1 Human iPSC modeling elucidates mutation-specific responses to gene therapy in a genotypically

2 diverse dominant maculopathy

- 4 Divya Sinha^{1,2}*, Benjamin Steyer^{1,3}*, Pawan K. Shahi^{1,4}, Katherine Mueller³, Rasa Valiauga², Kimberly
- 5 L. Edwards², Cole Bacig², Stephanie S. Steltzer³, Sandhya Srinivasan³, Amr Abdeen³, Evan Cory³,
- 6 Viswesh Periyasamy³, Alireza Fotuhi Siahpirani³, Sushmita Roy^{3,5}, Bikash R. Pattnaik^{1,4,6}**, Krishanu
- 7 Saha^{1,3,7}**, David M. Gamm^{1,2,6}** \wedge
- ⁸ ¹McPherson Eye Research Institute, University of Wisconsin-Madison, Madison, WI, USA
- 9 ²Waisman Center, University of Wisconsin-Madison, Madison, WI, USA
- ¹⁰ ³Wisconsin Institute for Discovery, University of Wisconsin-Madison, Madison, WI, USA
- ⁴Department of Pediatrics, University of Wisconsin-Madison, Madison, WI, USA
- ⁵Department of Biostatistics, University of Wisconsin-Madison, Madison, WI, USA
- ⁶ Department of Ophthalmology and Visual Sciences, University of Wisconsin-Madison, Madison, WI,
- 14 USA
- ¹⁵ ⁷Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI, USA
- 16 * These authors contributed equally to the work
- 17 ****Co-Correspondence:** D.M.G. (dgamm@wisc.edu), K.S. (ksaha@wisc.edu), and B. R. P.
- 18 (pattnaik@wisc.edu)
- 19 ^ Lead contact: D.M.G.
- 20 Subject Terms: human pluripotent stem cells, gene therapy, somatic cell genome editing CRISPR-Cas9,
- 21 gene augmentation, autosomal dominant disease, macular degeneration, orphan disease, channelopathy
- 22
- 23

24 SUMMARY

25	Dominantly inherited disorders are not typically considered therapeutic candidates for gene
26	augmentation (GA). We tested whether GA or genome editing (GE) could serve as a solo therapy
27	for autosomal dominant Best disease (adBD), a macular dystrophy linked to over 100 mutations in
28	the <i>BEST1</i> gene, which encodes a homo-pentameric calcium-activated chloride channel (CaCC) in
29	the retinal pigment epithelium (RPE). Since no suitable animal models of adBD exist, we generated
30	RPE from patient-derived induced pluripotent stem cells (iPSC-RPE) and found that GA restored
31	CaCC activity and improved rhodopsin degradation in a subset of adBD lines. iPSC-RPE
32	harboring adBD mutations in calcium clasp or chloride binding domains of the channel, but not in
33	a putative structural region, were responsive to GA. However, reversal of the iPSC-RPE CaCC
34	deficit was demonstrated in every adBD line following targeted CRISPR-Cas9 GE of the mutant
35	allele. Importantly, 95% of GE events resulted in premature stop codons within the mutant allele,
36	and single cell profiling demonstrated no adverse perturbation of RPE transcriptional programs
37	post-editing. These results show that GA is a viable approach for a subset of adBD patients
38	depending on the functional role of the mutated residue. Further, GA non-responders are
39	candidates for targeted GE of the mutant allele. Similar scenarios likely exist for other
40	genotypically diverse dominant diseases, expanding the therapeutic landscape for affected patients.
41	

42 INTRODUCTION

Genotypically heterogeneous dominant diseases pose significant challenges and opportunities for precision medicine (Doudna and Charpentier, 2014). Among gene therapies, GA for recessive disorders is the most developed, having spurred multiple clinical trials (Cukras et al., 2018; Lam et al., 2019; Russell et al., 2017) and FDA approval for one ocular disease (Ledford, 2017). However, GA is generally ruled out as a stand-alone therapy for dominant disorders due to a perceived need to eliminate the deleterious

48 effects of the mutant (MT) allele. While GE holds promise in this regard (Bakondi et al., 2016; Li, 2018; 49 Tsai et al., 2018), testing safety and efficacy for every GE target mutation using MT allele-targeted single 50 guide RNAs (sgRNAs) presents practical and economic barriers. Further, GE cannot correct all mutations 51 (Bakondi et al., 2016; Courtney et al., 2016; Pattanayak et al., 2013) and may lead to off-target 52 mutagenesis—particularly within the heterozygous wildtype (WT) allele in dominant diseases—or other 53 adverse events (Cromer et al., 2018). As such, it is prudent to maximize use of GA in cases where it is 54 deemed safe and efficacious and reserve GE strategies for those patients who truly require it. Best disease, a common type of inherited macular degeneration, is a genotypically complex 55 56 disorder transmitted predominantly as adBD, although rare cases of autosomal recessive bestrophinopathy 57 (ARB) are known (Johnson et al., 2017). Both adBD and ARB are caused by missense mutations in the 58 BEST1 gene, which is expressed in the RPE, a monolayer of cells essential for the survival and function 59 of photoreceptors. While canine models of ARB closely mimic the human phenotype (Guziewicz et al., 60 2017), no animal models of adBD exist. To provide a therapeutic testing platform for adBD, we 61 previously developed the first human iPSC-RPE models of the disease, which demonstrated relevant 62 cellular dysfunction; most notably, delayed degradation of phagocytosed photoreceptor outer segment 63 (POS) proteins (Singh et al., 2015; Singh et al., 2013b). Recently, the high-resolution crystal structure of 64 WT BEST1 was elucidated, which revealed it to be a homo-pentameric CaCC (Dickson et al., 2014; Yang 65 et al., 2014) (Figure 1A). Mutation hotspots in BEST1 were found to lie within calcium or chloride ion 66 binding sites, or contribute to the structural organization of the channel, among other roles (Dickson et al., 67 2014). Our two prior adBD iPSC-RPE models harbored mutations in a calcium binding (N296H) or 68 structural (A146K) domain (Singh et al., 2015; Singh et al., 2013b). Therefore, for the present study, we 69 generated iPSCs from a third patient with adBD caused by a chloride binding site mutation (R218C), as 70 well as an ARB patient with compound heterozygous mutations (R141H/A195V) (Figure 1B,C). We also

71	employed two control lines: a WT iPSC line and an isogenic line generated via CRISPR-based gene
72	correction of R218C adBD iPSCs (Steyer et al., 2018).
73	
74	RESULTS
75	BEST1 protein is robustly expressed in WT and adBD iPSC-RPE, but not ARB iPSC-RPE.
76	The six iPSC lines were tested for pluripotency, differentiated to RPE, and characterized (Data
77	S1; Figure S1; Table S1). iPSC-RPE monolayers from all adBD and control lines, but not the ARB line,
78	showed robust expression of BEST1 protein (Figure S1D). The profoundly decreased BEST1 expression
79	in our ARB cultures is consistent with reports using heterologous expression systems that showed low or
80	undetectable levels of R141H or A195V BEST1 (Milenkovic et al., 2018).
81	
82	Virus-mediated BEST1 GA restores CaCC activity and enhances POS degradation in ARB iPSC-
83	RPE.
83 84	RPE. We next sought to confirm that ectopic expression of wildtype human BEST1 (hBEST1) could
84	We next sought to confirm that ectopic expression of wildtype human BEST1 (hBEST1) could
84 85	We next sought to confirm that ectopic expression of wildtype human BEST1 (hBEST1) could ameliorate the disease phenotype of R141H/A195V ARB iPSC-RPE, analogous to GA studies using ARB
84 85 86	We next sought to confirm that ectopic expression of wildtype human BEST1 (hBEST1) could ameliorate the disease phenotype of R141H/A195V ARB iPSC-RPE, analogous to GA studies using ARB canines or other iPSC-RPE model systems for ARB (Guziewicz et al., 2018; Li et al., 2017). For readouts
84 85 86 87	We next sought to confirm that ectopic expression of wildtype human BEST1 (hBEST1) could ameliorate the disease phenotype of R141H/A195V ARB iPSC-RPE, analogous to GA studies using ARB canines or other iPSC-RPE model systems for ARB (Guziewicz et al., 2018; Li et al., 2017). For readouts of efficacy, we performed single-cell patch clamp recordings of calcium-activated chloride current
84 85 86 87 88	We next sought to confirm that ectopic expression of wildtype human BEST1 (hBEST1) could ameliorate the disease phenotype of R141H/A195V ARB iPSC-RPE, analogous to GA studies using ARB canines or other iPSC-RPE model systems for ARB (Guziewicz et al., 2018; Li et al., 2017). For readouts of efficacy, we performed single-cell patch clamp recordings of calcium-activated chloride current density—a measurement of CaCC activity—which was greatly reduced in ARB iPSC-RPE cells relative
84 85 86 87 88 89	We next sought to confirm that ectopic expression of wildtype human BEST1 (hBEST1) could ameliorate the disease phenotype of R141H/A195V ARB iPSC-RPE, analogous to GA studies using ARB canines or other iPSC-RPE model systems for ARB (Guziewicz et al., 2018; Li et al., 2017). For readouts of efficacy, we performed single-cell patch clamp recordings of calcium-activated chloride current density—a measurement of CaCC activity—which was greatly reduced in ARB iPSC-RPE cells relative to WT iPSC-RPE (Figure 1D; Figure S2). As an assay of intact RPE monolayer function, we also
84 85 86 87 88 89 90	We next sought to confirm that ectopic expression of wildtype human BEST1 (hBEST1) could ameliorate the disease phenotype of R141H/A195V ARB iPSC-RPE, analogous to GA studies using ARB canines or other iPSC-RPE model systems for ARB (Guziewicz et al., 2018; Li et al., 2017). For readouts of efficacy, we performed single-cell patch clamp recordings of calcium-activated chloride current density—a measurement of CaCC activity—which was greatly reduced in ARB iPSC-RPE cells relative to WT iPSC-RPE (Figure 1D ; Figure S2). As an assay of intact RPE monolayer function, we also monitored degradation of rhodopsin following POS feeding (Figure 2).

94	delivery in vivo, LV has also been used in human retinal gene therapy trials (Waugh et al., 2018)
95	(ClinicalTrials.gov Identifiers: NCT01367444, NCT01736592) and efficiently transduces cultured human
96	RPE (Pawan K. Shahi, 2019; Singh et al., 2013b). GFP expression was observed in ARB iPSC-RPE cells
97	starting one-week post-transduction (Figure S3A) and immunocytochemical (ICC) analysis confirmed
98	enhanced expression of BEST1 (Figure S3B). By \geq 4 weeks post-LV transduction, CaCC current density
99	in ARB iPSC-RPE increased significantly, reaching levels comparable to WT iPSC-RPE (Figure 2D,I,J;
100	Extended Figure 3C). Furthermore, transduced monolayers of ARB iPSC-RPE demonstrated enhanced
101	degradation of rhodopsin following POS feeding (Figure 2E). These findings, together with those
102	reported by Guziewicz et al. (Guziewicz et al., 2018) and Li et al. (Li et al., 2017), support virus-mediated
103	hBEST1 GA as a treatment for ARB.
104	
105	BEST1 GA also restores CaCC activity and enhances POS degradation in iPSC-RPE derived from
106	some—but not all—adBD lines.
	<pre>some—but not all—adBD lines. Although not as intuitive, we also suspected that GA might be a viable solo therapeutic strategy</pre>
106	
106 107	Although not as intuitive, we also suspected that GA might be a viable solo therapeutic strategy
106 107 108	Although not as intuitive, we also suspected that GA might be a viable solo therapeutic strategy for a subset of adBD-causing mutations. Based on the eukaryotic BEST1 crystal structure, we
106 107 108 109	Although not as intuitive, we also suspected that GA might be a viable solo therapeutic strategy for a subset of adBD-causing mutations. Based on the eukaryotic BEST1 crystal structure, we hypothesized that mutations affecting chloride or calcium ion binding sites would not affect gross
106 107 108 109 110	Although not as intuitive, we also suspected that GA might be a viable solo therapeutic strategy for a subset of adBD-causing mutations. Based on the eukaryotic BEST1 crystal structure, we hypothesized that mutations affecting chloride or calcium ion binding sites would not affect gross structure of the channel, but rather reduce its regulatory response and/or ion conductance capacity
106 107 108 109 110 111	Although not as intuitive, we also suspected that GA might be a viable solo therapeutic strategy for a subset of adBD-causing mutations. Based on the eukaryotic BEST1 crystal structure, we hypothesized that mutations affecting chloride or calcium ion binding sites would not affect gross structure of the channel, but rather reduce its regulatory response and/or ion conductance capacity proportional to the ratio of WT versus MT monomers. If so, we would expect increased CaCC activity
106 107 108 109 110 111 112	Although not as intuitive, we also suspected that GA might be a viable solo therapeutic strategy for a subset of adBD-causing mutations. Based on the eukaryotic BEST1 crystal structure, we hypothesized that mutations affecting chloride or calcium ion binding sites would not affect gross structure of the channel, but rather reduce its regulatory response and/or ion conductance capacity proportional to the ratio of WT versus MT monomers. If so, we would expect increased CaCC activity simply by shifting this ratio toward incorporation of more WT monomers through GA (Figure 2F).
 106 107 108 109 110 111 112 113 	Although not as intuitive, we also suspected that GA might be a viable solo therapeutic strategy for a subset of adBD-causing mutations. Based on the eukaryotic BEST1 crystal structure, we hypothesized that mutations affecting chloride or calcium ion binding sites would not affect gross structure of the channel, but rather reduce its regulatory response and/or ion conductance capacity proportional to the ratio of WT versus MT monomers. If so, we would expect increased CaCC activity simply by shifting this ratio toward incorporation of more WT monomers through GA (Figure 2F). Similar to ARB iPSC-RPE, CaCC activity in iPSC-RPE from all three adBD lines was diminished
 106 107 108 109 110 111 112 113 114 	Although not as intuitive, we also suspected that GA might be a viable solo therapeutic strategy for a subset of adBD-causing mutations. Based on the eukaryotic BEST1 crystal structure, we hypothesized that mutations affecting chloride or calcium ion binding sites would not affect gross structure of the channel, but rather reduce its regulatory response and/or ion conductance capacity proportional to the ratio of WT versus MT monomers. If so, we would expect increased CaCC activity simply by shifting this ratio toward incorporation of more WT monomers through GA (Figure 2F). Similar to ARB iPSC-RPE, CaCC activity in iPSC-RPE from all three adBD lines was diminished compared to control (Figure 2G (<i>left</i>); Figure S2C,E,F). Single-cell patch clamp experiments on the

