bioRxiv preprint doi: https://doi.org/10.1101/796797; this version posted November 25, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.

- 1
- 2
- 3 Multi-level analysis of reproduction in the Antarctic midge, Belgica antarctica, identifies female and male accessory gland products that are altered by larval stress and impact progeny viability 4 5 6 7 Geoffrey Finch¹, Sonya Nandyal¹, Carlie Perrieta¹, Benjamin Davies¹, Andrew J. Rosendale^{1,2}, Christopher 8 J. Holmes¹, Josiah D. Gantz^{3,4}, Drew Spacht⁵, Samuel T. Bailey¹, Xiaoting Chen⁶, Kennan Oyen¹, Elise M. Didion¹, Souvik Chakraborty¹, Richard E. Lee, Jr.², David L. Denlinger^{4,5} Stephen F. Matter¹, Geoffrey M. 9 Attardo⁷, Matthew T. Weirauch^{6,8,9}, and Joshua B. Benoit^{1,*} 10 11 ¹Department of Biological Sciences, University of Cincinnati, Cincinnati, OH 12 13 ²Department of Biology, Mount St. Joseph University, Cincinnati, OH, USA 14 ³Department of Biology, Miami University, Oxford, OH 15 ⁴Department of Biology and Health Science, Hendrix College, Conway, AR ⁵Departments of Entomology and Evolution, Ecology and Organismal Biology, The Ohio State University, 16 17 Columbus, OH ⁶Center for Autoimmune Genomics and Etiology, Cincinnati Children's Hospital Medical Center, 18 19 Cincinnati, OH 45229, USA;
- ⁷Department of Entomology and Nematology, University of California, Davis, Davis, CA 95616, USA;

- ⁸Divisions of Biomedical Informatics and Developmental Biology, Cincinnati Children's Hospital Medical
- 22 Center, Cincinnati, OH 45229, USA.
- ⁹Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA.
- 24 *Author for correspondence
- 25 Joshua B. Benoit
- 26 Department of Biological Sciences,
- 27 University of Cincinnati, Cincinnati, OH
- 28 Email: joshua.benoit@uc.edu
- 29 Phone: 513-556-9714

- 31
- 32
- 33
- 34
- 35
- -
- 36
- 37
- 38
- 39
- 40

41 Abstract

42 The Antarctic midge, Belgica antarctica, is a wingless, non-biting midge endemic to Antarctica. Larval 43 development requires at least two years, but adult life lasts only two weeks. The nonfeeding adults 44 mate in swarms and females die shortly after oviposition. Eggs are suspended in a gel of unknown 45 composition that is expressed from the female accessory gland. This project characterizes molecular 46 mechanisms underlying reproduction in this midge by examining differential gene expression in whole 47 males, females, and larvae, as well as in male and female accessory glands. Functional studies were used 48 to assess the role of the gel encasing the eggs, as well as the impact of stress on reproductive biology. 49 RNA-seg analyses revealed sex- and development-specific gene sets along with those associated with 50 the accessory glands. Proteomic analyses were used to define the composition of the egg-containing gel, 51 which is generated during multiple developmental stages and derived from both the accessory gland 52 and other female organs. Functional studies indicate the gel provides a larval food source and thermal 53 and dehydration buffer, all of which are critical for viability. Larval dehydration stress directly reduces 54 production of storage proteins and key accessory gland components, a feature that impacts adult 55 reproductive success. Modeling reveals that bouts of dehydration may significantly impact population 56 growth. This work lays a foundation for further examination of reproduction in midges and provides new 57 information related to general reproduction in dipterans. A key aspect is that reproduction and stress 58 dynamics, currently understudied in polar organisms, are likely to prove critical for determining how 59 climate change will alter survivability.

60

Keywords: Antarctic midge, reproduction, stress biology, accessory glands, thermal buffering

61

63 1 INTRODUCTION

64 The Antarctic midge, Belgica antarctica, is long-lived, wingless, and the only insect endemic to maritime 65 Antarctica (Convey & Block, 1996; Sugg, Edwards, & Baust, 1983). It has a patchy distribution along the western coast of the Antarctic Peninsula and South Shetland Islands, where it may form large 66 67 aggregations into the thousands under favorable conditions (Convey & Block, 1996; SUGG et al., 1983). 68 The larval period lasts two years; growth and development take place during the short austral summer, 69 and larvae overwinter encased in ice (Usher & Edwards, 1984). Larvae commonly reside in damp areas 70 and are non-selective feeders by consuming dead plant and animal matter, algae, and microorganisms 71 (Edwards, & Baust, 1981; Strong, 1967). Larvae are extremely tolerant of numerous stresses including 72 cold, dehydration, and UV exposure (JBenoit, Lopez-Martinez, Elnitsky, Lee, & Denlinger, 2009; Benoit, 73 Lopez-Martinez, Michaud, et al., 2007; Lopez-Martinez et al., 2009; Lopez-Martinez, Elnitsky, Benoit, 74 Lee, & Denlinger, 2008; Teets et al., 2008). Adult emergence is a fairly synchronous event occurring in 75 early summer (Edwards, & Baust, 1981), and there is some evidence for protandry (Edwards, & Baust, 76 1981; Harada, Lee, Denlinger, & Goto, 2014). The wingless adults mate in swarms formed on rocks and 77 other features of the substrate (Edwards, & Baust, 1981; Harada et al., 2014). Environmental stressors in 78 Antarctica can be severe and highly variable over short distances and time periods (Convey, 1997; 79 Kennedy, 1993), and swarming may play a role in locating and taking advantage of intermittent, 80 favorable microhabitats (Convey & Block, 1996; Hahn & Reinhardt, 2006; Sugg et al., 1983). Mating 81 swarms present a potential obstacle for establishing long-lasting colonies in a laboratory setting, as 82 mating is likely facilitated by large-scale, synchronous adult emergence (Harada et al., 2014).

Adult females that emerge in the laboratory lay, with a few exceptions, a single egg mass, each containing about 40 eggs (Convey & Block, 1996; Edwards, & Baust, 1981; Harada et al., 2014; Sugg et al., 1983). Nevertheless, multiple matings are common, and multiple oviposition events have been

86	reported (Edwards, & Baust, 1981; Harada et al., 2014; Sugg et al., 1983). Specific underlying materials
87	transferred from the male to the female during copulation are unknown in <i>B. antarctica</i> . Eggs are
88	encased in a hygroscopic gel that has been suggested as a potential food source for developing larvae
89	(Edwards, & Baust, 1981; Harada et al., 2014). This gel is likely secreted by the female accessory gland
90	during oviposition, but the protein components of the gel are unknown. Little additional information is
91	available on reproduction in these extremophiles (Edwards, & Baust, 1981; Harada et al., 2014), and
92	chironomid reproduction in general is poorly studied beyond the basic descriptions of their reproductive
93	anatomy and impaired reproduction during exposure to toxic substances (Sibley, Ankley, & Benoit, 2001;
94	Vogt et al., 2007; Wensler & Rempel, 1962).
05	Du contract, remarkuntion in other distance encoire has been even in ad extensively (Alfores
95	By contrast, reproduction in other dipteran species has been examined extensively (Alfonso-
96	Parra et al., 2016; Avila, Sirot, LaFlamme, Rubinstein, & Wolfner, 2011; J.B. Benoit, Attardo, Baumann.,
97	Michalkova, & Aksoy, 2015 ; A. G. Clark et al., 2007; Dottorini et al., 2007; Izquierdo et al., 2019; K. P. Lee
98	et al., 2008; McGraw, Clark, & Wolfner, 2008; Meier, Kotrba, & Ferrar, 1999; Papa et al., 2017; Polak et
99	al., 2017; Ravi Ram & Wolfner, 2007; Villarreal et al., 2018). In most Diptera, insemination does not
100	involve injection of a spermatophore; rather, male seminal fluid is usually transferred directly into the
101	female reproductive tract, often with the addition of a mating plug to reduce male-male competition as
102	is seen in mosquitoes and Drosophila (Giglioli & Mason, 1966; Lung & Wolfner, 2001; Mitchell et al.,
103	2015; Scolari et al., 2016). Some flies do utilize a spermatophore, which may facilitate quicker mating
104	while also creating a barrier to multiple inseminations (Kotbra, 1996). In the tsetse fly, Glossina
105	morsitans, a dipteran that uses a spermatophore, proteins making up the spermatophore are secreted
106	from the male accessory gland during copulation (Attardo et al., 2019; Scolari et al., 2016). The
107	spermatophore is deposited such that the spermatozoa are funneled efficiently to the openings of the
108	spermathecal ducts, allowing only one spermatophore to maintain this connection at a time (Attardo et

109 al., 2019; Scolari et al., 2016). In mosquitoes, accessory gland-specific proteins, along with the steroid 110 hormone, 20-hydroxy-ecdysone, are transferred to the female during copulation, producing a mating 111 plug (Dottorini et al., 2007; Mitchell et al., 2015; Rogers et al., 2008). In An. gambiae the mating plug 112 has multiple effects that promote copulation, enhance egg production, and even trigger egg laying 113 (Dottorini et al., 2007; Gabrieli et al., 2014; Mitchell et al., 2015; Thailayil, Magnusson, Godfray, Crisanti, 114 & Catteruccia, 2011). First-male precedence and last-male precedence have both been reported in 115 multiple species within the Diptera (Dixon, Coyne, & Noor, 2003; Gwynne, 2012; Price, 1997; Shutt, 116 Stables, Aboagye-Antwi, Moran, & Tripet, 2010), but it remains unknown how fertilization priority is 117 established in *B. antarctica*. Depending on the mating strategy of the species, contents of the 118 spermatophore may include a large amount of seminal fluid proteins (SFPs) and other factors or contain 119 primarily the sperm itself (Avila et al., 2011; Lung & Wolfner, 2001; Rogers et al., 2008; Scolari et al., 120 2016). These seminal fluid proteins are suspected or demonstrated to have a variety of functions, 121 including induction of refractoriness in the female, counteracting protease activity of female secretions 122 with protease inhibitors, defending spermatozoa against microbial assault, and neutralizing reactive 123 oxidative species (Alfonso-Parra et al., 2016; Avila et al., 2011; Lung & Wolfner, 2001; Ravi Ram & 124 Wolfner, 2007; Shutt et al., 2010), all which can compromise sperm function and impair their ability to 125 fertilize. The particular cocktail and amounts of SFPs utilized reflects the selection pressure from life-126 history differences, conspecific competition, and diverse reproductive strategies between species and 127 even within species (Hopkins et al., 2019; Hopkins, Sepil, & Wigby, 2017; Izquierdo et al., 2019; Papa et 128 al., 2017).

