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Abstract

Given the importance of understanding single-neuron activity, much development has been di-
rected towards improving the performance and automation of spike sorting. These developments,
however, introduce new challenges, such as file format incompatibility and reduced interoperability,
that hinder benchmarking and preclude reproducible analysis. To address these limitations, we
developed SpikeInterface, a Python framework designed to unify preexisting spike sorting technolo-
gies into a single codebase and to standardize extracellular data file operations. With a few lines
of code and regardless of the underlying data format, researchers can: run, compare, and bench-
mark most modern spike sorting algorithms; pre-process, post-process, and visualize extracellular
datasets; validate, curate, and export sorting outputs; and more. In this paper, we provide an
overview of SpikeInterface and, with applications to both real and simulated extracellular datasets,
demonstrate how it can improve the accessibility, reliability, and reproducibility of spike sorting
in preparation for the widespread use of large-scale electrophysiology.

1 Introduction

Extracellular recording is an indispensable tool in neuroscience for probing how single neurons (and
populations of neurons) encode and transmit information. When analyzing extracellular recordings,
most researchers are interested in the spiking activity of individual neurons, which must be extracted
from the raw voltage traces through a process called spike sorting. Many laboratories perform spike
sorting using fully manual techniques (e.g. XClust [49], MClust [65], SimpleClust [71], Plexon Offline
Sorter [7]), but such approaches are nearly impossible to standardize due to inherent operator bias
[73]. To alleviate this issue, spike sorting has seen decades of algorithmic and software improvements
to increase both the accuracy and automation of the process [58]. This progress has accelerated in
the past few years as high-density devices [24, 11, 25, 9, 51, 75, 42, 36, 21, 8], capable of recording
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from hundreds to thousands of neurons simultaneously, have made manual intervention impractical,
increasing the demand for both accurate and scalable spike sorting algorithms [61, 55, 40, 19, 74, 33, 35].

Along with these exciting advances, however, come unintended complications. Over the years, dozens
of new file formats have been introduced, a multitude of data processing and evaluation methods have
been developed, and an enormous amount of software, written in a variety of different programming
languages, has been made available for general-use. In an ideal world, standards and best-practices for
spike sorting would naturally arise from using these tools in experimental and clinical settings. How-
ever, due to the high complexity of spike sorting and a lack of interoperability among its corresponding
technologies, no clear standards exist for how it should be performed or evaluated [58, 10, 17]. Further-
more, the importance of publication for career development rewards proof-of-concept breakthroughs
at the expense of long-term maintenance of software tools. The lack of best practices, the scarcity of
well-maintained code, the dearth of rigorous benchmarking, and the high barrier to entry of using a
new spike sorter or file format all contribute to many laboratories either continuing to use manual spike
sorting techniques or arbitrarily settling on one automated algorithm and its corresponding suite of
analysis tools and supported file formats. Reproducibility, data provenance, and data sharing become
increasingly difficult as different laboratories adopt different spike sorting solutions [20].

Recent work to alleviate these issues has focused on tackling file format incompatibilities in electro-
physiology. This has led to progress in creating a common description of neurophysiological data both
with new software tools and file formats [72, 27, 70, 69, 67, 68]. Despite progress in defining a com-
mon standard, many different file formats are still widely used in electrophysiology, with more being
developed continuously [22]. Along with attempts to define common standards, much work has been
put into creating open-source analysis tools that make extracellular analysis and spike sorting more
accessible [23, 15, 32, 26, 30, 12, 41, 13, 53, 39, 44, 14, 57, 76, 52]. These software frameworks, while
valuable tools in electrophysiology, implement spike sorting as a small step in a larger extracellular
analysis pipeline, leading to undersupported, incomplete, and outdated spike sorting functionality.
Given the ever-increasing amount of spike sorting software and file formats, there is an urgent need for
an open-source analysis framework that is up-to-date with modern spike sorting methods, is agnostic
to the underlying file formats of the extracellular datasets, and is extendable to new technologies.

In this paper, we introduce SpikeInterface, the first open-source, Python1 framework designed exclu-
sively to encapsulate all steps in the spike sorting pipeline. SpikeInterface overcomes both file format
incompatibilities and software interoperability in spike sorting with a intuitive application program in-
terface (API), and with a unified, extendable codebase of modern analysis tools. Using SpikeInterface,
researchers can: run, compare, and benchmark most modern spike sorters; pre-process, post-process,
and visualize extracellular datasets; validate, curate, and export sorting outputs; and more. This can
all be done regardless of the underlying data format as SpikeInterface addresses file format compat-
ibility issues within spike sorting pipelines without creating yet another file format. For developers,
SpikeInterface enables easy integration and evaluation of their spike sorting software, allowing for accel-
erated development and a constantly expanding codebase. We also introduce a graphical user interface
(GUI) based on SpikeInterface that allows for straightforward construction of spike sorting pipelines
without any Python programming knowledge. To illustrate the advantages of a unified framework
for spike sorting, we utilize SpikeInterface’s Python API and GUI to build a complex spike sorting
pipeline. We also use SpikeInterface to run, compare, and evaluate six modern spike sorters on both a
sample Neuropixels recording and a simulated, ground-truth recording. With these three use cases, we
demonstrate how SpikeInterface can help alleviate long-standing challenges in spike sorting. To clar-
ify, the main contribution of this work is a novel framework for running and comparing spike sorting
pipelines, not an exhaustive comparison of current spike sorting algorithms. All code for SpikeInterface
is open-source and can be found on GitHub2.

1We utilize Python as it is open-source, free, and increasingly popular in the neuroscience community [50, 29].
2https://github.com/SpikeInterface
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2 Design Principles

SpikeInterface is designed to efficiently encapsulate all aspects of a spike sorting pipeline. To this end,
we apply a set of design principles. These principles inform both the project’s overall structure and
the implementation of specific functionalities.