117	of the mutation. The hVMD2-hBEST1-T2A-GFP LV construct was then used to transduce iPSC-RPE
118	from all three adBD patients (Figure S3D). At \geq 4 weeks post-transduction, CaCC activity was restored in
119	iPSC-RPE containing mutations in a chloride (R218C) or calcium (N296H) binding site, whereas iPSC-
120	RPE harboring the A146K mutation, which resides in a structural domain of the channel, did not show
121	restoration of CaCC activity (Figure 2G,I,J; Figure S3E-G). Consistent with these single-cell
122	electrophysiological findings, GA improved rhodopsin degradation in R218C and N296H iPSC-RPE, but
123	not in A146K iPSC-RPE (Figure 2H).
124	
125	GE specifically disrupts the MT allele in adBD iPSCs and iPSC-RPE with high efficiency and
126	negligible off-target editing.
127	To determine whether A146K iPSC-RPE would respond to an alternative therapeutic approach,
128	we tested GE as a means to eliminate expression of the MT BEST1 allele (Figure 3A). GE with CRISPR-
129	Cas9 creates targeted double strand breaks in genomic DNA that are primarily repaired by endogenous
130	non-homologous end joining (NHEJ) (Cox et al., 2015), leading to insertion and deletion mutations
131	(indels). These indels can cause transcriptional frameshifts that lead to premature termination codons,
132	activation of intrinsic nonsense-mediated decay (NMD) pathways, and degradation of transcription
133	products (Popp and Maquat, 2016). Since we previously demonstrated successful targeting of the R218C
134	MT allele using sgRNAs (Steyer et al., 2018), sequences targeting the R218 locus in either the MT or the
135	WT allele were cloned into a LV plasmid that encoded both the sgRNA and a human codon optimized
136	Streptococcus pyogenes Cas9 (spCas9)-T2A-reporter transcript (Figure 3B,C).
137	Using these GE constructs, we first transduced both undifferentiated R218C adBD iPSCs and
138	gene-corrected, isogenic control, R218C>WT iPSCs. In R218C>WT iPSCs, we observed a dose-

139 dependent increase in percent edited alleles after GE treatment with LV encoding WT sgRNA, but no

140	editing after treating with LV encoding MT (R218C) targeted sgRNA (Figure 3D left). However, in
141	R218C iPSCs we observed editing after GE with both WT sgRNA and R218C sgRNA (Figure 3D right).
142	Similarly, GE of iPSC-RPE with R218C sgRNA revealed a dose dependent increase in editing in R218C
143	iPSC-RPE with minimal editing in R218C>WT iPSC-RPE (Figure 3E). Together, these results indicate
144	high specificity of the R218C sgRNA for the MT allele over the heterozygous WT allele. Observation of
145	minimal editing (1.6% max, ratio of MT:WT editing = 19.5; Supplemental Data File A) at the non-
146	targeted WT allele in iPSC-RPE, but not in undifferentiated iPSCs, may reflect open chromatin around
147	the actively transcribed BEST1 locus in iPSC-RPE (Kuscu et al., 2014). Notably, an average of 95% of
148	the edited alleles in iPSC-RPE resulted in a frameshift mutation (Figure 3F,G bottom; Supplemental
149	Data File A), which is higher than the 70% frameshift rate observed in iPSCs (Figure 3F,G top) or
150	predicted using a recent machine learning algorithm (Shen et al., 2018) (Supplemental Data File B).
151	Next, we performed an off-target analysis after GE of R218C iPSCs (Figure S4) or R218C iPSC-
152	RPE (Figure 3H) with the R218C sgRNA. Analysis of the top nine off-target sites revealed measurable
153	off-target editing only at the second-ranked locus, which maps to an unannotated region on chromosome
154	7, 140 kb from any known transcription product. Conversely, we observed overall editing of 24.9% \pm
155	4.5% [SD] at the on-target (BEST1) locus in iPSC-RPE (Figure 3H). Due to high specificity of the
156	R218C sgRNA for the R218C allele, this equates to editing in approximately 50% of the MT alleles.
157	To evaluate for NMD, we quantified WT and MT (R218C + edited) sequencing reads from both
158	DNA and RNA isolated from iPSC-RPE cultures after GE (Figure S5). We observed a significant
159	increase in the ratio of WT to MT RNA in GE versus control groups; however, no such increase was
160	observed in the ratio of WT to MT DNA allele frequency between these groups (Figure 3I). Together,
161	these data indicate significant degradation of MT transcripts following GE, presumably through NMD.
162	

163 MT allele-specific GE restores CaCC activity in iPSC-RPE derived from all tested adBD lines with 164 no demonstrable change in the RPE transcriptional signature.

- 165 We next assessed phenotypic rescue in control versus GE iPSC-RPE using LV vectors expressing 166 sgRNAs targeting specific alleles. Single-cell patch clamp experiments revealed restoration of CaCC 167 activity in R218C, N296H, and A146K iPSC-RPE cells (Figure 3J-L; Figure S6). Finally, to search for 168 off-target or other untoward transcriptional effects from GE, we performed single-cell RNA sequencing 169 (scRNA-seq) for 12,061 individual iPSC-RPE cells treated with GE. iPSC-RPE (R218C, N296H, A146K, 170 or gene-corrected R218C>WT) were edited with vectors encoding *spCas9-T2A-GFP* and either a MT 171 allele-targeted sgRNA or a control sgRNA targeting the AAVS1 safe harbor locus (Sadelain et al., 2011), 172 to generate a total of eight separate samples (Figure S7). 173 Evaluation of t-Distributed Stochastic Neighbor Embedding (t-SNE) clustering of cells across all 174 eight samples indicated that, by virtue of using the hVMD2 promoter, spCas9-T2A-GFP transcript levels 175 closely correspond with BEST1 transcript levels (Figure 3M). Visual comparison of t-SNE clustering of 176 each individual sample demonstrated that transcriptional signatures are grossly similar between iPSC-177 RPE lines whether treated with MT allele-targeted (+GE) or control (AAVS1) sgRNA (Figure 3N top). 178 This observation was supported quantitatively by non-negative matrix factorization (NMF). NMF analysis 179 demonstrated that greater transcriptome variation exists between iPSC-RPE from different lines than 180 between iPSC-RPE from the same line treated with MT allele-targeted or control sgRNA (Figure S7B). 181 Additional analysis of global gene expression (Figure 3N bottom) and of a focused set of genes 182 related to negative or off-target effects (including cell cycle regulation, apoptosis, DNA damage response, 183 or innate immune response; Figure S7C) did not reveal significant upregulation of those gene sets in MT 184 allele-targeted (+GE) versus control sgRNA-treated samples.
- 185

186 **DISCUSSION**

187 The observation that adBD mutations associated with ion binding may be amenable to GA greatly 188 expands the patient population that might benefit from this therapeutic approach. However, the stark 189 difference in functional response to GA among our adBD iPSC-RPE models underscores the need to vet 190 patients for GA candidacy carefully. The mechanism underlying selective GA responsivity in adBD is not 191 due to traditional allelic haploinsufficiency, in which half the normal amount of WT protein and no MT 192 protein is produced, resulting in fewer (but fully WT) BEST1 channels. Such a situation exists in parents 193 of ARB patients, who have no demonstrable disease phenotype. Rather, adBD MT monomers are 194 incorporated alongside WT monomers in all (or nearly all) BEST1 channels, resulting in ion binding site 195 insufficiency and channel impermeability, which is surmountable by WT BESTI GA. In contrast, we 196 hypothesize that BEST1 mutations like A146K—which converts a nonpolar amino acid to a polar amino 197 acid in a structural region of the protein—has more pervasive functional consequences, resulting in 198 resistance to GA even at low MT:WT monomer ratios. Whether such mutations eventually can be 199 overcome by GA via increasing the expression levels of the WT transgene is yet to be determined. 200 There is precedence for using patient-specific iPSCs as preclinical efficacy models for gene 201 therapy (Vasireddy et al., 2013). Our work extends this capability by providing a framework for 202 preclinical testing of mutation-specific responses in a genotypically heterogenous disease. It remains to be 203 determined whether separate adBD iPSC-RPE models will be required to assess suitability of GA versus 204 GE for every mutation, or if a few models can sufficiently represent larger categories of mutations (e.g., 205 ion binding sites or structural regions).

For adBD mutations like A146K that are not amenable to GA, we showed that targeted GE holds promise as a future therapy. Importantly, we observed high efficiency out-of-frame editing in iPSC-RPE compared to undifferentiated iPSCs. This result is consistent with recent reports of variable mutation bias

209 across different cell types (Shen et al., 2018), and points to the importance of evaluating GE using specific 210 cell type(s) targeted by disease, and not surrogate cell types. In addition, editing at BEST1 in iPSC-RPE 211 did not provoke an increase in expression of genes associated with cell cycle regulation, apoptosis, DNA 212 damage response, or innate immune response in comparison to editing at a well characterized safe-harbor 213 locus (Sadelain et al., 2011) with a previously described sgRNA (Mali et al., 2013). This is in contrast to 214 studies in other cell types that have reported potential for Cas9-mediated GE to provoke undesirable 215 effects, including innate immune response (Wienert et al., 2018) and apoptosis, among other concerns 216 (Cromer et al., 2018).

217 Our results provide a blueprint to guide gene therapy choice in the era of GA and GE. With its 218 inherently larger target populations and established track record in patients, it is practical to utilize GA 219 when possible, reserving GE for mutations that require allele repair or knockout or are otherwise 220 untreatable by GA. It is noteworthy that the two adBD lines that demonstrated restoration of CaCC 221 activity with GA or GE did so with equal efficacy, underscoring the suitability of Best disease for either 222 approach. Other desirable characteristics of Best disease as a clinical candidate for GA or GE include 1) a 223 wide time window for gene therapy intervention, 2) accessibility of RPE using standard surgical 224 techniques, 3) a small (5.5 mm diameter) treatment area, 4) availability of noninvasive retinal imaging 225 and functional assessment tools, and 5) growing patient safety data from other RPE-based gene therapy 226 trials (Cukras et al., 2018; Lam et al., 2019; Russell et al., 2017). As such, Best disease is well-positioned 227 to become the first genotypically heterogeneous disorder with dominant and recessive inheritance patterns 228 to have a full menu of therapeutics for all affected individuals. Furthermore, implications of this work 229 likely extend beyond the eye and Best disease to other intractable monogenic conditions caused by 230 mutations in multimeric ion channels, including congenital myasthenic syndromes and some forms of 231 epilepsy (George, 2004; Schaaf, 2014; Villa and Combi, 2016).

232

233 ACKNOWLEDGEMENTS

234 The authors thank Alfred Lewin (U. Florida) for the hVMD2-hBEST1-T2A-GFP plasmid construct; the 235 Cellular Imaging and Analysis core at the University of Wisconsin-Madison Waisman Center; Budd 236 Tucker and Ed Stone (U. Iowa) for providing the ARB iPSC line, corresponding Scorecard data, and ARB 237 patient fundus images; and Andrew Thliveris for helpful discussions. This work was supported by NIH 238 R01EY024588, Foundation Fighting Blindness, Research to Prevent Blindness, Retina Research 239 Foundation Emmett Humble Chair, and McPherson Eye Research Institute Sandra Lemke Trout Chair in 240 Eye Research (to D.M.G.); NSF CBET-1350178 and CBET-1645123, NIH R35GM119644, John Merck 241 Fund Translational Research Program, Brain & Behavior Research Foundation, Burroughs Wellcome 242 Fund (to K.S.); NIH R01EY024995 and Retina Research Foundation M.D. Mathews Professorship (to B.R.P.); NIH T32HG002760 and F30EY027699, VitreoRetinal Surgery Foundation (to B.S.); DGE-243 244 1747503 (to K.M.). This study was supported in part by a core grant to the Waisman Center (NICHHD 245 U54 HD090256). We thank members of the Gamm and Saha labs for comments on the manuscript, 246 plasmid depositors to Addgene, the University of Wisconsin-Madison Biotechnology Center for DNA 247 sequencing, and the University of Wisconsin-Madison Skin Disease Research Center for assistance with 248 virus preparation.

249

250 AUTHOR CONTRIBUTIONS

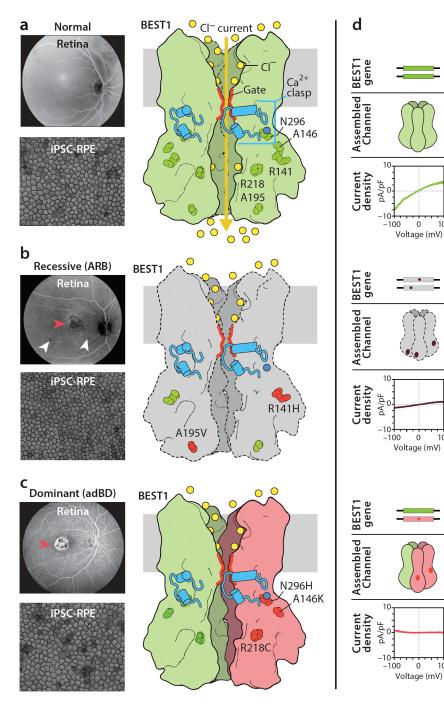
D.S. and D.M.G. designed the GA experiments. B.S., D.S., D.M.G. and K.S. designed the GE

252 experiments. P.K.S. and B.R.P. performed and analyzed the electrophysiology experiments. D.S. and B.S.

253 performed all other experiments with contributions from R.V., K.L.E., C.B, S.S.S., A.A., and E.C. K.M.,

254 S.S., V.P., A.F.S., and S.R. were primarily responsible for the scRNA-seq analysis. D.S., B.S., K.S., and

- 255 D.M.G. wrote the manuscript and analyzed data with input from all authors. D.M.G., K.S., and B.R.P.
- supervised research.


