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Abstract

27 Disturbance forces facilitate motor learning, but theoretical explanations for this 

28 counterintuitive phenomenon are lacking. Smooth arm movements require 

29 predictions (inference) about the force-field associated with a workspace. The Free 

30 Energy Principle (FEP) suggests that such ‘active inference’ is driven by ‘surprise’. 

31 We used these insights to create a formal model that explains why disturbance helps 

32 learning. In two experiments, participants undertook a continuous tracking task 

33 where they learned how to move their arm in different directions through a novel 3D 

34 force field. We compared baseline performance before and after exposure to the 

35 novel field to quantify learning. In Experiment 1, the exposure phases (but not the 

36 baseline measures) were delivered under three different conditions: (i) robot haptic 

37 assistance; (ii) no guidance; (iii) robot haptic disturbance. The disturbance group 

38 showed the best learning as our model predicted. Experiment 2 further tested our 

39 FEP inspired model. Assistive and/or disturbance forces were applied as a function 

40 of performance (low surprise), and compared to a random error manipulation (high 

41 surprise). The random group showed the most improvement as predicted by the 

42 model. Thus, motor learning can be conceptualised as a process of entropy 

43 reduction. Short term motor strategies (e.g. global impedance) can mitigate 

44 unexpected perturbations, but continuous movements require active inference about 

45 external force-fields in order to create accurate internal models of the external world 

46 (motor learning).  Our findings reconcile research on the relationship between noise, 

47 variability, and motor learning, and show that information is the currency of motor 

48 learning. 
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49 Introduction

50 Neonates must determine the complex relationship between perceptual 

51 outcomes and motor signals in order to learn how to move their arms effectively. This 

52 process is repeated throughout life as humans calibrate to new environments, 

53 acquire new skills, experience neuromuscular fatigue or recover from injury. 

54 Technological advances have created robotic systems designed to accelerate the 

55 acquisition of skilled arm movements in a variety of areas including, amongst others, 

56 laparoscopic surgical training and stroke rehabilitation [1]. These devices can provide 

57 assistive forces that guide an individual’s arm through a desired trajectory or apply 

58 disturbance forces that make it more difficult for the individual to move their arm 

59 along a given trajectory.

60 It is now well established that providing assistive forces to neurologically intact 

61 individuals can actually impair subsequent learning [2,3]. Conversely, there is 

62 growing empirical evidence that providing disturbance forces to impair performance 

63 during training of a motor task can have a net positive effect, and lead to improved 

64 learning - enhancing performance in the task after the disturbance forces are 

65 removed [3–8]. However, formalised theoretical explanations that can account for 

66 these counterintuitive phenomena have proven elusive [9]. This is disappointing 

67 because it remains unclear how robotic devices might be best optimised in order to 

68 enhance learning (beyond this binary observation of differences between assisting 

69 and disturbing forces). The lack of a theoretical framework also makes it difficult to 

70 explain formally why assistive forces can be beneficial for individuals with 

71 neurological impairment [10], and the absence of a framework is hindering the 

72 potential utility of robotic technology in motor training. We propose that a ‘Shannon’ 

73 information theory perspective [11,12] could provide a principled approach to 

74 understanding why disruptive forces can be beneficial, and such an account could 

75 ultimately inform the development of haptic interventions. 
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76 The free energy minimization principle is the leading theoretical explanation of 

77 brain and behaviour within the domain of neuroscience, and it accounts for many 

78 empirical data within a unifying action, perception and learning framework [13–15]. 

79 The free-energy principle suggests that biological systems act to minimise free 

80 energy (an information theory measure that limits the surprise associated with 

81 sampling data). In this conceptualisation, the brain behaves as an active inference 

82 machine that formulates predictions about the environment [16]: the better the 

83 predictions about the environment, the lower the amount of free energy. Thus, the 

84 process of effective motor learning involves the system making increasingly accurate 

85 predictions about the perceptual outcome of motor commands given the current state 

86 of the system. In other words, the system will minimise entropy (the average amount 

87 of surprise) through the development of ‘forward models’ that act as neural 

88 simulators regarding how the current state of the system will respond to a given 

89 motor signal [17].

90 Viewed in this way, motor learning requires the system to sample information in 

91 order to extract the invariant rules that govern a range of input–output mappings 

92 [18,19]. The difficulty faced by the system relates to the large number of internal 

93 parameters that connect the sensory input to the motor output i.e. high levels of 

94 uncertainty [20]. The example of a neonate learning the mapping between perceptual 

95 and motor output illustrates how this problem can be framed from an information 

96 theory perspective. The newborn must use information generated from her 

97 exchanges with the environment in order to learn the input–output mappings and 

98 subsequently refine her predictions, so that she can successfully interact with her 

99 new surroundings. The initial reaches will be associated with high levels of 

100 uncertainty and will thus have high informational entropy (the average surprise of the 

101 outcomes sampled from the probability density). The developmental trajectory, 

102 however, will be marked by a reduction in entropy as the certainty of a predictable 
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103 perceptual outcome following the generation of a motor command will increase. 

104 Thus, motor learning can be viewed as a process where entropy (i.e., uncertainty) is 

105 reduced through the development of forward models following exposure to 

106 information regarding the relationship between perceptual output and motor signal 

107 input [16]. 

108 We propose that this information perspective can account for the previous finding 

109 of superior learning outcomes from disturbance haptic force application relative to 

110 assistive guidance. Specifically, we suggest that providing assistive forces limits the 

111 amount of surprise experienced by the actor and thus constrains the amount of 

112 learning. Conversely, disturbance forces expose the individual to more information 

113 which facilitates the learning process. Following this logic, a control algorithm that 

114 provides an optimal level of surprise should lead to better learning than those that 

115 minimise uncertainty. It will be noted that a certain level of motor proficiency is 

116 required to sample information within a workspace – if an individual is unable to 

117 move their arm through the space then they will be unable to experience the surprise 

118 necessary to even start the learning process. This may explain why assistive forces 

119 have been found to help individuals with severe neurological impairment [4,21,22] or 

120 lesser skilled individuals [3,23] – as these systems allow the individual to sample the 

121 requisite information and thereby start the learning process.

