by an
437	55	Isotope-Tagged Cleavable Linker. ACS Chem Biol,
438		doi:10.1021/acschembio.8b00414 (2018).
439	34	Woo, C. M. <i>et al.</i> Mapping and Quantification of Over 2000 O-linked
440		Glycopeptides in Activated Human T Cells with Isotope-Targeted
441		Glycoproteomics (Isotag). <i>Mol Cell Proteomics</i> 17, 764-775,
442		doi:10.1074/mcp.RA117.000261 (2018).
443	35	Ramakrishnan, P. et al. Activation of the transcriptional function of the
444		NF-kappaB protein c-Rel by O-GlcNAc glycosylation. Sci Signal 6, ra75,
445		doi:10.1126/scisignal.2004097 (2013).
446	36	Tian, J. et al. O-GlcNAcylation Antagonizes Phosphorylation of CDH1
447		(CDC20 Homologue 1). J Biol Chem 291, 12136-12144,
448		doi:10.1074/jbc.M116.717850 (2016).
449	37	Lane, H. A. & Nigg, E. A. Antibody microinjection reveals an essential role
450		for human polo-like kinase 1 (Plk1) in the functional maturation of mitotic
451		centrosomes. J Cell Biol 135, 1701-1713, doi:10.1083/jcb.135.6.1701 (1996).
452	38	Sumara, I. et al. Roles of polo-like kinase 1 in the assembly of functional
453		mitotic spindles. Curr Biol 14, 1712-1722, doi:10.1016/j.cub.2004.09.049
454		(2004).
455	39	Li, J. et al. An Isotope-Coded Photocleavable Probe for Quantitative Profiling
456		of Protein O-GlcNAcylation. ACS Chem Biol,
457		doi:10.1021/acschembio.8b01052 (2019).
458	40	Alfaro, J. F. et al. Tandem mass spectrometry identifies many mouse brain

459		O-GlcNAcylated proteins including EGF domain-specific O-GlcNAc
460		transferase targets. Proc Natl Acad Sci USA 109, 7280-7285,
461		doi:10.1073/pnas.1200425109 (2012).
462	41	Yang, W. H. et al. Modification of p53 with O-linked N-acetylglucosamine
463		regulates p53 activity and stability. <i>Nat Cell Biol</i> 8 , 1074-1083,
464		doi:10.1038/ncb1470 (2006).
465	42	Pellegrini, M. et al. Autophosphorylation at serine 1987 is dispensable for
466		murine Atm activation in vivo. <i>Nature</i> 443 , 222-225, doi:10.1038/nature05112
467		(2006).
468	43	Shiloh, Y. & Ziv, Y. The ATM protein kinase: regulating the cellular response
469		to genotoxic stress, and more. Nat Rev Mol Cell Biol 14, 197-210 (2013).
470	44	Silk, A. D., Holland, A. J. & Cleveland, D. W. Requirements for NuMA in
471		maintenance and establishment of mammalian spindle poles. J Cell Biol 184,
472		677-690, doi:10.1083/jcb.200810091 (2009).
473	45	Kong, X. et al. Cohesin associates with spindle poles in a mitosis-specific
474		manner and functions in spindle assembly in vertebrate cells. <i>Mol Biol Cell</i> 20 ,
475		1289-1301, doi:10.1091/mbc.E08-04-0419 (2009).
476	46	Wang, Z. et al. Extensive crosstalk between O-GlcNAcylation and
477		phosphorylation regulates cytokinesis. Sci Signal 3, ra2,
478		doi:10.1126/scisignal.2000526 (2010).
479	47	Magescas, J. et al. Spindle pole cohesion requires glycosylation-mediated
480		localization of NuMA. Sci Rep 7, 1474, doi:10.1038/s41598-017-01614-6
481		(2017).
482	48	Liu, D., Davydenko, O. & Lampson, M. A. Polo-like kinase-1 regulates
483		kinetochore-microtubule dynamics and spindle checkpoint silencing. J Cell
484		Biol 198, 491-499, doi:10.1083/jcb.201205090 (2012).
485	49	Li, J. et al. MYPT1 sustains centromeric cohesion and the spindle-assembly
486		checkpoint. J Genet Genomics 40, 575-578, doi:10.1016/j.jgg.2013.08.005
487		(2013).
488	50	Li, J. et al. Phosphorylation of Ataxin-10 by polo-like kinase 1 is required for
489		cytokinesis. Cell Cycle 10, 2946-2958, doi:15922 [pii] (2011).
490		