Focused. SpikeInterface was designed to unify all operations related to the spike sorting of extra-
cellular recordings. Therefore, we did not attempt to incorporate any metadata from the underlying
experiments (stimulus information, behavioral readouts, etc.) as such a task is beyond the scope of
our problem statement. Also, we did not incorporate any analysis steps unrelated to spike sorting and
did not attempt to handle any other electrophysiological data such as intracellular or electroencephalo-
graphic recordings. Keeping this narrow focus makes SpikeInterface light-weight, scalable, easy to use,
and extendable.

Comprehensive. To do justice to years of research and development into spike sorting, we incor-
porated many existing extracellular file formats and the most current, semi-automatic spike sorters
into SpikeInterface. We also incorporated common pre- and post-processing methods, quality metrics,
evaluation and curation tools, and data visualization widgets. The broad range of methods and tech-
nologies that are supported makes SpikeInterface the most expansive spike sorting toolbox currently
available by a wide margin. For an overview of the current file formats and spike sorters that are
supported in SpikeInterface, see Table 1.

Modularized. The SpikeInterface codebase is separated into multiple, distinct modules which encap-
sulate individual processing steps shared across all spike sorting pipelines. In Section 3, we explain
this modularized and conceptualized structure and show how it can be utilized to build robust and
flexible spike sorting workflows. This design also makes SpikeInterface easily extendable, allowing new
formats, methods, and tools to be added rapidly. We encourage the community to contribute to its
further development.

Efficient. As we aim to support the analysis of large-scale extracellular recordings, much considera-
tion has been put into making SpikeInterface as memory- and computation-efficient as possible. For
instance, file input/output (I/O) operations are generally memory-mapped (only the data needed for a
computation are loaded into memory) and processing is parallelized where feasible. We also made sure
that running a spike sorter in our framework adds little to no extra computational cost in comparison
to running the same spike sorter outside of our framework.

Reproducible. Although spike sorting is an essential step in extracellular analysis, it is often difficult
to reproduce due to the variety of complex (and sometimes stochastic) processing steps performed on
the underlying dataset. We designed SpikeInterface to make spike sorting and all associated compu-
tation as reproducible as possible with a unified codebase, fixed random seeds, a standard API, and a
careful version control system. Laboratories using SpikeInterface can share and process extracellular
datasets with a guarantee that they get identical results for the same functions.

3 Overview of SpikeInterface

SpikeInterface consists of five main Python packages designed to handle different aspects of the spike
sorting pipeline: (i) spikeextractors, for extracellular recording, sorting output, and probe file I/O;
(ii) spiketoolkit for low level processing such as pre-processing, post-processing, validation, curation;
(iii) spikesorters for spike sorting algorithms and job launching functionality; (v) spikecomparison
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Figure 1: Overview of SpikeInterface’s Python packages, their different functionalities, and how they
can be accessed by our meta-package, spikeinterface.

for sorter comparison, ground-truth comparison, and ground-truth studies; and (iv) spikewidgets,
for data visualization.

These five packages can be used individually or installed and used together with the spikeinterface
metapackage, which contains stable versions of all five packages as internal modules (see Figure 1).
With these five packages (or our meta-package), users can build, run, and evaluate full spike sorting
pipelines in a reproducible and standardized way. In the following subsections, we present an overview
of, and a code snippet for, each main package.

3.1 SpikeExtractors

The spikeextractors package3 is designed to solve issues of file format incompatibility within spike
sorting without creating yet another file format. This goal is met by standardizing data retrieval
rather than data storage. By standardizing access to data from all spike sorting related files, whether
extracellular recordings or sorting outputs, we eliminate the need for shared file formats and can
allow for new tools and packages to directly interface with our framework instead. We distinguish
between three data files in spike sorting: the extracellular recording, the sorting output, and the probe
configuration. Being able to efficiently and easily interface with these three data file types is essential
for running and evaluating any spike sorting pipeline. To this end, we developed two Python objects
that can provide all the functionality required to access these data: the RecordingExtractor and the
SortingExtractor.

The RecordingExtractor directly interfaces with an extracellular recording and can query it for four
primary pieces of information: (i) the extracellular recorded traces; (ii) the sampling frequency; (iii) the
number of frames, or duration, of the recording; and (iv) the channel indices of the recording electrodes.
These data are shared across all extracellular recordings, allowing standardized access. In addition, a
RecordingExtractor may store extra information about the recording device as "channel properties"
which are key–value pairs. This includes properties such as "location", "group", and "gain" which are
either provided by certain extracellular file formats, loaded manually by the user, or loaded automati-
cally with our built-in probe file (.prb or .csv) reader. Taken together, the RecordingExtractor is an
object representation of an extracellular recording and the associated probe configuration.

The SortingExtractor directly interfaces with a sorting output and can query it for two primary pieces
of information: (i) the unit indices; and (ii) the spike train of each unit. Again, these data are shared
across all sorting outputs. A SortingExtractor may also store extra information about the sorting

3https://github.com/SpikeInterface/spikeextractors
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output as either "unit properties" or "unit spike features", key–value pairs which store information
about the individual units or the individual spikes of each unit, respectively. This extra information
is either loaded from the sorting output, loaded manually by the user, or loaded automatically with
built-in post-processing tools (discussed in Section 3.2). In sum, the SortingExtractor is an object
representation of a sorting output along with any associated post-processing.

Critically, Extractors only query the underlying datasets for information as it is required, reducing
their memory footprint and allowing their use for long, large-scale recordings. All extracted data is
converted into either native Python data structures or into numpy arrays for immediate use in Python.

The following code snippet illustrates how to return a 2D numpy array of raw data (channels×time)
from an extracellular recording and a list of unit indices from a sorting output:

import spikeinterface.extractors as se
recording = se.MyFormatRecordingExtractor(file_path='myrecording')
sorting = se.MyFormatSortingExtractor(file_path='mysorting')
traces = recording.get_traces()
unit_ids = sorting.get_unit_ids()

Along with using Extractors for single files, it is possible to access data from multiple files or portions
of files with the MultiExtractors and SubExtractors, respectively. Both have identical functionality
to normal Extractors and can be used and treated in the same ways, simplifying, for instance, the
combined analysis of a recording split into multiple files.

