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ABSTRACT 

Chromatin immunoprecipitation followed by sequencing (ChIP-seq) is used to identify genome-wide

DNA regions  bound  by  proteins.  Several  sources  of  variation  can  affect  the  reproducibility  of  a

particular  ChIP-seq  assay,  which  can  lead  to  a  misinterpretation  of  where  the  protein  under

investigation binds to the genome in  a  particular  cell  type.  Given one ChIP-seq experiment  with

replicates, binding sites not observed in all  the replicates will  usually be interpreted as noise and

discarded. However, the recent discovery of high-occupancy target (HOT) regions suggests that there

are regions where binding of  multiple transcription factors  can be identified.  To investigate  these

regions,  we  developed  a  reproducibility  score  and  a  method  that  identifies  cell-specific  variable

regions in ChIP-seq data by integrating replicated ChIP-seq experiments for multiple protein targets

on a particular cell  type. Using our method, we found variable regions in human cell  lines K562,

GM12878, HepG2, MCF-7, and in mouse embryonic stem cells, defined as protein binding regions

with non-reproducible results across replicated experiments. These variable-occupancy target (VOT)

regions are CG dinucleotide rich,  and show enrichment  at  promoters  and R-loops.  They overlap

significantly with HOT regions, but are not blacklisted regions producing non-specific binding ChIP-

seq peaks. Interestingly, among various genomic features, DNA accessibility is a better predictor of

VOTs than CpG islands or epigenetic marks. Our method can be useful to point to such regions along

the genome in a given cell type of interest, to improve the downstream interpretative analysis before

follow up experiments.
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INTRODUCTION

A series of genome-wide experiments are largely adopted to study biological systems in relation to a

given protein. They contribute to our understanding of particular molecular mechanisms at the basis of

biological processes such as transcription and development, just to mention a few. In particular, ChIP-

seq  evaluates  the  genomic  positions  bound  by  a  protein  in  the  genome.  Standard  ChIP-seq

experiments typically include replicated measurements in the experimental design in order to have the

proper statistical power for the identification of reliable binding sites (or ChIP-seq peaks).

Previous  results  have  indicated  for  several  model  organisms  such  as  yeast,  Drosophila and

Caenorhabditis elegans the existence of genomic regions that are bound more often with respect to

others,  even  in  genomic  positions  in  which  a  binding  site  is  not  expected  for  the protein  under

investigation. These regions have been previously characterized and described as “hyper-ChIPable”

in yeast  (1) and confirmed later in  Drosophila,  C.  elegans and mouse and referred as “phantom

peaks” (2).  Furthermore, other regions defined here as variable regions, have protein binding that

tends  to  variate  stochastically  and  is  difficult  to  interpret  because  their  inconsistency  in  the

reproducibility of the results. Current approaches to analyse ChIP-seq experiments do not report to

the users regions that misbehave before downstream interpretative analysis; this might lead to the

misinterpretation of the ChIP-seq results in terms of  the function associated to the protein under

investigation.

Here, we present a method that uses replicated ChIP-seq data for several proteins on the same cell

line to detect regions that misbehave in ChIP-seq experiments. We assigned the term variable for a

given genomic region if a protein binding site (or ChIP-seq peak) was not consistently detected in

several experimental replicates of the same protein and for several independent proteins in a given

cell type. These assignments can increase the value of ChIP-seq experiments by categorizing certain

peaks as having cell-specific variability. Possible reasons for this variation might be the adoption of

variable  genomic  structures (3), the high expression  of  a  nearby gene (2),  the specificity  of  the

antibody  used  and  the  conformation  of  the  chromatin  during  the  immunoprecipitation.  By  finding

variable regions, we expect to be able to characterize the origins of this variability and its potential

relation to biological processes.  

During the last years, the ENCODE consortium (4) addressed the problem of data collection for ChIP-

seq experiments as well as other sequencing datasets creating the metadata of all the experiments.

This effort is praiseworthy because at the time of reusing specific datasets it is important to know in

detail  how the  data  were  produced,  from which  laboratory  and  according  to  which  experimental

criteria. This information allows controlling possible confounding factors in our study that focuses on

local variability potentially caused by local genomic structural conformation or activity. Thus, we used
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data from the ENCODE consortium, and we controlled how the experiments were performed, from

which laboratory and the bioinformatics tools used for data handling among other parameters. 