257

258 COMPETING INTERESTS STATEMENT

259 The authors declare no competing interests.

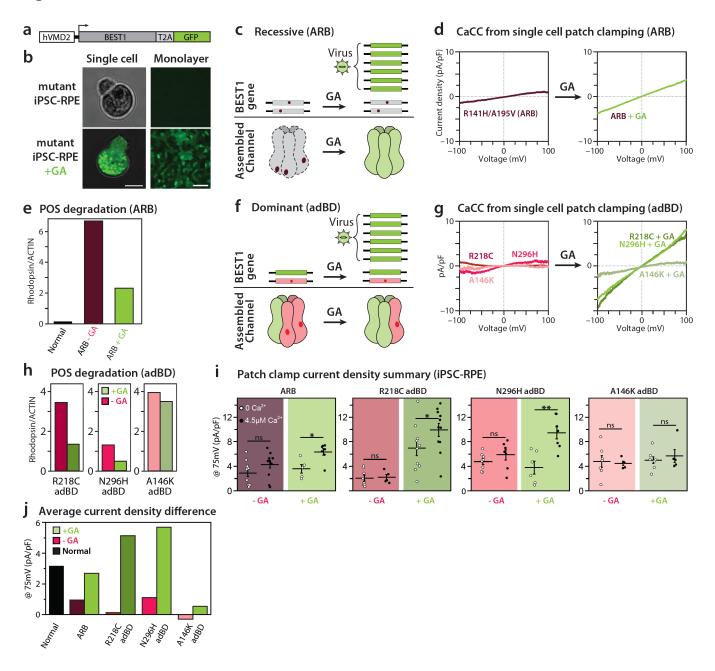
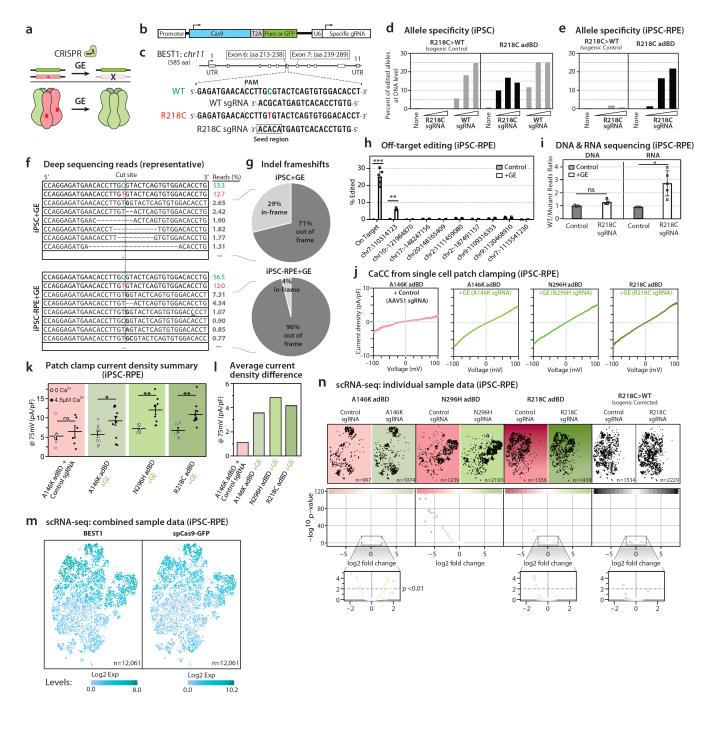

FIGURES AND FIGURE LEGENDS

Figure 1

264	Figure 1 BEST1 mutations reduce CaCC current in Best disease iPSC-RPE. (A) Images (in
265	grayscale) of a normal fundus (top) and control (WT) iPSC-RPE (bottom). A fully functional homo-
266	pentameric BEST1 channel is formed by expression and assembly of WT alleles and subunits (green),
267	respectively, allowing movement of chloride ions (yellow circles) upon binding of calcium ions (blue
268	circle) (based on eukaryotic BEST1 crystal structure by Dickson et al. (Dickson et al., 2014)). (B) Top,
269	Fundus image of an ARB patient with R141H/A195V compound heterozygous mutations in BEST1
270	showing a vitelliform lesion in the macula (red arrowhead) as well as small lesions outside the macula
271	(white arrowheads), which is characteristic of ARB. Bottom, iPSC-RPE derived from the same ARB
272	patient. Pentameric channel assembly for these mutations is expected to be significantly reduced due to
273	protein degradation (denoted by gray subunits with dashed outlines). (C) Top, Fundus image showing a
274	vitelliform macular lesion (red arrowhead) in an adBD patient with a heterozygous R218C mutation in
275	BEST1. Bottom, iPSC-RPE derived from the same adBD patient. Both adBD mutant (MT) (red) and WT
276	(green) monomers are assembled in the pentameric channel. (D) CaCC current density-voltage plots from
277	WT (top), R141H/A195V ARB (middle), or R218C adBD (bottom) iPSC-RPE cells, as determined by
278	calculating the difference in average chloride currents in the presence or absence of calcium (Figure S2).
279	For +calcium: n = 6 cells for WT, 12 cells for R141H/A195V ARB, and 5 cells for R218C adBD; for no
280	calcium: $n = 8$ cells for WT, 12 cells for R141H/A195V ARB, and 8 cells for R218C adBD (data
281	combined from at least two replicates). The number of cells from each replicate is listed in Table S8. See
282	also Figures S1-S3.

283 Figure 2

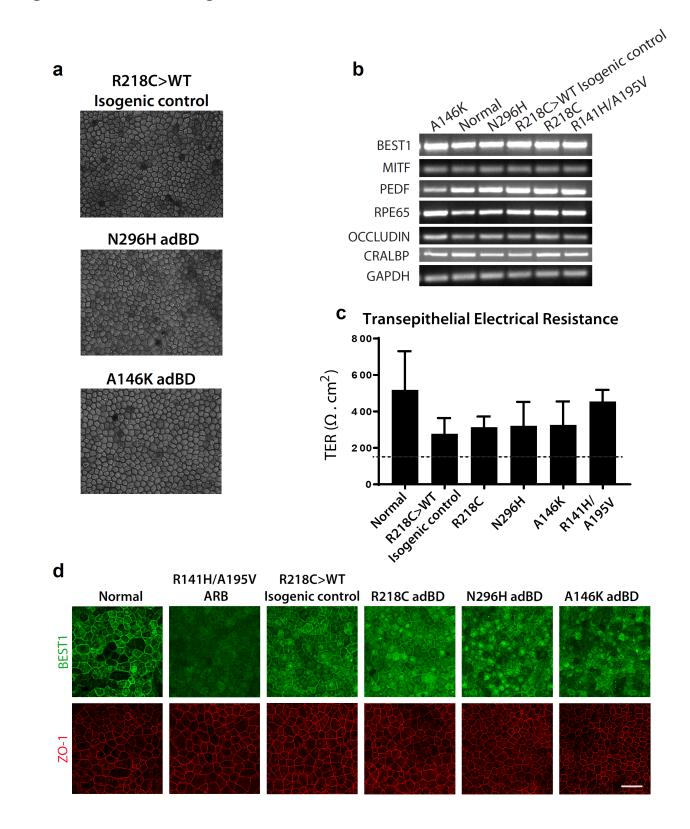


284

Figure 2 | Mutation-dependent rescue of Best disease phenotypes by gene augmentation (GA). (A) 286 287 Construct used for BEST1 GA. (B) Presence or absence of GFP fluorescence in dissociated iPSC-RPE 288 cells (*left*) or iPSC-RPE monolayers (*right*) before (*top*) or after (*bottom*) GA. Scale bar = 10 μ m (*left*); 50 289 um (right). (C) Rationale for GA in ARB: LV-mediated expression of WT hBEST1 (green subunits) will 290 compensate for the lack of endogenous BEST1 expression (grav subunits) and increase formation of fully 291 functional homo-pentameric BEST1 channels. (D) CaCC current density-voltage plots before (left) and 292 after (right) GA of ARB iPSC-RPE. CaCC current density-voltage plot of ARB (-GA) is the same as 293 shown in Figure 1d, and is included for comparison. For the ARB+GA condition, n = 7 cells for +calcium 294 and 5 cells for no calcium (data combined from two replicates). The number of cells from each replicate is 295 listed in Table S8. (E) Rhodopsin levels 120 hr after POS feeding in WT, ARB, and ARB+GA iPSC-296 RPE. The Western blot used for quantifying rhodopsin levels is shown in Figure 2. (F) Rationale for 297 using GA in adBD: LV-meditated expression of WT hBEST1 (green subunits) will increase the ratio of 298 WT:MT (green:red subunits) BEST1 monomers, thus improving channel function. (G) CaCC current 299 density-voltage plots before (*left*) or after (*right*) GA of adBD iPSC-RPE. Before GA (*left* panel): for 300 +calcium: n = 7 cells for N296H and 5 cells for A146K adBD; for no calcium: n = 8 cells for N296H and 301 7 cells for A146K (data combined from two replicates). The CaCC current density-voltage plot for R218C 302 adBD (-GA) is the same as shown in Figure 1d, and is included for comparison. After GA (*right* panel): 303 for +calcium: n = 11 cells for R218C, 7 cells for N296H, and 5 cells for A146K; for no calcium: n = 9304 cells for R218C, 6 cells for N296H, and 8 cells for A146K (data combined from two replicates). The 305 number of cells from each replicate is listed in **Table S8**. (H) Rhodopsin levels 48 hours after feeding 306 POS to adBD iPSC-RPE with or without GA. Western blots used for quantifying rhodopsin levels are 307 shown in **Data S2**. (I) CaCC conductance for individual iPSC-RPE cells, and (J) mean CaCC

- 308 conductance at 75 mV before or after GA. The number of cells is the same as for panels d and g. Error
- bars in 2i represent mean \pm SEM; ns = p ≥ 0.05 , * for p < 0.05, ** for p < 0.01. See also Figures S1-S3.

310 Figure 3

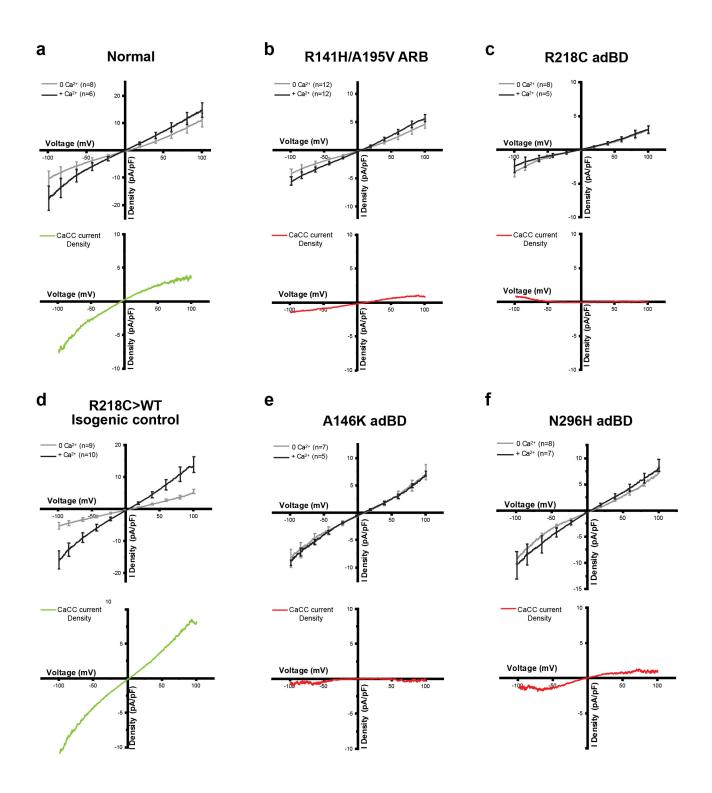

312

313 Figure 3 | Gene editing (GE) rescues CaCC activity in all adBD iPSC-RPE. (A) Rationale for using 314 GE in adBD: introducing out-of-frame indels specifically in the MT BEST1 allele via CRISPR/Cas9 315 targeting can silence its expression and restore normal WT BEST1 channel function. (B) LV construct 316 used to express spCas9 and MT allele-targeted sgRNAs. (C) Diagram showing the heterozygous base pair 317 substitution in R218C adBD (indicated in *red* and *green*) and design of the R218C and WT sgRNAs. (D) 318 Percent of edited alleles in R218C>WT isogenic control iPSCs and R218C adBD iPSCs with increasing 319 concentrations of WT sgRNA LV (single replicate at 0, 10, 100, or 500 µl dose). (E) Percent of edited 320 alleles after treatment of R218C>WT isogenic control and R218C adBD iPSC-RPE with R218C sgRNA 321 LV (single replicate at 0, 5, 50, or 150 µl dose). (F) Deep sequencing reads after treatment of R218C 322 iPSC (top) or R218C iPSC-RPE (bottom) with R218C sgRNA LV and (G) corresponding calculated indel 323 frameshift frequency for R218C iPSCs (top) and R218C iPSC-RPE (bottom). For panels f and g, data 324 from a single representative example is shown; for additional replicates see **Supplemental Data File A**. 325 (H) Frequency of edited alleles at on-target and top nine ranked off-target loci in iPSC-RPE treated with 326 R218C sgRNA LV (n=3 for control and n=5 for +GE, except n=3 at *chr* 7 locus). (I) Ratio of WT to MT 327 allele DNA (left) and mRNA transcript reads (right) from R218C iPSC-RPE cultures treated with R218C 328 sgRNA LV (n=5) or control LV (n=3 for AAVS1 sgRNA and no sgRNA LV). (J) CaCC current density-329 voltage plots from single-cell patch clamp experiments of iPSC-RPE treated with MT allele-targeted 330 sgRNA LV. For +calcium: n = 6 cells for AAVS1, n = 11 cells for A146K, n = 10 cells for R218C, n = 9331 cells for N296H; for no calcium: n = 9 cells for AAVS1, n = 10 cells for A146K, n = 7 cells for R218C, n 332 = 9 cells for N296H (data combined from two replicates). The number of cells from each replicate is 333 listed in Table S8. (K) CaCC conductance for individual iPSC-RPE cells, and (L) mean CaCC 334 conductance at 75 mV. The number of cells is the same as for panel j. (M) t-SNE plot of single iPSC-RPE 335 cells across all 8 samples with relative expression of BEST1 (left) and spCas9-T2A-GFP (right) depicted

- 336 via increasing shades of *blue*. Total number of cells analyzed (n) is shown. (N) *Top*, t-SNE plot of single
- 337 cells (*black* dots) from each treated sample. Number of cells analyzed (n) for each sample is shown.
- 338 Bottom, Volcano plots of transcriptome-wide differences in expression of individual genes (red or green
- dots) between iPSC-RPE of the same genotype treated with MT allele-targeted sgRNA (green) versus
- 340 control (AAVS1, red) sgRNA LV. p <0.01 was the threshold for determining significant versus non-
- 341 significant changes in gene expression. Error bars in 3i represent mean \pm SD; ns = p ≥ 0.05 , * for p < 0.05,

342 ** for p <0.01, *** for p <0.001. Error bars in 3k represent mean \pm SEM. See also Figures S4-S7.