As of this moment, we support 15 extracellular recording formats, 11 sorting output formats, and 2
probe file formats. Although this covers many popular formats in extracellular analysis, we expect
this number to grow with future versions as supporting a new format is as simple as making a new
Extractor subclass for it. Also, we plan to integrate Neo’s [27] I/O system into spikeextractors
which would allow our framework to support many more open-source and proprietary file formats in
extracellular electrophysiology without changing any functionality.

3.2 SpikeToolkit

The spiketoolkit package4 is designed for efficient pre-processing, post-processing, validation, and
curation of extracellular datasets and sorting outputs. It contains four modules that encapsulate each
of these functionalities: preprocessing, postprocessing, validation, and curation.

3.2.1 Pre-processing

The preprocessing module provides functions to process raw extracellular recordings before spike
sorting. To pre-process an extracellular recording, the user passes a RecordingExtractor to a pre-
processing function which returns a new "processed" RecordingExtractor. This new RecordingExtractor,
which can be used in exactly the same way as the original extractor, implements the processing in
a lazy fashion so that the actual computation is performed only when data is requested. As all pre-
processing functions take in and return a RecordingExtractor, they can be naturally chained together
to perform multiple pre-processing steps on the same recording.

4https://github.com/SpikeInterface/spiketoolkit
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Pre-processing functions range from commonly used operations, such as bandpass filtering, notch filter-
ing, re-referencing signals, and removing channels, to more advanced procedures such as clipping traces
depending on the amplitude, or removing artifacts arising, for example, from electrical stimulation.

The following code snippet illustrates how to chain together a few common pre-processing functions
to process a raw extracellular recording:

import spikeinterface.spiketoolkit as st
recording = st.preprocessing.bandpass_filter(recording, freq_min=300, freq_max=6000)
recording_1 = st.preprocessing.remove_bad_channels(recording, bad_channels=[5])
recording_2 = st.preprocessing.common_reference(recording_1, reference='median')

In this code snippet, recording_2 is still a RecordingExtractor. However, the extracted data when
using recording_2 will have channel 5 removed and the underlying extracellular traces bandpass
filtered and common median referenced to remove noise.

Overall, the pre-processing functions in SpikeInterface represent a wide range of tools that are used in
modern spike sorting applications and, since implementing a new pre-processor is straightforward, we
expect more to be added in future versions.

3.2.2 Post-processing

The postprocessing module provides functions to compute and store information about an extracel-
lular recording given an associated sorting output. As such, post-processing functions are designed to
take in both a RecordingExtractor and a SortingExtractor, using them in conjunction to compute
the desired information. These functions include, but are not limited to: extracting unit waveforms
and templates, as well as computing principle component analysis projections.

One essential feature of the postprocessing module is that it provides the functionality to export
a RecordingExtractor/SortingExtractor pair into the Phy format for manual curation later. Phy
[59, 61] is a popular manual curation GUI that allows users to visualize a sorting output with several
views and to curate the results by manually merging or splitting clusters. Phy is already supported
by several spike sorters (including klusta, Kilosort, Kilosort2, and SpyKING-CIRCUS) so our ex-
porter function extends Phy’s functionality to all SpikeInterface-supported spike sorters. After man-
ual curation is performed in Phy, the curated data can be re-imported into SpikeInterface using the
PhySortingExtractor for further analysis.

The following code snippet illustrates how to retrieve waveforms for each sorted unit, compute principal
component analysis (PCA) features for each spike, and export to Phy using SpikeInterface:

import spikeinterface.toolkit as st
waveforms = st.postprocessing.get_unit_waveforms(recording, sorting)
pca_scores = st.postprocessing.compute_unit_pca_scores(recording, sorting, n_comp=3)
st.postprocessing.export_to_phy(recording, sorting_MS4, output_folder='phy_folder')

3.2.3 Validation

The validation module allows users to automatically evaluate spike sorting results in the absence of
ground truth with a variety of quality metrics. The quality metrics currently available are a compilation
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of historical and modern approaches that were re-implemented by researchers at Allen Institute for
Brain Science5 and by the SpikeInterface team. All quality metrics can be computed for the entire
duration of the recording or for specific time periods (epochs) specified by the user.

The quality metrics that have been implemented so far include:

• spike count: the total spike count for a sorted unit.

• SNR: the signal-to-noise ratio (SNR) of the sorted units.

• firing rate: the average firing rate in a time period.

• presence ratio: the fraction of a time period in which spikes are present.

• ISI violations: the rate of inter-spike-interval (ISI) refractory period violations

• amplitude cutoff: an estimate of the miss rate based on an amplitude histogram.

• isolation distance: the Mahalanobis distance from a specified unit within as many spikes belong
to the specified unit as to other units [31].

• L-ratio: the Mahalanobis distance and χ2 inverse cumulative density function (under the as-
sumption that the spikes in the unit distribute normally in each dimension) are used to find the
probability of unit membership for each spike [64].

• d′: the classification accuracy between units based on linear discriminant analysis (LDA) [34].

• nearest-neighbors: a non-parametric estimate of unit contamination using nearest-neighbor clas-
sification [19].

• silhouette score: a standard metric for quantifying cluster overlap [62].

• maximum drift: the maximum change in spike position throughout a recording.

• cumulative drift: The cumulative change in spike position throughout a recording.

To compute quality metrics with SpikeInterface, the user can instantiate and use a MetricCalculator
object. The MetricCalculator utilizes a RecordingExtractor/SortingExtractor pair to generate
and cache all data needed to run the quality metrics (amplitudes, principal components, etc.) and
also to calculate any (or all) of the quality metrics. We also allow for quality metrics to be computed
with a functional interface. All quality metric function calls internally utilize a MetricCalculator,
concealing the object representation from the user.