Secretions from the female accessory glands also play important roles in insemination and
 oviposition in dipterans, as well as other insects. In the house fly, *Musca domestica*, female accessory
 gland secretions enhance sperm viability (Degrugillier, 1985; Leopold & Degrugillier, 1973). In some

132 species, substances secreted from the female accessory gland are expelled with the eggs at oviposition 133 and often function as an adhesive, anchoring eggs to the substrate (Lococo & Huebner, 1980). Accessory 134 gland secretions may also provide protection from diverse biotic and abiotic stressors. In the medfly, 135 Ceratitis capitata, the primary components of the accessory gland secretion deposited during 136 oviposition are ceratotoxins, which act as potent antibacterial agents (Marchini, Bernini, Marri, 137 Giordano, & Dallai, 1991). Similarly, accessory gland secretions from the sand fly, Phlebotomus papatasi, 138 have antimicrobial effects that protect the eggs, developing embryos, and adult female reproductive 139 tract from microbial invasion (Rosetto et al., 2003). Some male seminal fluids also contain antimicrobial peptides, probably for similar reasons as in the female (Lung, Kuo, & Wolfner, 2001; Poiani, 2006). 140 141 Female accessory gland proteins can also be a source of nutrition for developing progeny, either while 142 growth occurs in the mother or as a secreted food source to nourish external progeny (Benoit, Kölliker, 143 & Attardo, 2019; Benoit et al., 2015; Kaiwa et al., 2014; Kaulenas, 2012).

144 In this study, we use RNA-seq, proteomics, and functional analyses to examine the reproductive 145 physiology of *B. antarctica*. Specifically, male and female accessory glands are examined to identify factors related to male accessory protein generation and synthesis of egg components during 146 147 oviposition. Proteomic analysis of the gel secretion is used to identify its components, while 148 comparative genomic analyses are used to identify orthologs of specific reproduction-associated genes 149 in mosquitoes and midges. Functional studies reveal that stress impinging on late instar larvae impacts 150 synthesis of gene products associated with reproduction, lowering both male and female reproductive 151 success. Furthermore, we determine that the gel likely acts to prevent egg dehydration and serves as thermal buffer, preventing overheating of the eggs. Population growth modeling reveals that impaired 152 153 fecundity from larval stress may reduce reproduction below population replacement levels. Our analysis 154 shows that reproduction in the Antarctic midge is directly impacted by larval stress, and identifies novel

- roles for products manufactured by the female accessory gland. These studies confirm that an
- 156 understanding of reproductive biology is critical for establishing how these Antarctic extremophiles are
- able to survive and proliferate in the challenging polar environment.

159 2 MATERIALS AND METHODS

160 2.1 Midge collections

Antarctic midges were collected from islands near Palmer Station (64°46′S, 64°04′W) in January 2007 and January 2017. Males and females were separated based upon the major morphological characters described previously (Convey & Block, 1996; Sugg et al., 1983; Usher & Edwards, 1984), homogenized on-site, and stored in Trizol (Invitrogen) at -70 °C for shipment to the University of Cincinnati. Female and male accessory glands were also dissected (N = 20-30) and stored in Trizol similar to whole body stages.

Larvae were collected from the same location as adults. Larvae within organic debris were returned to Palmer Station, and larvae were extracted into ice water with a modified Berlese funnel. Following recovery, larvae were stored with substrate from their natural habitat (rocks, soils, moss, and the alga *Prasiola crispa*, which serves as a food source for *B. antarctica*) at 2-4 °C. Larvae were shipped to the University of Cincinnati and stored under similar conditions until they were used in studies examining the impact of larval stress or gel presence on adult fertility or egg viability, respectively.

173

175 2.2 RNA extraction and processing

RNA was extracted from the midges by homogenization (BeadBlaster 24, Benchmark Scientific) in Trizol
reagent (Invitrogen), using manufacturer's protocols with slight modification based on other studies of
invertebrates (Hagan et al., 2018; Rosendale, Dunlevy, McCue, & Benoit, 2019). Extracted RNA was
treated with DNase I (Thermo Scientific) and cleaned with a GeneJet RNA Cleanup and Concentration
Micro Kit (Thermo Scientific) according to manufacturer's protocols. RNA concentration and quality
were examined with a NanoDrop 2000 (Thermo Scientific).

182 Poly(A) libraries were prepared by the DNA Sequencing and Genotyping Core at the Cincinnati 183 Children's Hospital Medical Center. RNA was quantified using a Qubit 3.0 Fluorometer (Life 184 Technologies). Total RNA (150-300 ng) was poly(A) selected and reverse transcribed using a TruSeq 185 Stranded mRNA Library Preparation Kit (Illumina). An 8-base molecular barcode was added to allow for 186 multiplexing and, following 15 cycles of PCR amplification, each library was sequenced on a HiSeg 2500 187 sequencing system (Illumina) in Rapid Mode. For each sample, 30-40 million paired-end reads at 75 188 bases in length were generated. Raw RNA-seg data have been deposited at the National Center for 189 Biotechnology Information (NCBI) Sequence Read Archive: Bio-project PRJNA576639. Along with the 190 RNA-seq samples collected for this study, larval (control, dehydration, and cryoprotective dehydration) 191 samples were acquired from Teets et al. (Teets et al., 2012) under the NCBI Bioproject PRJNA174315.

192

193 RNA-seq reads were trimmed for quality (Phred score limit of 0.05) and sequences with
194 ambiguities were removed. In addition, five and eight nucleotides were removed from the 5' and 3'
195 ends, respectively, and sequences shorter than 45 bases were removed. Reads before and after cleaning

- 196 and trimming were examined with FastQC for quality (S. Andrews
- 197 <u>http://www.bioinformatics.babraham.ac.uk/projects/fastqc</u>) to verify the quality of each set.
- 198
- 199
- 200 2.3 Gene expression analyses

201 RNA-seg analyses were conducted using two distinct pipelines. The first method utilized was CLC 202 Genomics (Qiagen), as previously described (Hagan et al., 2018; Rosendale et al., 2019). Briefly, reads 203 were mapped to contigs with a cutoff of at least 80% of the read matching at 90% identity with a 204 mismatch cost of 2. Each read was permitted to align to only 20 contigs. Expression values were based 205 on total read counts in each sample calculated as transcripts per million reads mapped. EdgeR was used 206 to test significance among samples. A multiple comparison correction was performed (false discovery 207 rate, FDR). Genes were considered to be differentially expressed if the fold change was greater than 2.0 208 and the p-value was < 0.05. In addition, genes were required to have at least 5 mapped reads per 209 sample to be retained for further analyses. For whole-carcass expression analyses, genes were 210 considered sample-specific if enrichment was noted in relation to both of the other whole-carcass 211 datasets. For accessory gland specific analyses, genes were considered tissue specific if they were 212 enriched relative to the relevant whole-carcass dataset (female or male). In addition, a de novo 213 assembly was conducted on the female accessory gland RNA-seq datasets using Trinity (Grabherr et al., 214 2011) based on standard methods to determine if bacterial symbionts were present in this organ and 215 could be transferred to the egg while in the gel.

The second method for examining transcript expression involved utilization of RNA-seq tools available through the Galaxy software package (<u>www.https://usegalaxy.org/</u>) (Afgan et al., 2018;

Goecks, Nekrutenko, & Taylor, 2010) using Salmon with the suggested settings. Differential expression
between genes was examined with the DeSeq2 package (Love, Huber, & Anders, 2014). A general
linearized model assuming a binomial distribution followed by a false discovery rate (FDR) approach
were utilized to account for multiple testing. Cut-off values for significance, enrichment and samplespecificity were the same as those used in analysis conducted with CLC Genomics.

223 Transcripts identified as sex- or development-specific were examined using the CLC-based 224 pipeline as there was over 95% overlap between each RNA-seq analysis method. Pathways enriched 225 within males, females, and larvae were identified with a combination of Database for Annotation, 226 Visualization and Integrated Discovery (DAVID (Huang da et al., 2009)), Blast2GO enrichment 227 analyses(Conesa et al., 2005), CLC gene set enrichment analysis (Clark & Ma'ayan, 2011), and g:Profiler 228 (Raudvere et al., 2019). Due to the taxonomic limitations of DAVID, sets of enriched transcripts were 229 compared by BLASTx to the An. gambiae and to the D. melanogaster RefSeg protein datasets to identify 230 homologous sequences. Blast hits (e-value < 0.001) from these two species were submitted to DAVID. 231 There was considerable overlap between the results, and only the CLC-based methods were used in 232 subsequent analyses.

233 Lastly, we utilized weighted correlation network analysis (WGCNA) to identify specific modules 234 of genes that have similar expression profiles across developmental stages and accessory glands 235 (Langfelder & Horvath, 2008). WGCNA was implemented in an R software package used to construct 236 correlation networks and describe correlation between gene expression across samples in RNA-seq or 237 microarray data. Genes sharing similar patterns of expression across samples were clustered into 238 modules to identify groups of biologically significant genes that were particular to one of the sample 239 groups. For this analysis, RNA-seq data were screened for genes of zero variance prior to WGCNA, 240 leaving 13,424 genes for signed network construction. The minimum module size allowed was 20 and

the soft power was set to 14 as determined by the package's scale-free topology function. Modules
exhibiting the highest Pearson correlation coefficient were selected for further analysis to determine
function and relationship to developmental stages and accessory glands. Modules identified as enriched
in a specific developmental stage or tissue were examined for enriched GO categories with the use of
g:Prolifer and DAVID, as described earlier.

246

247 2.4 Comparative analyses with other chironomid midges and Anopheles mosquitoes

248 This is the first study to examine genome-wide, sex- and stage-specific expression in a midge. However, 249 a recent study examines sex-specific expression in four species of anopheline mosquitoes, a clade not 250 distantly related to midges, along with expression specific to the male and female reproductive tracts 251 (MRT and FRT, respectively (Papa et al., 2017)). The species covered in this study were An. gambiae, An. 252 minimus, An. albimanus, and An. arabiensis. In addition, male accessory glands enriched genes for B. 253 antarctica were directly compared to those from Anopheles male accessory glands(Izquierdo et al., 254 2019). Predicted gene sets from this study that had enriched expression in specific stages and organs 255 were used in comparative analyses with B. antarctica. The genomes of four species of chironomid 256 midges were also acquired: Clunio marinus (Kaiser et al., 2016), Parochlus steinenii (Kim et al., 2017), Polypedilum vanderplanki (Gusev et al., 2014), and Polypedilum nubifer(Gusev et al., 2014). Studies that 257 258 resulted in these sequenced midge genomes did not include analyses of differential expression between 259 sexes.

