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Abstract 15 

The functional communications between brain regions are thought to be dynamic.  However, it is usually 16 

difficult to elucidate whether the observed dynamic connectivity is functionally meaningful or simply due 17 

to noise during unconstrained task conditions such as resting-state.  During naturalistic conditions, such 18 

as watching a movie, it has been shown that local brain activities, e.g. in the visual cortex, are consistent 19 

across subjects.  Following similar logic, we propose to study intersubject correlations of the time courses 20 

of dynamic connectivity during naturalistic conditions to extract functionally meaningful dynamic 21 

connectivity patterns.  We analyzed a functional MRI (fMRI) dataset when the subjects watched a short 22 

animated movie.  We calculated dynamic connectivity by using sliding window technique, and quantified 23 

the intersubject correlations of the time courses of dynamic connectivity.  Although the time courses of 24 

dynamic connectivity are thought to be noisier than the original signals, we found similar level of 25 

intersubject correlations of dynamic connectivity to those of regional activity.  Most importantly, highly 26 

consistent dynamic connectivity could occur between regions that did not show high intersubject 27 

correlations of regional activity, and between regions with little stable functional connectivity.  The 28 

analysis highlighted higher order brain regions such as the default mode network that dynamically 29 

interacted with posterior visual regions during the movie watching, which may be associated with the 30 

understanding of the movie. 31 

 32 

Keywords: default mode network; dynamic connectivity; intersubject correlation; movie connectome; 33 

naturalistic condition; supramarginal gyrus 34 
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Highlights 36 

• Intersubject consistency may provide a complementary approach to study brain dynamic 37 

connectivity 38 

• Widespread brain regions showed highly consistent dynamic connectivity during movie watching, 39 

while these regions themselves did not show highly consistent regional activity 40 

• Consistent dynamic connectivity often occurred between regions from different functional 41 

systems 42 
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1. Introduction  44 

The functional communications between spatially remote brain regions, especially the dynamics of 45 

connectivity, is a key to understand brain functions (Bullmore and Sporns, 2012; Friston, 2011; Park and 46 

Friston, 2013).  Recently, the dynamics of connectivity has drawn increasing interests of research, 47 

especially in resting-state (Allen et al., 2014; Fu et al., 2019, 2018; Hutchison et al., 2013).  However, due 48 

to the unconstrained nature of resting-state, it is difficult to elucidate whether the observed changes of 49 

connectivity across sliding windows are due to real fluctuations of functional communications, or simply 50 

due to random fluctuations (Lindquist et al., 2014).  Moreover, the blood-oxygen-level dependent (BOLD) 51 

signals measured by fMRI are sensitive to physiological noises, such as respiration, heartbeat (Teichert et 52 

al., 2010), and head motion (Power et al., 2012), which may give rise to spurious correlation estimates for 53 

short window. 54 

 One way to capture meaningful dynamic functional connectivity is to manipulate subjects’ mental 55 

states during the course of scan, so that there is known reference for the changes of connectivity.  For 56 

example, in a typical task-based fMRI study with blocked design, different task conditions are assigned as 57 

blocks.  Therefore, the time courses of dynamic connectivity can be correlated with the task design to 58 

identify task related connectivity changes (Di et al., 2015; Rosenthal et al., 2017).  An alternative 59 

approach is to expose the subjects with naturalistic stimuli, such as a short movie.  Although there is no 60 

predefined references of dynamic connectivity changes, one may take advantage of the phenomenon of 61 

intersubject correlation to capture changes that are consistent across different subjects (Hasson et al., 2004; 62 

Nastase et al., 2019).  63 

 In the seminal study, Hasson and colleagues calculated intersubject correlations of the time series 64 

of BOLD signal (Figure 1A) when the subjects were watching a movie (Hasson et al., 2004).  They 65 

demonstrated that several brain regions, especially the visual cortex, are highly correlated across subjects 66 

during the movie watching.  We propose that similar approach can be applied to the time courses of 67 

dynamic connectivity to capture meaningful functional communication dynamics during natural vision.  68 

Specifically, dynamic connectivity is usually calculated using a sliding window approach, so that a time 69 
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series of dynamic connectivity can be obtained.  The time courses of dynamic connectivity can then be 70 

correlated across-subjects (Figure 1B).  If the dynamic connectivity reflects real time functional 71 

communications between regions that are caused by the viewing of natural stimuli, then the time courses 72 

of dynamic connectivity from different subjects should somehow correlated.  Therefore, we can apply 73 

intersubject correlation method to identify meaningful dynamic communications between regions.  74 

 75 

Figure 1 Illustration of the calculations of intersubject correlations of the time series of regional activity 76 

(A) and the time courses of dynamic connectivity between two regions (B).   77 

 78 

 In the current study, we analyzed an fMRI dataset where the subjects were scanned when viewing 79 

a short animated movie.  The aim was to identify dynamic connectivity that were shared cross subjects 80 

during the movie watching.  In order to do so, we first performed regular intersubject correlation analysis 81 

to identify brain regions that showed consistent regional activity.  Given these regions, we adopted a seed-82 