The following code snippet demonstrates how to compute a single quality metric (SNR) and all quality
metrics with two function calls:

import spikeinterface.toolkit as st
snr_metric = st.validation.compute_snrs(sorting, recording)
all_metrics = st.validation.compute_metrics(sorting, recording)

5https://github.com/AllenInstitute/ecephys_spike_sorting
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3.2.4 Curation

The curation module allows users to quickly remove units from a SortingExtractor based on com-
puted quality metrics. To curate a sorted dataset, the user passes a SortingExtractor to a curation
function which returns a new "curated" SortingExtractor (similar to how pre-processing works).
This new SortingExtractor can be used in exactly the same way as the original extractor. As all
curation functions take in and return a SortingExtractor, they can be naturally chained together to
perform multiple curation steps on the same sorting output.

Currently, all implemented curation functions are based on excluding units given a threshold that is
specified by the user (we provide sensible default values). If passed a MetricCalculator, curation func-
tions will threshold units based on the cached quality metrics that are stored in the MetricCalculator.
Otherwise, curation functions will recompute the associated quality metric and then threshold the
dataset accordingly.

The following code snippet demonstrates how to chain together two curation functions that are based
on different quality metrics and apply a "less than" threshold to the underlying units:

import spikeinterface.toolkit as st
sorting = st.curation.threshold_firing_rate(sorting, threshold=2.3,

threshold_sign='less')
sorting_1 = st.curation.threshold_snr(sorting, recording, threshold=10,

threshold_sign='less')

In this code snippet, sorting_1 is still a SortingExtractor. However, when queried about the
underlying units, sorting_1 will return only the units that had firing rates higher than 2.3 Hz and
SNRs greater than 10.

As of this moment, we support thresholding of all basic quality metrics including: spike count; SNR;
firing rate; presence ratio; and ISI violations. We plan to include curation tools for all implemented
quality metrics and for more complicated curation steps (merging, splitting, etc.) in future versions.

3.3 SpikeSorters

The spikesorters6 package provides a straightforward interface for running spike sorting algorithms
supported by SpikeInterface. Modern spike sorting algorithms are built and deployed in a variety
of programming languages including C, C++, MATLAB, and Python. Along with variability in the
the underlying program language, each sorting algorithm may depend on external technologies like
CUDA or command line interfaces (CLIs), complicating standardization. To unify these disparate
algorithms into a single codebase, spikesorters provides Python-wrappers for each supported spike
sorting algorithm. These spike sorting wrappers use a standard API for running the corresponding
algorithms, internally handling intrinsic complexities such as automatic code generation for MATLAB-
and CLI-based algorithms.

To allow for a simple, overarching API despite inherent differences between the sorting algorithms,
each sorting wrapper is implemented as a subclass of a BaseSorter class. To run a spike sorting
algorithm in SpikeInterface, the user passes a RecordingExtractor object to the wrapper and sets
parameters for the underlying algorithm. Internally, each spike sorter wrapper creates and modifies
the configuration based on these user-defined parameters and then runs the sorter on the dataset

6https://github.com/SpikeInterface/spikesorters
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encapsulated by the RecordingExtractor. Once the spike sorting algorithm is finished, the sorting
output is saved and a corresponding SortingExtractor is returned for the user. Spike sorters can be
invoked either by using the wrapper directly or by using a simple function call.

In the following code snippet, Mountainsort4 and Kilosort2 are used to sort an extracellular recording.
Running each algorithm (and setting its associated parameters) can be done using a single function:

import spikeinterface.sorters as ss
sorting_MS4 = ss.run_mountainsort4(recording, adjacency_radius=50)
sorting_KS2 = ss.run_kilosort2(recording, detect_threshold=5)

Along with running each sorting algorithm normally, our spike sorting wrappers allow for users to sort
specific "groups" of channels in the recording separately (and in parallel, if specified). This can be very
useful for multiple tetrode recordings where the data are all stored in one file, but the user wants to
sort each tetrode separately. For large-scale analyses where the user wants to run many different spike
sorters on many different datasets, spikesorters also provides a launcher function which handles
any internal complications associated with running multiple sorters and returns a nested dictionary of
SortingExtractors corresponding to each sorting output.

Currently, SpikeInterface supports 9 semi-automated spike sorters which are listed in Table 1. We
encourage developers to contribute to this expanding list in future versions. We provide comprehensive
documentation on how to do so7.

3.4 SpikeComparison

The spikecomparison package8 provides a variety of tools that allow users to compare and benchmark
sorting outputs. Along with these comparison tools, spikecomparison also provides the functional-
ity to run systematic performance comparisons of multiple spike sorters on multiple ground-truth
recordings.

Within spikecomparison, there exist three core comparison functions:

1. compare_two_sorters - Compares two sorting outputs.

2. compare_multiple_sorters - Compares multiple sorting outputs.

3. compare_sorter_with_ground_truth - Compares a sorting output to ground truth.

Each of these comparison functions takes in multiple SortingExtractors and uses them to compute
agreement scores among the underlying spike trains. The agreement score between two spike trains is
defined as:

score =
#nmatches

#n1 +#n2 −#nmatches
(1)

where #nmatches is the number of "matched" spikes between the two spike trains and #n1 and #n2
are the number of spikes in the first and second spike train, respectively. Two spikes from two different

7https://spikeinterface.readthedocs.io/en/latest/contribute.html
8https://github.com/SpikeInterface/spikecomparison
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spike trains are "matched" when they occur within a certain time window of each other (this window
length can be adjusted by the user and is 0.4 ms by default).

When comparing two sorting outputs (compare_two_sorters), a linear assignment based on the Hun-
garian method [38] is used. With this assignment method, each unit from the first sorting output can
be matched to at most one other unit in the second sorting output. The final result of this comparison
is then the list of matching units (given by the Hungarian method) and the agreement scores of the
spike trains.