In this work, we took advantage of the metadata provided by the ENCODE consortia, as indicated

above, to select experiments in a consistent and comparable manner to implement a sliding window

approach to classify genomic regions as variable or not.

Our results show that the method can identify variable regions for every cell  line tested and that,

particularly for the K562 cell line, for which many datasets are currently available, it improves the

separation of the samples in a PCA to promote a better downstream interpretative analysis. Method

and scripts can be found online in this link: https://github.com/tAndreani/IPVARIABLE  .  

MATERIAL AND METHODS

Collection of ChIP-seq data

The  ENCODE  data  portal  provides  comprehensive  information  about  the  meta-data  of  each

experiment generated by the ENCODE consortium. We selected experiments according to specific

parameters in order to avoid unwanted variability and to maintain consistency on the parameters of

the downloaded data. The experiments were selected according to the following criteria: (i) laboratory

producing  the  data  as  Snyder,  (ii)  identical  untreated  isogenic  human  cell  lines  (K562,  MCF-7,

GM12878, and HepG2) and ES-E14 mouse embryonic stem cells (mESCs), (iii) data processed with

the standard ENCODE pipeline that uses the optimal IDR threshold as statistical method to obtain the

significant peaks (5), (iv) status as released corresponding to a possible usage of the data, (v) the

experiments of each biological replicate correspond to a peak file compared with appropriate input

control experiment and (vi) peaks significance selected with a false discovery rate (FDR) lower than or

equal to 5%. The metadata presented in JSON format was extracted and stored in a relational SQL

database (See Supplementary File 1, Fig. S1). For every cell we selected the following targets: for

HepG2 we used MAFK, MNT, TBX3 and ZNF24 with two biological replicates; for MCF-7  we used

CREB1, CLOCK, NFIB and ZNF512B with two biological replicates; for GM12878 we used BHLHE40,

EP300, IKFZ2 and ZNF143 with two biological replicates; for K562 we used ARNT, NCOR1, MNT and

ZNF24 with three biological replicates; for ES-14 mESCs we used HCFC1, MAFK, ZC3H11A and

ZNF384 with two biological replicates (see Supplementary Table S1 for details).

Reproducibility score implementation

After the identification of suitable experiments, the genome is binned in consecutive segments of 200

base pairs (bp) and the experimental ChIP-seq peaks are mapped to each segment. We formalized

the reproducibility and not reproducibility of the segments for a given protein as illustrated in Fig. 1A

and as follows:
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Let S be the genomic segments for a given genome; 

Let N be the number of replicate ChIP-seq experiments for a given protein;

For each segment in S;

Let P be the number of peaks detected in the segment;

Reproducibility score = NA if P = 0;

Else Reproducibility score = 1 if the segment itself or one of its neighbours* has P=N;

Otherwise Reproducibility score = 0                   

* Neighbours are all consecutive segments with P > 0

In the following paragraph, we explain the procedure described by the pseudocode above in words.

For our study, segments of the genome are defined considering a window size of 200 base pairs, N

represents the number of replicates for each protein under investigation in a given cell type, and P is

the number of replicated ChIP-seq peaks detected in a genomic segment (the signal). Consecutive

segments without  any signal (P=0; no peaks) are assigned with a NA. Consecutive segments in

between two NA segments with  a  signal  P reaching  as a  maximum value  N are  considered  as

reproducible regions and assigned a value of 1. On the contrary, consecutive segments in between

two NA segments reaching a maximum value lower than N are considered as variable regions and

assigned a value of 0 (Fig. 1A). The results of each protein under investigation are aggregated in a

Reproducibility Score Matrix (RSM) (Fig. 1B) where rows show segments and columns show their

reproducibility score for each protein and a final score (FS) defined as the average value of the row

(or NA if more than 1 reproducibility score equals NA). 