122 Our approach is based on the idea that skilful arm movements require accurate 

123 predictions about the forces acting on the arm as it moves around the workspace. If 

124 these predictions are inaccurate then the system must contend with unexpected 

125 perturbations that will force the arm away from its desired trajectory. It has been 

126 shown that participants can learn to attenuate the impact of an unexpected 

127 perturbation in the short term by developing a ‘global impedance’ strategy, where 

128 joint stiffness rapidly increases in response to the application of a sudden 

129 unexpected force[24,25]. The development of a ‘global impedance’ strategy is a 
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130 useful short term response to environments which contain unpredictable forces. 

131 Nevertheless, skilled continuous movements through a workspace require accurate 

132 forward models that allow low entropy, suggesting that the system will seek to learn 

133 (and thus predict) the underlying force field in which it is operating. On this basis, we 

134 predicted that exposure to a complex force field would, over a sufficient period, drive 

135 the system to learn how to move skilfully through the workspace (rather than 

136 adopting a short term global impedance strategy).  

137 To test these ideas, we created a metric that quantified the information sampled 

138 as individuals learned to move their hand around an artificial environment containing 

139 a complex force field (equivalent to moving the arm through a novel viscous 

140 solution). The environment was specifically designed to produce sufficient novelty to 

141 limit the possibilities of existing forward models being adapted. These steps allowed 

142 us to examine novel motor learning in two experiments whilst providing distinct types 

143 of assistive and disturbance forces using an admittance-controlled robotic device. In 

144 our second experiment, we created a condition that would enhance learning if the 

145 Free Energy Principle inspired model has merit but would not be expected to benefit 

146 learning if the system were simply adopting a short term global impedance strategy 

147 to cope with the force field.

148 In our experience, there are two points worth highlighting with regard to the 

149 reported experiments. First, the experiments appear to have a similarity with a study 

150 run within Kawato’s laboratories [25]. The method section below should make it clear 

151 that the similarity is superficial. In the Kawato study, participants moved their arm 

152 along a prescribed path through a normal force field but were exposed to an 

153 unexpected perturbation when the arm diverged from the desired spatial path 

154 (resulting in participants learning to stiffen their arm in response to such 

155 perturbations). In our experiments, participants had to make continual movements 

156 through a workspace comprising a completely novel force field. This arrangement 
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157 meant that our participants had to learn the underlying structure of the force field – 

158 the experiments were not about the participants moving normally and then suddenly 

159 experiencing a perturbation of an unpredictable nature. Second, our experiments 

160 included baseline measurements of how well the participants could move their arms 

161 in the novel force field. These measurements were taken before and after the 

162 participants were given the opportunity to learn the task. The baseline measures did 

163 not involve the experimental manipulations (where the robot provided assistive or 

164 disruptive forces during the learning process). Thus, the baseline measures provided 

165 an index of the motor learning that occurred throughout the experimental sessions. 

166 These measures provided the data that we needed to test the predictions of our 

167 model. 
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168 Materials and Methods

169 Participants

170 In Experiment 1, forty-eight right-handed participants (26 male) (M = 29.4 years, 

171 SD = 9.34 years, range 20–59 years) were recruited and randomly allocated to one 

172 of three training groups: Assistance (n = 15), Active-Control (n = 16) and Disruption 

173 (n = 17). One participant from the Active-Control group voluntarily withdrew from the 

174 experiment and their data were excluded from further analysis. 

175 In Experiment 2, forty-six right-handed participants (25 male, aged 19 - 56 years, 

176 M = 24.93 years, SD = 6.36 years) were randomly allocated to the Adaptive 

177 Algorithm (n = 13), Adaptive Disruptive (n=17) and Random (n = 16) conditions. One 

178 participant withdrew voluntarily from the Random group after the first session and 

179 their data were not included for statistical analysis. The Psychology Research Ethics 

180 Committee at the University of Leeds approved the research.

181

182 Procedure 

183 In the two reported experiments using a task that required continuous tracking 

184 through a complex novel three dimensional force field, participants stood in front of a 

185 haptic robot system (HapticMASTER, see Materials) and visual stimuli were 

186 displayed on a monitor located behind the device, approximately at eye level (see Fig 

187 1A). Two cursors were used to visually represent the actual hand and the target 

188 position of the device end-effector within the workspace on the visual display (see 

189 Fig 1D). Upon reaching the start position, the cursor started moving immediately 

190 along the first component (sub-path) for that trajectory at a constant speed of 0.1 

191 m/s. Participants were instructed to use their preferred (right) hand to align the end-

192 effector with a moving target as accurately as possible along pre-specified 
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193 trajectories. Movement was in the Y-Z plane of the HapticMASTER system (Z – 

194 vertically upwards, Y – horizontally right relative to participant). The target cursor 

195 waited until the end of the component was reached by the participant before the next 

196 component began.

197 Participants were required to attend five sessions (one per day for 5 consecutive 

198 days) of approximately 15 minutes each. In sessions 1 and 5, participants followed a 

199 pentagram trajectory for three blocks of ten trials. Participants moved within a 

200 workspace force field, but had no error manipulation forces.  This trajectory was 

201 based on 2D aiming tasks that have previously been used in the assessment of 

202 manual dexterity [26]. The pentagram contains five straight line components of equal 

203 length (the five edges). In Experiment 1, sessions 2 to 4 (Training) each consisted of 

204 four blocks of ten trials, with either assistive (error reducing), no or disruptive (error 

205 enhancing) forces (depending on the allocated group) superimposed over the 

206 workspace force field, following an inverted pentagram trajectory. 