For comparative analyses between midges, predicted gene sets for *B. antarctica* were compared with genomes of each midge species, and results of these four analyses were pooled to establish putative sets of genes common to all five species. This analysis also resulted in identification of

263 differentially expressed genes unique to B. antarctica. Similarly, predicted gene sets from B. antarctica 264 were compared with each species of *Anopheles* mosquito. Antarctic midge gene sets were compared to 265 Anopheles whole carcass gene sets, as well as reproductive tract-specific gene sets (Papa et al., 2017). 266 Lastly, we compared the expression of genes within the male accessory glands to orthologous gene sets 267 that are uniformly expressed in the male accessory glands of mosquitoes (Izquierdo et al., 2019). The 268 common gene sets produced by these analyses were then subjected to ontological analyses, using 269 gProfiler, to establish sex-specific enriched pathways. tBLASTp analyses (e-value < 0.001) were 270 performed using CLC Genomics Workbench (CLC bio Qiagen). Protein sequences were defined as 271 orthologs if they were reciprocal-best BLASTp hits having an e-value $< 10^{-10}$. Overlap was compared 272 between these analyses to produce putative sex-specific transcript sets. 273 Transcription factors (TFs) and their predicted DNA binding motifs were identified based on 274 methods used for other invertebrate genomes (Attardo et al., 2019; Benoit et al., 2016; Olafson et al., 275 2019). In brief, putative TFs were identified by scanning the amino acid sequences of all proteins for 276 putative DNA binding domains using the HMMER software package (Eddy, 2009) and a compilation of 277 Pfam DNA binding domain models (Weirauch & Hughes, 2011). Experimentally determined DNA binding 278 motifs were then inferred from other species (e.q., Drosophila) based on amino acid identity, using

previously established rules (Weirauch et al., 2014). Using this collection of inferred DNA binding motifs,

increased expression in each sex, larvae, and accessory glands. These results were then compared to the

we examined enrichment of each motif within the 500 and 2000 bp promoter regions of genes with

expression profiles of each TF to determine specific TF candidates that might regulate sex and

284

279

280

281

282

283

reproduction associated genes.

285 2.5 PCR and qPCR analyses

286	Select genes of interest that were highly enriched within males and females were examined by PCR.
287	Total RNA was extracted from males, females, larvae, female accessory glands, and male accessory
288	glands as described previously in the RNA-seq section and used as a template for Superscript III reverse
289	transcriptase according to the manufacturer's protocols (Invitrogen). PCR was performed with gene-
290	specific primer pairs (Table S15) using a DNA polymerase kit (Promega). The PCR conditions were 95 °C
291	for 3 min, 35 cycles of 30 sec at 95 °C, 52-56 °C for 1 min, and 1 min at 70 °C using an Eppendorf
292	Mastercycler Pro Series. Three independent (biological) replicates were conducted for each sex or
293	tissue stage.
294	qPCR analyses were conducted based on previously developed methods (Rosendale, Romick-
295	Rosendale, Watanabe, Dunlevy, & Benoit, 2016). RNA was extracted as described previously for
296	independent biological replicates. Complementary DNA (cDNA) was generated with a DyNAmo cDNA
297	Synthesis Kit (Thermo Scientific). Each reaction used 250 ng RNA, 50 ng oligo (dT) primers, reaction
298	buffer containing dNTPs and 5 mmol•l ⁻¹ MgCl ₂ , and M-MuLV RNase H+ reverse transcriptase. KiCqStart
299	SYBR Green qPCR ReadyMix (Sigma Aldrich, St Louis, MO, USA) along with 300 nmol I $^{-1}$ forward and
300	reverse primers, cDNA diluted 1:20, and nuclease-free water were used for all reactions. Primers were
301	designed using Primer3 based on contigs obtained from the transcriptome analysis (Table S15). qPCR
302	reactions were conducted using an Illumina Eco quantitative PCR system. Reactions were run according
303	to previous studies(A. J. Rosendale et al., 2016). Four biological replicates were examined for each sex,
304	and three biological replicates were examined for each accessory gland. Expression levels were
305	normalized to <i>rpl19</i> using the $\Delta\Delta$ Cq method as previously described(Joshua B Benoit et al., 2018; A. J.
306	Rosendale et al., 2016). Fold change was compared between larvae, males, females, and accessory
307	glands followed by a Pearson correlation coefficient (r).

309 2.6 Proteomics analysis of accessory gland-derived gel

310	Samples were analyzed at the Proteomics and Metabolomics Laboratory at the University of Cincinnati.
311	Two proteomic samples were collected by removing eggs from the gel with a micropipette and
312	dissolving the gel in 1X PBS with 0.1% Tween. Samples (4 μ g) were run on a 1D SDS PAGE gel and silver
313	stained to confirm the presence of proteins; at least 15 distinct proteins could be visualized. Based on
314	this initial characterization, gel proteins (6 μ g) were run 2 cm into a 1D 4-12% Bis-Tris Invitrogen NuPage
315	gel using MOPS buffer. Lanes were excised, reduced with 10 mM dithiothreitol, alkylated with
316	Iodoacetamide and digested with trypsin according to the standard protocol (Heaven et al., 2016;
317	Turnier et al., 2018). The resulting peptides were concentrated with a speed vac centrifuge and
318	resuspended in 0.1% formic acid. Each sample (2 μ g) was used in subsequent analyses. Nanoscale LC-
319	electrospray ionization-MS/MS (nanoLC-ESI-MS/MS) analyses were performed on a TripleTOF 5600
320	(Sciex, Toronto, ON, Canada) coupled to an Eksigent (Dublin, CA) nanoLC ultra nanoflow system. Protein
321	from each gel sample was loaded and analyzed as described (Heaven et al., 2016; Turnier et al., 2018).
322	The data were recorded using Analyst-TF (v.1.6) software and searched against the <i>B. antarctica</i> genome
323	(Kelley et al., 2014) using the Protein Pilot program (Sciex). Gel proteins were compared to those with
324	differential expression in specific tissues from our RNA-seq studies. Protein, carbohydrate, and lipid
325	content were examined through spectrophotometric assays based upon methods described in
326	Rosendale et al. (2019)

330 2.7 Thermal buffering by the accessory gland gel

The gel has been suggested to serve as a source of nutrients for newly emerged larvae (Convey, 1992; Convey & Block, 1996; Harada et al., 2014). In addition to this role, we examined whether the gel increases thermal buffering capabilities of the egg compared to eggs directly deposited on the local substrate. To examine the effect, we placed an Omega thermocouple within six gels and immediately adjacent to these six gels at a field location near Palmer Station. Temperature was measured every minute over the course of three days.

To establish whether the gel prevents egg death caused by thermal stress, eggs with and without gels were exposed to 20 °C for two hours. Females were allowed to lay their eggs onto filter paper disks (Whatman) which were placed in 50 ml centrifuge tubes before being transferred to a 4 °C water bath. Temperature was then ramped up to 20 °C over the course of four hours 4 °C per hour before slowly being reduced back to 4 °C over the same course of time. These samples were compared to those that were held statically at 4 °C without the gel. Following treatment, all eggs were maintained at 4 °C and monitored for larval emergence.

344

345 2.8 Role of the accessory gland gel in dehydration

To determine if the accessory gland gel could prevent egg dehydration, we subjected midge eggs to dehydrating conditions with and without the gel's presence. All eggs were removed from the gel with a fine metal probe and half were carefully reinserted into the gel. Three groups of eggs with or without the gel were moved to 75% RH at 4 °C for 12 hours. Following this treatment, eggs with no gel were placed back into the gel. Viability was determined by counting the number of larvae that emerged from the total number of eggs. bioRxiv preprint doi: https://doi.org/10.1101/796797; this version posted November 25, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.

352

353 2.9 Impact of larval dehydration stress on fecundity

354	To determine if larval dehydration stress impacts adult fecundity, we performed combined RNA-seq

- analysis (described previously) and exposure of larvae to dehydration stress, both standard and
- 356 cryoportective (Teets et al., 2012). RNA-seq studies were conducted on larvae that were quickly
- 357 dehydrated (30% water loss) and on those that had undergone a slower form of dehydration,
- 358 cryoprotective dehydration (30% water loss). The resulting data sets were then examined to find genes
- 359 with increased expression in male or female accessory glands.
- 360 To determine whether mating is directly impacted by dehydration stress, groups of 100 fourth
- 361 instar larvae (final larval instar) were held at 75% RH until they lost 40% of their water content.
- 362 Following dehydration, larvae were returned to the standard rearing conditions and monitored every 12
- 363 hours for the presence of pupae or newly emerged adults. Each adult was removed and stored
- 364 separately at 98% RH, 4°C until mating, which occurred no later than four days after treatment. The
- following mating pairs were examined: males from dehydrated larvae vs. control females, females from
- 366 dehydrated larvae vs. control males, and both males and females from dehydrated larvae. Males and
- 367 females that failed to copulate were removed from the experiment.

368

369 2.10 Statistics

370 Replicates are independent biological samples. Sample sizes are listed in each method section or the
371 figure legend. Significance is indicated within each figure and/or in the figure legend. Statistical tests are

- 372 listed within the respective section in the methods or in the figure legends. All statistical analyses were
- 373 performed using JMP version 11 (SAS) or R-based packages.

375 2.11 Population level effects

376 To explore population level effects of dehydration, gel surrounding the egg mass, and thermal stress we 377 used a Leslie matrix approach (Lefkovitch, 1965). Here, the dominant eigenvalue of the matrix is the 378 population growth rate (λ). We simplified life history to egg to larvae to adult despite there being four 379 larval instars, potentially occurring over several years. For control populations we used a mean fecundity 380 of 42.9 (eggs laid), an egg survival rate of 0.82, and larval survival rate of 0.78. To determine the effects 381 of larval dehydration on population growth, we used fecundities (eggs laid) of 34.6, 35.6, and 21.5 for 382 male, female, and male and female dehydration, respectively; egg and larval survivorship were assumed 383 to be the same as control populations. To determine the effects of gel on population growth we used all parameters (as for control populations), but reduced larval survival to 0.5, based on the experimental 384 385 data from our studies. Similarly, to investigate effects of thermal stress we reduced egg survivorship to 0.63, but left all other parameters at control values. We also investigated a worst case scenario with 386 387 male and female dehydration, no gel, and thermal stress. All values were derived from the previously 388 described experiments. We determined the dominant eigenvalue of each matrix using the function 389 "eigen" in R.

390

391

bioRxiv preprint doi: https://doi.org/10.1101/796797; this version posted November 25, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.

393 <u>3 RESULTS</u>

394 3.1 Description of mating and reproductive organs in *B. antarctica*

395	Beyond copulation and sex ratios (Edwards, & Baust, 1981; Harada et al., 2014; Sugg et al., 1983), little is
396	known about mating and reproductive aspects for <i>B. Antarctica</i> . In this study, the reproductive organs
397	were observed by dissection. Following copulation (Fig. 1A), a spermatophore containing sperm and
398	other, likely accessory gland products, are transferred as a bundle to the females (Fig. 1A, inset).
399	Females deposit a gel around the fertilized eggs, and it is within this gel that embryogenesis occurs (Fig.
400	1B). The source of the gel appears to be the female's accessory gland (Fig. 3C) because the gland is
401	depleted followed egg laying (Fig. 1D,E). The male reproductive organs, including the testes and
402	accessory glands, are depicted in Fig. 1F. The general organization and structure of the male and female
403	reproductive anatomy is similar to that of another midge, Chironomus plumosus (Wensler & Rempel,
404	1962) and mosquitoes (Masci et al., 2015), with the exception that the female accessory gland of <i>B</i> .
405	antarctica is dramatically enlarged. It is this enlarged gland that we consider to be the source of the
406	gel deposited around the eggs.