Statistical test of scored regions

To assess whether the number of reproducible or variable regions associated with a particular score

is significant,  a suitable control  had to be identified. The appropriate null  distribution was built  by

randomizing the RSM. We performed this task using the “sample” function in R. The randomization

was performed 1000 times, and regions at particular scores (0, 0.25, 0.33, 0.5, 0.66, 0.75 and 1) of

the null distribution were counted. Afterwards, a z-score was computed according to this formula:
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where S is the number of regions observed with a particular score, and Srand and σSSrand are the mean

value and the standard deviation of the null distribution, respectively. Assuming normality of the null

distribution,  it is possible to analytically calculate the corresponding p-value for a given z-score with

significant level α = 0.05. The regions for each particular score were subjected to the test.

Principal Component Analysis and Euclidean distances

Principal Component Analysis (PCA) was performed using the Python package scikit-learn version

0.19.1. The dots represented in the PCA are biological replicates for a given protein. Each colour

represents a specific protein and the features set used to perform the PCA are all  the segments

detected in all the proteins. In order to test the effect of the removal of the variable regions in the PCA,

segments within the variable regions were removed from the features set. The similarity distances

between replicates of the same protein in the PCA were computed with the Python package SciPy

version 0.19.1 using as a metric the Euclidean distance. Boxplot and Dotplot were performed using

the Python library Matplotlib version 2.2.2.

Enrichment analysis at regulatory elements

We  collected  genomic  coordinates  of  the  following  gene  related  features  from the  UCSC table

browser database in hg19 and mm10 annotations: promoter, 5UTR, coding exon, intron and 3UTR.

Furthermore, we also used regions with R-loops (6) since they were previously reported as a potential

feature  associated  with  misbehaving  ChIP  peaks  (3).  For  a  set  of  regions  (e.g.  variable),  the

enrichment for each feature is obtained by dividing the number of regions overlapping a regulatory

feature by the number of randomized regions overlapping the same feature. 

Randomized regions were obtained using bedtools version v2.25.0 shuffleBed (7).

CG and AT dinucleotide frequency calculation

The percentage of CG and AT dinucleotides in the mouse and human genomes was calculated with

the nuc function in the bedtools version v2.25.0 toolkit. To compute the CG and AT enrichment in the

variable regions of mESCs and K562 cells we used a set of control regions using the shuffleBed

function in bedtools version v2.25.0 (7).  The differences in dinucleotide composition between the

variable regions and the set of control regions were tested for significance using a t-test. 
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Prediction of variable regions in K562 and mESCs using genomic features

In  order  to  found  out  whether  different  genomic  features  (active  chromatin  marks,  repressive

chromatin marks,  DNA accessible  regions,  CpG islands,  etc.)  could  be used by a random forest

classifier to predict variable regions in mESCs or in K562 cells we used a large panel of datasets. 

For mouse ESCs, we also considered regions undergoing TET oxidation and bivalent domains. We

used the following published data: 5hmC, 5fC and 5caC (8); CpG islands extracted from UCSC table

browser for mm10 annotation; H3K4me1, H4K4me3, H3K79me2, H3K27ac, H3K27me3, H3K36me3

(9), LMR (10), DNAse-seq from ID:ENCSR000CMW experiment in the ENCODE portal. mm9 genome

features were converted to mm10 using the Batch Coordinate Conversion (liftOver)  tool  from the

UCSC Genome Browser Utilities (https://genome.ucsc.edu/cgi-bin/hgLiftOver). 

For K562 cells, we used the following data downloaded from the ENCODE data portal: H3K27ac (ID:

ENCFF044JNJ), H3K27me3 (ID: ENCFF145UOC), H3K4me1 (ID: ENCFF183UQD), H3K4me3 (ID:

ENCFF261REY),  H3K79me3 (ID:  ENCFF350GQM), H3K36me3 (ID:  ENCFF537EUG),  DNAse-seq

(ID: ENCFF856MFN). CpG islands were extracted from UCSC table browser for hg19 annotation.