207 The target cursor was a hollow red circle, and the ‘current position’ cursor was a 

208 filled blue circle. A dotted black line was used to indicate the magnitude of the error 

209 between the current position and target cursors. To minimize fatigue, self-paced 

210 breaks with a minimum of 30 seconds rest (whilst standing or seated) were provided 

211 after each block of trials. Each session lasted approximately fifteen minutes. 

212 Experiment 2 followed same trial structure as Experiment 1, with the exception of the 

213 levels of assistance/disruption, which change trial by trial using various algorithms 

214 depending on group.

215 Materials

216 The experiments reported here were designed to examine how error 

217 manipulation forces affect the learning of a novel workspace force field. The 
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218 HapticMASTER, an admittance-controlled haptic device with a large workspace [27], 

219 was used to generate the forces and record kinematics at a rate of 1 kHz.

220 To simulate a novel environment, we created a workspace force field which was 

221 a function of position and calculated from the following equations: 

𝑓𝑦 = 1sin (2𝜋
0.1𝑧) (1)

𝑓𝑧 = 1sin (2𝜋
0.1𝑦) (2)

222 The force from the workspace force field (newtons) was a function of position 

223 (y and z, measured in meters) only. From this emerged a relatively novel 

224 environment (Fig 1C) where, in order to perform well in the task, participants needed 

225 to learn to predict the consequences of motor commands sent to the arm. Error 

226 manipulation forces (those that acted to reduce or augment execution error) were 

227 subsequently implemented using a mass-spring-damper model, as described in 

228 Equation (3):

𝐹 = 𝑚𝑥 + 𝑐𝑥 + 𝑘𝑥 (3)

229 where (x) is displacement between the end effector and target positions and 

230 force is computed as a function of the distance between the actual and target 

231 positions of the end-effector. The simulation was implemented in a virtual null-gravity 

232 environment, and the end-effector mass, m, set to 3 kg and the damping, c, was set 

233 to 10 Ns/m to generate an inertial effect.

234 In Experiment 1, for the Active-Control condition, the stiffness k was set to 0 

235 N/m and therefore no forces directly related to the positional error. The assistance 

236 group were provided with an assistive force implemented using k = 100 N/m, thereby 

237 providing full assistance, and minimizing workspace information sampling. The 

238 Disruption group had a disturbance force generated using coefficients k = -100 N/m, 
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239 thereby providing a large prediction error for initial interactions in this condition and 

240 subsequently facilitation a larger range of movement around the workspace and 

241 information sampling. 

242 In Experiment 2, we varied workspace information acquisition whilst also 

243 manipulating the possibility of developing a short term global impedance strategy. 

244 Specifically, we created three new training algorithms. In the Adaptive Algorithm (AA) 

245 - the virtual spring stiffness (k) varied as a function of task performance (i.e. 

246 participants had increased disturbance when performance improved and increased 

247 assistance when performance declined). The first trial of the Adaptive-Algorithm 

248 condition was always set to no intervention (k = 0 N/m and c = 0 Ns/m) in order to 

249 obtain a common benchmark measure of performance at the start of each session. 

250 The value of the stiffness coefficient at each trial was adjusted as a function of 

251 performance in previous trials, as described by Equation (4). This algorithm has been 

252 used previously as a computational model of motor adaptation to predict the force 

253 required to minimize adaptation time to a viscous environment during treadmill 

254 walking tasks [1]. In our experiment, we used the model to adjust the value of the 

255 stiffness coefficient in the current trial as a function of performance in previous trials. 

256 This allowed us to consistently keep the amount of error experienced by a participant 

257 within a small window:

𝑘𝑖 + 1 =  𝑓.𝑘𝑖 – 𝑔(𝑥𝑖 ‒ 𝑥𝑑) (4)

258 The stiffness, k, of the force field for the next trial is a function of the stiffness in 

259 the current trial, i, multiplied by a ‘forgetting factor’, f, and the difference between the 

260 demand error and actual error (xd and xi, respectively), multiplied by a gain value, g. 

261 The values of f and g dictate the relative sensitivity of the algorithm to previous 

262 performance (captured by ki) and error. The sensitivity of the controller to 

263 performances obtained in previous trials is controlled by adjusting f: A larger 

264 forgetting factor weights the previous trials more heavily, whereas a smaller 
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265 forgetting factor results in more influence from the current trial’s force field 

266 magnitude. Pilot testing informed the values of f and g to be used in the experiment 

267 and these were subsequently set at 0.5 each. 

268 This approach allowed us to constrain the amount of information, as the level of 

269 stiffness was tuned to individual performance, constraining information by means of 

270 reducing workspace exploration since forces were always at a manageable level. 

271 The Adaptive Disturbance (AD) condition was identical to the AA condition, but 

272 stiffness could only decrease or stay the same between trials (i.e., the change in 

273 stiffness’ upper limit was 0). This similarly constrained information, but provided 

274 increasingly disruptive forces and therefore facilitated development of a global 

275 impedance strategy. Finally, performances in these conditions were compared 

276 against a Random (RAN) group - where an unpredictable stiffness value was 

277 provided (disturbance or assistance) across trials. The range of the value of k was 

278 clamped in the range -100 and 100 N/m in all 3 algorithms.