 

ng 
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based strategy to calculate dynamic connectivity between a seed region and every voxels in the brain.  We 83 

then evaluated and identified regions whose connectivity with the seed were consistent cross subjects.  84 

Even though higher order association regions did not typically show high intersubject correlations of 85 

regional activity (Hasson et al., 2004), their functional communications with lower order regions may be 86 

consistent across subject following the narrative of the movie.  We therefore hypothesized that 87 

intersubject correlations of dynamic connectivity may be able to identify more widespread regions and 88 

functional dynamics that are associated with the watching of the movie. 89 

 90 

2. Materials and methods 91 

2.1. Data and task 92 

The fMRI data were obtained through openneuro (https://openneuro.org/; accession #: ds000228).  Only 93 

the data from adult subjects were analyzed.  There were originally 33 adult subjects.  Two subjects’ data 94 

were discarded because of poor brain coverage (subject #: sub-pixar123 and sub-pixar124), and two were 95 

discarded due to large head motions (sub-pixar149 and sub-pixar150).  As a result, a total of 29 subjects 96 

were included in the current analysis (17 females).  The mean age is 24.6 years old (18 to 39 years).  97 

 During the fMRI scan, the subjects watched a silent version of Pixar animated movie “Partly 98 

Cloudy”, which is 5.6 minutes long (https://www.pixar.com/partly-cloudy#partly-cloudy-1).  Brain MRI 99 

images were acquired on a 3-Tesla Siemens Tim Trio scanner using the standard Siemens 32-channel 100 

head coil.  Functional images were collected with a gradient-echo EPI sequence sensitive to BOLD 101 

contrast in 32 interleaved near-axial slices (EPI factor: 64; TR: 2�s, TE: 30�ms, flip angle: 90°).  The 102 

voxel size were 3.13�mm isotropic, with 3 subjects with no slice gap and 26 subjects with 10% gap.  168 103 

functional images were acquired for each subject, with four dummy scans collected before the real scans 104 

to allow for steady-state magnetization.  T1-weighted structural images were collected in 176 interleaved 105 

sagittal slices with 1�mm isotropic voxels (GRAPPA parallel imaging, acceleration factor of 3; FOV: 106 

256�mm).  For more information about the dataset please refers to (Richardson et al., 2018). 107 

2.2. FMRI data analysis 108 
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2.2.1. Preprocessing 109 

FMRI data processing and analyses were performed using SPM12 and MATLAB (R2017b) scripts.  A 110 

subject’s T1 weighted structural image was first segmented into gray matter, white matter, cerebrospinal 111 

fluid, and other tissue types, and was normalized into standard Montreal Neurological Institute (MNI) 112 

space.  The T1 images were then skull stripped based on the segmentation results.  Next, all the functional 113 

images of a subject were realigned to the first image of the session and coregistered to the skull stripped 114 

T1 image of the same subject.  Framewise displacement was calculated for the translation and rotation 115 

directions for each subject (Di and Biswal, 2015).  Subjects who had maximum framewise displacement 116 

greater than 1.5 mm or 1.5o were discarded from further analysis.  See supplementary materials section S1 117 

for additional analysis on the head motion effects.  The functional images were then normalized to MNI 118 

space using the parameters obtained from the segmentation step with resampled voxel size of 3 x 3 x 3 119 

mm3.  The functional images were then spatially smoothed using a Gaussian kernel of 8 mm.  Lastly, a 120 

voxel-wise general linear model (GLM) was built for each subject to model head motion effects (Friston’s 121 

24-parameter model) (Friston et al., 1996), low frequency drift (1/128 Hz), and constant offset.  The 122 

residuals of the GLM were saved as a 4-D image series, which were used for further intersubject 123 

correlation analysis.  The residual time series were all mean centered because of the constant term 124 

included in the GLM.  125 

 Removing low frequency drifts in BOLD signals is a critical step for dynamic connectivity 126 

analysis (Leonardi and Van De Ville, 2015).  Leonardi and Van De Ville have suggested a high-pass filter 127 

of 1/W Hz to avoid spurious dynamic connectivity caused by low-frequency fluctuations, where W 128 

represents the window length in the sliding window analysis.  The high-pass filter of 1/128 Hz is the 129 

default in the GLM module in SPM.  Given the window length of 60 s (30 TR) in the current analysis, we 130 

also applied high-pass filtering of 1/64 Hz in a supplementary analysis.  The results are very similar to 131 

what using the 1 / 128 Hz high-pass filtering (see supplementary materials section S3).  132 

