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Figure 3: Analysis of Neuropixels recording with six spike sorters. (A) Number of units found by each
spike sorter. (B) Network representation of the comparison between multiple sorters: each node is a
unit and edges connect agreed upon units (edge color indicates agreement score). (C) Total number
of units where k out of six sorters agree at a level of at least 0.5. (D) Number of units found and their
agreement levels for each spike sorter.

handle up to 64 channels, WaveClus is designed for probes with a low channel count, and Kilosort is
superseded by Kilosort2.

By quickly comparing the outputs of all six sorters, large discrepancies are immediately apparent.
Figure 3A shows the number of units found by each sorter. While four of the sorters find between 200
and 400 putative units, Tridesclous only identifies 42, and Mountainsort4 almost 600.

Next, we use the compare_multiple_sorters function of the comparison module to explore these
differences in more depth. As explained in Section 3.4, this function builds a weighted graph in which
each node is a unit detected by a sorter and in which each edge is the best-match between a pair
of units from different sorters. The edges are weighted by the respective agreement scores (Eq. 1;
Figure 3B), and only edges with a score of at least 0.5 are kept. Once constructed, this graph can be
interrogated to extract the units agreed upon by different sorters.

Figure 3C shows the overall agreement statistics. Surprisingly, out of a total of 1547 units, 1362 (�88%)
are not matched at all, i.e. they are only found by a single sorter. The number of units found by all
six sorters is just 21 which is only the 1.36% of the total number of units. Panel 3D breaks this result
down for each spike sorter. For HerdingSpikes, Kilosort2, and IronClust, about half of the units are
not matched by any other sorters. For SpykingCircus and Mountainsort4, an overwhelming majority
of their units are not matched to another sorter (�90% for SpykingCircus, �74% for Mountainsort4).
Tridesclous is more conservative, as it finds very few units, but �83% of them are matched by at least
three sorters.

As units with little agreement are potentially noisy or very low-SNR units, we suggest a consensus-based
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strategy for removing them. Using the multiple sorting comparison function, the units in agreement
can automatically be extracted from the output of a sorter. This leads, potentially, to a subset of the
putative units that are well-isolated and suited for downstream analysis. In future work, we plan to
better understand low agreement units and to explore this consensus-based curation method.

5.2 Application 2: Benchmarking Spike Sorters on Simulated Data

In this application, we utilize SpikeInterface to evaluate and benchmark multiple spike sorters on a
simulated, ground-truth dataset. We then illustrate that a popular, unsupervised quality metric for
evaluating sorting outputs, SNR, can be correlated with a spike sorter’s accuracy on the underlying
ground-truth units. To be clear, the main goal of this application is to illustrate the capabilities
of SpikeInterface to perform such comparisons and not to thoroughly analyze and benchmark the
performance of different sorters which may be improved using different parameter sets or dedicated
curation tools.

We use a simulated dataset12 created with the MEArec Python package [16]. The probe is a square
MEA with 100 channels, organized in a 10x10 configuration with an inter-electrode distance of 15µm.
The recording contains spiking activity from 50 neurons (from the Neocortical Micro Circuit Portal
[56, 45]) that exhibit independent Poisson firing patterns. The recording also has an additive Gaussian
noise with 10µV standard deviation. For preprocessing, the recording is bandpass filtered (highpass
cutoff 300 Hz - lowpass cutoff 6000 Hz).

For this analysis, we choose to benchmark the same six sorters as used in Application 1. We use the
GroundTruthStudy class of the comparison module to run and benchmark all the algorithms in a
systematic manner (as described in Section 3.4). Again, we use the default parameters of each sorter
to allow for straightforward comparison.

As the full ground-truth information is available, we are able to thoroughly quantify the performance
of each sorter with a variety of metrics. Figure 4A shows swarm plots of the accuracy, precision, and
recall (these terms are defined in Section 3.4) for each sorter on all 50 ground-truth units. This type
of analysis provides a good first insight into the strengths of each sorter, but does not tell the whole
story. In this analysis, Kilosort2 appears to be the best performing sorter with a mean accuracy of
0.88 and the least variability across each of the metrics.

While assessing the accuracy of each sorter on the ground-truth units is important, it is also critical
to analyze all the units found by the sorters, not just the well-detected ones. Figure 4B shows the
number of well detected, redundant, false positive, and over-merged units for each sorter (these terms
are defined in Section 3.4). From this analysis we can see that although Kilosort2 finds many well-
detected units (43), it also returns a large number of false positive (58), redundant (6), and over-merged
(3) units. Other sorters, in contrast, display a more conservative behavior. IronClust, HerdingSpikes,
and Tridesclous, for example, find fewer well-detected units (30, 26, and 26, respectively), but also
significantly fewer false positives, redundant, and over-merged units. This suggests that there may be a
trade-off between unit isolation and reliability, a factor that has to be taken into account in subsequent
analysis of sorted spike trains.