.CC-BY 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted October 7, 2019. ; https://doi.org/10.1101/796136doi: bioRxiv preprint 

https://doi.org/10.1101/796136
http://creativecommons.org/licenses/by/4.0/


12

279

280 Fig 1 – Experiment Design (a) Plan view of the experimental setup showing the relative 

281 positions of the participant (bottom), haptic robot arm (middle) and monitor (top); (b) The 

282 target trajectories across sessions. The pre- and post-training sessions comprised 3 blocks of 

283 10 trials following a pentagram trajectory (with no error manipulation forces). Training (across 

284 three sessions with 4 blocks of 10 trials) included error manipulation forces whilst participants 

285 navigated across a vertically rotated pentagram trajectory.  (c) Quiver plot of the novel 

286 workspace force field used across all training sessions and conditions (discretized for 

287 illustrative purposes). Inset shows magnified section (approximate size 6cm x 6cm). Arrows 

288 indicate the direction and proportional magnitude of the force vector at discrete locations 

289 within the workspace. Relative magnitude is shown from white (no force) through to red (high 

290 force). (d) Blue cursor indicates the cursor (hand) position during a trial, the red circle 

291 indicates the target, the dotted black line shows the participant’s current positional error. A 

292 virtual spring sits between the cursor and the target and provides assistance, disruption, or no 

293 intervention depending on the value of k. N.B. Trajectory path and workspace force field 

294 remained invisible to participants throughout the experiment.

295 Metrics

296 Motor Learning

297 Assessment (pre- and post-training) was performed without a spring stiffness (k=0), 

298 but with the same workspace force field shown in Fig 1(c). Thus, ‘learning’ can 

299 conceptually be defined as the participant’s ability to predict, and counteract, the 

300 forces arising from the workspace force field in order to minimize error. To capture 

301 how much learning occurred following training in each condition, we calculated the 

302 difference in performance in the pre- and post-training training trials. Specifically, we 

303 calculated the mean average path error scores for the three pre-test blocks and 

304 subtracted this value from the mean average path error scores from the post-test 

305 trials. Path error (EP) was computed as the mean Euclidian straight line distance 

306 between the end effector and the current component (sub-path) of the target 

307 trajectory. The position of the end effector was subject to a low-pass Butterworth filter 

308 (cut-off 250Hz) to remove noise in analysis of movements.
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309

310 Analysis of Training Data

311 To study changes in performance as a function of training trial, we fitted a first order 

312 exponential equation to the training data using the 1st order exponential fit function in 

313 the Curve Fitting Toolbox implemented in MATLAB (MathWorks Inc., Natick, MA). 

314 Training block number was used as the x value (x = 1 being the first block in the first 

315 training session), and average path error during training was used as the y value. 

316 The function uses the method of least squares to produce the most probable values 

317 of  and  in the function. The values derived from this model for each individual 𝑎 𝑏

318 were subjected to group-level analysis to examine differences during training. In 

319 other words, we used the parameters of the learning function as summary statistics 

320 for random effects analysis using classical inference (i.e. ANOVA).

321 Quantifying Information

322 To obtain a metric of information, we first parsed the workspace into discrete, 

323 independent voxels of 1 cm x 1 cm (see Fig 2; total size 40 cm x 40 cm). For the 

324 purposes of analysis, we created a model that assumed participants acquire 

325 information about the force output of discrete voxels, and any information acquired 

326 when the cursor was located inside a particular voxel was ‘assigned’ to that voxel. As 

327 information is accumulated for a particular voxel, newly acquired information for that 

328 voxel is discounted in value according to a weighting function. Weighting the 

329 information in this way ensures that initial “inaccurate” estimates about the expected 

330 change in force results in high amounts of surprise, and as more information is 

331 acquired, lower amounts of surprise. Effectively, the system logarithmically scales 

332 (“weights”) information in each voxel. The result of this is a metric which captures 

333 information acquired through exploration of a workspace – a higher value will result 

334 from visiting a large number of independent voxels across the workspace. The voxel 
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335 size of 1cm x 1cm was a largely arbitrary selection; modelling with different voxel 

336 sizes in the range 0.25cm – 4cm shows the same pattern of results. Total weighted 

337 information gained during training can be conceptualised of as a measure of entropy. 

338 Participants were not informed about the underlying workspace force field 

339 and it remained invisible throughout the experiment. Thus, without the presence of 

340 visual information, we assumed that the sensorimotor system would have no reason 

341 to predict a change in force as a function of cursor position (at least at the outset of 

342 training). This heuristic leads to a context where the magnitude of the change in force 

343 due to the workspace force field at that point in time corresponds to a force prediction 

344 error (i.e. the difference between the experienced and predicted force). Thus, new 

345 information presented about an individual voxel was approximated as the change in 

346 force at a point in time for the voxel at the cursor position (Fig 2b). That is, the 

347 magnitude of change of the force vector as calculated by the workspace force field 

348 equations, Equations (1) and (2). 

349 The information ( ) related to a particular voxel ( ) acquired throughout 𝐼 𝑖,𝑗

350 training up to a time  (total time cursor was positioned inside the voxel) was 𝑇

351 therefore:

𝐼𝑖𝑗 = ∫𝑇

0
∆𝑓(𝑡)𝑑𝑡 (5)

352 Here, information is ‘binned’ into the voxel where the end effector position is 

353 currently located ( ). A value of  was computed for every voxel in the workspace 𝑖, 𝑗 𝐼

354 under the assumption that information presented for a particular voxel is the 

355 magnitude of the change in force, numerically integrated over time for all points in 

356 time where the cursor position was inside that voxel (Fig 2b). We assumed that new 

357 information becomes less valuable as a function of the amount of information already 

358 acquired about an individual voxel as learning occurs (where models about the 

359 expected force arising from a particular voxel are updated to minimize free energy). 
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360 This means that observations of changes in force have a higher probability, and 

361 therefore less surprise. Instead of using probability of sensory input estimates for 

362 each observed change in force, we opted for a more parsimonious solution by 

363 approximating surprise with a weighting function - scaling the amount of information 

364 presented to an associated information ‘value’. 