2.2.2. Intersubject correlation analysis 133 
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The correlations of time series of either brain activity or dynamic connectivity are calculated between 134 

pairs of subjects.  If there are N subjects, then there will be N x (N-1) / 2 correlation coefficients.  The 135 

statistics of these correlations become tricky, because they are calculated from only N subjects, therefore 136 

not independent.  An alternative approach is leave-one-out (Nastase et al., 2019), where the time series of 137 

one hold-out subject were correlated with the averaged time series of the remaining N – 1 subjects.  The 138 

averaged time series of N – 1 subjects were thought to reflect the consistent component rather than noisy 139 

individual’s time series.  Therefore, the resulting correlations should be higher than the pair-wise 140 

correlations.  Another benefit is that this approach estimates one correlation for each subject, making 141 

group level statistics easier.  Therefore, we adopt the leave-one-out approach in the current analysis.  142 

 We first performed intersubject correlation analysis on regional activity time series.  The 143 

preprocessed BOLD time series were extracted for each voxel and subject in a gray matter mask.  For a 144 

given voxel, the time series of one subject was held out, and the averaged time series of the remaining 145 

subject were calculated.  Then the time series of the hold-out subject were correlated with the averaged 146 

time series.  This process was performed for every voxel and every subject, resulting in one correlation 147 

map for one subject.  The correlation maps were transformed into Fisher’s z maps.  Group level one 148 

sample t test was then performed to identify regions whose intersubject correlations were consistently 149 

greater than 0.  However, the null hypothesis statistical significance testing may not provide much 150 

information of the effect size.  There may be only small but consistent correlations for each subject, 151 

which could give rise to very high statistical significance in a one sample t test.  Indeed, when doing such 152 

null hypothesis statistical significance testing for intersubject correlation analysis, usually almost all the 153 

brain regions will show somehow significant correlations (Chen et al., 2016).  We are more interested and 154 

focused on the real effect size, i.e. correlation coefficients, in our analysis.  We therefore averaged the 155 

Fisher’s z maps, and transformed them back into r maps.  The continuous r maps were shown in the 156 

results section. 157 

 We next performed intersubject correlation analysis on dynamic connectivity using a seed-based 158 

approach.  Given that a set of brain regions showed high intersubject correlations of regional activity, we 159 
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defined these regions as seeds.  We adopted a relatively high threshold of r > 0.45 for the averaged 160 

intersubject correlation map of regional activity to isolate four visual related seeds.  Two of them were 161 

located in the medial and posterior portion of the occipital lobe, which mainly covered the lingual gyrus 162 

and calcarine sulcus.  The other two seeds were located bilaterally in the middle occipital gyrus and 163 

extended to the middle temporal gyrus.  We labeled them as left and right medial visual and lateral visual 164 

seeds, respectively.  In addition, we adopted a relatively low threshold of r > 0.35 to isolate the left and 165 

right supramarginal gyrus seeds.  The maps of the six seeds are available at: 166 

https://identifiers.org/neurovault.collection:6245.   167 

 For each seed, we performed voxel-wise correlation analysis, i.e. calculating intersubject 168 

correlations of dynamic connectivity between the seed and every voxel in the gray matter mask.  For two 169 

given time series from a seed and a voxel, we first applied sliding window technique to calculate dynamic 170 

connectivity for each subject.  The window length was set as 30 time points (60 s) (Nastase et al., 2019), 171 

and the time step was set as 2 time point (4 s).  Therefore, the time course of dynamic connectivity had 70 172 

window steps.  Next, we calculated correlations between the time courses of dynamic connectivity of a 173 

given subject with the averaged dynamic connectivity of the remaining subjects for a given voxel.  As a 174 

result, there was one correlation map for each seed and each subject. 175 

 The r maps of correlations of dynamic connectivity were transformed into Fisher’s z maps for 176 

group level statistical analysis.  Again, we simply calculated an averaged z map for a seed, and 177 

transformed it back into r map.  In addition, we performed group-level analysis to identify regions that 178 

showed different dynamic connectivity patterns with different levels of seeds.  Specifically, we calculated 179 

contrast images from the Fisher’s z maps for each subject representing the differences between specific 180 

levels of seeds compared with the other seeds.  For example, we calculated a contrast image using [1, 1, -181 

0.5, -0.5, -0.5, -0.5] on the six z maps of a subject to define the differences between the two medial visual 182 

seeds and the remaining four seeds.  The contrast images were entered into a one sample t test GLM using 183 

nonparametric statistics in SnPM13 (Statistical NonParametric Mapping, http://warwick.ac.uk/snpm).  184 

Resulting clusters were first formed at p < 0.001, and the cluster extend was thresholded using family-185 
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wise error (FWE) corrected p < 0.0167 (0.05 / 3).  The cluster level FWE threshold (0.0167) was chosen 186 

to further account for the three levels of seeds (medial visual, lateral visual, and supramarginal seeds).187 