343 Figure S1. Related to Figures 1-2.

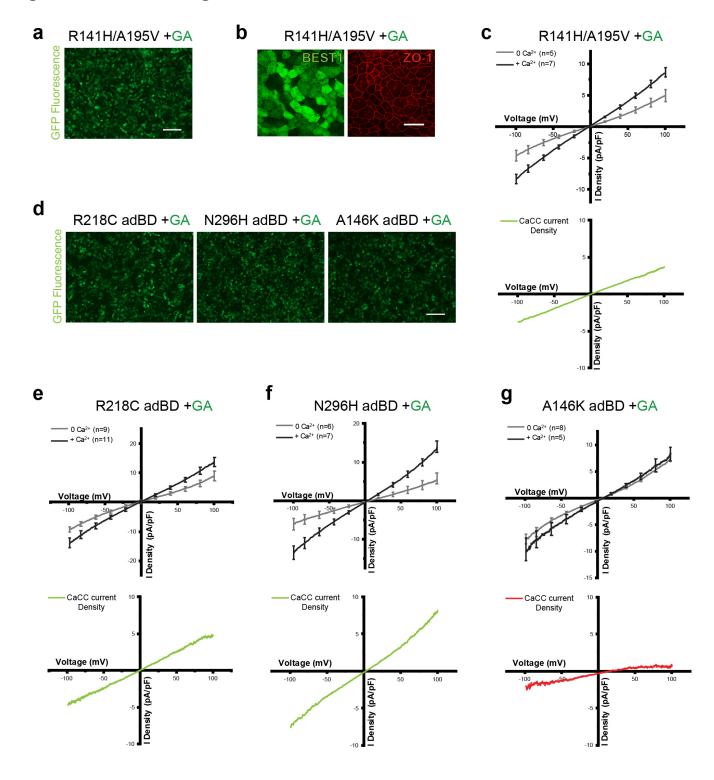


344

346 Figure S1 | Characterization of iPSC-RPE. (A) RPE differentiated from R218C>WT control iPSCs

- 347 (isogenic to the R218C adBD line) or patient-specific iPSCs harboring adBD mutations. (B) Gene
- 348 expression analysis (RT-PCR) of selected RPE-specific markers in all six lines. (C) Net transepithelial
- electrical resistance (TER) (Ω · cm²) for iPSC-RPE from all six lines. The dashed line demarcates the
- 350 minimum expected TER (150 Ω · cm²). n=12 for each line (4 transwells from 3 replicates each), error bars
- represent mean \pm SD. (D) BEST1 and ZO-1 expression in iPSC-RPE. BEST1 expression level in
- 352 R141H/A195V ARB iPSC-RPE is reduced compared to other lines. BEST1 was visualized in the far-red
- 353 channel but was pseudo-colored green. Scale bar = 50μ M and applies to all images in panel d.

354 Figure S2. Related to Figures 1-2.



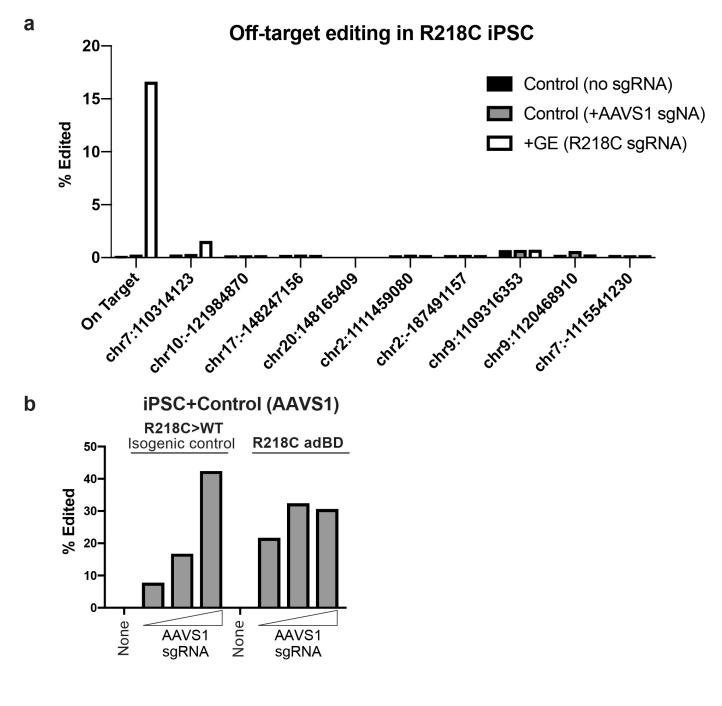
356

357 Figure S2 | Measurement of CaCC activity in WT, ARB, adBD, and gene-corrected iPSC-RPE. (A-

- 358 C) Chloride current traces, measured in the presence (*black*) or absence (*gray*) of calcium over a voltage
- ramp (-100 to +100 mV), that were used to generate CaCC current density plots in Figure 1d (CaCC
- 360 current density traces are also shown here for each panel). (**D-F**) Chloride current traces measured in the
- 361 presence (*black*) or absence (*gray*) of calcium (*top*) and respective calculated CaCC current density traces
- 362 (*bottom*) for R218C>WT isogenic control, A146K adBD, and N296H adBD iPSC-RPE. 4.5 µM calcium
- 363 was used for +calcium conditions. *Green* traces denote normal, while *red* traces denote reduced CaCC
- 364 current density. The number (n) of individual cells patch clamped in the presence or absence of calcium in
- 365 order to calculate CaCC current densities is shown in the top left corner of each graph. Data were
- 366 obtained from at least two replicates, and the n for each replicate is listed in **Table S8**.

367 Figure S3. Related to Figures 1-2.

368 369

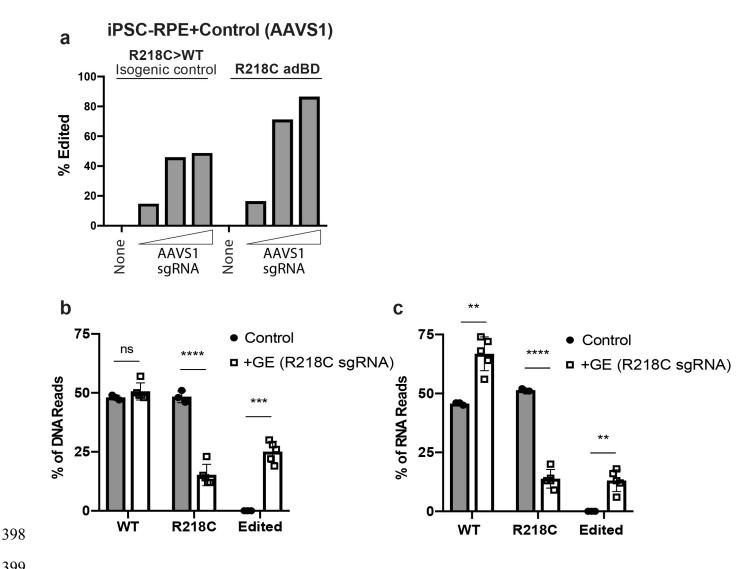

370 Figure S3 | GA restores CaCC function in ARB iPSC-RPE and N296H and R218C adBD iPSC-

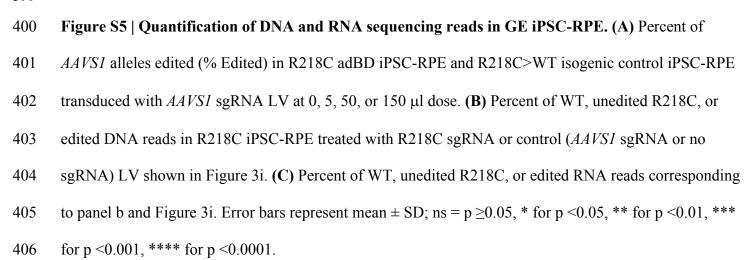
371 **RPE, but not in A146K adBD iPSC-RPE. (A)** GFP fluorescence in R141H/A195V ARB iPSC-RPE

- transduced with LV expressing hBEST1. Scale bar = $100 \mu m$. (B) ICC analysis of BEST1 and ZO-1
- 373 expression in R141H/A195V iPSC-RPE transduced with LV expressing hBEST1. Increased BEST1
- expression is observed in R141H/A195V +GA cells. Scale bar = $50 \mu m$ (applies to both images). (C) Top,
- 375 Chloride current traces of R141H/A195V iPSC-RPE after GA measured in the presence (black) or
- 376 absence (gray) of calcium. Bottom, Calculated CaCC current density trace for R141H/A195V iPSC-RPE
- after GA (also shown in Figure 2d). (D) GFP fluorescence in adBD iPSC-RPE transduced with LV
- expressing hBEST1. Scale bar = $100 \,\mu m$ (applies to all three images). (E-G) Top, Chloride current traces,
- 379 measured in the presence (*black*) or absence (*gray*) of calcium over a voltage ramp (-100 to +100 mV),
- that were used to obtain CaCC current density plots (bottom; also shown in Figure 2g). 4.5 µM calcium
- 381 was used for +calcium conditions. *Green* traces represent restored CaCC current densities, while *red*
- traces indicate no change. Cells with green fluorescence were used for all patch clamp measurements after
- 383 GA. The number (n) of individual cells patch clamped in the presence or absence of calcium in order to
- 384 calculate CaCC current densities is shown in the top left corner of each graph. Data were obtained from at

385 least two replicates, and the n for each replicate is listed in **Table S8**.

Figure S4, Related to Figure 3.




388

389

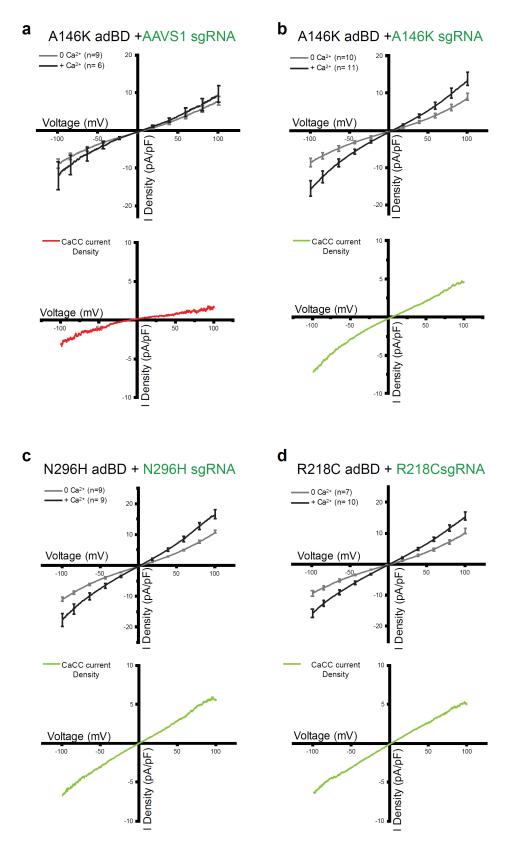
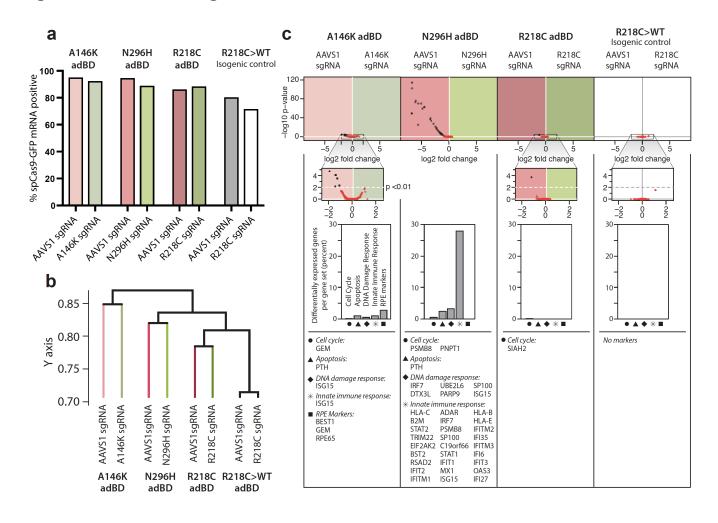

- 390 Figure S4 | Quantification of off-target editing and AAVS1 (control) editing in iPSCs. (A) Percent of
- 391 alleles edited (% Edited) in R218C iPSCs at the on-target and top nine ranked off-target loci for the
- 392 R218C sgRNA LV. Data presented are for a single sequencing replicate (n=1 each) of untreated R218C
- 393 adBD iPSCs (no sgRNA) or R218C adBD iPSCs treated with LV encoding either R218C sgRNA or
- 394 AAVSI sgRNA. (B) Percent of AAVSI alleles edited (% Edited) in R218C iPSCs and R218C>WT
- isogenic control iPSCs transduced with AAVS1 sgRNA LV at 0, 10, 100, or 500 µl dose.