365 The weighting method used has the desired effect for scaling information – 

366 the gradient of the weighting function  when information  and gradually = 1 = 0

367 decreases. Weighting the information in this way ensures that initial inaccurate 

368 estimates about the expected change in force results in high amounts of surprise 

369 and, as more information is acquired, the surprise is lower. The weighting formula, as 

370 a function of information presented, was:

𝑤(𝐼𝑖𝑗) =
1
𝜆 ∙ log (𝜆 𝐼𝑖𝑗 + 1) (6)

371 where log is the natural logarithm and  corresponds to a weighting parameter. 𝜆

372 Higher values of  lead to lower values of information relative to the amount of 𝜆

373 cumulative information presented, and thus faster learning about a voxel. The 

374 reported results have the value , but we tested the model under different  𝜆 = 0.05

375 assumptions of  (through values ranging from 0.01 to 1.00) and the pattern 𝜆

376 remained consistent. 

377 We also assumed that the total weighted information ( ) acquired was 𝑇𝑊𝐼

378 equal to the sum of the value weighted information received from each voxel of the 

379 workspace. If the workspace consists of  cells horizontally, and  cells vertically, 𝑁𝑥 𝑁𝑦

380 the information value for the whole workspace at time  can be calculated as:𝑇
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𝑇𝑊𝐼 =
𝑁𝑥

∑
𝑖 = 0

𝑁𝑦

∑
𝑗 = 0

𝑤(𝐼𝑖𝑗) (7)

381 In this case the total weighted information assumes that information sampling 

382 starts at the beginning of the first training session (Session = 2) and completes at the 

383 end of the last training session (Session = 4). The total weighted information was 

384 computed per participant and is used in subsequent analyses.

385
386 Figure 2 – Information quantification (a) Example simulated cursor movement across a 

387 sub-section of the workspace (10cm x 10cm). Workspace force field shown as a quiver plot, 

388 where higher force magnitude is represented by darker red shading and arrow size, and force 

389 direction indicated by arrow orientation. Workspace separated into 1cm x 1cm voxels. (b) 

390 Magnitude of change in force measured when moving along the path shown in (a) at a 

391 constant velocity over 1 second. Vertical black lines indicate the voxel boundary. Shaded 

392 regions under the curve separated by the vertical lines represent the information presented 

393 which is attributed to the current voxel. (c) Graphical representation of the weighting function 

394 for different values of lambda. Note that at higher values of information (in a voxel), the 

395 weighted information becomes relatively lower. 

396

397 It is worth noting that we could have quantified information in alternative ways 

398 to the approach described above. For example, one could model information 

399 acquisition and parameter estimation as a Kalman filter, or using Bayesian inference. 

400 However, unlike the participants in our experiments, such models would rapidly 

401 converge to the true force in a given area in only a limited number of observations. 

402 To circumvent this, we would need to make assumptions that involve including 

403 parameters estimating sensory and processing noise to slow the rate of learning. 

404 This would provide comparable results to our information scaling method if these 

405 approaches were implemented in a discrete voxel based manner (as calculated here 

406 - with exploration being rewarded as a means of sampling information and exposure 

407 to new areas of the workspace providing more information). More sophisticated 

408 models could capture the idea that repeated exposure to forces in a workspace is not 
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409 sufficient for learning per se- but these also require additional assumptions e.g. an 

410 understanding (and model) of how an action (set of muscle contractions) is executed 

411 to deal with the force to maintain low positional error. Given that our aim was 

412 restricted to capturing the relationship between workspace exploration and 

413 information acquisition, we settled on a solution that provided the most parsimonious 

414 model of behavior in this task. 

415

416 Statistical Analysis

417 One-way between subject ANOVAs were performed to examine differences 

418 between the groups for each of the metrics described above, and Tukey’s post-hoc 

419 comparison corrected p values are reported where relevant. Partial eta squared (η2
p) 

420 values are reported for effect size. We tested for, but did not find any, violations of 

421 the assumption of homogeneity of variance using Levene’s test [28]. Error bars on all 

422 Figures represent +/- 1 SEM.

423
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424 Experiment 1 – Disturbance Leads to Increased Information 
425 Sampling

426 We first tested the prediction that learning rates could be accelerated through the 

427 increased information provided via disturbance forces. We examined training with 

428 partially assistive (Assistance group), disturbance (Disturbance group) and no 

429 guidance (Active-Control group) forces. 

430 In the training period, the ‘Disturbance group’ were presented with an additional 

431 force vector, whose force was generated using a negative value of k in the mass-

432 spring-damper simulation. We predicted that disturbance forces would lead to (i) 

433 more surprise (as indexed by our model of information); (ii) more errors at the outset 

434 of training – indexed by  in the fitted function  and (iii) increased rate of error 𝑎 𝑦 = 𝑎𝑒𝑏𝑥

435 reduction over the training period (indexed by ); and finally, as a corollary of the 𝑏

436 above, (iv) superior motor learning compared (pre- post- error improvement) to the 

437 groups with lower information. 

438 The differences in information at the early and late stages for each condition 

439 can be seen in Fig 3. Formal analysis of the cumulative amount of information for 

440 each group at the end of the training block revealed statistically significant 

441 differences (F (2, 44) = 34.21, p < .0001, η2
p = .609). This effect was driven by the 

442 Disturbance group gathering more information about the workspace relative to the 

443 Active-Control (p < .0001) and Assistance (p < .0001) groups, but there was no 

444 difference between the Assistance and Active-Control groups (p = .876).  

445

446 Fig 3 - Information as a by-product of disruption. (a) The Disturbance group had more 

447 information over time at a group level; (b) Example heat maps showing the amount of 

448 information gathered across the workspace at the outset and end of training for randomly 

449 selected individual participants. 