To train and test the random forest model we used the function randomForest from the R package

randomForest version 4.6-14 (DOI:10.1023/A:1010933404324). As a positive set we have used the

variable regions estimated by our method and as a negative set we used a set of regions obtained

with the package gkmSVM version 2.0 (11). This package has a function named genNullSeqs capable

of using the positive set of sequences and learning their nucleotide composition. Subsequently, the

function generates a set of genomic locations with sequences of nucleotide composition and length

similar  to  those  in  the  positive  test  set.  This  approach was successfully  used  previously  for  the

prediction of double strand breaks at CTCF and accessible chromatin sites (17). The train and test set

were obtained using the function sample.split in the R package caTools version 1.17. The function is

used to split the data used during classification into train and test subsets. We decided to split train

and test in a 30:70 ratio. We also split the dataset using other ratios such as 10:90, 20:80 and 40:60

and this  did  not  change the performance of  the prediction.  The evaluation of  the prediction was

performed by  computing  the  ROC curve  using  the  package pROC version  1.13.0  (https://cran.r-

project.org/web/packages/pROC/pROC.pdf). 

RESULTS

Variable regions can be detected in all tested cell lines

Our method to detect variable regions in ChIP-seq datasets for a given cell  line relies on having

several proteins tested for the particular cell line with replicates coming from the same laboratory and

using the same platform (see Methods for details). Currently, the number of such sets in the ENCODE

database is limited. While we were able to obtain a suitable set for K562 with four proteins and three

replicates each, it is more usual to have a lower number of replicates, typically two. 
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For this reason,  we applied our method to  identify  variable  regions using just  two replicates per

protein for the human cell lines K562, GM12878, HepG2, MCF-7, and for mouse ESCs (mESCs). We

found that K562 cells have a higher and significant number of variable regions for a total amount of

483 (p-val = 6.3e-103; see Methods for details) whereas the other three human cell lines GM12878,

HepG2, MCF-7 have similar lower but also significant numbers: 61, 76 and 62, respectively (p-val =

1.1e-07, 5.9e-6, or 4e-5, respectively) (Fig. 2A-D). This might be due to the instability of the K562

cell’s genome as reported in previous publications (12). Furthermore, we used another popular cell

line used for developmental studies, mouse embryonic stem cells ES-14. Also in this cell line, we

identified a number of variable regions for a total amount of 332 (p-val = 6.9e-3) (Fig 2E). 

Finally, we wanted to see to which extent increasing the number of replicates in the experimental

design would increase the number of variable regions. We were able to design a proper experiment

only for K562 cell lines, which is the cell line with the higher number of experiments in the ENCODE

project. Using three replicates per protein and four proteins (see Methods for details), the number of

variable regions detected was drastically higher (a total of 3012).

Variable regions are rich in CG dinucleotides and enriched along gene body features

Next, we tested the CG dinucleotide frequency of the variable regions in K562 and mESCs. We found

a higher frequency of CG dinucleotides compared to a random set of control genomic regions in K562

(p val 3.8e-4) and mESCs (p val 8.4e-8) (Fig. 3A and 3B, respectively). The protein targets in the

ChIP-seq experiments used do not have DNA-binding motifs particularly affine for CG dinucleotides

(motifs  from  the  Jaspar  database  (13);  Supplementary  Fig.  S2),  hence  the  CG  composition  is

specifically related to the variable behavior and not to the DNA-motifs bound by the proteins selected. 

Furthermore, variable regions were highly enriched for different features among K562 and mESCs

cells with K562 showing a high enrichment for promoters and R-loops (Fig. 3C) and mESCs showing

a high enrichment for 3UTR and Promoters (Fig. 3D). In a recently published work (3), the authors

reported that previously characterized regions as “high occupancy target” (HOT) (18,19) are likely to

be a ChIP-seq artifact. Among the properties of these regions, they reported GC/CpG-rich kmers and

RNA–DNA hybrids (R-loops). Since also in our work we found these characteristics for the variable

regions, we downloaded the regions reported in (3) and checked for a possible enrichment. We found

significant enrichment for all the cell lines tested except for GM12878. Especially for the K562 and

HepG2 cell lines the enrichment was of 52 and 17 fold change, respectively (observed vs expected,

two-sided Fisher  test  p  val.  1.46e-87,  3.9e-3,  respectively).  Furthermore,  also  mESCs showed a

significant enrichment of 8 fold change (observed vs expected, two-sided Fisher test p val. 3.2e-3)

(Fig. 3E).