 In addition to the voxel-based analysis, we also performed region of interest (ROI)-based analysis 188 

for in-depth examinations of the dynamic connectivity effects.  In addition to the six seeds, we included 189 

three more regions that showed different intersubject correlations of dynamic connectivity with different 190 

seeds.  Specifically, they were the left precentral gyrus that showed higher intersubject correlations of 191 

dynamic connectivity with the medial visual seeds, and the posterior cingulate cortex and medial 192 

prefrontal cortex that showed higher intersubject correlations of dynamic connectivity with the 193 

supramarginal gyrus seeds.  The regions were defined based on the statistical significant clusters from the 194 

group-level analysis.  The maps of the three regions are available at: 195 

https://identifiers.org/neurovault.collection:6245.  The calculations of intersubject correlations of dynamic 196 

connectivity were the same as the seed-based analysis.  197 

 The selections of sliding window length is nontrivial (Fu et al., 2014; Zhang et al., 2013).  In 198 

addition to the 30-TR window length, we also explored other window length of 10 TRs (20 s), 20 TRs (40 199 

s), 40 TRs (80 s), 50 TRs (100 s), and 60 TRs (120 s).  For each window length, we calculated 200 

intersubject correlations of dynamic connectivity among the 9 ROIs.  201 

2.2.3. Relations with other measures 202 

We first compared the intersubject consistent dynamic connectivity with stable functional connectivity.  203 

For each subject, we calculated correlation coefficients across the 9 ROIs, and transformed them into 204 

Fisher’s z.  Then the z matrices were averaged across the 29 subjects, and transformed back into r values.  205 

In addition, we calculated the consistent component of each ROI, i.e. averaging the time series across the 206 

29 subjects.  And then one single correlation matrix among the 9 ROIs was calculated.   207 

 Given the consistent component of the 9 ROIs, we also calculated dynamic connectivity between 208 

pairs of ROIs using the same sliding window approach.  The time courses of dynamic connectivity 209 

calculated from the consistent component were compared with the averaged dynamic connectivity that 210 

was calculated from each subject.  211 
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 We further asked whether the observed intersubject consistent dynamic connectivity was driven 212 

by the consistent component of regional activity, or by the subject-specific idiosyncratic component.  To 213 

do so, for each ROI, we regressed out the consistent component from each subject’s time series, and 214 

calculated dynamic connectivity from the residual time series for each subject.  Intersubject correlations 215 

of dynamic connectivity calculated from the residual time series were compared with those from the taw 216 

time series. 217 

 Lastly, we calculated intersubject correlations of regional activity using the same sliding window 218 

approach for the 9 ROIs.  That is, for each ROI, intersubject correlation was calculated at each window, 219 

resulting in a time course of intersubject consistency of regional activity in each of the ROI.  220 

 221 

3. Results 222 

3.1. Intersubject correlations of regional activity 223 

We first calculated intersubject correlations of regional activity for every voxel in the brain during the 224 

video watching (Figure 2A).  The highest correlations were around 0.5.  The major regions that had high 225 

intersubject correlations were the visual cortex extending anterior to the fusiform gyrus and middle 226 

temporal lobe.  The bilateral supramarginal gyrus also showed high intersubject correlations.  The 227 

bilateral precentral gyrus also showed intersubject correlations, but the effect sizes were much smaller.  228 

Figure 2A shows all the voxels with positive correlation values.  It is noteworthy that many regions 229 

showed very small intersubject correlations, including largely the prefrontal cortex and anterior temporal 230 

lobe.  231 
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 232 

Figure 2 Intersubject correlation maps of regional activity (A) and dynamic connectivity with different 233 

seeds (B through G).  The seed regions were depicted in blue or green in respective rows.  All voxels with 234 

positive correlations are shown.  The numbers at the bottom represent z or x coordinates in Montreal 235 

Neurological Institute (MNI) space.  LMV, left medial visual; RMV, right medial visual; LLV, left lateral 236 

visual; RLV, right lateral visual; LSMG, left supramarginal gyrus; RSMG, right supramarginal gyrus.  All 237 

the maps are available at: https://identifiers.org/neurovault.collection:6245. 238 

 239 

3.2. Intersubject correlations of dynamic connectivity 240 

3.2.1 Seed-based analysis 241 

We defined seed regions where there were high intersubject correlations of regional activity, which 242 

included bilateral medial visual regions, lateral visual regions, and supramarginal gyrus.  We next 243 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted January 23, 2020. ; https://doi.org/10.1101/796433doi: bioRxiv preprint 

https://doi.org/10.1101/796433
http://creativecommons.org/licenses/by-nc-nd/4.0/


13 

 

calculated voxel-wise intersubject correlations of dynamic connectivity with the six seeds, respectively 244 