492 Figure Legends

493	Figure 1. Elevated O-GlcNAc levels leads to aberrant centrosome separation via
494	PLK1. (A) HeLa cells were treated with TMG, BI2536 or TMG + BI2536, then
495	stained with anti- γ -tubulin antibodies and DAPI. Scale bar, 10 μ M. (B) Quantitation
496	of inter-centrosomal distances in (A). More than 25 cells were counted for each
497	experiment. The data represent mean \pm S. D. of three independent experiments.
498	Asterisks indicate significant difference as determined by t-test (p1-2=0.005,
499	p2-4=0.008). (C) Quantitation of percent of cells with separated centrosomes in (A).
500	Asterisks indicate significant difference as determined by t-test (p1-2=0.02,
501	p2-4=0.02)
502	
503	Figure 2. OGT interacts with the central region of MYPT1. (A) Recombinant
504	GST-OGT proteins were incubated with HA-MYPT1-transfected cell lysates. (B)
505	His-OGT and GST-MYPT1 proteins were incubated together and then subject to
506	pulldown assays as indicated. (C) A diagram showing MYPT1 constructs used in this
507	study. Full-length (FL), F1(1-306), F2(297-600), F3(586-901) and F4(886-1030) were
508	previously described ²⁴ . 4A denotes T577AS585AS589AS601A. (D) Recombinant
509	GST-MYPT1-FL, F1, F2, F3 and F4 proteins were purified from bacteria, and
510	incubated with extracts from 293T cells transfected with Myc-OGT. Asterisks

513	Figure 3. MYPT1 is O-GlcNAcylated at T577, S585, S589 and S601. (A-D)
514	Electron Transfer Dissociation (ETD) mass spectrometry combined with
515	chemo-enzymatic labeling identified that T577S585 S589S601 are O-GlcNAcylated
516	33
517	
518	Figure 4. O-GlcNAcylation of MYPT1 antagonizes CDK1-dependent
519	phosphorylation at S473. (A) MYPT1-WT and 4A plasmids together with
520	Myc-OGT or empty vectors were transfected into 293T cells and then blotted with
521	antibodies indicated. (B) Cells were transfected with HA-MYPT1-WT or 4A plasmids,
522	and then the lysates were IBed with antibodies indicated. (C) Cells were treated with
523	Noc, or Noc with Ro-3306 for the time indicated. (D) HeLa cells were transfected
524	with HA-MYPT1, treated or untreated with 5S-G (OGT inhibitor). (E) Cells were
525	treated with Noc, or Noc + 5S-G. (F) Cells were transfected with MYPT1-WT
526	plasmids, and then treated with Noc, or Noc plus TMG + Glu as indicated.
527	
528	Figure 5. O-GlcNAcylation of MYPT1 attenuates the interaction between
529	MYPT1 and PLK1. (A) 293T cells were transfected with Flag-PLK1 and
530	HA-MYPT1, treated or not treated with Noc, TMG + Glu, respectively, then subject
531	to IP and IB as indicated. (B) GST-PLK1-PBD proteins were purified from bacteria.
532	Cells were transfected with HA-MYPT1-WT or 4A, then the cell lysates were subject
533	to GST-PLK1-PBD pulldown assays. (C) Cells were transfected with FLAG-PLK1