407

408 3.2 RNA-seq analyses of *Belgica* reproduction

Differential transcript levels were determined for males, females, and larvae using two independent pipelines using the *B. antarctica* genome as a reference (Kelley et al., 2014). The two pipelines yielded 95% overlap at our significance cut-off (two-fold difference, combined transcripts per million (TPM) among all samples of at least 5, and a correction-based P-value < 0.05). Between 60% and 71% of the reads from each RNA-seq set mapped to predicted genes. At the 4-fold or greater level for stagespecificity, overlap between the two methods was over 99%; thus we used the CLC Genomics (Qiagen)

415	pipeline (Attardo et al., 2019; Rosendale et al., 2019) for the remaining analyses (Table S1). When
416	expression differences were compared among all developmental stages, each sex and associated
417	reproductive organs were most similar, followed by similarity between adults, while the larval stages
418	were the most unique (Fig. 2). When the <i>de novo</i> assembly was examined for presence of putative
419	microbial symbionts, we detected no substantial matches (Table S2), indicating the gel does not likely
420	serve as a source of potential microbial symbionts as in other insects (Kaiwa et al., 2014).
421	Individual comparisons between stages revealed 392 male-enriched genes, 1825 female-
422	enriched genes, and 862 genes enriched in larvae (Fig. 2, Table S3-S5). Specific gene ontology (GO)
423	categories were associated with each stage including carboxylic acid biosynthesis in males, DNA repair in
424	females, and aminoglycan metabolism in larvae (Fig. 3; Table S3-S5). When accessory glands were
425	specifically examined, 20 genes were enriched in the female accessory gland and had significantly higher
426	expression in females compared to other stages (Fig 4A; Table S6). A similar analysis for the male
427	accessory gland identified 25 enriched genes. GO categories associated with the female accessory gland
428	were associated with glycosylation and mucin biosynthesis. Notably, similar GO categories were
429	associated with gene products of the male accessory gland (Fig. 4B; Table S7).
430	Beyond this first analysis, weighted correlation network analysis (WGCNA, Langfelder &
431	Horvath, 2008) was used to identify clusters (modules) of highly correlated genes between
432	developmental stages and within specific reproductive organs (Fig. 5; Table S8-S12). Specific modules of
433	enriched expression were identified in each tissue and developmental stage (Fig. 5B,C). When GO

434 analyses were conducted for each developmental stage, unique GO categories were associated with

- larvae, females, and males (Fig. 5). Female accessory glands had few enriched GO categories based on
- 436 WGCNA results; enriched categories included phosphatase binding, response to stimulus, and ion
- 437 channel activity. Male accessory glands also had a low number of GO categories associated with

438 enriched modules; these included metallopeptidase activity and integral components of the membrane.

439 These results provide correlated stage- and tissue-specific expression modules. For larvae, males, and

440 females, GO categories from stage specific modules showed overlap with our previous analysis (Fig. 3),

- 441 but unique categories were also identified (Fig. 5).
- 442
- 443 3.3 Proteomic analysis of accessory gland derived gel
- 444 Proteomic analysis of the gel surrounding the eggs revealed 24 associated proteins (Fig. 6). Three
- 445 proteins comprised a majority of the gel (Fig. 6B; Table S13), including a vitellogenin-like protein
- 446 (IU25_12621), larval serum protein (IU25_03947), and an apolipophorin (IU25_03809). The two
- 447 analyzed gel samples had a highly-correlated protein content (Pearson correlation = 0.92, Fig. 3C).
- 448 Expression analyses revealed that transcripts for most of the gel proteins are not directly generated in
- the female accessory gland (Fig. 3D), but instead are produced in other female organs (e.g. IU25_12621)
- 450 or within the larvae (e.g. IU25_03947 and IU25_03809). qPCR validation of the protein gel components
- 451 confirmed that transcripts for each of the gel proteins are expressed in tissues identified in the RNA-seq
- 452 studies (Fig. 5E). Additional qPCR analyses for genes not involved in producing major components of the
- 453 gel served as validation for results obtained from other RNA-seq samples (Fig. 5E).
- 454
- 455 3.4 Transcriptional regulation of reproductive-associated factors
- 456 To compare potential mechanisms regulating gene expression between samples, we predicted putative
- 457 transcription factors (TFs, Fig. 7A, Table S14) and their DNA binding motifs. We next performed TF
- 458 binding site motif enrichment analysis in the upstream regulatory regions of our differentially expressed

459	gene sets (see Methods). This analysis revealed that fourteen TFs had significantly enriched binding
460	sites in at least one gene set (Fig. 7B). Of these, one TF showed enhanced binding in the 500bp
461	regulatory regions of male-enriched genes. The remaining thirteen showed enhanced binding in female-
462	enriched genes; we limited our analysis to the set of seven TFs with enhanced binding in both 500 and
463	2000bp regions of the female- and/or FeAG-enriched gene sets. Five members of this set showed higher
464	transcript levels in either the female or female accessory gland compared to other tissues and
465	developmental stages (Fig. 7C). The increased gene expression in the respective tissues or stage along
466	with enriched binding sites suggest that these TFS are key regulatory elements for female reproduction
467	in <i>B. antarctica</i> . Transcription factors include forkhead box protein 1 and mothers against
468	decapentaplegic (Mad) homolog 1. In <i>Drosophila</i> Mad has been identified as a participant in the
469	signaling pathway of <i>decapentaplegic</i> (dpp), a morphogenetic protein that plays a role in regulating the
470	development of egg polarity and early embryonic development (Xie & Spradling, 1998). Several
471	transcription factors identified in our screening remain uncharacterized with no assigned biological
472	functions.
473	

474 3.5 Comparative analyses between anopheline mosquitoes and chironomid midges

Sex- and tissue-specific gene sets from *B. antarctica* were compared with predicted gene sets from four species of *Anopheles* mosquitoes and four species of chironomid midges (Figs. 8 and 9). Additionally, *B. antarctica* enriched gene sets were compared with gene sets enriched in male and female reproductive tracts of the same four *Anopheles* mosquitoes (Papa et al., 2017) (Fig. 8 and 9) and in comparison to the male accessory gland enriched genes from five *Anopheles* species (Izquierdo et al., 2019)

480 Genes enriched in females of *B. antarctica* showed the highest degree of conservation among all 481 species examined by a large margin. All five species of midges had 1396 genes in common, 1401 were 482 shared with all four Anopheles species, and 1267 were common to all 9 species examined (Fig. 8). Gene 483 ontology analysis of this set revealed enrichment in functions related to RNA, DNA, chromatin binding, 484 nuclease activity, chromosome and organelle organization, transport of RNA and proteins in and out of 485 the nucleus, RNA processing, and cell cycle regulation. No female-enriched genes detected in B. 486 antarctica were unique when compared to the other eight species examined. Belgica females have 122 487 genes with no orthologues in any of the other four midge species. However, this gene set did not show 488 significant enrichment in any GO functional categories. 489 Among males, 345 genes were common among midge species, and 337 genes were shared 490 between *B. antarctica* and all four mosquito species (Fig. 8). Genes common to all midge species were 491 enriched in functions associated with anion transport, alpha-amino acid catabolism, and carboxylic acid 492 transmembrane transport. As with females, no genes were identified in the male-enriched gene set that 493 were unique to *B. antarctica*. There were 16 genes unique to *B. antarctica* among the five midge 494 species, but, again, they were not significantly enriched in any single functional category. 495 The larva-enriched gene set was compared to the midge and mosquito gene sets. Over 600

495 mile larva-enriched gene set was compared to the midge and mosquito gene sets. Over 600 496 genes were identified with orthologues common to all examined midge and mosquito species (Fig. 8). 497 The gene set common to all midge species was enriched in functional categories associated with chitin 498 metabolism, iron ion binding, and cytochrome P450-driven metabolism. Two identified genes were 499 unique to larvae of *B. antarctica* (Fig. 8; Table S5): one is uncharacterized, and the other putatively 500 encodes polyubiquitin B. Gene ontology analysis comparing larvae of *Belgica* with other midges revealed 501 88 unique genes, but no functional categories were significantly enriched for this gene set.

502	Gene sets specifically enriched in male and female reproductive tracts of each mosquito species
503	were compared to sex-specific gene sets in <i>B. antarctica</i> (Fig. 9; Table S6-7). Comparison of the female-
504	enriched gene set with the female reproductive tract (FRT)-specific gene set yielded 241 genes with
505	putative FRT orthologues. This set was particularly enriched in GO categories related to mitotic cell cycle
506	processes and regulation of gene expression. For example, several orthologues in this set code for
507	cyclins, cyclin dependent kinases, zinc-finger proteins, transcription factors, and transcription
508	termination factors. Additionally, a large number of genes in this set (~44%) mapped to apparently
509	uncharacterized orthologs. The comparison between male-enriched and Male Reproductive Tract (MRT)
510	specific genes yielded a common set of 48 genes. This set is dominated by CLIP-domain serine proteases
511	and cytochrome p450s, and also contains three glucose-dehydrogenases (Fig. 9). When <i>B. antarctica</i>
512	MAG-enriched genes are compared to those for mosquitoes, only four overlapping genes were
513	identified based on moderate or high expression reported in a previous study(Izquierdo et al., 2019) of
514	the mosquito MAG (Fig. 9C); these were identified as venom allergen, carboxypeptidase, serine
515	protease, and a gene of unknown function.
516	

517 3.6 Dehydration reduces larval serum protein and possibly subsequent egg production

518 Since specific female accessory gland components are expressed in larvae, we asked whether larval 519 dehydration impacts expression of adult female accessory gland components (Fig. 10). To do so, we re-520 analyzed results from a previous RNA-seq study (Teets et al., 2012) on dehydration and cryoprotective 521 dehydration of *B. antarctica* (Fig. 10). One of the major female accessory gland proteins (IU25_03947) 522 had significantly reduced expression when larvae experienced either dehydration or cryoprotective 523 dehydration (water loss specifically induced by cold temperatures) (Fig. 10A-B). This protein is a

524	component of the accessory gel and, as a hexamerin, serves as a protein reserve (Burmester, 1999;
525	Burmester, Massey Jr, Zakharkin, & Benes, 1998; Telfer & Kunkel, 1991). The dehydration-evoked
526	suppression in transcripts associated with reproductive-associated factors possibly results in reduced
527	amounts of materials invested in the progeny at birth and reduced egg output (Fig. 10D-F). These results
528	suggest that stress experienced as larvae may have a direct impact on female reproduction, most likely
529	acting through reduced expression of larval serum protein.

531 3.7 Dehydration reduces specific male accessory gland components and impacts fertilization

532 We next examined the impact of larval dehydration stress on male fertility. To do so, we analyzed 533 expression of accessory gland components in adult males after larval dehydration or cryoprotective 534 dehydration (Fig. 11A). Thirteen genes enriched in male accessory glands were differentially expressed 535 in the adult male following larval dehydration compared to fully-hydrated individuals (Fig. 11A). 536 Enrichment of glutathione transferase activity and phosphatidylcholine metabolic processes were 537 detected. Male body mass was not altered following dehydration stress, but mating was substantially 538 compromised (Fig. 11B-C). When males dehydrated as larvae mated with unstressed females, fewer 539 eggs were deposited, and additive reductions were noted if dehydrated males mated with females that 540 were dehydrated as larvae (Fig. 11C). These results indicate an impact on male fertility brought about 541 by dehydration stress during larval life.