(Figure 2B through 2G).  There were widespread brain regions that showed intersubject consistent 245 

dynamic correlations with different seeds.  First of all, the effect sizes of the intersubject correlations of 246 

dynamic connectivity, i.e. the correlation coefficients, were comparable to those in the intersubject 247 

correlations of regional activity.  Secondly, regions with intersubject correlations of dynamic connectivity248 

turned out to be more widespread and extended to the frontal and parietal regions that did not show high 249 

intersubject correlations of regional activity.  See supplementary materials section S2 for direct 250 

comparisons between the intersubject correlations of dynamic connectivity and those of regional activity. 251 

Thirdly, the left and right corresponding seeds showed similar dynamic connectivity patterns, but there 252 

were substantial differences in the patterns of dynamic connectivity among medial visual, lateral visual, 253 

and supramarginal gyrus seeds.  In order to highlight specific brain regions that showed dynamic 254 

connectivity with different seeds, we compared each pair of seeds with the remaining seeds using 255 

nonparametric group-level model (Figure 3 and Table 1).  The medial visual seeds showed more 256 

consistent dynamic connectivity with the left precentral gyrus and occipital regions compared with other 257 

seeds.  The lateral visual seeds showed more consistent dynamic connectivity with several visual regions 258 

compared with the other seeds.  In contrast, the supramarginal seeds showed consistent dynamic 259 

connectivity with the precuneus/posterior cingulate gyrus and medial prefrontal cortex compared with the 260 

other seeds, which basically formed the default mode network. 261 

 262 

ty 

.  

e 
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Figure 3 Differential intersubject correlations of dynamic connectivity among the medial visual, lateral 263 

visual, and supramarginal gyrus seeds (depicted on the left).  All maps were thresholded at p < 0.001, and 264 

cluster thresholded at p < 0.0167 (0.05 / 3) after family-wise error (FWE) correction using nonparametric 265 

method.  MV, medial visual; LV, lateral visual; and SM, supramarginal gyrus.  Unthresholded statistical 266 

maps are available at: https://identifiers.org/neurovault.collection:6245. 267 

 268 

3.2.2. Relations with stable functional connectivity 269 

In order to better understand and interpret the dynamic connectivity and regional functions, we further 270 

calculated different types of connectivity measures among a set of regions of interest.  In addition to the 271 

six seeds, we defined left precentral gyrus, posterior cingulate cortex, and medial prefrontal cortex ROIs 272 

that showed different dynamic connectivity with different seeds.  Among the 9 regions, we calculated 273 

regular mean functional connectivity (Figure 4A) and connectivity derived from the consistent 274 

components across the 29 subjects (Figure 4B).  These two correlation matrices looked similar, and 275 

clearly showed three clusters of brain regions.  The first four regions were all visual.  The fifth to seventh 276 

regions were the bilateral supramarginal gyrus, and lateralized frontal region, which were all high order 277 

association brain regions.  And the last two regions were part of the default mode network, which showed 278 

negative correlations with the association regions in the consistent component correlations.  279 

280 

Figure 4 Correlation matrices among the 9 regions of interest (ROI) using different methods.  A) Mean 281 

functional connectivity across the 29 subjects.  B) Correlations of the consistent component of each ROI 282 

(averaged time series across the 29 subjects).  C) Intersubject correlations of dynamic connectivity.  LMV283 

nd 
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left medial visual; RMV, right medial visual; LLV, left lateral visual; RLV, right lateral visual; LSMG, 284 

left supramarginal gyrus; RSMG, right supramarginal gyrus; LPCG, left precentral gyrus; PCC, posterior 285 

cingulate cortex; and MPFC, medial prefrontal cortex. 286 

 287 

 The intersubject consistent dynamic connectivity matrix (Figure 4C) was largely different from 288 

the two stable correlation matrices.  Some high consistent dynamic connectivity was observed within the 289 

visual regions.  The highest correlation was between the left and right medial visual regions (r = 0.70).  In 290 

contrast, many consistent dynamic connectivity were shown between different functional networks, where 291 

there were virtually none or even negative stable correlations.  Specifically, the medial visual regions 292 

showed high consistent dynamic connectivity with the left precentral gyrus ROI.  The highest intersubject 293 

correlation was 0.56 between left medial visual region and left precentral gyrus.  The default mode 294 

regions and supramarginal regions also showed high consistent dynamic connectivity.  The highest 295 

correlation was 0.64 between the posterior cingulate cortex and right supramarginal gyrus.  It is 296 

noteworthy that these regions generally showed negative stable correlations in Figure 4B.  297 