450
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451 We next performed an ANOVA on the values for the exponential fit to examine 

452 differences at the outset of training. The ANOVA revealed group differences (F (2, 

453 44) = 7.623, p = .0014, η2
p = .257), with the Disturbance group performing worse than 

454 the Assistance group (p = .0009), although following correction for multiple 

455 comparisons, this was not significantly different to the Active-Control group (p = 

456 .1162). When comparing performance across training trials (F (2, 44) = 26.37, p < 

457 .0001, η2
p = .545), we found that the disturbance group showed a steeper decay in 

458 error in comparison to the Active-Control (p < .0001) and Assistance Groups (p < 

459 .0001). There was no difference between learning for the Assistance and Active-

460 Control conditions (p = .2589). 

461 The amount of motor learning was quantified as the error improvement 

462 between the mean pre- and post- path error score (both of which were performed 

463 without any stiffness intervention [k = 0] and with the upright pentagram shape). We 

464 found significant differences in the amount of motor learning between groups (F (2, 

465 44) = 5.655, p = .0065, η2
p = .204). Specifically, the group exposed to Disturbance 

466 forces during training on the inverted pentagram trajectory had improved significantly 

467 more than the Assistance (p = .0136) and the Active-Control (p = .0202) groups (Fig 

468 4). These results are consistent with our model.

469

470  Fig 4 - Disturbance accelerates skill acquisition. (a) Disturbance force training produced 

471 a steeper exponential performance curve during the training blocks. (b) The Disturbance 

472 training group were able to generalize their learning better than Assistance and Active Control 

473 groups, as measured by reduction in mean path error between pre- and post-tests
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474 Experiment 2 – Manipulating Information Sampling Without 
475 Facilitating a Short Term Impedance Strategy

476 The results from Experiment 1 indicate that disturbance results in faster learning 

477 in a manner consistent with the hypothesised information-driven process. However, 

478 these results do not rule out the possibility that it is disturbance forces per se that 

479 facilitate learning. For example, in Experiment 1, the adoption of a short term global 

480 impedance strategy (e.g. stiffening arm in all directions when an unexpected force 

481 was encountered) in response to disturbance forces could not be ruled out (see [25]). 

482 In Experiment 2, we therefore created algorithms that varied the amount of stiffness 

483 between trials to facilitate or constrain workspace information acquisition, and 

484 importantly make it improbable that the adoption of a global impedance strategy 

485 could yield better performance (Fig 5A-C and Fig 7A-C). The Random training 

486 condition exposed participants to an environment with a large degree of uncertainty 

487 (i.e. larger magnitude of changes in stiffness and more frequent switches between 

488 positive and negative stiffness on a trial-by-trial basis), but with an average level of 

489 overall stiffness that was close to zero. This means development of a global 

490 impedance strategy would hinder performance under the random condition (as 50% 

491 of participants’ trials were assisted with the virtual spring on average). It follows that 

492 a global impedance explanation would not account for improved performance, but 

493 the unpredictability of the stiffness between trials would induce a greater range of 

494 workspace sampling and provide the most amount of information. Thus, improved 

495 performance could be attributed to the increased exposure to information rather than 

496 the adoption of global impedance. In summary, if our hypothesis has merit then it 

497 would predict that the Random condition should lead to the best learning, whilst AA 

498 and ADA would impair learning (as they constrain information sampling). 

499 In line with our experimental aims, the algorithms produced significantly different 

500 mean values of stiffness throughout training (F (2, 41) = 12.40, p < .0001, η2
p = .377), 
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501 mean trial-on-trial stiffness change (F (2, 41) = 931.9, p < .0001, η2
p = .986), and 

502 number of times the task switched from assistive to disruptive (or vice versa) (F (2, 

503 41) = 67.25, p < .0001, η2
p = .7664). 

504 Fig 5 - Emergent properties of the training algorithms. The level of assistance (positive 
505 stiffness) or error enhancement (negative stiffness) during training was varied on a trial-by-
506 trial basis per the participant’s allocated group. We reasoned that the increased changes in 
507 stiffness (panel a shows magnitude of mean stiffness change between trials plotted) and 
508 switching between positive to negative stiffness values (panel b shows group average 
509 number of switches throughout training plotted) afforded to the random group would result in 
510 increased workspace information sampling and therefore greater surprise , through means 
511 other than the provision of a high negative stiffness (panel c shows average stiffness per 
512 condition). 
513
514
515 Our predictions regarding information differences were borne out with statistically 

516 reliable group differences in the cumulative amount of workspace information at the 

517 end of training (F (2, 42) = 20.06, p < .0001, η2
p = .489; Fig 6D). The Random group 

518 experienced more information relative to the Adaptive-Algorithm (p < .0001) and 

519 Adaptive- Disturbance (p < .0001) conditions, but there was no difference between 

520 the latter two groups (p = .806). 

521

522 Fig 6 - Workspace information and surprise. The stiffness coefficient K (N/m) 

523 demonstrates the degree of assistance (positive values/error reduction) and disturbance 

524 (negative values/error amplification) on a trial-by-trial basis for example subjects in the (a) 

525 Adaptive Algorithm; (b) Adaptive Disturbance Algorithm and (c) Random conditions; (d) The 

526 manipulation led to the Random group having more information over time; and (e) Heat maps 

527 of the amount of information across the workspace provide a visualization of difference effect 

528 for example participants, after the first and last training session.

529
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530 From the curve fitting results, there were no reliable differences in task 

531 difficulty level as indexed by individual values (F (2, 42) = 1.491, p = 0.2368, η2
p = 

532 .066), but the groups did show differences in performance improvement across 

533 training (F (2, 42) = 5.058, p = .0108, η2
p = .194). This effect was driven by the 

534 Random group showing a steeper curve in training performance compared to the 

535 Adaptive Algorithm (p = .0112), though it did not reach the statistical significance 

536 threshold when compared against the Adaptive Disturbance Algorithm (p = .0624). 

537 There were no differences between the Adaptive Algorithm and the Adaptive 

538 Disturbance conditions (p = .8613).

539 We also found group differences in the amount of motor learning from pre- to 

540 post-training with no stiffness intervention (F (2, 42) = 4.541, p = .0164, η2
p = .178; 

541 Fig 7B). There was no statistically reliable difference in learning between the 

542 Adaptive Algorithm and Adaptive-Disturbance Algorithm (p = .914). Instead, this 

543 effect was driven by improvements following exposure to Random levels of 

544 assistance/disruption relative to the Adaptive (p = .018) and Adaptive- Disturbance 

545 algorithms (p = .009).