542

543

545 3.8 Role of gel as a nutrient source

546	Analyses of major gel protein components (over 3% of the total proteins of the gel) was performed.
547	Amino acid content of the major protein components revealed that all essential amino acids can be
548	provided within the gel (Fig. 12A). Predicted glycosylation and phosphorylation sites of the proteins
549	suggest that these proteins could provide phosphate and sugar resources for the developing larva as the
550	gel is consumed (Fig. 12). Spectrophotometric analysis of the gel revealed that 81%, 14%, and 5% of the
551	caloric content consisted of proteins, carbohydrates, and lipids, respectively. Larvae were denied access
552	to the gel to determine its impact on larval growth (Fig. 12B). Fewer of the gel-less larvae were alive
553	after one month (Fig. 12B), and those remaining were nearly 30% smaller than larvae that hatched from
554	eggs with free access to the gel (Fig. 12C). Importantly, these larvae were provided access to algae and
555	other organic debris with and without gel, indicating that non-gel food resources do not fully
556	compensate for loss of the gel as a food source. These results underscore the value of the gel for
557	successful larval development.

558

559 3.9 Thermal and dehydration buffering by the gel

We performed experiments to determine whether the gel impacts dehydration resistance in developing eggs. When gel-less eggs were held in desiccating conditions (75% relative humidity) at 4 °C for 12 h and subsequently treated with water, no viable eggs were detected, even when the eggs were subsequently covered with gel to promote growth (0% for all three replicates). By contrast, viability of eggs encased in gel exceeded 80% under in the same conditions, suggesting that the accessory gel protects eggs against dehydration-induced mortality. These results indicate that the gel is likely critical for maintaining water homeostasis within the egg and possibly for the developing embryo as well.

567	We also examined whether the gel acts as a thermal buffer. First, temperature changes were
568	examined within the gel (next to the eggs) and on the surface immediately adjacent to the eggs (Fig.
569	13A). The gel buffered temperature changes during the course of the day by reducing both the
570	maximum temperature and the rate of temperature change (Fig. 13). Gel-less eggs exposed to 20 $^\circ$ C
571	displayed reduced viability when compared to eggs encased in gel and to those held constantly at 4 °C
572	(Fig. 13). These results indicate that the accessory gland gel provides both thermal and dehydration
573	protection to the eggs.

575 3.10 Population modeling

576 Dehydration of males, females, and both males and females together reduced population growth 577 relative to control populations (Fig. 14). The combined effect of male and female dehydration had the largest effect, reducing population growth by nearly 21%. Lack of gel also negatively impact population 578 579 growth, resulting in a 13% reduction relative to controls. The effect of thermal stress on egg viability would reduce population growth by 8%. In spite of these scenarios, populations would still be expected 580 581 to increase in abundance under each specific stress. Under the "worst case scenario" where fecundity is 582 reduced by male and female dehydration, larval survival is reduced by thermal stress, and there is a lack 583 of gel reducing egg survival, population growth rate is negative (λ = -0.95), indicating declining 584 population size. We note that all these growth rates are fairly liberal because of the relatively short time 585 over which larval survival was observed (12 days) relative to the time spent as larvae in nature. In 586 addition, it is likely that other factors, such as starvation, freezing, or pathogen attack, could occur, 587 resulting in additive impacts on population growth.

588

589 4 DISCUSSION

590 This study examined reproductive biology of the Antarctic midge with the goal of establishing key 591 molecular mechanisms associated with male and female biology. Combined RNA-seg and proteomics 592 established the transcriptional components of reproduction and protein constituents deposited in the 593 gel surrounding the egg. Specifically, we examined whether the gel that encases the eggs alters egg 594 viability and larval survival and examined the impact of larval dehydration exposure on adult fertility. 595 Little is known about midge reproductive biology and we have summarized the major findings of this 596 study in Figure 15. Thus, this study will hopefully provide a foundation for the fields of Antarctic and 597 midge reproductive biology. Lastly, we modeled the impact of multiple reproductive factors on 598 population growth, each of which exert minor effects but in combination could yield a negative growth 599 rate. Our results highlight the importance of understanding the reproductive biology of this Antarctic 600 insect, a species restricted to a limited geographic region and a specific habitat.

601 The large proportion of apparently conserved, female-specific or female-enriched genes that are 602 uncharacterized (\approx 44%) suggests there are many aspects of *Belgica* female physiology that remain 603 poorly understood. However, the results of the GO analysis of the female-enriched gene set are 604 consistent with results reported for Drosophila and other insect systems (Attardo et al., 2019; Olafson et 605 al., 2019; Panfilio et al., 2019; Swanson, Wong, Wolfner, & Aquadro, 2004). In an analysis of genes 606 differentially expressed between germline-naive and gonadectomized females in Drosophila, Parisi et al. 607 found enrichment in terms associated with metabolism (Parisi et al., 2004) . In fact, genes associated 608 with energy storage and utilization, such as digestive proteases or lipid storage genes, showed increased 609 expression in germline-naive males and females. This suggests that enrichment of such genes would be 610 expected in the larval gene set, even if adult *Belgica* were active eaters which they are not. Indeed, the 611 larva enriched gene set is replete with putative trypsins, chymotrypsin like proteins, and lipases (Cao &

612	Jiang, 2017; Graveley et al., 2011; McKenna et al., 2016; Pauchet et al., 2010; Venancio, Cristofoletti,
613	Ferreira, Verjovski-Almeida, & Terra, 2009). Oogenic gene expression has also been linked to nutrient
614	sensing in <i>Drosophila</i> (Shim, Gururaja-Rao, & Banerjee, 2013; Terashima & Bownes, 2005). Enrichment
615	of terms associated with metabolism, including components of ribosomes as protein-building
616	machinery, identified in <i>B. antarctica</i> is most likely associated with oogenesis-related biosynthesis. This
617	could include mobilizing lipids and proteins from the adult fat body during vitellogenesis, as well as
618	synthesis of components of the egg gel excreted from the accessory gland. Transcription factor analyses
619	revealed a subset of genes likely to have critical roles in female biology and thus warrant further more
620	directed studies. One identified was mothers against decapentaplegic (Mad) homolog 1, which likely is
621	likely critical for development (Newfeld, Chartoff, Graff, Melton, & Gelbart, 1996; Xie & Spradling, 1998).
622	Many enriched GO terms can also be tied to gametogenesis and embryogenesis or <i>Belgica</i>
-	, , , , , , , , , , , , , , , , , , , ,
623	females. Terms associated with cell cycle control and DNA/RNA/chromatin handling are among the main
623	females. Terms associated with cell cycle control and DNA/RNA/chromatin handling are among the main
623 624	females. Terms associated with cell cycle control and DNA/RNA/chromatin handling are among the main examples. Beyond meiotic divisions that result in formation of gametes, which of course takes place in
623 624 625	females. Terms associated with cell cycle control and DNA/RNA/chromatin handling are among the main examples. Beyond meiotic divisions that result in formation of gametes, which of course takes place in the male as well, female may have to exercise more precise control over the timing of oocyte
623 624 625 626	females. Terms associated with cell cycle control and DNA/RNA/chromatin handling are among the main examples. Beyond meiotic divisions that result in formation of gametes, which of course takes place in the male as well, female may have to exercise more precise control over the timing of oocyte maturation, deploying cell-cycle modulators, transcription regulation machinery, and/or RNA silencing
623 624 625 626 627	females. Terms associated with cell cycle control and DNA/RNA/chromatin handling are among the main examples. Beyond meiotic divisions that result in formation of gametes, which of course takes place in the male as well, female may have to exercise more precise control over the timing of oocyte maturation, deploying cell-cycle modulators, transcription regulation machinery, and/or RNA silencing factors (Lefebvre & Lécuyer, 2018; Qazi, Heifetz, & Wolfner, 2003; Soller, Bownes, & Kubli, 1999). TF
623 624 625 626 627 628	females. Terms associated with cell cycle control and DNA/RNA/chromatin handling are among the main examples. Beyond meiotic divisions that result in formation of gametes, which of course takes place in the male as well, female may have to exercise more precise control over the timing of oocyte maturation, deploying cell-cycle modulators, transcription regulation machinery, and/or RNA silencing factors (Lefebvre & Lécuyer, 2018; Qazi, Heifetz, & Wolfner, 2003; Soller, Bownes, & Kubli, 1999). TF analyses revealed a NF-kappa relish-like transcription factor as a potential regulator of transcript levels
623 624 625 626 627 628 629	females. Terms associated with cell cycle control and DNA/RNA/chromatin handling are among the main examples. Beyond meiotic divisions that result in formation of gametes, which of course takes place in the male as well, female may have to exercise more precise control over the timing of oocyte maturation, deploying cell-cycle modulators, transcription regulation machinery, and/or RNA silencing factors (Lefebvre & Lécuyer, 2018; Qazi, Heifetz, & Wolfner, 2003; Soller, Bownes, & Kubli, 1999). TF analyses revealed a NF-kappa relish-like transcription factor as a potential regulator of transcript levels for the female-enriched gene set. Indeed, NF-kappaB transcription factors play well-established roles in
623 624 625 626 627 628 629 630	females. Terms associated with cell cycle control and DNA/RNA/chromatin handling are among the main examples. Beyond meiotic divisions that result in formation of gametes, which of course takes place in the male as well, female may have to exercise more precise control over the timing of oocyte maturation, deploying cell-cycle modulators, transcription regulation machinery, and/or RNA silencing factors (Lefebvre & Lécuyer, 2018; Qazi, Heifetz, & Wolfner, 2003; Soller, Bownes, & Kubli, 1999). TF analyses revealed a NF-kappa relish-like transcription factor as a potential regulator of transcript levels for the female-enriched gene set. Indeed, NF-kappaB transcription factors play well-established roles in transcriptional regulation of cytokines, molecules involved in cell cycle control, and development

accessory gland. The meaning of these findings remains unclear, but indicate a potential critical role
 related to accessory gland function in *Belgica*.