The multi-sorting comparison function (compare_multiple_sorters) can be used to compute the
agreement among the units of many sorting outputs at once. Internally, pair-wise sorter comparisons
are run for all of the sorting output pairs. A graph is then built with the sorted units as nodes
and the agreement scores among the sorted units as edges. With this graph implementation, it is
straightforward to query for units that are in agreement among multiple sorters. For example, if three
sorting outputs are being compared, any units that are in agreement among all three sorters will be
part of a subgraph with large weights.

For a ground-truth comparison (compare_sorter_with_ground_truth), either the Hungarian or the
best-match method can be used. With the Hungarian method, each tested unit from the sorting output
is matched to at most a single ground-truth unit. With the best-match method, a tested unit from
the sorting output can be matched to multiple ground-truth units (above an adjustable agreement
threshold) allowing for more in-depth characterizations of sorting failures.

Additionally, when comparing a sorting output to a ground-truth sorted result, each spike can be
optionally labeled as:

• true positive (tp): spike found both in the ground-truth spike train and tested spike train.

• false negative (fn): spike found in the ground-truth spike train, but not in the tested spike train.

• false positive (fp): spike found in the tested spike train, but not in the ground-truth spike train.

Using these labels, the following performance measures are computed:

• accuracy: #tp
(#tp+#fn+#fp)

• recall: #tp
(#tp+#fn)

• precision: #tp
(#tp+#fn)

• miss rate: #fn
(#tp+#fn)

• false discovery rate: #fp
(#tp+#fp)

Based on the matching results and the scores, the units of the sorting output are classified as well-
detected, false positive, redundant, and over-merged. Well-detected units are matched units with an
agreement score above 0.8. False positive units are unmatched units or units which are matched
with an agreement score below 0.2. Redundant units have agreement scores above 0.2 with only one
ground-truth unit, but are not the best matched tested units (redundant units can either be oversplit or
duplicate units). Over-merged units have an agreement score above 0.2 with two or more ground-truth
units. All threshold scores are adjustable by the user.
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The following code snippet shows how to perform all three types of spike sorter comparisons:

import spikeinterface.comparison as sc
comp_type_1 = sc.compare_two_sorters(sorting1, sorting2)
comp_type_2 = sc.compare_multiple_sorters([sorting1, sorting2, sorting3])
comp_type_3 = sc.compare_sorter_with_ground_truth(gt_sorting, tested_sorting)

Along with the three comparison functions, spikecomparison also includes a GroundTruthStudy class
that allows for the systematic comparison of multiple spike sorters on multiple ground-truth datasets.
With this class, users can set up a study folder (in which the recordings to be tested are saved),
run several spike sorters and store their results in a compact way, perform systematic ground-truth
comparisons, and aggregate the results in pandas dataframes [48]. An example ground-truth study is
shown in Section 5.2.

3.5 SpikeWidgets

The spikewidgets package9 implements a variety of widgets that allow for efficient visualization of
different elements in a spike sorting pipeline.

There exist four categories of widgets in spikewidgets. The first one only needs a RecordingExtractor
for its visualization. This category includes widgets for time series, electrode geometry, signal spectra,
and spectrograms. The second category only needs a SortingExtractor for its visualization. These
widgets include displays for raster plots, auto-correlograms, cross-correlograms, and inter-spike-interval
distributions. The third category utilizes both a RecordingExtractor and a SortingExtractor for
its visualization. These widgets include visualizations of unit waveforms, amplitude distributions for
each unit, amplitudes of each unit over time, and PCA features. The fourth, and final, category needs
comparison objects from the spikecomparison package for its visualization. These widgets allow the
user to visualize confusion matrices, agreement scores, spike sorting performance metrics (e.g. accu-
racy, precision, recall) with respect to a unit property (e.g. SNR), and the agreement between multiple
sorting algorithms on the same dataset.

The following code snippet demonstrates how SpikeInterface can be used to visualize ten seconds of
both the extracellular traces and the corresponding raster plot:

import spikeinterface.widgets as sw
sw.plot_timeseries(recording, channel_ids=[0,1,2,3], trange=[0,10])
sw.plot_rasters(sorting, unit_ids=[0,1,3], trange=[0,10])

The widget class is easily extendable, and will likely grow rapidly as new visualization tools are added.
We also plan to introduce interactive widgets that allow the user to quickly explore the underlying
elements of a spike sorting pipeline.

4 Building a Spike Sorting Pipeline

So far, we have given an overview of each of the main packages in isolation. In this section, we illustrate
how these packages can be combined, using both the Python API and the Spikely GUI, to build a

9https://github.com/SpikeInterface/spikewidgets
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robust spike sorting pipeline. The spike sorting pipeline that we construct using SpikeInterface is
depicted in Figure 2A and consists of the following analysis steps:

1. Loading an Open Ephys recording [66].

2. Loading a probe file.

3. Applying a bandpass filter.

4. Applying common median referencing to reduce the common mode noise.

5. Spike sorting with Mountainsort4.

6. Removing clusters with less than 100 events.

7. Exporting the results to Phy for manual curation.

Traditionally, implementing this pipeline is challenging as the user has to load data from multiple
file formats, interface with a probe file, memory-map all the processing functions, prepare the correct
inputs for Mountainsort4, and understand how to export the results into Phy. Even if the user manages
to implement all of the analysis steps on their own, it is difficult to verify their correctness or reuse
them without proper unit testing and code reviewing.

4.1 Using the Python API

Using SpikeInterface’s Python API to build the pipeline shown in Figure 2A is straightforward. Each
of the seven steps is implemented with a single line of code (as shown in Figure 2B). Additionally, data
visualizations can be added for each step of the pipeline using the appropriate widgets (as described
in Section 3.5). Unlike handmade scripts, SpikeInterface has a wide range of unit tests and has been
carefully developed by a team of researchers. Users, therefore, can have increased confidence that the
pipelines they create are correct and reusable.