7

.CC-BY-NC-ND 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted October 8, 2019. ; https://doi.org/10.1101/796383doi: bioRxiv preprint 

https://doi.org/10.1101/796383
http://creativecommons.org/licenses/by-nc-nd/4.0/


Variable regions are not blacklisted regions from ENCODE project

The ENCODE consortia  provides  a  detailed  description  about  the meaning  of  “blacklisted  sites”.

These genomic positions often produce artifact signal in certain loci mainly because of excessive

unstructured  anomalous  sequences.  Reads  mapping  to  them  are  uniquely  mappable  so  simple

mappability filters do not remove them. These regions are often found at specific types of repeats

such as centromeres, telomeres and satellite repeats. Given the high variability of the ChIP-seq peaks

of the regions described in this manuscript we thought to check whether our method was detecting the

already  described  and  characterized  “blacklisted  regions”  or  not.  To  answer  this  question,  we

analysed the overlap of the variable regions obtained in all the cell lines we have used (K562, HepG2,

MCF-7, GM12878 and mESC) with the public available ENCODE blacklisted regions (20). We found

no overlap except for K562 (significant depletion, 35 observed vs 261 in random model, two-sided

fisher test p val. 2.92e-46) and mESC (significant depletion, 7 observed vs 29 random, p val. 2.1 e-4).

These results  confirm that  our  variable  regions are not  associated with  the ENCODE blacklisted

regions, hence need to be considered for new detection methods.

The removal of variable regions improves the interpretation of the PCA in K562 cell lines

Variable regions may reflect cell-specific effects that are not target-specific.  While this information

might be indicating biological function, we hypothesized that the removal of such target non-specific

data could result in an improvement of the separation of the replicates points in a PCA.  In order to

test such potential benefit in removing the variable regions for downstream interpretative analysis, we

performed a PCA of the ChIP-seq samples obtained for the K562 cell line (Fig. 4A). The PCA was

performed using (i) all the segments bound by each protein in the respective replicates in the original

datasets and (ii) without the segments within the variable regions. We found that the separation along

the components improves after removing the segments within the variable regions. Furthermore, the

replicates of the proteins tend to cluster better without the segments within the variable regions and

this is reflected with a lower Euclidean distances in pairwise comparisons between replicates of the

same proteins (Supplementary Fig. S3). We note that this does not mean that data from these regions

should be discarded, but that they should be considered differently. Further research is needed to

characterize these regions and find out if they have a cell-specific biological function.

DNA accessible regions are predictive of the variable behavior in K562 and mESCs

Finally, we searched for genomic features that can be predictive of variable behaviour. We evaluated

the possible association of different genomic features with variable regions using a random forest

classifier. 
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The  classifier  (random forest)  was  trained  with  a  positive  set  consisting  of  the  variable  regions

detected in mESCs (332 variable regions), and with a negative set consisting of genomic sequences

with size and nucleotide composition similar to those of the positive set (see Methods for details about

the training and about the set of genomic features).

The algorithm was able to classify the variable regions (area under ROC curve = 0.82) and returned

as best  predictors  DNA accessible  regions,  together  with  regions lowly  methylated and oxidative

products of TET enzymes 5hmC and 5caC (Fig. 5A and 5B). These modifications are highly frequent

at  distal  regulatory elements (8) and promoters (14) and we speculate that  the turnover of these

modifications might affect the binding of the proteins to the DNA leading to stochastic variation of the

binding sites. 

To observe the reproducibility of these results, we studied next data from K562 cells (483 variable

regions). Again, as best predictor of variable regions we found DNA accessible regions, together with

K3K4me1 and H3K27ac chromatin marks (area under the ROC curve = 0.97) (Fig. 5C and 5D).
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DISCUSSION