636 The female also produces developmental factors that play a role in successful embryogenesis, 637 such as mRNAs, hormone biosynthesis precursors, and general cytoplasmic components (sperm are 638 quite cytoplasm-poor relative to eggs) (Swevers, Raikhel, Sappington, Shirk, & latrou, 2005). Among the 639 most highly enriched genes in females relative to males (>1000 fold higher) are a handful of genes 640 known to be involved in embryonic patterning in insects, such as nanos, oskar, and multiple innexins, 641 components of invertebrate gap junctions involved in intercellular communication during 642 embryogenesis (Bauer et al., 2005; De Keuckelaere, Hulpiau, Saeys, Berx, & Van Roy, 2018; Güiza, Barria, Saez, & Vega, 2018; Quinlan, 2016; Richard & Hoch, 2015). This lends support to the notion that the 643 644 female-enriched gene set is comprised largely of genes regulating and supporting oogenesis and 645 embryogenesis. In addition, paternal DNA must be de-compacted after fertilization, meaning that sperm 646 nucleotide binding proteins must be degraded (Doyen et al., 2015). The enzymes/proteins that 647 participate in this process are likely already present in the egg, and therefore maternally contributed 648 (Tirmarche, Kimura, Dubruille, Horard, & Loppin, 2016). This is followed by histone/chromatin assembly 649 which is dependent on maternally provided histones and nucleosome assembly factors (Loppin, 650 Dubruille, & Horard, 2015; Tirmarche et al., 2016). Male-contributed mitochondrial DNA must also be 651 degraded (DeLuca & O'Farrell, 2012; Sato & Sato, 2011). This further accounts for the prevalence of 652 terms associated with histones and chromosome organization. Finally, in Drosophila, nurse cells 653 surrounding the oocyte are known to polyploidize regions of their nuclear DNA to enhance transcription 654 and support provisioning of the oocyte (Bastock & St Johnston, 2008; Kaulenas, 1992; Orr-Weaver, 655 2015). This provides yet another physiological link to DNA replication and chromosome organization, but

chironomids lack nurse cells. It is uncertain whether other cells of the ovary act in a similar manner to *Drosophila* nurse cells (Bastock & St Johnston, 2008).

658 The dominant GO terms associated with the male-enriched gene set are 'anion transport' and 659 'carboxylic acid biosynthesis.' These are both terms that can be linked to spermatogenesis and may also 660 be linked to the differing metabolic needs of males, females, and larvae: larvae eat, digest, and grow; 661 females conduct vitellogenesis, oogenesis, and embryogenesis; and males likely devote the bulk of their 662 energy store to spermatogenesis and mating (Perry, Harrison, & Mank, 2014). The two terms may be 663 interrelated. For example, genes involved in synthesis and transport of pyruvate, a carboxylate anion 664 and the starting substrate of the tricarboxylic acid (TCA) cycle, could be associated with either GO term. 665 The functional role of pyruvate metabolism in sperm viability is not known, but mitochondrial activity is 666 demonstrated to be important for fertility, and a mitochondrial pyruvate transporter that is almost 667 uniquely expressed in the male germline has been identified in placental mammals (Vanderperre et al., 668 2016). However, inhibition of pyruvate transporters in the mitochondrial membrane does not appear to 669 affect sperm motility, lending support to the notion that sperm motility is fueled primarily by glycolysis 670 (not import of pyruvate into mitochondria) (Vanderperre et al., 2016); alternatively, amino acid 671 metabolism may play a role in motility, as it has been associated with sperm motility in An. gambiae 672 (Izquierdo et al., 2019). TCA-based energy production must play a role in some other aspect of sperm 673 viability (Vanderperre et al., 2016). The fact that a mitochondrial pyruvate transporter is important in 674 sperm viability suggests that pyruvate transport and metabolism contribute to the significance of the GO 675 terms 'tricarboxylic acid cycle,' 'monocarboxylic acid metabolic process,' and 'anion transport.' 676 Additionally, sperm are thought to take up lactate and pyruvate through general monocarboxylic acid 677 transporters (MCTs) in humans (Ramalho-Santos et al., 2009; Rato et al., 2012; Vanderperre et al., 678 2016). Perhaps there is an analogous uptake of energetically important organic acids in the seminiferous tubules of *Belgica* and other insects. Finally, pyruvate may be useful in supplying Acetyl-CoA for the
histone acetylation that is essential for chromatin condensation during spermatogenesis (Ramalho-

Santos et al., 2009; Rato et al., 2012; Vanderperre et al., 2016).

682 Overall, males showed far fewer genes with enriched expression relative to the female than vice 683 versa. Of the 12 genes that are >1000 fold higher in the male compared to other stages, three are 684 putative metalloendopeptidases. These may be involved in the proteolytic processing of amyloid precursor proteins (APPs), which are integral components of sperm membranes in humans, though their 685 686 specific roles have not been determined (Silva et al., 2015). Also of interest in this small set of highly 687 enriched genes are a few genes commonly, though not exclusively, associated with immunity: a leucine 688 rich immune protein TM, a toll protein, and an apparent homolog of the transcription factor NF-X1 689 (Brucker, Funkhouser, Setia, Pauly, & Bordenstein, 2012; De Gregorio, Spellman, Rubin, & Lemaitre, 690 2001; Irving et al., 2001; Palmer & Jiggins, 2015). This transcription factor binds X-box motifs to regulate 691 many eukaryotic genes and is generally thought to be a negative regulator of transcription (Stroumbakis, 692 Li, & Tolias, 1996). The homolog of this transcription factor identified in *D. melanogaster*, named 693 shuttlecraft (stc), is essential for normal embryonic development and is expressed most highly in the 694 embryo CNS. Moreover, expression of this gene is highest in the ovary, and the promoters of many 695 maternally contributed genes known to be crucial in embryonic development contain X-box motifs, such 696 as oskar, torpedo, pumilio, and vitelline membrane proteins (Stroumbakis et al., 1996). Therefore it is 697 tempting to suggest that, unlike in Drosophila, it is for some reason the male who produces this critical 698 TF, transferring it to the female during copulation in order to trigger or facilitate proper development of 699 their progeny. In support of the notion that the NF-X1 gene product is transferred to the female during 700 copulation, expression of the gene is roughly 24-fold higher in the male accessory gland than in the 701 whole carcass.

Gene ontology analysis of the larvae-enriched gene set revealed a preponderance of terms related to peptidase, hydrolase, and detoxification activity. These GO terms are related to digestion and detoxification of ingested materials by the growing larvae – neither of which would be relevant issues for the non-feeding adults. One cytochrome p450s (CYP6Z2), up-regulated in larvae, has been implicated in chemical resistance in *Anopheles* mosquitoes(Malik et al., 2016) and therefore may be critical for larval survival in their potentially toxic microhabitat, such as seabird guano (Rial et al., 2016).

708 Besides the ingestion of food, larvae of *B. antarctica* are also longer-lived and must face the 709 seasonal challenges of permanent residence in Antarctica (Edwards, & Baust, 1981; Sugg et al., 1983). In 710 particular, larvae must survive freezing and desiccation during the austral winter along with potential 711 thermal stress during summer (Benoit et al., 2009; Benoit, Lopez-Martinez, Michaud, et al., 2007; Lopez-712 Martinez et al., 2008; Michaud et al., 2008; Rinehart et al., 2006; Teets, Kawarasaki, Lee, & Denlinger, 713 2013). Genes enhancing survival under these conditions, such as heat shock proteins (Benoit et al., 714 2009; Benoit, Lopez-Martinez, Michaud, et al., 2007; Lopez-Martinez et al., 2008; Michaud et al., 2008; 715 Rinehart et al., 2006; Teets et al., 2013), are expected to be up-regulated by larvae. Based on previous 716 studies in Belgica and other species that are desiccation and freeze tolerant, genes of importance could 717 include oxido-reductase related enzymes (e.g. cytochrome p450s), Late Embryogenesis Abundant (LEA) 718 proteins, protein repair methyltransferases, hemoglobins, aquaporins, and enzymes involved in 719 trehalose metabolism (Benoit et al., 2009; Benoit, Lopez-Martinez, Michaud, et al., 2007; Dunning et al., 720 2013; Lopez-Martinez et al., 2008; Lv et al., 2010; Michaud et al., 2008; Rinehart et al., 2006; Ronges, 721 Walsh, Sinclair, & Stillman, 2012; Teets et al., 2013; J. Zhang, Marshall, Westwood, Clark, & Sinclair, 722 2011). Many of these categories are indeed enriched in the larvae and are likely substantial factors in 723 the stress resistance abilities of *B. antarctica*. Note that the presence of hemoglobin in insect 724 hemolymph is unique to chironomids (Gusev et al., 2014; Kaiser et al., 2016; S.-M. Lee, Lee, Park, & Choi,

2006) and furthermore it is thought to be unique to the larval stage. This could partially explain the

- 726 prevalence of iron binding as a GO term enriched in the larvae and conserved among the midge species
- 727 analyzed (Gusev et al., 2014; Kaiser et al., 2016; Lee et al., 2006).

Most prevalent among GO terms enriched in the larval gene set are those associated with
 aminoglycan metabolism. This set includes, for example, multiple putative N-

730 acetylgalactosaminyltransferases, which catalyze the initial glycosylation of serine and threonine

residues (Tran & Ten Hagen, 2013). Mucin type O-glycosylation occurs commonly on proteins with

extracellular domains, comprising a portion of the extracellular matrix, and it is thought to be important

in intercellular communication and adhesion (Tran & Ten Hagen, 2013). In Drosophila, enzymes

responsible for building glycosylated proteins, such as mucins, are critical for embryonic development,

particularly for the CNS (Tian & Hagen, 2007; Tran & Ten Hagen, 2013; Zhang, Zhang, & Ten Hagen,

736 2008). Maternal and zygotic O-linked glycans have also been implicated in proper respiratory

737 development. These O-glycans are termed *pgant* in *Drosophila* (Tian & Hagen, 2007; Tran & Ten Hagen,

738 2013; Zhang et al., 2008). One essential gene, *pgant4*, is involved in regulating gut acidification, but this

is not the only such gene required in the digestive system (Tran & Ten Hagen, 2013; Tran et al., 2012).

The larva enriched gene set in *Belgica* includes putative homologs of *pgant4* and *pgant6*, as well as the

essential genes CG30463 and C1GalTA, both involved in mucin type O-linked glycosylation. However,

742 larva-enriched GO terms, as mentioned above, are dominated by hydrolysis and catabolic processes,

including glycosaminoglycan catabolism. This may be a sign of the breakdown of extracellular materials

associated with growth and development or an indication of a diet rich in aminoglycans.