546

547 Fig 7- Performance on training and learning generalization. (a) Error reduction rates 

548 during training. Abscissa represents block number; (b): Random levels of 

549 assistance/disturbance demonstrated better learning, as indexed by the amount of error 

550 reduction post training relative to pre-training in a novel workspace. Pre- and post- training 

551 assessments are always performed without any stiffness intervention (k=0).

552

553 Finally, given our hypothesis that the amount of information predicts learning, 

554 we reasoned that there should be a positive correlation between the amount of 

555 information that participants are exposed to during training and the amount of 

556 learning (i.e. difference in performance between pre- and post-training sessions). 

557 Conducting correlation analyses at a condition-level would have been confounded by 
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558 our manipulations of information across training groups and would have relatively 

559 weak statistical power to detect an underlying relationship (sample sizes varying from 

560 13 to 17 per group). Thus, we pooled data across both experiments (n = 86) and 

561 performed a simple linear regression to predict learning based on cumulative 

562 information exposure during training. Consistent with our hypothesis, we found a 

563 statistically significant relationship (F (1, 82) = 10.45, p = .0011), with the information 

564 metric explaining 11.2% in variation in learning across all conditions (R2 = 0.112; 

565 Table 1; Fig 8). 

566

567 Fig 8 - Information exposure predicts learning. Learning (mean path error reduction 

568 between pre- and post- training) as a function of cumulative information acquired during 

569 training (total entropy), for all participants in both experiments (R2 = 0.122).

570

571 Recent evidence from Wu and colleagues [29] demonstrates that the intrinsic 

572 movement variability associated with motor commands (from Zn to Zn+1 to Zn+2 …) 

573 predicts individual rates of motor learning. Indeed, it is possible that increased error 

574 variability may be the mechanism by which information about the workspace is 

575 acquired. To contextualise and compare the predictive value of the information metric 

576 against a more parsimonious model of movement variability, we ran a second 

577 regression analysis where we included the standard deviation of path error (per 

578 component/sub-path; and averaged across training trials; Table 1 Model 2). 

579 Interestingly, we found that this measure of variability was unable to predict learning 

580 in these data (p = .292, R2 = 0.01) and a direct comparison between a two-parameter 

581 model (Model 3; R2 = 0.116) and Model 1 showed no statistically significant reliable 

582 differences (p = .529).

583

584
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585 Table 1 - Information exposure predicts learning

Model t p β F df p mult. 
R2 adj. R2

Model 1 10.45 83 0.002 0.112 0.101

Cumulative information 3.232 0.002 2.31×10-4

Model 2 1.125 83 0.292 0.014 0.001

Path Error Mean SD 1.061 0.292 6.45×10-2

Model 3 5.34 82 0.006 0.116 0.094

 Cumulative information 3.087 0.003 2.59×10-4

 Path Error Mean SD -0.633 0.529 -4.27×10-2

586

587
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588 Discussion

589 To date, there have been no principled explanations as to why motor learning can 

590 be impaired by haptic assistance and facilitated by disturbance force application [9]. 

591 The current results support the hypothesis that the underlying mechanism relates to 

592 the availability of information, and show that haptic forces that provide more ‘surprise’ 

593 will lead to better learning in novel environments. 

594 We created a model (inspired by the Free Energy Principle) to quantify the 

595 amount of information available to learners during a task. Experiment 1 showed that 

596 disturbance forces led to the accumulation of significantly more information across 

597 the training period. These results aligned with our analysis of the amount of motor 

598 learning following training, whereby the group that sampled more information showed 

599 superior performance relative to a group provided with assistance and to an active-

600 control group. In Experiment 2, we demonstrated that the manipulation of information 

601 (created by training individuals on a series of random assistive and disturbance 

602 forces) yielded better learning compared to providing predictable levels of 

603 assistance/ disturbance tuned to individual performance. It should be noted that the 

604 results from Experiment 2 cannot be explained by the adoption of a short term global 

605 impedance strategy (without much special pleading).

606  Our findings are consistent with previous results suggesting that disturbance 

607 forces might be beneficial for motor learning [4–7]. Importantly, the current work 

608 advances these reports by providing, and testing, a theoretical account of why 

609 disturbance might accelerate learning. Specifically, we show that these results are 

610 predicted by the free energy principle - which proposes that human learning can be 

611 conceptualised as a process of free-energy minimization [14]. Here, motor learning is 

612 seen as a process of entropy reduction where the average surprise of perceptual 

613 outcomes sampled from a probability distribution relating to a motor command is 

614 decreased through the development of forward models. The decrease in surprise 
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615 relates to improved inferences created by the system through exposure to 

616 information that relates perceptual output to motor signal input. In line with this, 

617 through pooling the data across both experiments, we found that the amount of 

618 workspace information participants were exposed to during training could predict a 

619 statistically significant amount of variance in learning. Given the plethora of variables 

620 that could also have influenced learning across these different manipulations (six 

621 experimental conditions in two experiments), it is notable that this relationship 

622 between information and learning could be detected. 

623 Moreover, we provide evidence that the improved information sampling created by 

624 disturbance enables generalisation rather than simple performance facilitation [1,30]. 