During  the  latest  years,  several  laboratories  tried  to  study  the  regulation  of  gene  expression  in

different model organisms. For this scope, ChIP-seq was adopted as a standard technique but the

extent of its usage raised some questions in terms of reliability (1,2,15,16). In particular, in a previous

work (3), Wreczycka and colleagues presented a method that considers the nature of phantom peaks

and hyper-ChIPable regions to define high-occupancy target (HOT) regions where un-specific binding

to multiple targets would be found even in the absence of expected binding motifs. They concluded

that the un-specificity of binding sites in HOT regions is associated with CG dinucleotide rich regions

and as a consequence at R-loops (that are CG rich) and DNA tertiary structures. Though, this is a

common concern for ChIP-seq assays and since the beginning the technique was known to be biased

toward  GC-rich  contents  during  fragment  selection  in  the  steps  of  the  library  preparation  and

amplification  during  the  sequencing  (15).  Here  we have  found  evidence  that  supports  that  such

regions could also be responsible for variable behaviour in ChIP-Seq in a cell-specific fashion. Our

method evaluates replicated ChIP-seq experiments for multiple targets in a cell type, to find regions

where target binding is not reproduced in all replicates for multiple targets. These variable-occupancy

target  (VOT)  regions  are  cell-specific  and  share  structural  features  with  HOT regions.  However,

differently to HOTs, VOTs do not produce consistent un-specific target binding. Accordingly, VOTs do

not overlap blacklisted ENCODE regions. Together, the cell-specificity of VOTs and our finding that

VOTs can be predicted using DNA accessibility suggest their dependency on gene expression and

epigenetic state. 

While the most consistent  enrichment of variable regions observed was for promoters and 5UTR

regions in  both K562 cells  and mESCs,  the differences observed for  variable  regions at  R-loops

suggest that it is not possible to drive a certain conclusion relating where exactly this variation occurs.

On the other hand, the fact that we are able to predict variable regions using genomic features alone

with relatively high accuracy indicates that there is certainly a relation between genomic features and

variability that could be eventually detected. Taking these results together, we assume that with the

future availability of further ChIP-Seq datasets testing multiple proteins in the same cell lines it will be

possible to assess the sources of variability in ChIP-Seq with more certainty. 

With our method, we propose a systematic approach using ChIP-seq experiments and replicated

measurements  in  a  given  cell-type to  identify  misbehaving DNA regions that  have  to  be treated

differently in the post processing downstream analysis. We have shown that discarding data from

these regions can improve studies focusing on target specific effects. However, further research is

needed  to  study  potential  cell-specific  functions  of  VOTs as  hubs or  sponges  for  transcriptional

regulatory complexes, which could be verified with other experimental assays like ChIP-qPCR. We

suggest applying our approach as a post processing quality check of the data before starting follow up

experiments and driving biological conclusions.

We must point out that our method requires enough replicates for the same protein in a given tissue.

For  example,  predictions  for  organisms  like  the  fly  Drosophila  melanogaster using  data  from
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modENCODE and modERN are not yet possible, At this point, the only datasets we find suitable for

our analyses are in ENCODE.

Finally, we note that similar approaches to the one used for our method to point to variable regions in

ChIP-seq  datasets  could  be  eventually  developed  and  applied  to  any  type  of  next  generation

sequencing  datasets  that  uses  replicated  measurements  under  various  conditions  (for  example,

ATAC-seq from multiple cell  types).  This could open avenues for the discovery of  other  types of

variability leading to a more informed use of sequencing-based data. The study of the similarities and

differences between variable regions obtained with different techniques might be crucial to increase

our understanding of the inter-relation between genomic structural flexibility and regulatory function.
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FIGURE LEGENDS

Figure  1.  Method  to  annotate  genomic  regions  with  a  reproducibility  score.  (A)  From the

genomic segments S, segments with ChIP-seq peaks for a given protein 1 in a given cell, in N=3

replicates, are converted to a binary format (Rep1 to Rep3). The sum at each segment of the values

for the replicates (SUM or P) allows to define blocks of consecutive segments between zero-scored

segments devoid of peaks (here two blocks; green and blue). All segments in a block are identified as

indicating a reproducible region (Reproducibility=1; green) if the block holds at least one segment with

value 3. Otherwise they are given a value indicating a non-reproducible region (Reproducibility=0;

blue). (B) Average reproducibility values for ChIP-seq experiments from four different proteins in cell

type A are combined in a final score that ranges from 0 (not reproduced in the four proteins) to 1

(reproduced in the four proteins). Only segments with values for at least 3 proteins were considered.