 Lastly, we analyzed the time courses of dynamic connectivity for the above mentioned pairs of 298 

regions (Figure 5).  The dynamic connectivity between left and right medial visual regions was in general 299 

high, which is consistent with the results of stable connectivity.  But it can be seen that the connectivity 300 

level went down during the first half of windows, and continued with two cycles of up and down 301 

fluctuations.  The fluctuations rather than a monotonic linear trend suggest that the dynamics of 302 

connectivity is not simply due to sensory habituations.  The left medial visual region and left precentral 303 

gyrus did not show high level of correlations in general.  But it had small positive correlations at the 304 

beginning of the run, went down to around zero, and then went back to small positive correlations.  What 305 

is more interesting is the dynamic connectivity between the right supramarginal gyrus and posterior 306 

cingulate cortex, where the connectivity switched between positive and negative values during the whole 307 

course.   308 
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309 

Figure 5 Time courses of dynamic connectivity (Fisher’s z) for three pairs of regions of interest.  Each 310 

thinner line represents the time course of one subject, and the thicker red lines represent the averaged time311 

courses.  LMV, left medial visual; RMV, right medial visual; LPCG, left precentral gyrus; RSMG, right 312 

supramarginal gyrus; PCC, posterior cingulate cortex. 313 

 314 

3.2.3. Relations with the consistent component 315 

A subsequent question is that whether the observed intersubject consistent dynamic connectivity is driven 316 

by the consistent component of regional activity across subject, or by subject-specific idiosyncratic 317 

components.  We then regressed out the consistent component for each subject’s time series and 318 

calculated intersubject correlations of dynamic connectivity from the residual time series (Figure 6B).  319 

Compared with the intersubject correlations of dynamic connectivity from the original analysis (Figure 320 

6A), the consistency of dynamic connectivity from the residual time series were largely diminished.  321 

Figure 6D and 6E illustrate the changes of dynamic connectivity time courses after the regression 322 

between a representative ROI pair, i.e. right supramarginal gyrus and posterior cingulate cortex (see 323 

supplementary Figure S4 for other ROI pairs).  The intersubject correlation reduced from 0.64 to 0.29.  324 

Figure 6C illustrates the dynamic connectivity of the consistent components of regional activity between 325 

these two ROIs.  The fluctuating pattern was similar to those calculated from individual subject’s original 326 

time series (Figure 6D), further confirmed that the consistent dynamic connectivity across individuals was 327 

driven by the consistent component of regional activity.   328 
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 329 

Figure 6  A) and B) Intersubject correlations (ISC) of dynamic connectivity calculated from raw time 330 

series (A) and residual time series after regressing out the intersubject consistent components (B).  C) 331 

Dynamic connectivity of the consistent component of regional activity between right supramarginal gyrus332 

(RSMG) and posterior cingulate cortex (PCC).  D) and E) Time courses of dynamic connectivity (Fisher’s333 

z) between RSMG and PCC calculated from raw time series (D) and the residual time series after 334 

regressing out the intersubject consistent component.  F) The time courses of intersubject correlations of 335 

regional activity in RSMG and PCC.  336 

 337 

 Lastly, we calculated intersubject correlations of regional activity in every sliding window 338 

(supplementary Figure S5).  Figure 6F shows the time courses of intersubject correlations of regional 339 

activity in the right supramaginal gyrus and posterior cingulate cortex ROIs.  Both regions showed 340 

similarly but reversed time courses as the dynamic connectivity between them.  That is, during the two 341 

periods of dips of dynamic connectivity, there were elevated intersubject correlations of regional activity 342 

in both regions.  But this kind of close relations cannot be observed in the other two pairs of ROIs 343 

(supplementary Figure S4). 344 
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3.2.4. Effects of sliding-window length 345 

We repeated the ROI-based intersubject correlation analysis of dynamic connectivity using different 346 

window length from 10 TRs to 60 TRs.  The intersubject correlation matrices were in general weaker 347 

when the window was shorter, especially for the 10-TR window (Figure 7).  As the window went longer, 348 

the correlations matrices became similar to the 30-TR window results.  But for even longer window, there 349 

were two different trends.  First, some of the intersubject correlations kept increasing, usually between 350 

regions that involved in one or two visual ROIs (Figure 7B).  On the other hand, some of the intersubject 351 

correlations decreased after peaked at the 30-TR window, usually between regions that involved 352 

supramarginal gyrus or posterior cingulate cortex.  Figure 7C illustrated the time courses of dynamic 353 

connectivity between right supramarginal gyrus and posterior cingulate cortex.  It can be seen that the 354 

variability of dynamic connectivity time courses were larger in short window.  When using 10-TR 355 

window, the dynamic connectivity changed fast, and were not aligned across subjects.  When using 30-356 

TR window, the dynamic connectivity time courses became smoother, and the fluctuations were more 357 

aligned across subjects, which in turn gave rise to higher intersubject correlations.  But when using 50-TR 358 

window, the time courses of dynamic connectivity become too smooth, so that the subject averaged trend 359 

become less apparent.  It’s noteworthy that for the dynamic connectivity between the left and right medial 360 

visual ROIs and between left medial visual and left precentral gyrus ROIs, there were linear trends of 361 

dynamic connectivity across subjects, which gave rise to high intersubject correlations in longer windows 362 

(Figure S6).  363 
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 364 

Figure 7 A) The effects of sliding-window length on the intersubject correlations of dynamic connectivity365 