4.2 Using the spikely GUI

Along with our Python API, we also developed spikely10, a PyQt-based GUI that allows for simple
construction of complex spike sorting pipelines. With spikely, users can build workflows that include:
(i) loading a recording and a probe file; (ii) performing pre-processing on the underlying recording with
multiple processing steps; (iii) running any spike sorter supported by SpikeInterface on the processed
recording; (iv) automatically curating the sorter’s output; and (v) exporting the final result to a variety
of file formats, including Phy. At its core, spikely utilizes SpikeInterface’s Python API to run any
constructed spike sorting workflow. This ensures that the functionality of spikely grows organically
with that of SpikeInterface.

Figure 2C shows a screenshot from spikely where the pipeline in Figure 2A is constructed. Each
stage of the pipeline is added using drop-down lists, and all the parameters (which were not left at
their default values) are set in the right-hand panel. Once a pipeline is constructed in spikely, the
user can save it using the built-in save functionality and then load it back into spikely at a later
date. Since spikely is cross-platform and user-friendly, we believe it can be utilized to increase the
accessibility and reproducibility of spike sorting.

10https://github.com/SpikeInterface/spikely
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Figure 2: Sample spike sorting pipeline using SpikeInterface. (A) A diagram of a sample spike sorting
pipeline. Each processing step is colored to represent the SpikeInterface package in which it is imple-
mented and the dashed, colored arrows demonstrate how the Extractors are used in each processing
step. (B) How to use the Python API to build the pipeline shown in (A). (C) How to use the GUI to
build the pipeline shown in (A).

5 Applications

We present two applications of the SpikeInterface framework in this section. In Application 1, we
sort a Neuropixels dataset with six popular spike sorters. After sorting, we quantify and visualize the
agreement among the spike sorters. In Application 2, we sort a simulated, ground-truth dataset with
the same six spike sorters. Afterwards, we systematically evaluate and visualize the performance of
each sorter (based on their default parameters). These applications demonstrate the advantages of
using SpikeInterface for spike sorting analysis and highlight unsolved issues in the field. All analysis
is done with PyPI version 0.9.0 of spikeinterface.

5.1 Application 1: Comparing Spike Sorters on Neuropixels Data

In this application, we utilize SpikeInterface to sort a dense in vivo recording with many different spike
sorters. After sorting and without ground-truth information, we use SpikeInterface to assess the level
of agreement between spike sorters.

The dataset we use in this application is a recording from a rat cortex using the Neuropixels probe
([47, 46] – recording c1). It has a duration of 270 seconds, 384 channels, and a sampling frequency of
30 kHz. The raw data are first pre-processed with a bandpass filter (highpass cutoff 300 Hz - lowpass
cutoff 6000 Hz) and are subsequently pre-processed with a common median reference filter.

For this analysis, we choose to run six different spike sorters: HerdingSpikes2 [33], Kilosort2 [54], Iron-
Clust [35], SpykingCircus [74], Tridesclous [28], and Mountainsort4 [19]11. As each of these algorithms
are semi-automatic, we fix their parameters to default values to allow for straightforward comparison.
We do not include Klusta [61], WaveClus [18], and Kilosort [55] in this analysis as Klusta can only

11The versions for each spike sorter are as follows: SpykingCircus==0.8.2, Tridesclous==1.2.2, Mountainsort4==0.3.2,
HerdingSpikes2==0.3.2, IronClust==4.8.8, Kilosort2==GitHub commit 2a39926.
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Figure 3: Analysis of Neuropixels recording with six spike sorters. (A) Number of units found by each
spike sorter. (B) Network representation of the comparison between multiple sorters: each node is a
unit and edges connect agreed upon units (edge color indicates agreement score). (C) Total number
of units where k out of six sorters agree at a level of at least 0.5. (D) Number of units found and their
agreement levels for each spike sorter.

handle up to 64 channels, WaveClus is designed for probes with a low channel count, and Kilosort is
superseded by Kilosort2.

By quickly comparing the outputs of all six sorters, large discrepancies are immediately apparent.
Figure 3A shows the number of units found by each sorter. While four of the sorters find between 200
and 400 putative units, Tridesclous only identifies 42, and Mountainsort4 almost 600.

Next, we use the compare_multiple_sorters function of the comparison module to explore these
differences in more depth. As explained in Section 3.4, this function builds a weighted graph in which
each node is a unit detected by a sorter and in which each edge is the best-match between a pair
of units from different sorters. The edges are weighted by the respective agreement scores (Eq. 1;
Figure 3B), and only edges with a score of at least 0.5 are kept. Once constructed, this graph can be
interrogated to extract the units agreed upon by different sorters.

Figure 3C shows the overall agreement statistics. Surprisingly, out of a total of 1547 units, 1362 (∼88%)
are not matched at all, i.e. they are only found by a single sorter. The number of units found by all
six sorters is just 21 which is only the 1.36% of the total number of units. Panel 3D breaks this result
down for each spike sorter. For HerdingSpikes, Kilosort2, and IronClust, about half of the units are
not matched by any other sorters. For SpykingCircus and Mountainsort4, an overwhelming majority
of their units are not matched to another sorter (∼90% for SpykingCircus, ∼74% for Mountainsort4).
Tridesclous is more conservative, as it finds very few units, but ∼83% of them are matched by at least
three sorters.

As units with little agreement are potentially noisy or very low-SNR units, we suggest a consensus-based
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strategy for removing them. Using the multiple sorting comparison function, the units in agreement
can automatically be extracted from the output of a sorter. This leads, potentially, to a subset of the
putative units that are well-isolated and suited for downstream analysis. In future work, we plan to
better understand low agreement units and to explore this consensus-based curation method.