Figure 2. Significance of the observed number of variable regions for different cell types.  The

number  of  variable  regions  observed  in  each  cell  line  (red  line)  is  significantly  higher  than  the

corresponding computed null distribution (blue). (A) K562, (B) GM12878, (C) HepG2, (D) MCF-7 and

(E) mouse ESCs cells;

Figure 3. Properties of variable regions in K562 and mESCs. CG dinucleotide composition in

K562 human cell lines (A) and in mouse ESCs (B). Control regions are a set of randomly sampled

genomic regions of similar size. Enrichment of variable regions in K562 human cell  lines (C) and

mouse ESCs (D) at several gene body features and R-loops. (E) Enrichment of variable regions at

HOT regions (3).

Figure 4. Effect of removing variable regions. PCA using presence of peaks in the set of 200 bp

segments on the genome as features with the original data and without 200 bp segments within the

variable regions in K562 cell lines (A and B, respectively). Each dot represents a biological replicate

and each colour the protein target.

Figure 5. Prediction of variable regions in K562 and mESCs. (A) Receiver operating characteristic

(ROC) as a quality measure of the predictability of the variable regions in mESCs and (B) importance

of the features for predicting the variable regions in mESC measured as mean decrease Gini in the

random forest. See text for details about every feature. (C) Receiver operating characteristic (ROC)

as a quality measure of the predictability of the variable regions in K562 cells and (D) importance of

the features for predicting the variable regions in K562 cells measured as mean decrease Gini in the

random forest.
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Supplementary Material

Conversion of JSON-based files to a relational SQL database

The  metadata  in  ENCODE  is  represented  in  JSON-format.  There  is  an  API  (Application  Program

Interface)  that  enables downloading JSON files for  many experiments automatically.  In  addition,  it  is

possible to restrict the experiments to be downloaded by specifying conditions the experimental metadata

has to comply with. However, a JSON file for one experiment can include up to 11,000 lines and this can

cause two problems. The first is that the extraction of information can be complicated and requires further

implementation of small scripts / programs. The second is that parsing such files can be computationally

expensive especially if there are more than 1000 files to be processed. To avoid these problems and

enabling the analysis of the metadata in a flexible and fast way we decided to convert the information from

JSON  into  a  MySQL  database.  For  objects  like  experiment,  target,  organism,  replicate,  etc.  we

downloaded all JSON files. A Python script was implemented that extracts information encoded in each

JSON file and automatically fills the SQL database with this information. The procedure in the Python

script takes also cares about creating the tables for each object and furthermore creating also relational

tables  for  the  connection  between  two  tables  (objects).  Relational  information  is  also  automatically

extracted and stored into SQL. Figure 1 represents a simplified case with one experiment. The brackets

”{}” define the beginning and end of a JSON. There are simple features like accession and status for which

the value is directly given. Those simple values can also appear in lists represented by the brackets ”[]”.

However,  one JSON can include other JSONs. This is shown by the target  in the experiment that  is

completely described by a so called nested JSON. It is also possible that one JSON includes a list of

JSONs. The example in Figure  S1 shows that for each file that is related to the experiment there is one

JSON within the experiment. These nested JSONs are the reason why those files are getting so large.

Another  advantage  coming  with  the  conversion  from JSON into  SQL  is  that  objects  are  not  stored

redundantly.  Taking  as  example  the target  that  describes  the  protein  that  is  targeted  in  a  ChIP-seq

experiment. All  JSONs for experiments with the same target store the same information for the same

target  multiple  times.  In  SQL  there  is  only  one  entry  for  a  specific  target  in  the  target  table  and

experiments with this target are just linked to this entry by the target_ID. An example for such a link is

represented by the target in Supplementary Figure S1 below and has_file is a relational table.
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Figure S1
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Figure S2 

(A) DNA binding motifs of the protein targets of the ChIP-seq samples used to detect variable 
regions in mouse ESCs from the Jaspar database. No data for ZC3H11A and HCFC1.
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(B) DNA binding motifs of the protein targets of the ChIP-seq samples used to detect variable 
regions in K562 cell lines
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Figure S3

Pairwise comparisons of Euclidean distances between replicates of different proteins (inter) and
within  replicates  of  the  same proteins  (intra)  in  the  original  dataset  and  after  removing  the
segments within the variable regions for the K562 ChIP-seq dataset (four proteins with three
replicates).
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