B) Intersubject correlations of dynamic connectivity of three pairs of regions of interest: left medial visual366 

(LMV) and right medial visual (RMV), LMV and left precentral gyrus (LPCG), and right supramarginal 367 

gyrus (RSMG) and posterior cingulate cortex (PCC).  C) The time courses of dynamic connectivity 368 

between RSMG and PCC in three window lengths.  TR, repetition time. 369 

 370 

 371 

4. Discussion 372 

In the current study, we proposed intersubject correlation analysis on the time courses of dynamic 373 

connectivity during natural vision.  We were able to identify intersubject consistent dynamic connectivity 374 

at similar levels as the intersubject correlations of regional activity, although the time courses of dynamic 375 

connectivity were thought to be nosier than the original time series.  By using seed regions from the 376 

visual cortex and supramarginal gyrus, we demonstrated widespread brain regions that showed high 377 

intersubject consistent dynamic connectivity with these seeds, although these regions themselves did not 378 

show intersubject correlations of regional activity.  These regions included high order association regions 379 

such as frontal and parietal regions, as well as the default mode network.  The intersubject consistent 380 

ity.  
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patterns of dynamic connectivity support the functional meaningfulness of dynamic connectivity during 381 

movie watching, and suggest that dynamic connectivity could be a complementary avenue to characterize 382 

the functions of a brain region. 383 

 The brain regions that had the highest intersubject correlations of regional activity are mainly in 384 

the posterior visual related regions, which are consistent with previous studies (Hasson et al., 2004; 385 

Nummenmaa et al., 2012).  In addition, the current study found dynamic connectivity among different 386 

levels of visual areas that were highly consistent across subjects.  This is interesting because although the 387 

overall functional connectivity among the visual areas are very high (Figure 4A), there are still 388 

functionally meaningful fluctuations of interactions among the visual regions.  The observable dynamics 389 

of connectivity among visual areas are in line with previous studies showing task modulated connectivity 390 

among visual areas in different task conditions (Di et al., 2019, 2015; Di and Biswal, 2017).  It is 391 

interesting to note that the dynamics of intersubject correlations of regional activity in the visual areas 392 

also showed decreased trends at the beginning of the session (Figure S4 and S5).  Therefore, the 393 

decreased connectivity in the beginning may reflect adaptations effects in the visual areas.  However, 394 

during the latter half of the session, the dynamics of intersubject correlations of regional activity kept at a 395 

stable level, which cannot explain the dynamics of connectivity between them (Figure S4).  396 

 The bilateral supramarginal gyrus regions are major regions outside the visual cortex that showed 397 

high intersubject correlations of regional activity.  The involvements of supramarginal gyrus of 398 

intersubject correlations are inconsistent in the literature (Hasson et al., 2004; Kauppi et al., 2010), which 399 

probably due to different movies the participants watched.  Given their critical role in empathy (Silani et 400 

al., 2013), it is reasonable to observe high intersubject correlations in the supramarginal gyrus during the 401 

watching of the animated movie, which involves the understanding the intentions of different animated 402 

characters.  Interestingly, the intersubject correlations of regional activity in the supramarginal gyrus also 403 

showed dynamics, with two periods of high correlations roughly between the 20th and 30th windows and 404 

between the 50th and 60th windows (Figure 6F and S4B).  The first may correspond to the scene when 405 

Peck the stork and Gus the cloud first met, where their interactions appeared to be different from the other 406 
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storks and clouds.  The second may coincide with the scene when Peck flew away, and Gus thought Peck 407 

had abandoned him.  These scenes require active inferences of the intentions of the characters, and may 408 

involve mismatches between predictions and the actual story development.  Therefore, it is reasonable to 409 

see high cross-subject similarities in the supramarginal gyrus during these two periods.  410 

 In addition to regional activity, we also found that the default mode network showed highly 411 

consistent dynamic connectivity with the supramarginal gyrus regions.  Similar to the supramarginal 412 

gyrus ROIs, the regional activity in the posterior cingulate cortex showed two periods of high consistent 413 

regional activity (Figure 6F).  But interestingly, during these two periods the posterior cingulate cortex 414 

and supramarginal gyrus showed strong anti-correlation (Figure 6C).  The default mode network involves 415 

high-order representation of the world (Carhart-Harris and Friston, 2010).  And the functional 416 

communications between the default mode network and supramarginal gyrus may reflect the prediction 417 

error between inner representation and the input from the video.  Similar to a previous study using 418 

dynamic intersubject connectivity analysis (Simony et al., 2016), both of the studies highlighted the 419 

critical role of the default mode network in understanding of the narratives of a movie. 420 