Additionally, SpikeInterface records the runtime of each sorter (Figure 4C). The spike sorters specifi-
cally designed to deal with high-density probes (HerdingSpikes, Kilosort2, and IronClust), as expected,
have a lower computation time than more general-purpose software (Tridesclous, SpykingCircus, and
Mountainsort4). All spike sorters were run on an Ubuntu 18.04 machine, an Intel(R) Core(TM) i7-8700
CPU 3.20GHz processor, and 64 GB of RAM. Additionally, IronClust and Kilosort2 were run using a

12https://doi.org/10.5281/zenodo.3260283
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Figure 4: Analysis of a simulated ground-truth dataset. (A) Run times for each spike sorter. (B)
Number of well detected, false positive, redundant, and over-merged units for each spike sorter. (C)
Accuracy, precision, and recall for all ground-truth units for each spike sorter. (D) Accuracy on
ground-truth units with respect to the SNR for each spike sorter.

GeForce RTX 2080 Ti GPU.

Finally, performance metrics can be also related to unsupervised quality metrics. In Figure 4D, for
example, we plot the accuracy of each unit with respect to its SNR for each sorter. This plot illustrates
that spike sorters generally are capable of isolating units with strong signals, but may differ in their
ability to separate units with signals closer to the background noise level.
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6 Discussion

We have introduced SpikeInterface, a Python framework designed to consolidate a complex ecosystem
of software tools and file formats and to enhance the accessibility, reliability, and reproducibility
of spike sorting. To highlight the modularity and careful design of SpikeInterface, we provided an
overview of, and code examples for, each of the five main packages (Figure 1). To demonstrate how
SpikeInterface can be used to construct flexible spike sorting workflows, we implemented an example
pipeline (Figure 2A) using both the Python API (Figure 2B) and the spikely GUI (Figure 2C).
Finally, to demonstrate potential applications of SpikeInterface, we evaluated the results of six spike
sorters on both a Neuropixels and a simulated recording.

6.1 Supported File Formats and Spike Sorters

The file formats and spike sorters currently supported by SpikeInterface are summarized in Table 1. We
expect this list to grow in future versions as both spike sorting developers and the general neuroscience
community contribute to the growth of SpikeInterface. In order to facilitate contributions to SpikeIn-
terface, we provide documentation on how to add a RecordingExtractor, a SortingExtractor, or a
spike sorter13 to our framework. At present, several Extractors have already been developed by or in
collaboration with external contributors (SpikeGLX, Neurodata Without Borders, MCS H5, MaxOne,
NIX, and Neuroscope).

Raw File Formats Sorted File Formats Sorters

Klusta Klusta Klusta [61]
Mountainsort (MDA) Mountainsort (MDA) Mountainsort4 [36]
Phy/Kilosort/Kilosort2 [59, 55, 60] Phy/Kilosort/Kilosort2 Kilosort [55]
SpyKING Circus Spyking Circus Kilosort2 [54]
Exdir [22] Exdir SpyKING Circus [74]
MEArec [16] MEArec HerdingSpikes2 [33]
SpikeGLX [37] HerdingSpikes2 Tridesclous [28]
Open Ephys [66] Trideclous IronClust [35]
Intan [2] NPZ (numpy zip) Wave clus [18]
Neurodata Without Borders (NWB) [70] Neurodata Without Borders (NWB)
NIX [5] NeuroScope [6]
MaxOne [3]
MCS H5 [4]
Neuroscope [32]
Biocam HDF5 [1]
Binary

Table 1: In this table, we show SpikeInterface’s currently supported file formats and spike sorting
algorithms. With the help of the neuroscience community, we plan to expand these lists in future
versions.

6.2 Comparison to Other Frameworks

As mentioned in the introduction, many software tools have attempted to improve the accessibility
and reproducibility of spike sorting. Here we review the four most recent tools that are in use (to our

13https://spikeinterface.readthedocs.io/en/latest/contribute.html
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knowledge) and compare them to SpikeInterface.

Nev2lkit [14] is a cross-platform, C++-based GUI designed for the analysis of recordings from multi-
shank multi-electrode arrays (Utah arrays). In this GUI, the spike sorting step consists of PCA for
dimensionality reduction and then klustakwik for automatic clustering [61]. As Nev2lkit targets
low-density probes where each channel is spike sorted separately, it is not suitable for the analysis
of high-density recordings. Also, since it implements only one spike sorter, users cannot utilize any
consensus-based curation or exploration of the data. The software is available online14, but it lacks
version-control and automated testing with continuous integration platforms.