5.2 Application 2: Benchmarking Spike Sorters on Simulated Data

In this application, we utilize SpikeInterface to evaluate and benchmark multiple spike sorters on a
simulated, ground-truth dataset. We then illustrate that a popular, unsupervised quality metric for
evaluating sorting outputs, SNR, can be correlated with a spike sorter’s accuracy on the underlying
ground-truth units. To be clear, the main goal of this application is to illustrate the capabilities
of SpikeInterface to perform such comparisons and not to thoroughly analyze and benchmark the
performance of different sorters which may be improved using different parameter sets or dedicated
curation tools.

We use a simulated dataset12 created with the MEArec Python package [16]. The probe is a square
MEA with 100 channels, organized in a 10x10 configuration with an inter-electrode distance of 15µm.
The recording contains spiking activity from 50 neurons (from the Neocortical Micro Circuit Portal
[56, 45]) that exhibit independent Poisson firing patterns. The recording also has an additive Gaussian
noise with 10µV standard deviation. For preprocessing, the recording is bandpass filtered (highpass
cutoff 300 Hz - lowpass cutoff 6000 Hz).

For this analysis, we choose to benchmark the same six sorters as used in Application 1. We use the
GroundTruthStudy class of the comparison module to run and benchmark all the algorithms in a
systematic manner (as described in Section 3.4). Again, we use the default parameters of each sorter
to allow for straightforward comparison.

As the full ground-truth information is available, we are able to thoroughly quantify the performance
of each sorter with a variety of metrics. Figure 4A shows swarm plots of the accuracy, precision, and
recall (these terms are defined in Section 3.4) for each sorter on all 50 ground-truth units. This type
of analysis provides a good first insight into the strengths of each sorter, but does not tell the whole
story. In this analysis, Kilosort2 appears to be the best performing sorter with a mean accuracy of
0.88 and the least variability across each of the metrics.

While assessing the accuracy of each sorter on the ground-truth units is important, it is also critical
to analyze all the units found by the sorters, not just the well-detected ones. Figure 4B shows the
number of well detected, redundant, false positive, and over-merged units for each sorter (these terms
are defined in Section 3.4). From this analysis we can see that although Kilosort2 finds many well-
detected units (43), it also returns a large number of false positive (58), redundant (6), and over-merged
(3) units. Other sorters, in contrast, display a more conservative behavior. IronClust, HerdingSpikes,
and Tridesclous, for example, find fewer well-detected units (30, 26, and 26, respectively), but also
significantly fewer false positives, redundant, and over-merged units. This suggests that there may be a
trade-off between unit isolation and reliability, a factor that has to be taken into account in subsequent
analysis of sorted spike trains.

Additionally, SpikeInterface records the runtime of each sorter (Figure 4C). The spike sorters specifi-
cally designed to deal with high-density probes (HerdingSpikes, Kilosort2, and IronClust), as expected,
have a lower computation time than more general-purpose software (Tridesclous, SpykingCircus, and
Mountainsort4). All spike sorters were run on an Ubuntu 18.04 machine, an Intel(R) Core(TM) i7-8700
CPU 3.20GHz processor, and 64 GB of RAM. Additionally, IronClust and Kilosort2 were run using a

12https://doi.org/10.5281/zenodo.3260283
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Figure 4: Analysis of a simulated ground-truth dataset. (A) Run times for each spike sorter. (B)
Number of well detected, false positive, redundant, and over-merged units for each spike sorter. (C)
Accuracy, precision, and recall for all ground-truth units for each spike sorter. (D) Accuracy on
ground-truth units with respect to the SNR for each spike sorter.

GeForce RTX 2080 Ti GPU.

Finally, performance metrics can be also related to unsupervised quality metrics. In Figure 4D, for
example, we plot the accuracy of each unit with respect to its SNR for each sorter. This plot illustrates
that spike sorters generally are capable of isolating units with strong signals, but may differ in their
ability to separate units with signals closer to the background noise level.
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6 Discussion

We have introduced SpikeInterface, a Python framework designed to consolidate a complex ecosystem
of software tools and file formats and to enhance the accessibility, reliability, and reproducibility
of spike sorting. To highlight the modularity and careful design of SpikeInterface, we provided an
overview of, and code examples for, each of the five main packages (Figure 1). To demonstrate how
SpikeInterface can be used to construct flexible spike sorting workflows, we implemented an example
pipeline (Figure 2A) using both the Python API (Figure 2B) and the spikely GUI (Figure 2C).
Finally, to demonstrate potential applications of SpikeInterface, we evaluated the results of six spike
sorters on both a Neuropixels and a simulated recording.

6.1 Supported File Formats and Spike Sorters

The file formats and spike sorters currently supported by SpikeInterface are summarized in Table 1. We
expect this list to grow in future versions as both spike sorting developers and the general neuroscience
community contribute to the growth of SpikeInterface. In order to facilitate contributions to SpikeIn-
terface, we provide documentation on how to add a RecordingExtractor, a SortingExtractor, or a
spike sorter13 to our framework. At present, several Extractors have already been developed by or in
collaboration with external contributors (SpikeGLX, Neurodata Without Borders, MCS H5, MaxOne,
NIX, and Neuroscope).

Raw File Formats Sorted File Formats Sorters

Klusta Klusta Klusta [61]
Mountainsort (MDA) Mountainsort (MDA) Mountainsort4 [36]
Phy/Kilosort/Kilosort2 [59, 55, 60] Phy/Kilosort/Kilosort2 Kilosort [55]
SpyKING Circus Spyking Circus Kilosort2 [54]
Exdir [22] Exdir SpyKING Circus [74]
MEArec [16] MEArec HerdingSpikes2 [33]
SpikeGLX [37] HerdingSpikes2 Tridesclous [28]
Open Ephys [66] Trideclous IronClust [35]
Intan [2] NPZ (numpy zip) Wave clus [18]
Neurodata Without Borders (NWB) [70] Neurodata Without Borders (NWB)
NIX [5] NeuroScope [6]
MaxOne [3]
MCS H5 [4]
Neuroscope [32]
Biocam HDF5 [1]
Binary

Table 1: In this table, we show SpikeInterface’s currently supported file formats and spike sorting
algorithms. With the help of the neuroscience community, we plan to expand these lists in future
versions.