Figure S5, Related to Figure 3. 397



407 Figure S6, Related to Figure 3.

409	Figure S6 GE restores CaCC activity in iPSC-RPE from all adBD lines. Chloride current traces
410	(top), measured in the presence (black) or absence (gray) of calcium over a voltage ramp (-100 to +100 to +100 to $+100$
411	mV), that were used to calculate CaCC current density plots (bottom) after GE of iPSC-RPE from each
412	adBD line. CaCC current density plots are also shown in Figure 3j. iPSC-RPE was edited using sgRNAs
413	targeting A, AAVS1 site in A146K adBD iPSC-RPE, B, A146K mutation in A146K adBD iPSC-RPE, C,
414	N296H mutation in N296H adBD iPSC-RPE, or D , R218C mutation in R218C adBD iPSC-RPE. Cells
415	with GFP fluorescence were used for whole cell patch clamp measurements and 4.5 μ M calcium was used
416	for +calcium conditions. Red traces denote reduced CaCC current density, while green traces denote
417	restored CaCC function. The number (n) of individual cells patch clamped with or without calcium is
418	shown at the top left corner of each graph. Data were obtained from two replicates, and the n for each
419	replicate is listed in Table S8.

421 Figure S7, Related to Figure 3

422

424 Figure S7 | Single-cell RNA-seq (scRNA-seq) analysis of iPSC-RPE after GE. (A) Percent of analyzed 425 cells per sample for which *spCas9-T2A-GFP* transcripts were captured using scRNA-seq. (B) 426 Dendrogram tree depicting relative similarity between samples. Non-negative matrix factorization-based 427 gene cluster comparison across samples indicates that greater transcriptional variability exists between 428 iPSC-RPE lines than between the same iPSC-RPE line treated with LV vectors encoding spCas9, GFP, or 429 sgRNA (AAVS1 sgRNA versus BEST1 MT allele-targeted sgRNA). The dendrogram tree shows the 430 similarity of the transcriptomes from each sample, derived from the average Jaccard coefficient between 431 gene clusters from one sample and those from another sample. The y-axis denotes 1-average Jaccard 432 coefficient and indicates the distance between different samples (tree tips) as well as between groups of 433 samples (internal nodes). (C) Differential gene expression in 5 curated gene sets associated with cell cycle 434 regulation (circles), apoptosis (triangles), DNA damage response (diamonds), innate immune response 435 (asterisks), or RPE-identity (squares) in control (AAVS1) sgRNA versus MT allele-targeted sgRNA 436 treated samples. For one sample pair (N296H iPSC-RPE), genes associated with a potential adverse 437 treatment effect were upregulated in control sgRNA-treated sample compared to the MT allele-targeted 438 sgRNA-treated sample.

440 STAR \star METHODS

441

442 CONTACT FOR REAGENT AND RESOURCE SHARING

443 Further information and requests for resources and reagents should be directed to and will be fulfilled by444 the Lead Contact, David Gamm (dgamm@wisc.edu).

445

446 EXPERIMENTAL MODEL AND SUBJECT DETAILS

447 iPSC lines

A total of 6 iPSC lines, 2 control and 4 patient-specific, were used in this study. In addition to two 448 adBD patient-specific iPSC lines previously used by our group for Best disease modeling (Singh et al., 449 450 2013b), we used three new iPSC lines (for detailed information on lines, including their characterization, 451 please refer to Table S1). Two of the new iPSC lines harbored patient specific mutations: R218C for 452 adBD and R141H/A195V for ARB. The ARB iPSC line was provided by Budd Tucker and Ed Stone 453 (University of Iowa). One isogenic control iPSC line was obtained by CRISPR/Cas9-based gene 454 correction of the patient-specific R218C adBD iPSC line (Stever et al., 2018). All iPSC lines were 455 cultured either on mouse embryonic fibroblasts (MEFs) or on Matrigel. Lines cultured on MEFs were 456 maintained using iPS media (Dulbecco's Modified Eagle's Medium (DMEM)/F12 (1:1), 20% Knockout 457 Serum Replacement (KOSR), 1% MEM non-essential amino acids, 1% L-glutamine, 0.2 mM β-458 mercaptoethanol, 100 ng/ml FGF-2), and iPSCs cultured on Matrigel were cultured with either mTeSR1 459 or StemFlex media. MEFs, FGF-2, and Matrigel were purchased from WiCell (Madison, WI). All other 460 cell culture reagents were purchased from ThermoFisher Scientific. Karyotyping were performed as a 461 quality control. The manuscript does not contain human subject or animal studies, and all work with iPSC

462 lines was carried out in accordance with institutional, national, and international guidelines and approved463 by the Stem Cell Research Oversight Committee at the University of Wisconsin-Madison.

464

465 **METHOD DETAILS**

466 **Differentiation of iPSC lines to RPE**

Differentiation of iPSCs to RPE was performed as previously described (Singh et al., 2013a; 467 468 Singh et al., 2013b). Briefly, iPSCs were enzymatically lifted (1 mg/ml dispase for cells cultured on 469 MEFs; 2 mg/ml dispase or 1 ml ReLeSR for cells cultured on Matrigel) to form aggregates, also referred 470 to as embryoid bodies (EBs). EBs were maintained in suspension culture either in EB media (iPS media 471 without FGF-2) and then switched to neural induction media (NIM) on day 4, or gradually weaned off 472 mTeSR1/StemFlex and transitioned to NIM by day 4. NIM is composed of 500 ml DMEM/F12 (1:1), 1% 473 N2 supplement, 1% MEM non-essential amino acids, 1% L-glutamine, 2 µg/ml heparin, EBs were plated 474 on laminin (Cat# 23017015) coated 6-well plates (Nunc; Thermo Fisher Scientific) on day 7. On day 16, 475 neural rosettes were mechanically lifted, leaving adherent cells behind that were maintained in retinal 476 differentiation media (RDM: DMEM:F12 (3:1), 2% B27 without retinoic acid, 1% antibiotic-antimycotic 477 solution). For the first four media changes, RDM was supplemented with 10 µM SU5402 and 3 µM 478 CHIR99021.

After 60 days of differentiation, pigmented patches of RPE were micro-dissected, dissociated using Trypsin-EDTA (0.25%), and plated on laminin coated surfaces in RDM with 10% FBS and Rho kinase inhibitor (ROCKi; Y-27632). After 2 days, the media was changed to RDM with 2% FBS, and eventually to RDM once the cells were fully confluent. There were no differences observed between RPE differentiated from iPSCs cultured on MEFs and Matrigel. Mutant and wildtype genotypes of iPSC-RPE were verified by Sanger sequencing periodically. Heparin (Cat# H-3149) and SU5402 (Cat# SML0443-

485	25MG) were from Sigma-Aldrich, CHIR99021 (Cat# 4423) was from Tocris Bioscience, and ReLeSR
486	was purchased from STEMCELL Technologies. All other differentiation reagents were purchased from
487	ThermoFisher Scientific.
488	
489	Gene expression analysis
490	Reverse transcriptase-PCR was used to assess RPE-specific gene expression in RPE derived from
491	different iPSC lines as described previously (Singh et al., 2013b). Primers used are listed in Table S2.
492	
493	Generation of lentiviral (LV) vectors
494	LV plasmid with the human VMD2 promoter driving expression of hBEST1-T2A-GFP was
495	provided by Alfred S. Lewin (University of Florida). LentiCRISPR v2 (LCv2) plasmid was purchased
496	from Addgene (Cat# 52961), and molecular cloning was used to insert specific sgRNA sequences (Table
497	S5) as described (Steyer et al., 2018). LV plasmids for GE containing specific sgRNA sequences and the
498	human VMD2 promoter driving expression of spCas9-T2A-GFP (Table S3) were then generated as
499	described hereafter (all primers used are listed in Table S4). To begin, the 'T2A-GFP-WPRE' sequence
500	was amplified from the hVMD2-hBEST1-T2A-GFP plasmid using LCv2-GFP.Gib.F and .R primers and
501	Q5 2X MM (NEB, Cat# M0492L). The '2A-Puro-WPRE' sequence was then removed from the LCv2
502	plasmid via restriction digestion with PmeI (NEB, Cat# R0560S) and BamHI (NEB, Cat# R3136S). The
503	digestion product was resolved on a 0.7% agarose gel and the plasmid backbone was purified using the
504	Monarch gel purification kit (NEB, Cat# T1020S). The 'T2A-GFP-WPRE' sequence was inserted into the
505	digested backbone using the Gibson Assembly kit (SGI, Cat# GA1100) per the manufacturer's
506	instructions. The completed Gibson Assembly reaction was then amplified using chemically competent E.
507	coli (NEB, Cat# C3040H) and Sanger sequenced to confirm insertion of 'T2A-GFP-WPRE' using LCv2-

531	containing LCv2 encoding AAVS1, R218C, or WT sgRNA at a dose of 0, 10, 100, or 500 µl. StemFlex	
532	medium was then added to a total volume of 750 μ l per well. 48 hours after LV treatment, the media wa	
533	replaced with 250 μ l of fresh StemFlex. At 96 hours after LV treatment, total genomic DNA was	
534	harvested and analyzed via sequencing as described under the 'Deep sequencing analysis of DNA and	
535	RNA read frequency' section.	
536	For iPSC-RPE transduction, monolayers of iPSC-RPE on transwells were treated with 0, 5, 50, or	
537	150 µl (Figure 3e) or 150 µl alone (GA experiments and Figures 3h, 3i) of specified LV preparation.	
538	Media was changed on day 2 to RDM, and cells were maintained in culture with media changes every 3	
539	days until used for sequencing or other analyses.	
540		
541	Transepithelial electrical resistance (TER) measurements	
542	Monolayers of RPE cultured on transwell inserts (Corning, #3470) were used for all TER	
543	measurements. To perform the measurements, we employed an epithelial voltohmmeter (EVOM2) with	
544	chopstick electrodes (STX2) from World Precision Instruments (Sarasota, USA) according to	
545	manufacturer's instructions. Electrodes were sterilized with ethanol, and then rinsed in sterile Milli-Q	
546	water followed by HBSS before measuring electrical resistance of RPE monolayers. Differences between	
547	TER values of transwells with cultured RPE monolayers versus background measurements of cell-free	
548	transwell inserts were multiplied by the surface area of the transwell membrane to obtain net TER values	
549	in $\Omega \cdot cm^2$.	
550		
551	CaCC current density measurements	
552	All iPSC-RPE cells used for chloride current measurements were cultured as a monolayer on	
553	transwells. To singularize cells prior to measurement, transwells were washed twice with 0 Na-CMF	

554	solution (135 mM N-Methyl-D-glucamine (NMDG)-Cl, 5 mM KCl, 10 mM HEPES, 10 mM glucose, 2		
555	mM EDTA-KOH, pH adjusted to 7.4) and then incubated with papain enzyme solution (0 Na-CMF		
556	solution containing 2.5 µl/ml papain (46 mg/ml, MP Biomedicals LLC, Cat#100921), 0.375 mg/ml		
557	adenosine, 0.3mg/ml L-cysteine, 0.25 mg/ml L- glutathione, and 0.05mg/ ml taurine) for 30 minutes at		
558	37°C/5% CO ₂ . To stop the reaction, 0.01% BSA was added to the enzymatic solution. After washing		
559	twice with 0 Na-CMF solution, cells were dispersed in extracellular solution containing 140 mM NaCl, 10		
560	mM HEPES, 3 mM KCl, 2 mM CaCl ₂ , 2 mM MgCl ₂ , and 5.5 mM glucose adjusted to pH 7.4 with NaOH		
561	by gentle pipetting.		
562	Cells with polarized RPE morphology post-dissociation (Figure 2b, <i>left</i>) were used to measure		
563	chloride currents. To test effects of GA or GE on BEST1 mutant iPSC-RPE by single-cell patch clamp		
564	analysis, only cells with GFP fluorescence (from transduction with hVMD2-hBEST1-T2A-GFP for GA or		
565	hVMD2-spCas9-T2A-GFP encoding AAVS1 sgRNA or MT allele-targeted sgRNAs for GE) were used.		
566	Current recordings on these cells were performed using the conventional whole-cell patch clamp		
567	technique with an Axopatch 200A amplifier controlled by Clampex software program via the digidata		
568	1550 data acquisition system (Axon Instruments, CA). Fire-polished borosilicate glass pipettes with 3-5		
569	$M\Omega$ resistance were filled with pipette solution containing 4.5 μ M calcium or no calcium.		
570	Recordings were carried out at room temperature and current-voltage tracings were established		
571	using ramps from -100 to +100 mV for 1000 ms. The pipette solution with calcium was comprised of (in		
572	mM) 146 CsCl, 5 (Ca ²⁺)-EGTA-NMDG, 2 MgCl ₂ , 8 HEPES, and 10 sucrose at pH 7.3, adjusted with		
573	NMDG. Another pipette solution devoid of calcium was comprised of (in mM) 146 CsCl, 5 EGTA-		
574	NMDG, 2 MgCl ₂ , 8 HEPES, and 10 Sucrose at pH 7.3, adjusted with NMDG. Both of these pipette		
575	solutions were mixed to make the solution containing 4.5 μ M free calcium as described		
576	previously(Kuruma and Hartzell, 2000), which was then used for patch clamping.		