Composition of male accessory glands has been a major focus in numerous insects. These products influence fertilization rates, subsequent female receptivity to courtship, and are critical in the composition of the spermatophore (Alfonso-Parra et al., 2016; Avila et al., 2011; Dottorini et al., 2007; 748 Gabrieli et al., 2014; Izquierdo et al., 2019; McGraw et al., 2008; Mitchell et al., 2015; Ravi Ram & 749 Wolfner, 2007; Rogers et al., 2008; Sirot, Wong, Chapman, & Wolfner, 2015; Thailayil et al., 2011; 750 Villarreal et al., 2018). Many of the male accessory gland genes from *Belgica* have orthologs based on 751 predicted genes from midge and mosquito genomes, but few overlapping orthologs were identified that 752 are expressed in the male accessory gland of B. antarctica compared to the male reproductive tissues of 753 mosquitoes (Izquierdo et al., 2019; Papa et al., 2017). This is not surprising since a similar lack in 754 orthology among male accessory gland products has been observed between Drosophila and Glossina 755 and other higher flies (Attardo et al., 2019; Scolari et al., 2016). We did not conduct biological 756 examination of specific roles for accessory gland proteins from B. antarctica, such as whether their 757 transfer during mating impacts refractoriness of females, as noted in many species (Avila et al., 2011; 758 Baldini, Gabrieli, Rogers, & Catteruccia, 2012; Ravi Ram & Wolfner, 2007; Sirot et al., 2015). There is an 759 enrichment for genes associated with glycoprotein synthase, which is unsurprising as glycoproteins are 760 common constituents of seminal fluid (Avila et al., 2011; Poiani, 2006). In addition, there were specific 761 serine proteases, immune factors, and products involved in response to oxidative stress. These are 762 similar to those observed in other fly species(Avila et al., 2011; Baldini et al., 2012; Ravi Ram & Wolfner, 763 2007; Sirot et al., 2015; Tian et al., 2017) and likely serve to preserve sperm viability but could impact 764 other aspects such as female biology (Abraham et al., 2016; Denis et al., 2017). These factors are likely 765 critical to male success, as this midge will mate on multiple occasions. It is important to note that 766 females will deposit eggs with and without fertilization (Harada et al., 2014), thus suggesting that factors 767 supplied in the spermatophore are not essential for ovulation and oviposition as in other fly species 768 (Avila et al., 2011; Baldini et al., 2012; Ravi Ram & Wolfner, 2007; Sirot et al., 2015).

Our gene expression analysis is one of the few that has explicitly examined gene expression
within the female accessory gland. Many, but not all, products present within the gel were expressed in

771 the female's accessory gland. A comparison of our results to expression pattern in mosquito female 772 tracts (Papa et al., 2017) revealed few genes with overlapping expression (Papa et al., 2017). Few studies 773 in other flies explicitly examined products generated by the female's accessory gland. Even in 774 Drosophila, the female accessory gland (paraovaria) remains one of the most understudied organs 775 (Attardo et al., 2014). In tsetse flies, this organ provides nourishment to developing intrauterine larvae 776 (Attardo et al., 2019; Benoit et al., 2015 ; Attardo et al., 2014), but there are no similarities, beyond 777 standard housekeeping genes, between this organ in tsetse flies and B. antarctica. Of interest, 778 regulation of transcript expression within the female accessory gland seems to be conserved (Attardo et 779 al., 2014), suggesting that regulatory aspects may be similar but drive expression of specific genes 780 related to unique functions of this organ in different flies. Transcription factor analyses identified a 781 single gene (IU25 08656) that has enriched levels of both binding sites upstream of female accessory 782 gland enriched genes and is itself expressed in the female accessory gland. This is an uncharacterized 783 zinc finger proteins, but is likely to have a critical role in female reproductive function for *B. antarctica*.

784 The three major protein components of the gel are vitellogenin, larval serum protein, and 785 apolipophorin, all which are reasonable components of a gel whose primary function includes fueling 786 the development of larvae upon hatching. Belgica larvae exhibit "drinking behavior" shortly before 787 hatching, suggesting that up to this point embryonic development is fueled by nutrient reserves present 788 in the egg at the time of oviposition (Harada et al., 2014). Upon hatching, the gel is ingested by the larva, 789 making it the first meal fueling their development. Larval serum protein likely acts as an amino acid 790 reservoir, while vitellogenin and apolipoproteins could provide fatty acid, sugar, and protein reserves. 791 The gel may also contribute other elements in smaller amounts, such as pre-synthesized developmental 792 hormones in an inactive form, hormone precursors, proenzymes, and enzyme cofactors that are 793 important for continued development (Harada et al., 2014). Larval serum protein is a storage protein

794 belonging to the family of hexamerins (Burmester, 1999; Burmester et al., 1998; Telfer & Kunkel, 1991). 795 Genes for such proteins are often highly expressed in the final larval instar preceding pupation 796 (Burmester, 1999; Burmester et al., 1998; Telfer & Kunkel, 1991) and serve as a nutrient reserve for 797 developing pupae and newly emerged adult. During the sweeping morphological changes that 798 accompany metamorphosis in holometabolous insects like Belgica, such storage proteins are extracted 799 from the larval fat body, transferred into the hemolymph, and subsequently re-sequestered in the newly 800 formed adult fat body(Burmester, 1999; Burmester et al., 1998; Keeley, 1978; Larsen, 1976; Telfer & 801 Kunkel, 1991). The following scenario is the likely fate of the larval serum protein found in the egg gel: 802 Initially re-sequestered by the adult fat body and shuttled to the female accessory gland with 803 vitellogenin, or possibly sequestered in the female accessory gland during adult development after 804 pupation without a layover in the fat body. Importantly, lack of expression in the female adult indicates 805 these proteins must be synthesized in the larva for subsequent use by the adult.

806 Along with establishing components of the female accessory gland derived gel, a major goal of 807 this study was to identify functional roles of this gel and to determine if the gel components are 808 impacted by stress in the developing larvae. Based on our results, one of the main functions of the gel is 809 to provide a nutritional resource, which leads to a higher larval survival. Products of the accessory 810 glands of females have been documented as food sources for insect species among many orders(Attardo 811 et al., 2019; Benoit et al., 2015 ; Denlinger & Ma, 1974; Kaiwa et al., 2014; Ma, Denlinger, Jarlfors, & 812 Smith, 1975). Production of gel substances surrounding eggs have been noted in other species, such as 813 in stink bugs, where the gel serves as a source of nutrition, protects the eggs, and provides a vehicle to 814 transfer microbial symbionts (Kaiwa et al., 2014). Similar to our study, removal of the gel inhibits 815 juvenile development in stink bugs, but in contrast, removal of the gel around the stink bug eggs has 816 little impact on hatching success. In addition to providing a critical nutritional source and preventing

dehydration, we show that the egg gel acts as a thermal buffer that limits temperature extremes. Our *de novo* assembly of the female accessory gland failed to detect signatures of microbial symbionts within
the gel, indicating that the gel does not serve as a mechanism of bacterial transfer to the developing
larvae. This lack of microbial presence could very well limit microbial exposure of the midge until after
larvae emerge from the gel. Accessory gland products also have been demonstrated to possess
antimicrobial properties(Avila et al., 2011; Otti, McTighe, & Reinhardt, 2013; Otti, Naylor, Siva-Jothy, &
Reinhardt, 2009); this is a possibility for *B. antarctica* because immune peptides are present in the gel.

824 Larval dehydration stress had a major impact on fertility of both adult males and females. The 825 most likely cause of reduced fecundity in males and females is a direct reduction in larval serum protein, 826 a hexamerin that acts as a storage protein in larvae (Burmester, 1999; Burmester et al., 1998; Telfer & 827 Kunkel, 1991). This hexamerin represents one of the highest expressed transcripts in developing larvae, 828 so its accumulation during the juvenile stages is likely a critical resource for production of eggs and 829 accessory gland components. This effect is likely even more pronounced in *B. antarctica* because adults 830 do not feed or even readily drink water (Benoit, Lopez-Martinez, Elnitsky, Lee, & Denlinger, 2007). Along 831 with acting as a nutritional source, the larval serum protein generated in juvenile stage of females is 832 likely incorporated into the accessory gland gel, suggesting that a reduction in this product may directly 833 impact gel composition. Larval nutritional status has a direct impact on fecundity in numerous insect 834 systems (Aguila, Hoshizaki, & Gibbs, 2013; Aguila, Suszko, Gibbs, & Hoshizaki, 2007; Rosa & 835 Saastamoinen, 2017), including other midges (Sibley et al., 2001). To the best of our knowledge, larval 836 dehydration has not previously been examined in relation to subsequent adult fecundity. Other stressful 837 conditions, such as chemical exposure, have impaired both larval development and subsequent adult 838 reproduction in a non-biting midge, *Chironomus riparius*(Vogt et al., 2007).

839	This study provides an encompassing view of reproductive biology of the Antarctic midge, from
840	molecular mechanisms to the impact of larval stress exposure on adult fecundity. Key findings are
841	summarized in Figure 15. This is followed by population growth modeling to establish how these factors
842	directly impact persistence of this insect in its limited Antarctic range. Population modeling revealed
843	that each factor (dehydration stress, lack of gel, thermal buffering), by itself, has a small impact on
844	population growth but combined factors likely result in negative population growth. The limited
845	reproductive window of 2-3 weeks makes understanding both male and female reproduction critical for
846	understanding how this midge survives in Antarctica. Studies on the reproductive biology of flies have
847	been limited largely to Drosophila and disease vectors (sand flies, mosquitoes, etc.), and our results
848	expand into Chironomidae to provide the groundwork for future studies with this dipteran system.

849

850 ACKNOWLEDGEMENTS

This work was supported by the National Science Foundation grant DEB-1654417 (partially) and United States Department of Agriculture 2018-67013 (partially) to J.B.B., National Science Foundation grant OPP-1341393 to D.L.D., and National Science Foundation grant OPP-1341385 to R.E.L. We thank the staff at Palmer Station, Antarctica for assistance in logistics, experiments, and helping make the field season a pleasant experience.

856

857 AUTHOR CONTRIBUTION

This study was designed and conceived by J.B.B. The manuscript was written by G.F. and J.B.B. RNA-seq studies were conducted by G.F., A.J.R., B. D., and S.T.B. Molecular and physiological studies were

860	conducted and interpreted by S. N., C. P., G. F., C.J.H, E.M.D., and J.B.B. Transcription factor analyses
861	were contributed by X.C. and M.T.W. and interpreted by J.B.B. and G.F. Additional data and statistical
862	analyses were conducted by K.J.O., G.M.A., and J.B.B. Samples were collected by J.D.G., D.S., R.E.L., and
863	D.L.D. Population modeling was conducted by S.F.M. Figures were prepared by G.F. and J.B.B.
864	Illustrations were by G.M.A. All authors were responsible for editing the manuscript and have approved
865	publication.
866	
867	DATA AVAILABILITY STATEMENT
868	All data generated for this project have been submitted to NCBI or made available in the supplemental
869	files.
870	
871	
872	
873	
874	
875	
876	
877	

878 FIGURE LEGENDS

879	Figure 1: Antarctic midge, Belgica antarctica, during reproduction. A. Mating pair, male on left. Inset,
880	spermatophore transferred to females immediately after copulation. Image is posterior end of female
881	and white material is the spermatophore. B. Female depositing eggs and accessory gland-derived gel. C.
882	Accessory gland (left middle, b) and ovaries (top left and right, a) of gravid females 3 days after adult
883	eclosion. D. Female accessory glands (left, a) and ovaries (top and right, b) following egg and gel
884	deposition. E. Egg mass following the completion of deposition. F. Male reproductive tract, a. testes, b,
885	accessory gland, and c, common duct.
886	
887	Figure 2: Gene expression heat map of Antarctic midge, <i>Belgica antarctica</i> , during development,
007	ingure 2. Gene expression neur map of Antarette image, <i>Dergreu untaretteu</i> , auring acvelopment,
888	between sexes, and for accessory glands. Hierarchical clustering of RNA-seq gene expression patterns
889	for males, females, larvae, and accessory glands based on sample distance (Euclidean distance matrix) of
890	differentially expressed contigs.
891	
892	Figure 3: Genes uniquely enriched for the Antarctic midge, <i>Belgica antarctica</i> in males, females, and
893	larvae and associated gene ontology enrichment. A. Gene enriched in males (left) and gene ontology
894	(right), B. Gene enriched in females (left) and gene ontology (right), C. Gene enriched in larvae (left) and
895	gene ontology (right). Each box represents a specific category and color represent major GO groups.
896	
897	Figure 4: Genes uniquely enriched in the Antarctic midge, Belgica antarctica, female and male

898 accessory glands and associated gene ontology enrichment. A. Genes enriched in female accessory

899	glands (left) and gene ontology (right), B. Genes enriched in male accessory gland (left) and gene
900	ontology (right). GO conducted with g:Prolifer (Raudvere et al., 2019).