6.2 Comparison to Other Frameworks

As mentioned in the introduction, many software tools have attempted to improve the accessibility
and reproducibility of spike sorting. Here we review the four most recent tools that are in use (to our

13https://spikeinterface.readthedocs.io/en/latest/contribute.html
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knowledge) and compare them to SpikeInterface.

Nev2lkit [14] is a cross-platform, C++-based GUI designed for the analysis of recordings from multi-
shank multi-electrode arrays (Utah arrays). In this GUI, the spike sorting step consists of PCA for
dimensionality reduction and then klustakwik for automatic clustering [61]. As Nev2lkit targets
low-density probes where each channel is spike sorted separately, it is not suitable for the analysis
of high-density recordings. Also, since it implements only one spike sorter, users cannot utilize any
consensus-based curation or exploration of the data. The software is available online14, but it lacks
version-control and automated testing with continuous integration platforms.

SigMate [44] is a MATLAB-based toolkit built for the analysis of electrophysiological data. SigMate
has a large scope of usage including the analysis of electroencephalograpy (EEG) signals, local field
potentials (LFP), and spike trains. Despite its large scope, or because of it, the spike sorting step in
SigMate is limited to Wave clus [18], which is mainly designed for spike sorting recordings from a
few channels. This means that both major limitations of Nev2lkit (as discussed above) also apply to
SigMate. The software is available online15, but again, it lacks version-control and automated testing
with continuous integration platforms.

Regalia et al. [57] developed a spike sorting framework with an intuitive MATLAB-based GUI. The
spike sorting functionality implemented in this framework includes 4 feature extraction methods, 3
clustering methods, and 1 template matching classifier (O-Sort [63]). These "building blocks" can
be combined to construct new spike sorting pipelines. As this framework targets low-density probes
where signals from separate electrodes are spike sorted separately, its usefulness for newly developed
high-density recording technology is limited. Moreover, this framework only runs with a specific file
format (MCD format from Multi Channel Systems [4]). The software is distributed upon request.

Most recently, Nasiotis et al. [52] implemented IN-Brainstorm, a MATLAB-based GUI designed for
the analysis of invasive neurophysiology data. IN-Brainstorm allows users to run three spike sorting
packages, (Wave clus [18], UltraMegaSort2000 [34], and Kilosort [55]). Recordings can be loaded
and analyzed from six different file formats: Blackrock, Ripple, Plexon, Intan, NWB, and Tucker
Davis Technologies. IN-Brainstorm is available on GitHub16 and its functionality is documented17.
IN-Brainstorm does not include the latest spike sorting software [61, 74, 19, 35, 54, 33], however, and
it does not cover any post-sorting analysis such as validation, curation, and sorting output comparison.

SpikeInterface overcomes all limitations of the aforementioned analysis frameworks by following rigor-
ous design principles. As the scope of SpikeInterface is focused on spike sorting only, we were able to
provide a comprehensive framework that encompasses all the functionality required for spike sorting.
This includes interfacing with a wide range of commonly used file formats for extracellular recordings
and sorting outputs, handling probe file information, pre-processing, spike sorting, post-processing,
validation, curation (automatic or manual with Phy), comparison, and visualization. The modu-
larized and object-oriented design of SpikeInterface enables users to build custom analysis pipelines
using the Python API or the spikely GUI and for the codebase to expand gracefully with community
contributions of new Extractors and spike sorters. Since SpikeInterface is efficient and already im-
plements 9 modern spike sorters, it can be used to analyze large-scale recordings from next-generation
multi-electrode arrays as shown in Section 5. Finally, SpikeInterface allows users to implement repro-
ducible analysis pipelines with careful version control, fixed random seeds, and a standardized API.
All source code is open-source, version-controlled, and tested with a continuous integration platform18.

14http://nev2lkit.sourceforge.net/
15https://sites.google.com/site/muftimahmud/codes
16https://github.com/brainstorm-tools/brainstorm3
17https://neuroimage.usc.edu/brainstorm/e-phys/Introduction
18https://travis-ci.org/
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6.3 Outlook

As it stands, spike sorting is still an open problem. No step in the spike sorting pipeline is completely
solved and no spike sorter can be used for all applications. With SpikeInterface, researchers can
quickly build, run, and evaluate many different spike sorting workflows on their specific datasets
and applications, allowing them to determine which will work best for them. Once a researcher
determines an ideal workflow for their specific problem, it is straightforward to share and re-use that
workflow in other laboratories studying similar problems. We envision that many laboratories will use
SpikeInterface to satisfy their spike sorting needs.

Along with its applications to extracellular analysis, SpikeInterface is also a powerful tool for developers
looking to create new spike sorting algorithms and analysis tools. Developers can test their methods
using our efficient and comprehensive comparison functions. Once satisfied with their performance,
developers can integrate their work into SpikeInterface, allowing them access to a large-community of
new users and providing them with automatic file I/O and software deployment. For developers who
work on projects that use spike sorting, SpikeInterface can be used out-of-the-box, providing more
reliability and functionality then handmade spike sorting scripts. We envision that many developers
will be excited to use and integrate with SpikeInterface.

Already, SpikeInterface is being used in a variety of applications. In one application, SpikeInterface
is being used as the engine of a related project called SpikeForest [43]. SpikeForest is an interactive
website for benchmarking and tracking the accuracy of publicly available spike sorting algorithms. At
present, it includes ten sorting algorithms and more than 300 extracellular recordings with ground-truth
firing information. These recordings include both simulations and paired recordings where ground-
truth is obtained from juxtacellular signals.

Overall, we hope that SpikeInterface can become a standard tool in neuroscience and can help foster
a stronger relationship between spike sorting users and developers. To this end, we are maintaining
an open forum19 that can be a common space for the community to discuss any and all spike-sorting-
related topics. We look forward to sharing and growing SpikeInterface over the years to come.
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