577	Current density values were obtained by dividing current amplitude with cell capacitance
578	measurements. CaCC current densities for iPSC-RPE are represented as differences between mean 4.5
579	μ M calcium response and mean no calcium response from a total of at least five cells for each condition.
580	At least two differentiations were used as replicates to obtain data for each line.
581	
582	Immunocytochemistry
583	iPSC-RPE cultured on transwell inserts were washed with PBS and fixed with 4%
584	paraformaldehyde for 10 minutes at room temperature (RT). After washing fixed cells three times with
585	PBS, transwell membranes were placed in blocking solution (10% normal donkey serum with 5% BSA,
586	1% fish gelatin and 0.5% Triton-X100 in PBS) for one hour at RT, and then incubated overnight at 4 $^{\circ}$ C
587	in primary antibody (1:100 mouse anti-Bestrophin (Millipore, Cat# MAB5466); 1:100 rabbit anti-ZO-1
588	(ThermoFisher Scientific, Cat# 61-7300)) prepared in blocking solution. Cells were then washed three
589	times in PBS and incubated for 30 minutes at RT in appropriate secondary antibody (ThermoFisher
590	Scientific; 1:500 Donkey anti-Mouse IgG (Cat# A31571); 1:500 Donkey anti-Rabbit IgG (Cat# A10040))
591	prepared in blocking solution. Cells were again washed three times in PBS, incubated in DAPI (1:500;
592	ThermoFisher; Cat# D1306) for 30 minutes, mounted using prolong gold with DAPI (ThermoFisher; Cat#
593	P36931), and imaged using Nikon A1R confocal microscope with NIS Elements AR 5.0 software.
594	
595	Photoreceptor outer segment (POS) phagocytosis and rhodopsin degradation assay
596	POS feeding of iPSC-RPE was performed as described previously (Singh et al., 2013b). Briefly, bovine
597	POS (InVision BioResources (Seattle, WA)) were gently resuspended in DMEM. 100 μ l media was then
598	removed from each transwell insert, 6.25×10^6 POS were added, and cells were incubated at 37 °C and 5%
599	CO2 for 2 hours. Afterward, POS containing RDM was removed and each transwell was washed

600 thoroughly three times using DPBS. Following the washes, cells were harvested (0 time point) or further 601 incubated in fresh RDM for prescribed periods of time. At each time point, transwells were washed, 100 602 ul RIPA buffer (ThermoFisher; Cat# 89900) containing protease inhibitor cocktail (Sigma-Aldrich; Cat# 603 P8340) was added, and cells were incubated on ice for 30 minutes to extract total cell protein. Protein 604 quantification was performed using the DC Protein assay kit II (Bio-Rad, Cat# 5000112). 605 Western blots were then performed to monitor rhodopsin degradation as described(Singh et al., 606 2015; Singh et al., 2013b). Briefly, protein lysates were denatured in 1X Laemmli buffer (reducing) and kept on ice for 10 minutes. Protein samples were then separated on 4-20% mini-Protean TGX gels (Bio-607 608 Rad; Cat# 4568095) and electroblotted onto PVDF membranes (Millipore; IPFL10100). After blotting, 609 membranes were dried at RT for 15 minutes, re-activated in methanol for 1 minute, and then incubated in 610 blocking buffer (1:1 Odyssey blocking buffer (LI-COR Biosciences; Cat# 927-40000):PBS) for 1 hour. Post-blocking, blots were incubated in primary antibodies (1:500 mouse anti-rhodopsin (Millipore, Cat# 611 612 MABN15); 0.1 µg/ml rabbit anti-beta actin (Abcam, Cat# ab8227)) in blocking buffer with 0.1% Tween-613 20 overnight, washed three times for 5 minutes each in PBS with 0.1% Tween-20, incubated for 1.5 hours 614 at RT in appropriate secondary antibody (LI-COR Biosciences; 1:20,000 Donkey anti-Rabbit IgG (Cat# 615 926-32213); 1:20,000 Donkey anti-Mouse IgG (Cat# 926-68022)) in blocking buffer with 0.1% Tween-616 20 and 0.01% SDS, and then washed three times for 5 minutes each in PBS with 0.1% Tween-20. An 617 Odyssey infrared Imager (LI-COR Biosciences) was used to image blots using Image Studio software. 618 ImageJ was used for quantification of relevant protein bands. 619 620 Deep sequencing analysis of DNA and RNA read frequency

621 Cells were singularized with TrypLE Express (Gibco, Cat# 12605010) per manufacturer's

622 instructions. Total DNA and/or RNA was extracted using QuickExtract DNA (Epicentre, Cat# QE09050)

623	or QuickExtract RNA (Epicentre, Cat# QER090150), respectively. Both DNA and RNA extractions were		
624	performed per manufacturer's instructions with the following minor modifications: 1) a ratio of 10,000-		
625	25,000 cells per 50 µl of QuickExtract solution was routinely used, and 2) an optional DNase 1 treatment		
626	was omitted from the RNA extraction protocol. All samples were stored at -80 °C until use.		
627	RNA was reverse transcribed to cDNA using the ProtoScript II First Strand synthesis kit (NEB, Cat#		
628	E6560S) and synthesis was performed with the "random primer" option included within the kit. 4 μ l of		
629	crude RNA extract was added to each cDNA reaction.		
630	In preparation for targeted deep sequencing, Illumina adapter sequences and sample-specific		
631	barcodes were appended to genomic or cDNA amplicons via overhang PCR as described(Steyer et al.,		
632	2018).		
633	Purified amplicon libraries were assembled into 2 nM total DNA in DNAse/RNAse free H ₂ O and		
634	sequenced using 150 nucleotide paired end reads using MiSeq (6M or 15M total reads) at the UW Biotech		
635	Center (Madison, WI) with the following loading condition: 8 pmol total DNA and 15% PhiX DNA.		
636	Raw FASTQ files were read and aligned to expected amplicons using a command line implementation of		
637	CRISPResso (v1.0.8)(Pinello et al., 2016). Full commands used for analysis are provided in the Source		
638	Data for each corresponding Supplemental Figure panel. 'Percent allele identity' or 'percent edited' were		
639	determined using the software's standard output table of individual read identities. Sequencing reads with		
640	counts <100 were not included in the analysis. All FASTQ files are available upon request.		
641			
642	Single-cell RNA sequencing (scRNA-seq)		
643	iPSC-RPE cultures from the A146K, N296H, and R218C adBD patient lines and an isogenic		

644 gene-corrected control line derived from the R218C line (R218C>WT) were transduced with 150 μ l of 645 *hVMD2-spCas9-T2A-GFP* encoding specific sgRNAs as described in the 'LV production and cell

646	transduction' section. For each sample, sgRNAs were either targeted to mutant BEST1 or to the AAVS1
647	locus (control). On day 14, cells were dissociated from transwells with a papain dissociation kit
648	(Worthington Biochemical, Cat# LK003150) and filtered using a Flowmi cell strainer (Bel-Art SP
649	Scienceware, Cat# H13680-0040) to obtain single-cell suspension. Cells were then prepared for scRNA-
650	seq with the droplet-based 10X Genomics GemCode platform according to the manufacturer's
651	instructions. In brief, singularized cells were encapsulated in oil beads containing a unique molecular
652	identifier (UMI) barcode. The cells were then lysed and cDNA libraries were created featuring cell and
653	transcript-specific molecular identifiers. Libraries were sequenced using an Illumina HiSeq2500 Rapid
654	Run and reads were aligned to a custom reference genome consisting of the human hg19 GRCh38
655	genome and an added gene for the <i>spCas9-T2A-GFP</i> transcript.
656	
657	scRNA-seq data analysis
658	Genome edited iPSC-RPE were clustered based on their genome-wide transcriptome using the t-
659	Distributed Stochastic Neighbor Embedding (t-SNE) algorithm with the 10X Genomics Loupe Cell
660	Browser software (v2.0.0). Reads for each pair of samples (BEST1 mutant allele-targeted sgRNA vs
661	AAVS1 sgRNA control) were aligned, analyzed, clustered with Cell Ranger v2.1.1, and compared to
662	detect significant differences in gene expression, with p values adjusted using the Benjamini-Hochberg
663	correction for multiple tests. P < 0.01 was used as the significance threshold for all analyses. Cell Ranger
664	using the aggregate feature was run to concatenate each pair of samples with the same genotype, and
665	differential gene expression within each pair (with gene editing at either the AAVS1 or BEST1 locus) was then
666	analyzed. Potential adverse events were probed using gene lists curated from gene ontology terms
667	associated with the cell cycle, apoptosis, DNA damage response, and the innate immune response, as well
668	as a list of 149 validated marker genes associated with human RPE(Strunnikova et al., 2010)

669	(Supplemental Data File C; gene ontology sets are available on the Molecular Signatures Database
670	<http: gsea="" msigdb="" software.broadinstitute.org="">). Differentially-expressed genes with p <0.01 were</http:>
671	deemed to be significant. All significantly differentially-expressed genes per cluster are reported, with the
672	exception of genes identified by Cell Ranger as having low average UMI counts. Volcano plots were generated
673	in RStudio (v.1.1.456) using the ggplot2 package.
674	
675	Non-negative matrix factorization-based comparison of scRNA-seq datasets
676	Non-negative matrix factorization (NMF) followed by clustering of genes using the NMF factors was
677	used for Figure S7B to project each dataset into a gene group. The input data for this analysis were a set of
678	gene barcode matrices generated using the Cell Ranger 2.1.1 algorithm. The matrices were filtered to remove
679	background barcodes in order to include only detected cellular barcodes, and then further filtered to exclude
680	cells expressing fewer than 2000 total counts, followed by depth normalization.
681	To enable comparison of transcriptional signatures from each sample, NMF(Lee and Seung, 2000)
682	was applied to each scRNA-seq dataset. NMF is a popular dimensionality reduction and clustering
683	approach that is used to project data into low dimensional non-negative factors, and thus can be used to
684	derive a clustering of cells and genes. NMF with k=10 factors was applied with a total of five NMF runs.
685	Next, the similarity of NMF results was compared between two samples using the average best Jaccard
686	coefficient between clusters of one versus another sample. 1-average Jaccard coefficient was then used as
687	the distance to apply hierarchical clustering on the samples. This procedure was repeated five times and
688	the tree that appeared most often was used. The trees learned in different iterations were largely similar
689	and always grouped the patient-specific lines first before grouping different lines together.
690	

691 QUANTIFICATION AND STATISTICAL ANALYSIS

692	Unless otherwise specified, all analyses were performed using GraphPad Prism (v.8.0.1) and error		
693	bars represent mean \pm SD; ns = p ≥ 0.05 , * for p <0.05, ** for p <0.01, *** for p <0.001, **** for p		
694	< 0.0001. Further detail for each analysis is provided here. Statistical analyses for Figures 2i and 3k were		
695	performed using Origin 2018b. Student's t-test was performed to measure the significance between the		
696	groups. P values <0.05 were considered statistically significant. Statistical significance for Figure 3h and 3i		
697	was determined using the Holm-Sidak method with $alpha = 0.05$. Each row was analyzed individually, without		
698	assuming a consistent SD (number of t tests = 10 and 2 for Figure 3h, and 3i, respectively). Statistical		
699	significance for differential gene expression in Figures 3n and Figure S7c was determined using the Cell		
700	Ranger 2.1.1 algorithm. Sample pairs with each genotype were analyzed and clustered with individual Cell		
701	Ranger runs for each pair and analyzed using the Loupe Cell Browser (v.2.0.0). Differential expression was		
702	calculated using a negative binomial exact test, and p values were adjusted using the Benjamini-Hochberg		
703	correction for multiple tests. P < 0.01 was used as the threshold for assigning significant versus non-		
704	significant changes in gene expression. Volcano plots were generated in RStudio (v 1.1.456) using the		
705	ggplot2 package. For Figures S5B and S5C, discovery was determined using the two-stage linear step-up		
706	procedure of Benjamini, Krieger, and Yekutieli with $Q = 1\%$. Each row was analyzed individually, without		
707	assuming a consistent SD (number of t tests = 3).		

708

709 DATA AND SOFTWARE AVAILABILITY

Upon acceptance, scRNA-seq data will be posted to an accession database. Raw targeted
sequencing files for DNA and RNA sequencing data will be deposited to the NCBI Trace and Short-Read
Archive. Raw patch clamp data are available upon request. All other experimental data are provided in the
source data files or in Supplemental data.

714

715 **REFERENCES**

- 716 Bakondi, B., Lv, W.J., Lui, B., Jones, M.K., Tsai, Y., Kim, K.J., Levy, R., Akhtar, A.A., Breunig, J.J.,
- 717 Svendseni, C.N., et al. (2016). In Vivo CRISPR/Cas9 Gene Editing Corrects Retinal Dystrophy in the
- 718 S334ter-3 Rat Model of Autosomal Dominant Retinitis Pigmentosa. Mol Ther 24, 556-563.
- 719
- 720 Boon, C.J.F., Klevering, B.J., Leroy, B.P., Hoyng, C.B., Keunen, J.E.E., and den Hollander, A.I. (2009).
- The spectrum of ocular phenotypes caused by mutations in the BEST1 gene. Prog Retin Eye Res 28, 187205.
- 723
- 724 Courtney, D.G., Moore, J.E., Atkinson, S.D., Maurizi, E., Allen, E.H., Pedrioli, D.M., McLean, W.H.,
- 725 Nesbit, M.A., and Moore, C.B. (2016). CRISPR/Cas9 DNA cleavage at SNP-derived PAM enables both

in vitro and in vivo KRT12 mutation-specific targeting. Gene Ther 23, 108-112.

- 727
- Cox, D.B., Platt, R.J., and Zhang, F. (2015). Therapeutic genome editing: prospects and challenges. Nat
 Med 21, 121-131.
- 730
- 731 Cromer, M.K., Vaidyanathan, S., Ryan, D.E., Curry, B., Lucas, A.B., Camarena, J., Kaushik, M., Hay,
- 732 S.R., Martin, R.M., Steinfeld, I., et al. (2018). Global Transcriptional Response to CRISPR/Cas9-AAV6-
- 733 Based Genome Editing in CD34(+) Hematopoietic Stem and Progenitor Cells. Mol Ther 26, 2431-2442.
- 734
- 735 Cukras, C., Wiley, H.E., Jeffrey, B.G., Sen, H.N., Turriff, A., Zeng, Y., Vijayasarathy, C., Marangoni, D.,
- 736 Ziccardi, L., Kjellstrom, S., et al. (2018). Retinal AAV8-RS1 Gene Therapy for X-Linked Retinoschisis:
- 737 Initial Findings from a Phase I/IIa Trial by Intravitreal Delivery. Mol Ther 26, 2282-2294.

738

Dickson, V.K., Pedi, L., and Long, S.B. (2014). Structure and insights into the function of a Ca2+activated Cl- channel. Nature *516*, 213-218.

741

Doudna, J.A., and Charpentier, E. (2014). The new frontier of genome engineering with CRISPR-Cas9.
Science *346*, 1077-+.

744

- George, A.L., Jr. (2004). Inherited Channelopathies Associated with Epilepsy. Epilepsy Curr 4, 65-70.
 746
- 747 Guziewicz, K.E., Cideciyan, A.V., Beltran, W.A., Komaromy, A.M., Dufour, V.L., Swider, M., Iwabe, S.,
- 748 Sumaroka, A., Kendrick, B.T., Ruthel, G., et al. (2018). BEST1 gene therapy corrects a diffuse retina-
- 749 wide microdetachment modulated by light exposure. P Natl Acad Sci USA 115, E2839-E2848.
- 750
- 751 Guziewicz, K.E., Sinha, D., Gomez, N.M., Zorych, K., Dutrow, E.V., Dhingra, A., Mullins, R.F., Stone,
- E.M., Gamm, D.M., Boesze-Battaglia, K., et al. (2017). Bestrophinopathy: An RPE-photoreceptor
- interface disease. Prog Retin Eye Res 58, 70-88.