SigMate [44] is a MATLAB-based toolkit built for the analysis of electrophysiological data. SigMate
has a large scope of usage including the analysis of electroencephalograpy (EEG) signals, local field
potentials (LFP), and spike trains. Despite its large scope, or because of it, the spike sorting step in
SigMate is limited to Wave clus [18], which is mainly designed for spike sorting recordings from a
few channels. This means that both major limitations of Nev2lkit (as discussed above) also apply to
SigMate. The software is available online15, but again, it lacks version-control and automated testing
with continuous integration platforms.

Regalia et al. [57] developed a spike sorting framework with an intuitive MATLAB-based GUI. The
spike sorting functionality implemented in this framework includes 4 feature extraction methods, 3
clustering methods, and 1 template matching classifier (O-Sort [63]). These "building blocks" can
be combined to construct new spike sorting pipelines. As this framework targets low-density probes
where signals from separate electrodes are spike sorted separately, its usefulness for newly developed
high-density recording technology is limited. Moreover, this framework only runs with a specific file
format (MCD format from Multi Channel Systems [4]). The software is distributed upon request.

Most recently, Nasiotis et al. [52] implemented IN-Brainstorm, a MATLAB-based GUI designed for
the analysis of invasive neurophysiology data. IN-Brainstorm allows users to run three spike sorting
packages, (Wave clus [18], UltraMegaSort2000 [34], and Kilosort [55]). Recordings can be loaded
and analyzed from six different file formats: Blackrock, Ripple, Plexon, Intan, NWB, and Tucker
Davis Technologies. IN-Brainstorm is available on GitHub16 and its functionality is documented17.
IN-Brainstorm does not include the latest spike sorting software [61, 74, 19, 35, 54, 33], however, and
it does not cover any post-sorting analysis such as validation, curation, and sorting output comparison.

SpikeInterface overcomes all limitations of the aforementioned analysis frameworks by following rigor-
ous design principles. As the scope of SpikeInterface is focused on spike sorting only, we were able to
provide a comprehensive framework that encompasses all the functionality required for spike sorting.
This includes interfacing with a wide range of commonly used file formats for extracellular recordings
and sorting outputs, handling probe file information, pre-processing, spike sorting, post-processing,
validation, curation (automatic or manual with Phy), comparison, and visualization. The modu-
larized and object-oriented design of SpikeInterface enables users to build custom analysis pipelines
using the Python API or the spikely GUI and for the codebase to expand gracefully with community
contributions of new Extractors and spike sorters. Since SpikeInterface is efficient and already im-
plements 9 modern spike sorters, it can be used to analyze large-scale recordings from next-generation
multi-electrode arrays as shown in Section 5. Finally, SpikeInterface allows users to implement repro-
ducible analysis pipelines with careful version control, fixed random seeds, and a standardized API.
All source code is open-source, version-controlled, and tested with a continuous integration platform18.

14http://nev2lkit.sourceforge.net/
15https://sites.google.com/site/muftimahmud/codes
16https://github.com/brainstorm-tools/brainstorm3
17https://neuroimage.usc.edu/brainstorm/e-phys/Introduction
18https://travis-ci.org/
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6.3 Outlook

As it stands, spike sorting is still an open problem. No step in the spike sorting pipeline is completely
solved and no spike sorter can be used for all applications. With SpikeInterface, researchers can
quickly build, run, and evaluate many different spike sorting workflows on their specific datasets
and applications, allowing them to determine which will work best for them. Once a researcher
determines an ideal workflow for their specific problem, it is straightforward to share and re-use that
workflow in other laboratories studying similar problems. We envision that many laboratories will use
SpikeInterface to satisfy their spike sorting needs.

Along with its applications to extracellular analysis, SpikeInterface is also a powerful tool for developers
looking to create new spike sorting algorithms and analysis tools. Developers can test their methods
using our efficient and comprehensive comparison functions. Once satisfied with their performance,
developers can integrate their work into SpikeInterface, allowing them access to a large-community of
new users and providing them with automatic file I/O and software deployment. For developers who
work on projects that use spike sorting, SpikeInterface can be used out-of-the-box, providing more
reliability and functionality then handmade spike sorting scripts. We envision that many developers
will be excited to use and integrate with SpikeInterface.

Already, SpikeInterface is being used in a variety of applications. In one application, SpikeInterface
is being used as the engine of a related project called SpikeForest [43]. SpikeForest is an interactive
website for benchmarking and tracking the accuracy of publicly available spike sorting algorithms. At
present, it includes ten sorting algorithms and more than 300 extracellular recordings with ground-truth
firing information. These recordings include both simulations and paired recordings where ground-
truth is obtained from juxtacellular signals.

Overall, we hope that SpikeInterface can become a standard tool in neuroscience and can help foster
a stronger relationship between spike sorting users and developers. To this end, we are maintaining
an open forum19 that can be a common space for the community to discuss any and all spike-sorting-
related topics. We look forward to sharing and growing SpikeInterface over the years to come.
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