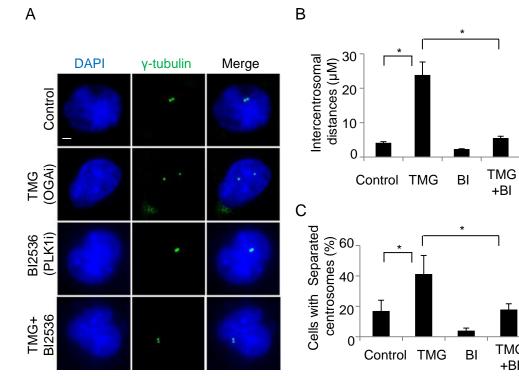
534	together with HA-MYPT1-WT or 4A	A, then subject to IP and IB as indicated. (D)
JJ 4		, then subject to it and its as indicated. (J

- 535 Cells were transfected with HA-MYPT1-WT or 4A, and then cell extracts were
- 536 utilized in His-PLK1 pulldown assays.
- 537

538 Figure 6. O-GlcNAcylation of MYPT1 promotes PLK1 activity. (V. (A
--	--------------

- 539 IP-phosphatase assays. U2OS cells were transfected with Flag-MYPT1, synchronized
- 540 to mitosis with Noc, then treated with TMG + Glu or left untreated. The anti-Flag
- 541 immunoprecipitates were then incubated with recombinant His-PLK1. (B)
- 542 IP-phosphatase assays using the MYPT1-WT and -4A mutants without Noc
- 543 treatment.
- 544

545 **Figure 7. MYPT1 overproduction overrides the centrosome disjunction defects**

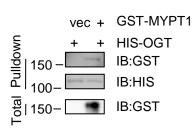

- 546 induced by TMG (A) Lenti viruses encoding vectors or sh*MYPT1* was introduced
- 547 into HeLa cells, together with HA-MYPT1-WT or -4A plasmids. The cellular lysates
- 548 were IBed with the antibodies indicated. (B) Cells in (A) were subject to indirect IF
- 549 using the antibodies indicated. (C) Quantitation of percent of cells with separated
- 550 centrosomes in (B). Asterisks indicate significant difference as determined by t-test

551 (p1-2=0.0002, p2-3=0.22, p2-4=0.001). (D) We propose that MYPT1 is

- 552 O-GlcNAcylated at T577 S585 S589 S601, which antagonizes CDK1-dependent
- phosphorylation at S473 and MYPT1-PLK1 interaction. By disjoining PLK1 from the

554 MYPT1/PP1cβ complex, PLK1 activity is elevated, thus promoting centrosome


555 separation.