754

- Johnson, A.A., Guziewicz, K.E., Lee, C.J., Kalathur, R.C., Pulido, J.S., Marmorstein, L.Y., and
- 756 Marmorstein, A.D. (2017). Bestrophin 1 and retinal disease. Prog Retin Eye Res 58, 45-69.

- Kuruma, A., and Hartzell, H.C. (2000). Bimodal control of a Ca(2+)-activated Cl(-) channel by different
 Ca(2+) signals. J Gen Physiol *115*, 59-80.
- 760

761	Kuscu, C., Arslan, S., Singh, R., Thorpe, J., and Adli, M. (2014). Genome-wide analysis reveals
762	characteristics of off-target sites bound by the Cas9 endonuclease. Nat Biotechnol 32, 677-683.
763	Lam, B.L., Davis, J.L., Gregori, N.Z., MacLaren, R.E., Girach, A., Verriotto, J.D., Rodriguez, B., Rosa,
764	P.R., Zhang, X., and Feuer, W.J. (2019). Choroideremia Gene Therapy Phase 2 Clinical Trial: 24-Month
765	Results. Am J Ophthalmol 197, 65-73.
766	
767	Ledford, H. (2017). FDA advisers back gene therapy for rare form of blindness. Nature 550, 314.
768	
769	Lee, D.D., and Seung, H.S. (2000). Algorithms for Non-negative Matrix Factorization. Advances in
770	Neural Information Processing Systems 13, 556-562.
771	
772	Li, P., Kleinstiver, B.P., Leon, M.Y., Prew, M.S., Navarro-Gomez, D., Greenwald, S.H., Pierce, E.A.,
773	Joung, J.K., Liu, Q. (2018). Allele-Specific CRISPR-Cas9 Genome Editing of the Single-Base P23H
774	Mutation for Rhodopsin-Associated Dominant Retinitis Pigmentosa. The CRISPR Journal 1, 55-64.
775	
776	Li, Y., Zhang, Y., Xu, Y., Kittredge, A., Ward, N., Chen, S., Tsang, S.H., and Yang, T. (2017). Patient-
777	specific mutations impair BESTROPHIN1's essential role in mediating Ca(2+)-dependent Cl(-) currents
778	in human RPE. Elife 6.
779	
780	Mali, P., Yang, L., Esvelt, K.M., Aach, J., Guell, M., DiCarlo, J.E., Norville, J.E., and Church, G.M.

- 781 (2013). RNA-guided human genome engineering via Cas9. Science 339, 823-826.
- 782

783	Milenkovic, A., Milenkovic, V.M., Wetzel, C.H., and Weber, B.H.F. (2018). BEST1 protein stability and		
784	degradation pathways differ between autosomal dominant Best disease and autosomal recessive		
785	bestrophinopathy accounting for the distinct retinal phenotypes. Hum Mol Genet 27, 1630-1641.		
786			
787	Pattanayak, V., Lin, S., Guilinger, J.P., Ma, E., Doudna, J.A., and Liu, D.R. (2013). High-throughput		
788	profiling of off-target DNA cleavage reveals RNA-programmed Cas9 nuclease specificity. Nat Biotechnol		
789	31,839-843.		
790			
791	Pawan K. Shahi, D.H., Divya Sinha, Simran Brar, Hannah Moulton, Sabrina Stulo, Katarzyna D. Borys,		
792	Elizabeth Capowski, De-Ann M. Pillers, David M. Gamm, Bikash R. Pattnaik (2019). Gene augmentation		
793	and read-through rescue channelopathy in an iPSC-RPE model of congenital blindness. American Journal		
794	of Human Genetics.		
795			
796	Pinello, L., Canver, M.C., Hoban, M.D., Orkin, S.H., Kohn, D.B., Bauer, D.E., and Yuan, G.C. (2016).		
797	Analyzing CRISPR genome-editing experiments with CRISPResso. Nat Biotechnol 34, 695-697.		
798			
799	Popp, M.W., and Maquat, L.E. (2016). Leveraging Rules of Nonsense-Mediated mRNA Decay for		
800	Genome Engineering and Personalized Medicine. Cell 165, 1319-1322.		
801			
802	Russell, S., Bennett, J., Wellman, J.A., Chung, D.C., Yu, Z.F., Tillman, A., Wittes, J., Pappas, J., Elci, O.,		
803	McCague, S., et al. (2017). Efficacy and safety of voretigene neparvovec (AAV2-hRPE65v2) in patients		
804	with RPE65-mediated inherited retinal dystrophy: a randomised, controlled, open-label, phase 3 trial.		
805	Lancet 390, 849-860.		

806

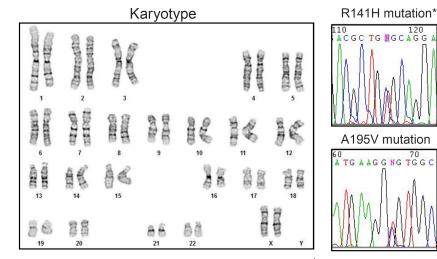
Sadelain, M., Papapetrou, E.P., and Bushman, F.D. (2011). Safe harbours for the integration of new DNA
in the human genome. Nat Rev Cancer *12*, 51-58.

809

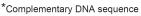
810 Schaaf, C.P. (2014). Nicotinic acetylcholine receptors in human genetic disease. Genet Med *16*, 649-656.

811

- 812 Shen, M.W., Arbab, M., Hsu, J.Y., Worstell, D., Culbertson, S.J., Krabbe, O., Cassa, C.A., Liu, D.R.,
- 813 Gifford, D.K., and Sherwood, R.I. (2018). Predictable and precise template-free CRISPR editing of
- 814 pathogenic variants. Nature 563, 646-651.
- 815 Singh, R., Kuai, D., Guziewicz, K.E., Meyer, J., Wilson, M., Lu, J., Smith, M., Clark, E., Verhoeven, A.,
- 816 Aguirre, G.D., et al. (2015). Pharmacological Modulation of Photoreceptor Outer Segment Degradation in
- a Human iPS Cell Model of Inherited Macular Degeneration. Mol Ther 23, 1700-1711.
- 818
- 819 Singh, R., Phillips, M.J., Kuai, D., Meyer, J., Martin, J.M., Smith, M.A., Perez, E.T., Shen, W., Wallace,
- 820 K.A., Capowski, E.E., et al. (2013a). Functional analysis of serially expanded human iPS cell-derived
- 821 RPE cultures. Invest Ophthalmol Vis Sci 54, 6767-6778.
- 822
- Singh, R., Shen, W., Kuai, D., Martin, J.M., Guo, X.R., Smith, M.A., Perez, E.T., Phillips, M.J.,
- 824 Simonett, J.M., Wallace, K.A., et al. (2013b). iPS cell modeling of Best disease: insights into the
- pathophysiology of an inherited macular degeneration. Hum Mol Genet 22, 593-607.


- 827 Steyer, B., Bu, Q., Cory, E., Jiang, K., Duong, S., Sinha, D., Steltzer, S., Gamm, D., Chang, Q., and Saha,
- 828 K. (2018). Scarless Genome Editing of Human Pluripotent Stem Cells via Transient Puromycin Selection.
- 829 Stem Cell Reports 10, 642-654.
- 830
- 831 Strunnikova, N.V., Maminishkis, A., Barb, J.J., Wang, F., Zhi, C., Sergeev, Y., Chen, W., Edwards, A.O.,
- 832 Stambolian, D., Abecasis, G., et al. (2010). Transcriptome analysis and molecular signature of human
- retinal pigment epithelium. Hum Mol Genet 19, 2468-2486.
- 834
- Tsai, Y.T., Wu, W.H., Lee, T.T., Wu, W.P., Xu, C.L., Park, K.S., Cui, X., Justus, S., Lin, C.S., Jauregui,
- 836 R., et al. (2018). Clustered Regularly Interspaced Short Palindromic Repeats-Based Genome Surgery for
- the Treatment of Autosomal Dominant Retinitis Pigmentosa. Ophthalmology 125, 1421-1430.
- 838
- 839 Vasireddy, V., Mills, J.A., Gaddameedi, R., Basner-Tschakarjan, E., Kohnke, M., Black, A.D.,
- 840 Alexandrov, K., Zhou, S., Maguire, A.M., Chung, D.C., et al. (2013). AAV-mediated gene therapy for
- 841 choroideremia: preclinical studies in personalized models. PLoS One 8, e61396.
- 842
- Villa, C., and Combi, R. (2016). Potassium Channels and Human Epileptic Phenotypes: An Updated
 Overview. Front Cell Neurosci *10*, 81.
- 845
- 846 Waugh, N., Loveman, E., Colquitt, J., Royle, P., Yeong, J.L., Hoad, G., and Lois, N. (2018). Treatments
- for dry age-related macular degeneration and Stargardt disease: a systematic review. Health Technol
 Assess 22, 1-168.
- 849

- 850 Wienert, B., Shin, J., Zelin, E., Pestal, K., and Corn, J.E. (2018). In vitro-transcribed guide RNAs trigger
- an innate immune response via the RIG-I pathway. PLoS Biol 16, e2005840.
- 852
- 853 Yang, T., Liu, Q., Kloss, B., Bruni, R., Kalathur, R.C., Guo, Y., Kloppmann, E., Rost, B., Colecraft,
- H.M., and Hendrickson, W.A. (2014). Structure and selectivity in bestrophin ion channels. Science 346,
- 855 355-359.
- 856

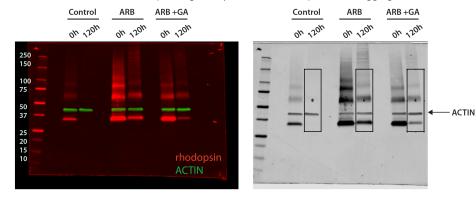

857 SUPPLEMENTAL DATA

- 858
- 859 **Data Figures (**attached below):
- 860 Data S1. R141H/A195V ARB iPSC line characterization.
- 861 Data S2. Western blots for rhodopsin degradation assays.
- 862
- 863 Supplemental Tables (attached below):
- Table S1. List of iPSC lines used and their subsequent characterization.
- 865 Table S2: RPE-specific RT-PCR primers used.
- 866 Table S3. List of GE vectors used.
- 867 Table S4. List of primers for lentiviral plasmid generation.
- 868 Table S5. List of sgRNAs.
- 869 Table S6. Lentivirus titers.
- Table S7. Primers for deep sequencing of DNA and cDNA.
- Table S8. Number of cells used for CaCC current density measurements.
- 872
- 873 Supplemental Data Files (available for download):
- 874 Supplemental Data File A. Replicates for frameshift analysis of iPSC+GE versus iPSC-RPE+GE.
- 875 Supplemental Data File B. Comparison of experimental indel frequency outcomes in iPSC-RPE+GE
- 876 versus outcomes predicted by the inDelphi tool.
- 877 Supplemental Data File C. Curated gene sets used to assess differences in gene expression between
- 878 control (AAVS1) and MT BEST1 allele-targeted sgRNA in Figure S7C.
- 879 Supplemental Data File D. Ranked off-target sites for sgRNAs used in this study.
- 880

881 **DATA FIGURES**

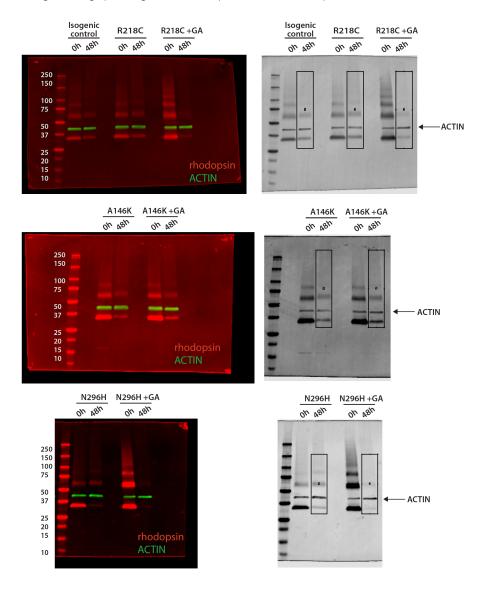
882 Data S1. R141H/A195V ARB iPSC line characterization.