625 Our work thus complements and advances previous observations about the potential 

626 benefits of disturbance. For example, an earlier study showed that performance on a 

627 tracking task could be improved through delivery of haptic disturbance [5]. This finding 

628 could be explained, however, by the participants being trained to become more 

629 proficient in deploying feedback control and, indeed, the authors of the study explained 

630 their results in terms of a general training improvement in the ‘attentional’ capabilities 

631 of their participants. The problem with such explanations relates to the difficulty in 

632 defining and quantifying the term ‘attention’ when used in this manner. It is therefore 

633 interesting to note that the improved tracking performance is predicted within the FEP 

634 framework. The presence of haptic disturbance when tracking will generate surprise 

635 and thus force the system to act to reduce the entropy (i.e. learn to make effective 

636 feedback corrections). Indeed, the Random training condition in our experiment 

637 exploited this mechanism in a principled manner by exposing participants to frequent 

638 movement-by-movement switches between positive and negative stiffness. Together, 

639 these results illustrate the fundamental links between attention and uncertainty (see 

640 [31,32]), and suggest that the effects of haptic disturbance can be quantified in a range 

641 of different settings through information theory. 
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642 Our results also build on previous work showing a relationship between variability 

643 and motor learning. For example, Van Beers [33] showed that the random effects of 

644 planning noise accumulate, in contrast to task-relevant errors which show close to 

645 zero accumulation (explained by effective trial-by-trial corrections), whilst Wu et al’s 

646 experiments [29] (results described earlier), have shown that task-relevant motor 

647 variability facilitates faster learning rates. On these grounds, it has been argued that 

648 intrinsic movement variability leads to motor exploration, which sub-serves motor 

649 learning and performance optimization. Indeed, the idea that action exploration can 

650 drive learning has long been mooted in theories of operant behaviour [34] and 

651 human development [35–37]. Recent experiments have shown that (a) artificially 

652 manipulating the relationship between movements and visuomotor noise can be 

653 used to teach people specific control policies [38] and (b) the variability in task-

654 redundant parameters can predict motor adaptation rates [39]. The current findings 

655 demonstrate that extrinsic variability delivered through haptic disturbance can, in the 

656 same vein, augment learning by increasing the amount of information sampled by the 

657 learner. The general notion that increased exposure to information can lead to faster 

658 learning is well explained by theories of structural learning and has good support 

659 from a range of empirical studies [18,19,40–43] including investigations of 

660 laparoscopic surgical training [44]. Our extension to these ideas is that learning of the 

661 structure can be directly related to the amount of information available to the learner. 

662 Indeed, regression analyses for our data shows that the amount of information 

663 accumulated over training (as indexed by our model) provided greater explanatory 

664 power compared to a measure of motor variability alone in this task.

665 These findings raise the issue of which neural substrates underpin these learning 

666 processes. The neural processes that implement the computational algorithms 

667 exploited by the human nervous system remain to be discovered [45,46]. Likewise, 

668 the underlying control mechanisms supporting skilled arm movements are poorly 
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669 understood and, as such, it is difficult to speculate on how the individuals learned to 

670 compensate for the complex force field, but we suggest that the learning was likely to 

671 involve processes related to optimal feedback control as well as predictive 

672 mechanisms [47–49]. 

673 Our findings suggest that the participants developed forward or inverse models 

674 that allowed them to predict (and thus compensate for) the novel force field through 

675 which they needed to move.  It has been shown previously that participants can learn 

676 a short term strategy of stiffening their arm to resist the effects of sudden unexpected 

677 force perturbations [24,25]. This work has demonstrated that humans learn to use 

678 selective control of impedance geometry in order to stabilise unstable dynamics in a 

679 skilful and energy efficient manner. It is probable that participants in the current 

680 experiments adopted such a strategy when they were first exposed to the novel 

681 workspace (as they were unable to predict the forces that were applied as they 

682 moved through the space). Importantly, there was a regular (lawful) structure to the 

683 novel workspace, in the same way that the world provides a lawful force field through 

684 which the neonate must learn to move their arm. We hypothesised that the system 

685 would learn the underlying force field so that the arm could move skilfully through the 

686 workspace rather than repeatedly contend with unexpected displacement. This 

687 hypothesis was based on the free energy minimization principle which suggests 

688 human behaviour is marked by continual attempts to reduce entropy (i.e. minimise 

689 surprise). Experiment 2 allowed us to test whether participants were learning the 

690 force field or adopting a global impedance strategy, by which the arm is stiffened in 

691 all directions to counteract external force interventions. As outlined above and 

692 demonstrated in previous research, participants are likely to adopt a global 

693 impedance strategy when the force intervention is largely disruptive and increases 

694 error (k < 0). However, in Experiment 2, the random condition consisted of (on 

695 average) 50% assistive trials, whereby the force intervention assisted movement, 
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696 thus rendering such a strategy sub-optimal. We reasoned that, in contrast to the 

697 random forces, the adaptive disturbance algorithm, where participants were provided 

698 with a more consistent presentation of disturbance forces would be more likely to 

699 adopt an impedance control strategy. Given that we observed improved learning in 

700 the random condition, impedance control is unlikely to provide a full account of these 

701 data. Instead, these results indicate that participants were learning to skilfully 

702 counteract the underlying workspace force field and we propose that this learning 

703 was promoted, in part, through the increased information acquired during training. 

704 Finally, it is important to note that this study used neurologically intact adults as 

705 participants and whilst the force field in the two experiments allowed us to examine 

706 novel skill learning, the difficulty was tuned to a level such that all participants could 

707 complete the task. We speculate that disrupting the training of individuals with 

708 neurological deficits (e.g. cerebral palsy) might not be beneficial, and constraining 

709 errors in these populations could speed up learning by helping the individuals sample 

710 the necessary information [21]. Consistent with this, there is work with stroke 

711 survivors that has shown that error amplification is useful in rehabilitation for mild 

712 impairment, but error guidance is necessary for patients with more severe damage 

713 [50]. Likewise, haptic guidance has been found to be beneficial for people with 

714 relatively low skill levels, but error enhancement is better for highly skilled individuals 

715 [3,51]. The current work builds on these observations and provides a theoretical 

716 framework for the development of optimized robotic training devices in skill training 

717 and rehabilitation.
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