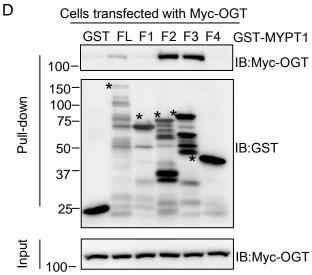
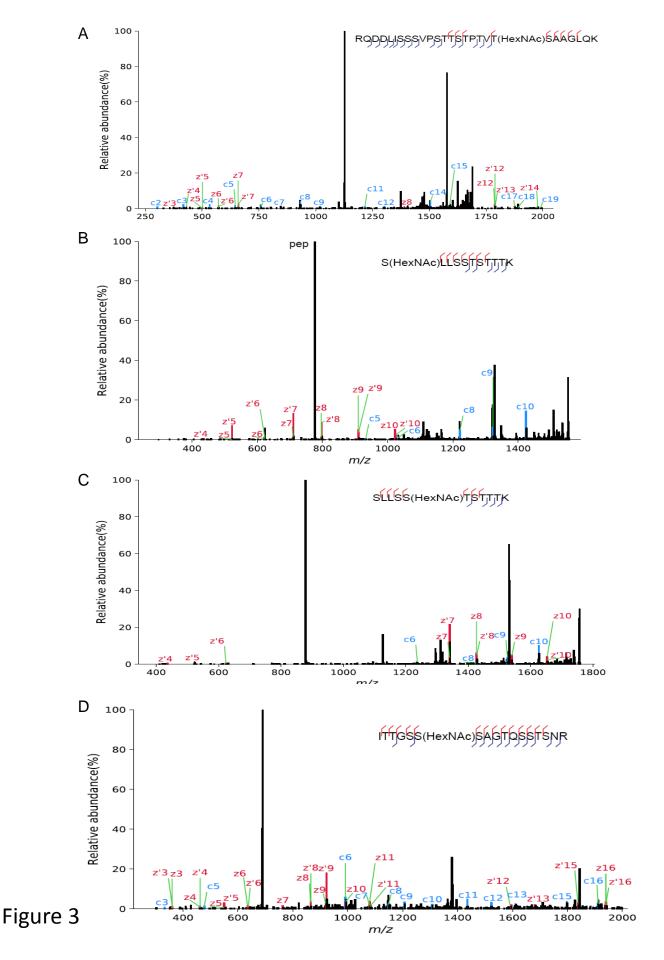
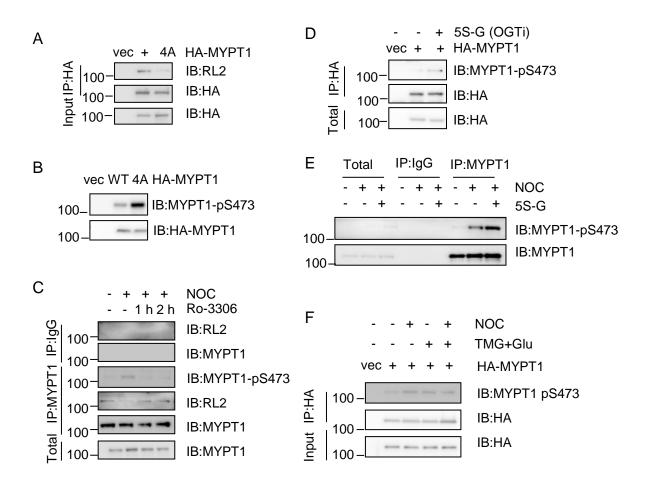
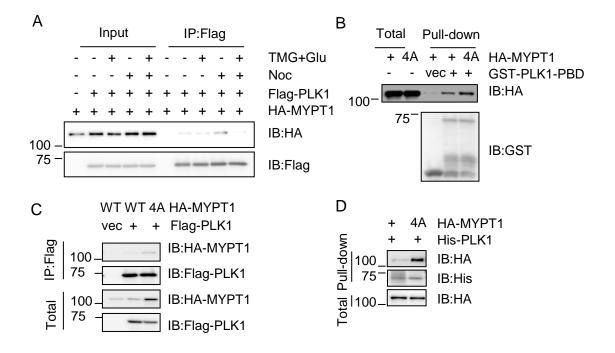

٦

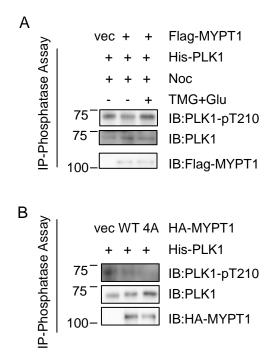
TMG +BI

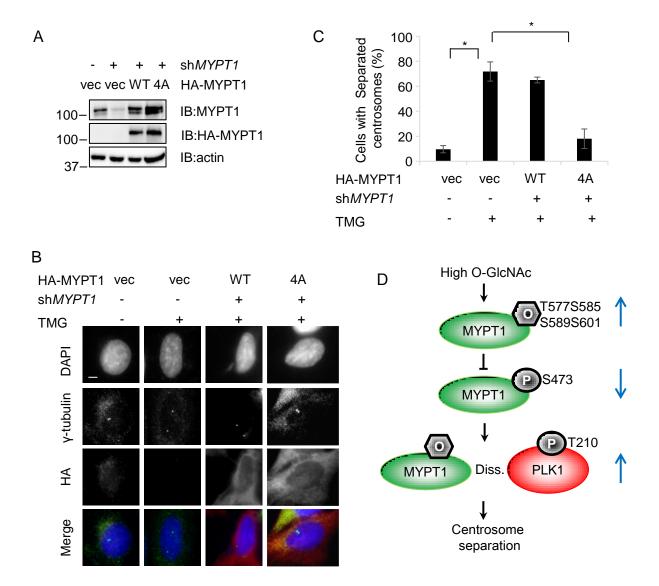
С

В

L


Figure 2


А