TGNGCAG


Self-renewal		
Gene	P10	P22
CXCL5	3.78	3.34
DNMT3B	0.12	0.13
HESX1	0.14	0.17
IDO1	1.23	1.38
LCK	0.84	0.60
NANOG	1.60	1.43
POU5F1	0.30	0.27
SOX2	1.09	1.12
TRIM22	2.64	2.36
Average	1.30	1.20

Fold change legend		
fc > 100	Upregulated	
10 < fc <= 100		
2 < fc <= 10		
0.5 <= fc <= 2	Comparable	
0.1 <= fc < 0.5		
0.01 <= fc <0.1		
fc < 0.01	Downregulated	

Ectoderm markers			Mesoderm markers			Endoderm markers			
Target Name	P10	P22	Target Name	P10	P22	Target Name	P10	P22	
CDH9	1.52	2.13	ABCA4	1.11	1.29	AFP	0.00	0.00	
COL2A1	3.07	2.73	ALOX15	0.20	0.21	CABP7	0.14	0.24	
DMBX1	2.13	3.03	BMP10	0.03	0.02	CDH20	0.12	0.16	
DRD4	0.14	0.22	CDH5	0.35	0.27	CLDN1	0.50	0.46	
EN1	0.20	0.23	CDX2	0.07	0.05	CPLX2	0.07	0.05	
LMX1A	0.07	0.20	COLEC10	1.33	1.50	ELAVL3	0.38	0.48	
MAP2	1.41	0.97	ESM1	0.01	0.01	EOMES	0.02	0.02	
МҮОЗВ	0.97	0.81	FCN3	0.62	0.48	FOXA1	0.00	0.00	
NOS2	0.31	0.31	FOXF1	0.27	0.27	FOXA2	0.00	0.00	
NR2F1/NR2F2	0.00	0.00	HAND1	0.01	0.01	FOXP2	0.41	0.34	
NR2F2	0.04	0.12	HAND2	0.09	0.25	GATA4	0.02	0.01	
OLFM3	0.16	0.15	HEY1	1.39	0.79	GATA6	0.00	0.01	
PAPLN	PAPLN 1.07 0.9		HOPX	0.31	3.27	HHEX	0.23	0.25	
PAX3 0.02 0		0.02	IL6ST	0.81	0.65	HMP19	0.27	0.37	
PAX6 0.02 0		0.05	NKX2-5	0.16	0.18	HNF1B	0.04	0.02	
POU4F1	0.04	0.19	ODAM	0.02	0.02	HNF4A	0.01	0.00	
PRKCA	0.30	0.36	PDGFRA	0.16	0.14	KLF5	0.49	0.51	
SDC2	9.64	8.17	PLVAP	0.41	0.36	LEFTY1	0.04	0.01	
SOX1	0.10		RGS4	0.10	0.09	LEFTY2	0.05	0.03	
TRPM8	0.45	0.35	SNAI2	0.18	0.25	NODAL	0.07	0.05	
WNT1	0.71	0.92	TBX3	0.01	0.01	PHOX2B	0.01	0.01	
ZBTB16	0.13	0.08	TM4SF1	0.08	0.06	POU3F3	0.02	0.00	
			CXCL5	3.78	3.34	PRDM1	0.16	0.20	
Mesoendode	rm ma	rkers	DNMT3B	0.12	0.13	RXRG	0.09	0.07	
			HESX1	0.14	0.17	SOX17	0.00	0.00	
Target F	210	P22	IDO1	1.23	1.38	SST	0.16	0.10	
Name	10		LCK	0.84	0.60				
FGF4 0	.29	0.25	NANOG	1.60	1.43				
GDF3 1.26 0.87		POU5F1	0.30	0.27					
		0.00	SOX2	1.09	1.12				
			TRIM22	2.64	2.36				
PTHLH 0.29 0.38									
T 0.00 0.00									


Pluripotency analysis

884 Data S2. Western blots for rhodopsin degradation assays.

Blots used for POS degradation graphs in Figure 2e (boxes represent areas used for quantification). Boxed area was selected to include bands corresponding to fully denatured rhodopsin and its aggregated forms.

Blots used for POS degradation graphs in Figure 2h (boxes represent areas used for quantification).

886 SUPPLEMENTAL TABLES

887 Table S1. List of iPSC lines used and their subsequent characterization.

iPSC line	BEST1 Genotype	Karyotype	Pluripotency Confirmation	Reference
Normal	WT/WT	Yes	Yes	Singh et al., Hum Mol Genet., 2013
R218C>WT Isogenic Control	WT/WT (isogenic to R218C/WT adBD iPSC line)	Yes	Yes	Steyer et al., Stem Cell Reports, 2018
R218C adBD	R218C/WT	Yes	Yes	Steyer et al., Stem Cell Reports, 2018
N296H adBD	N296H/WT	Yes	Yes	Singh et al., Hum Mol Genet., 2013
A146K adBD	A146K/WT	Yes	Yes	Singh et al., Hum Mol Genet., 2013
R141H/A195V ARB	R141H/A195V	Yes	Yes	Data S1

888 889

890 Table S2: RPE-specific RT-PCR primers used.

Gene	Forward Primer	Reverse Primer
BEST1	ATTTATAGGCTGGCCCTCACGGAA	TGTTCTGCCGGAGTCATAAAGCCT
MITF	TTCACGAGCGTCCTGTATGCAGAT	TTGCAAAGCAGGATCCATCAAGCC
PEDF	AATCCATCATTCACCGGGCTCTCT	TGCACCCAGTTGTTGATCTCTTGC
RPE65	GCCCTCCTGCACAAGTTTGACTTT	AGTTGGTCTCTGTGCAAGCGTAGT
OCCLUDIN	TCATTGCCGCGTTGGTGATCTTTG	ATGATGCCCAGGATAGCACTCACT
CRALBP	TTCCGCATGGTACCTGAAGAGGAA	ACTGCAGCCGGAAATTCACATAGC
GAPDH	CAACGGATTTGGTCGTATTGG	GCAACAATATCCACTTTACCACAGTTAA

894 Table S3. List of GE vectors used.

GE Vector Name	sgRNA Name	Vector Backbone	Backbone Source
LCv2.AAVS1	AAVSI	LentiCRISPRv2	Sanjana et al, Nat Methods, 2014
LCv2.R218C	R218C	LentiCRISPRv2	Sanjana et al, Nat Methods, 2014
LCv2.WT	WT	LentiCRISPRv2	Sanjana et al, Nat Methods. 2014
VMD2.AAVS1	AAVS1	hVMD2-spCas9-T2A-GFP	Alfred Lewin (University of Florida)
VMD2.R218C	R218C	hVMD2-spCas9-T2A-GFP	Alfred Lewin (University of Florida)
VMD2.WT	WT	hVMD2-spCas9-T2A-GFP	Alfred Lewin (University of Florida)
VMD2.N296H	N296H	hVMD2-spCas9-T2A-GFP	Alfred Lewin (University of Florida)
VMD2.A146K	A146K	hVMD2-spCas9-T2A-GFP	Alfred Lewin (University of Florida)

898 Table S4. List of primers for lentiviral plasmid generation.

Primer Name	Primer sequence
LCv2-GFP.Gib.F	GATTACAAAGACGATGACGATAAGGGATCCGGTGAGGGCAGA
	GGAAGTC
LCv2-GFP.Gib.	ACAGTCGAGGCTGATCAGCGGGTTTAAACCTACTACTGCTAGA
	GATTTTCCACAC
LCv2-GFP.seq.L	ACCGGCCTGTACGAGACACG
LCv2-GFP.seq.R	GAAAGGACAGTGGGAGTGGCACC
VMD2.LCv2.GFP.Gib.F	GTGGCACCGAGTCGGTGCTTTTTTGAATTCCAATTCTGTCATTT
	TACTAGGGTGATGAAATTC
VMD2.LCv2.GFP.Gib.R	TGTACTTCTTGTCCATGGTGGCAGCGCTCTATCGGCCGCGGGT
	ACA
VMD2.LCv2.GFP.seq.L	GAATGAATACCGGGCTGCAGTCAAC
VMD2.LCv2.GFP.seq.R	GTCGGTGATCACGGCCCAG

Table S5. List of sgRNAs.

Off-target (Doench et al, Nat Biotechnol., 2016) and on-target (Hsu et al, Nat. Biotechnol., 2013) scores
 are also presented. Scores range from 0-100 with higher scores being better for both scoring systems.

906 Highest ranked off-target cut sites for each sgRNA are available in **Supplemental Data File D**.

						Off-	On-
sgRNA						Target	Target
Name	Sequence 5' - 3'	PAM	Chr	Position	Strand	Score	Score
A146K	CTTTGGTGCTGACGCTGCGC	AGG	11	61955893	-1	81.2	51.6
R218C	GTGTCCACACTGAGTACACA	AGG	11	61957403	-1	56.3	67.2
WT	GTGTCCACACTGAGTACGCA	AGG	11	61957403	-1	86.5	63.7
N296H	CATCATCCTCTCCAAAGGGG	TGG	11	61959521	-1	54.0	64.6
AAVSI	GGGGCCACTAGGGACAGGAT	TGG	19	55115755	+1	55.8	54.5

Table S6. Lentivirus titers.

Lentivirus	Titer (Transduction units/ml)
hVMD2-hBEST1-T2A-GFP	$22 \times 10^{6-7}$
LCv2.R218C sgRNA	81.91 x10 ⁶⁻⁷
LCv2.WT sgRNA	55.22 x10 ⁶⁻⁷
LCv2.AAVS1 sgRNA	45.43 x10 ⁶⁻⁷
<i>hVMD2-spCas9-T2A-GFP</i> LV R218C sgRNA	74.16 x10 ⁶⁻⁷
<i>hVMD2-spCas9-T2A-GFP</i> LV WT sgRNA	71.16 x10 ⁶⁻⁷
<i>hVMD2-spCas9-T2A-GFP</i> LV A146K sgRNA	74.26 x10 ⁶⁻⁷
<i>hVMD2-spCas9-T2A-GFP</i> LV N296H sgRNA	68.91 x10 ⁶⁻⁷
<i>hVMD2-spCas9-T2A-GFP</i> LV <i>AAVS1</i> sgRNA	74.01 x10 ⁶⁻⁷

Table S7. Primers for deep sequencing of DNA and cDNA.

Primer Name	Primer sequence
MT.C.OT.5v2.HTS.F	GTTGGTTCCTGAAGATGGGCAG
MT.C.OT.5v2.HTS.R	CTGTCAAGGCCAAGTTCTGCTG
MT.C.OT.2.HTS.F	GCTAAATTCTGCTATAAAAGGAAGG
MT.C.OT.2.HTS.R	GCATTGCTTTAGAAAACTCAGAAGT
MT.C.OT.3.HTS.F	AGTGAGACCAAGTTCTGACAGCA
MT.C.OT.3.HTS.R	GGCCTCTTCATACATACACATGCAC
MT.C.OT.4.HTS.F	CCTCCACATCTGCAGAAAAGTGT
MT.C.OT.4.HTS.R	GGCAGGGTTTGGTCTCCTACTT
MT.C.OT.5.HTS.F	GGATGGCTCTGGGTGGGTTT
MT.C.OT.5.HTS.R	CTTCCAACTCTTCCTCCCACCC
MT.C.OT.6.HTS.F	TGAGGTTCAGAATAGCTCAGCA
MT.C.OT.6.HTS.R	TGTTTCTGTGAAGCAAATCAAAGCT
MT.C.OT.7.HTS.F	TGTTTCTGTGAAGCAAATCAAAGCT
MT.C.OT.7.HTS.R	TGAGGTTCAGAATAGCTCAGCA
MT.C.OT.8.HTS.F	AAAGCATGGCGGGAGTGCTAA
MT.C.OT.8.HTS.R	TGACTAAATCCCTGGCATCGCT
MT.C.OT.9.HTS.F	GCCAGTAATTTTCCAAGGCTTCT
MT.C.OT.9.HTS.R	TTCCTACTAGAACCTCCTTGAG
MT.C.OT.10.HTS.F	GTGACCTGACTTTGCTGAAAGGT
MT.C.OT.10.HTS.R	ACCTGAATTATCTCAAGCTCACT
AAVS1T2.HTS.F	ATGTGGCTCTGGTTCTGGGTAC
AAVS1T2.HTS.R	GAGACTAGGAAGGAGGAGGCCT
R218C.HTSv2.F	GTGTTCAGAACCCCATCCCC
R218C.HTSv2.R	AGCCTAGTCCTCACCTGTGT
BEST.cDNA.HTSv2.F	GGTCGAATCCGGGACCCTATC
BEST.cDNA.HTSv2.R	GCCACAGTCACCACCTGTGTAT
AAVS1T2.HTS.F	ATGTGGCTCTGGTTCTGGGTAC
AAVS1T2.HTS.R	GAGACTAGGAAGGAGGAGGCCT

	Replic	cate #1	Replic	ate #2	Total	
Line	0	4.5 μM	0	4.5 μM	0	4.5 μΜ
	calcium	calcium	calcium	calcium	calcium	calcium
Control	3	3	5	3	8	6
Isogenic control	5	7	4	3	9	10
R141H/A195V*	4	3	4	5	12*	12*
R141H/A195V +GA	2	3	3	4	5	7
R218C	3	3	5	2	8	5
R218C +GA	6	7	3	4	9	11
R218C +GE	3	5	4	5	7	10
(R218C sgRNA)						
N296H	4	4	4	3	8	7
N296H +GA	4	3	2	4	6	7
N296H +GE	4	5	5	4	9	9
(N296H sgRNA)						
A146K	2	2	5	3	7	5
A146K +GA	4	2	4	3	8	5
A146K +GE	5	5	5	6	10	11
(A146K sgRNA)						
A146K +GE	4	3	5	3	9	6
(AAVS1 sgRNA)						

918 Table S8. Number of cells used for CaCC current density measurements.

919

920

*3 replicates were used for R141H/A195V. Replicate #3 for R141H/A195V had n=4 (0 calcium); n=4

922 (4.5 μM calcium)

923

924 **References for Supplemental Tables**

925 Doench, J.G., Fusi, N., Sullender, M., Hedge, M., Vaimberg, E.W., Donovan, K.F., Smith, I., Tothova, Z., Wilen

926 C., Orchard, R., Virgin, H.W., Listgarten, J., and Root, D.E. (2016). Optimized sgRNA design to maximize

927 activity and minimize off-target effects of CRISPR-Cas9. Nat Biotechnol 34(2), 184-191.

928

- 929 Hsu, P.D., Scott, D.A., Weinstein, J.A., Ran, F.A., Konermann, S., Agarwala, V., Li, Y., Fine, E.J., Wu, X.,
- 930 Shalem, O., Cradick, T.J., Marraffini, L.A., Bao, G., and Zhang, F. (2013). DNA targeting specificity of RNA-
- 931 guided Cas9 nucleases. Nat Biotech 31, 827-832.

- 933 Sanjana, N., Shalem, O., and Zhang, F. (2014). Improved vectors and genome-wide libraries for CRISPR
- 934 screening. Nat Methods 11, 783-784.
- 935
- 936 Singh, R., Shen, W., Kuai, D., Martin, J.M., Guo, X.R., Smith, M.A., Perez, E.T., Phillips, M.J., Simonett, J.M.,
- 937 Wallace, K.A., et al. (2013b). iPS cell modeling of Best disease: insights into the pathophysiology of an inherited
- macular degeneration. Hum Mol Genet 22, 593-607.
- 939
- 940 Steyer, B., Bu, Q., Cory, E., Jiang, K., Duong, S., Sinha, D., Steltzer, S., Gamm, D., Chang, Q., and Saha,
- 941 K. (2018). Scarless Genome Editing of Human Pluripotent Stem Cells via Transient Puromycin Selection.
- 942 Stem Cell Reports 10, 642-654.