 Generally speaking, the intersubject consistent connectivity and stable functional connectivity 421 

showed disassociations.  Specifically, the ROI pairs that showed highly consistent dynamic connectivity 422 

may have high stable functional connectivity or very low overall connectivity.  The latter case may be 423 

more interesting, because it suggests transient functional communications that cannot be observed in 424 

traditional functional connectivity analysis.  The 9 ROIs used in the current analysis are from three 425 

functional modules, i.g. unimodal visual, higher order task positive, and default mode networks.  The 426 

three functional modules can be confirmed in the matrix of stable connectivity (Figure 4A), where there 427 

are high within-module functional connectivity but weak between-module connectivity.  The matrix of 428 

consistent dynamic connectivity, on the other hand, showed that there are more between-module dynamic 429 

connectivity.  These results are in line with the economy account of brain network organizations, which 430 

suggests that the functional communications between modulates are costly in terms of energy 431 

consumption, therefore are more transient (Bullmore and Sporns, 2012).  It is also consistent with the 432 
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findings that the connectivity between  modules are more variable and context dependent (Di and Biswal, 433 

2019; Fu et al., 2017).  434 

 By calculating dynamic connectivity time courses from individual’s time series, the proposed 435 

method focused on the consistency of the dynamic connectivity time courses across subjects.  Our 436 

additional analysis showed that the consistent dynamic connectivity time courses was driven by the 437 

dynamic connectivity of the consistent component of the regional time series, at least for the current video 438 

watched.  The latter method provides a simple approach to reveal the dynamics of connectivity, and is 439 

closely related to the dynamic intersubject functional connectivity approach proposed by Simony et al. 440 

(Simony et al., 2016).  Our method, on the other hand, can not only reveal the time course of dynamic 441 

connectivity, but can also provide a quantity of a connection about how the dynamic connectivity is 442 

consistent across subjects.  Eventually, we will be able to obtain a matrix of the consistency of dynamic 443 

connectivity among ROIs from the whole brain.  This is important because the seed-based approach used 444 

in the current analysis may miss dynamic connectivity between regions that do not have consistent 445 

regional activity.  The connectome-based approach can provide a comprehensive mapping of dynamic 446 

communications across the brain during the watching of a movie, and can be seen a special form of task 447 

connectome (Di and Biswal, 2019).  448 

 The selection of window length for dynamic connectivity analysis is nontrivial (Fu et al., 2014; 449 

Zhang et al., 2013).  The shorter the window length, the finer the temporal resolution for dynamic 450 

connectivity could be.  However, less time points for each window would also mean noisier estimates of 451 

connectivity.  In the current analysis, 10-TR window gave very noisy estimate of functional connectivity, 452 

thus making intersubject correlations very low.  On the other hand, longer window will make connectivity 453 

estimate accurate, but at a cost of losing temporal resolution.  In the context of the current video watched, 454 

30-TR window seems a balance.  However, this time scale of dynamic connectivity fluctuations may not 455 

be easily generalized to other videos or to resting-state.  But it certainly can provide some insight to the 456 

chosen of window length in future studies.  In addition, some computational method may be used to avoid 457 

the window length issue, e.g. using adaptive covariance estimates (Fu et al., 2014; Zhang et al., 2013) or 458 
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window-free method such as Kalman filtering (Kang et al., 2011) or instantaneous phase synchronization 459 

(Glerean et al., 2012).   460 

 461 

5. Conclusion 462 

In the current study, we proposed intersubject correlation analysis on dynamic connectivity.  The results 463 

revealed widespread brain regions that showed consistent intersubject correlations of dynamic 464 

connectivity.  The consistent correlations support the functional significance of dynamic connectivity 465 

during natural vision.  The method may provide a complementary approach to understand the dynamic 466 

nature of brain functional integrations.  467 

 468 
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Table 1 Clusters with differential intersubject correlations of dynamic connectivity among the medial 581 

visual, lateral visual, and supramarginal gyrus seeds.  All clusters were thresholded at p < 0.001, and 582 

cluster thresholded at p < 0.0167 (0.05 / 3) after family-wise error (FWE) correction using nonparametric 583 

method. 584 

cluster FWE Voxel 

MNI Coordinates 

Peak t Label x y z 

Medial visual > (lateral visual + supramarginal) 
< 0.001 514 -12 -100 -4 7.85 Occipital pole 
< 0.001 372 24 -88 -4 6.80 Right inferior occipital gyrus 

0.001 106 -51 11 23 5.87 Left precentral gyrus 

Lateral visual  > (Medial visual + supramarginal) 
0.016 78 48 -70 8 7.03 Right inferior occipital gyrus 

0.013 86 15 -79 -4 5.64 Lingual gyrus 

Supramarginal > (medial visual + lateral visual) 
< 0.001 1168 3 -40 44 9.12 Precuneus 
0.002 237 -12 50 14 7.41 Medial superior frontal gyrus 
0.006 122 -30 -4 44 6.90 Left middle frontal gyrus 

0.003 175 18 50 44 6.44 Right middle frontal gyrus 
 585 

MNI, Montreal Neurological Institute 586 
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