902	Figure 5: Weighted gene co-expression network analysis (WGCNA) across developmental stages and
903	for male and female accessory glands of the Antarctic midge, Belgica antarctica. A. Average linkage
904	hierarchical clustering dendrogram of the genes. Modules, designated by color code, are branches of the
905	clustering tree. B. Correlation of module eigengenes to developmental and accessory gland traits. Each
906	row corresponds to a module eigengene and columns are traits. *, represents values with a significant
907	positive correlation for Pearson r (P < 0.05). C. Unsupervised hierarchical clustering heatmap (bottom)
908	and dendrogram (top) of module eigengenes and traits. Gene ontology (GO) analysis of eigengenes
909	associated with larvae (D), males (E), and females (F). GO conducted with g:Prolifer(Raudvere et al.,
910	2019) and visualized with REVIGO(Supek, Bošnjak, Škunca, & Šmuc, 2011).

Figure 6: Proteomic analysis of female accessory gland derived gel material from the Antarctic midge, *Belgica antarctica*. A. Female depositing eggs with gel and protein components of two gel samples
without eggs. B. Identification of proteins that represent at least 3% of total protein composition of the
accessory gland gel. C. Congruence of protein abundance and content between two gel samples. D.
Heatmap for transcript levels of gel-specific genes among larvae, females, males, and accessory glands.
E. qPCR validation of RNA-seq data. All tested genes have Pearson correlation coefficients over 0.85. Gel
specific genes have a Pearson correlation of 0.87.

920	Figure 7: Transcription factors (TFs) and TF binding sites associated with reproduction in the Antarctic
921	midge, Belgica antarctica. A. Relative abundance of transcription factors encoded by genomes of
922	midges and mosquitoes. TF families towards the top contain more TFs in <i>B. antarctica</i> . B. Enrichment
923	for specific TF binding site motifs in regulatory regions (2000 bp; 500 bp data not shown due to overlap
924	with 2000 bp) of genes expressed highly in specific stages and accessory glands. Groups of TFs are
925	separated by their motif enrichment profiles across samples. Those highlighted in orange are
926	significantly enriched within the specific stage or tissue. Scale for heatmap is set at relative abundance
927	on a Z scale of -2 to 2 across each row. C. Transcript levels of select TFs with significant motif enrichment
928	in the promoters of genes expressed in specific tissues (orange font color in panel B). Scale for heatmap
929	is set at relative abundance on a Z scale of -2 to 2 across each row. MAG, male accessory gland; FeAG,
930	female accessory glands.

932	Figure 8: Comparative analysis of female, male, and larvae-specific gene sets with mosquitoes and
933	midges to Antarctic midge, Belgica antarctica. A. Female-specific genes compared to midges (left),
934	mosquitoes (middle), and genes with enriched expression in the female reproductive tract (FRT) of
935	mosquitoes (right) (Papa et al., 2017). B. Male-specific genes compared to midges (left), mosquitoes
936	(middle), and genes with enriched expression in the male reproductive tract (MRT) of mosquitoes
937	(right)(Papa et al., 2017). C. Larvae-specific genes compared to midges (left) and mosquitoes (right).
938	Protein sequences were defined as orthologs if they had reciprocal-best BLASTp hits with an e-value <
939	10 ⁻¹⁰ .

941 Figure 9: Comparative analysis of accessory gland gene sets with mosquitoes and midges to the

942 Antarctic midge. A. Female accessory gland genes compared to midges (left), mosquitoes (middle), and

genes with enriched expression in the female reproductive tract of mosquitoes (right) (Papa et al.,

944 2017). B. Male accessory gland genes compared to midges (left), mosquitoes (middle), and genes with

945 enriched expression in the male reproductive tract of mosquitoes (right) (Papa et al., 2017). C. Overlap

946 between genes expressed in male accessory glands between mosquitoes and *B. antarctica*. Left, highly

947 enriched in Anopheles male accessory gland. Right, enriched in Anopheles male accessory gland.

948 Enrichment for *Anopheles* male accessory gland genes is based on values from Izquierdo et al. (2019).

949 Protein sequences were defined as orthologs if they had reciprocal-best BLASTp hits with an e-value <

950 10⁻¹⁰.

951

952 Figure 10: Expression changes in gel-associated proteins in larvae following dehydration stress. A. 953 Transcript level changes in larvae for gel proteins following dehydration stress. RNA-seg studies were 954 acquired from Teets et al. (2012). Orange denotes significance between control and dehydrated larvae 955 based on RNA-seq analyses. B. Heat map of transcript levels for gel-associated proteins during 956 dehydration (D) and cryoprotective dehydration (CD) compared to control (C) that are components of 957 the gel proteome and significantly altered by dehydration. C. Total mass before eclosion, D. post-958 eclosion total mass, E. mass change after eclosion, and total egg production in females when control 959 (non-dehydrated) and dehydrated larvae were allowed to complete development. Analysis of variance 960 was utilized to examine statistical differences with the use of R statistic packages. Bars above indicate 961 significance at P < 0.05.

Figure 11: Impact of larval dehydration stress on male fertility. A. Expression profiles of maleassociated genes with expression differences after larval dehydration (D, dehydration, C, control, and
CD, cryoprotective dehydration, MAG, male accessory gland). B. Mass of males used in mating
experiments from dehydrated or control larvae. C. Female fertility (control or dehydrated) following
copulation with dehydrated or control males. Analysis of variance was utilized to examine statistical
differences with the use of R statistic packages. Bars above indicate significance at P < 0.05 unless
otherwise noted.

970

Figure 12: Accessory gland gel is critical for larval development. A. Amino acid composition and
putative phosphate and glycosylation sites of gel proteins based on sequence information. Relative
amounts are based on comparison levels between columns. B. Survival of developing larvae with (black)
and without (gray) gel presence at larval ecdysis. Open circles are the average and filled circles are each
replicate. C. Larvae length after 20 days with and without gel at larval ecdysis. Bar indicates significance
at P < 0.05. Analysis of variance was utilized to examine statistical differences with the use of R statistic
packages. Bars above or beside indicate significance at P < 0.05.

978

Figure 13: Role of accessory gland gel in relation to thermal buffering of eggs. A. Thermal profile within
(orange) and outside (blue) gel-egg mixture under field conditions, B. Egg viability following exposure to
20°Cfor three hours. Eggs without gel (constant) were held at 4°C for the duration of the trial. Maximum
temperature change during 24 hour period. D. Rate of temperature change (minimum to maximum).
Analysis of variance was utilized to examine statistical differences with the use of R statistic packages. *
above indicates significance at P < 0.05 unless otherwise noted.

986	Figure 14: Population growth is impacted by dehydration and thermal stress in developing larvae. A .
987	Population growth following altered egg production due to dehydration exposure as larvae in males,
988	females, and both sexes combined compared to control (no dehydration of larvae). B. Growth based on
989	the presence or absence of the gel under favorable conditions. C. Impact of thermal stress on egg
990	viability with and without accessory gland gel.
991	
992	Figure 15: Summary of Antarctic midge reproduction. Larval development (four stages) is condensed
993	into a single representation or all stages. Adults live approximately two-three weeks. Egg development
994	occurs over thirty days. Impact of specific conditions are highlighted based on experimental evidence
995	from this study.
996	
997	Supplemental table 1. RNA-seq results for complete Belgica antarctica gene set. Expression values are
998	in transcripts per million. RNA-seq datasets are available under the following NCBI Bioprojects
999	PRJNA174315 and PRJNA576639.
1000	
1001	Supplemental table 2- BLAST results for female accessory gland specific de novo transcriptome against
1002	bacterial sequences from the NCBI nr database.
1003	

1004	Supplemental table 3. RNA-seq results for female-enriched Belgica antarctica gene set. Expression
1005	values are in transcripts per million. RNA-seq datasets are available under the following NCBI Bioprojects
1006	PRJNA174315 and PRJNA576639.
1007	
1008	Supplemental table 4. RNA-seq results for male-enriched Belgica antarctica gene set. Expression values
1009	are in transcripts per million. RNA-seq datasets are available under the following NCBI Bioprojects
1010	PRJNA174315 and PRJNA576639.
1011	
1012	Supplemental table 5. RNA-seq results for larvae-enriched Belgica antarctica gene set. Expression
1013	values are in transcripts per million. RNA-seq datasets are available under the following NCBI Bioprojects
1014	PRJNA174315 and PRJNA576639.
1015	
1016	Supplemental table 6. RNA-seq results for female accessory gland-enriched Belgica antarctica gene set.
1017	Expression values are in transcripts per million. RNA-seq datasets are available under the following NCBI
1018	Bioprojects PRJNA174315 and PRJNA576639.
1019	
1020	Supplemental table 7. RNA-seq results for male accessory gland-enriched Belgica antarctica gene set.
1021	Expression values are in transcripts per million. RNA-seq datasets are available under the following NCBI
1022	Bioprojects PRJNA174315 and PRJNA576639.
1023	

1024	Supplemental table 8. WGCNA module results for female-enriched Belgica antarctica gene	s cot
1024	Supplemental table 6. WOUNA module results for remain-emittined bergicu unitarctica gene	s set.

- 1025 Expression values are in transcripts per million. RNA-seq datasets are available under the following NCBI
- 1026 Bioproject PRJNA174315 and PRJNA576639.

1027

1028 **Supplemental table 9.** WGCNA module results for male-enriched *Belgica antarctica* gene set. Expression

1029 values are in transcripts per million. RNA-seq datasets are available under the following NCBI Bioprojects

1030 PRJNA174315 and PRJNA576639.

1031

1032 **Supplemental table 10.** WGCNA module results for larvae-enriched *Belgica antarctica* gene set.

1033 Expression values are in transcripts per million. RNA-seq datasets are available under the following NCBI

1034 Bioproject PRJNA174315 and PRJNA576639.

1035

1036 **Supplemental table 11.** WGCNA module results for female accessory gland-enriched *Belgica antarctica*

1037 gene set. Expression values are in transcripts per million. RNA-seq datasets are available under the

1038 following NCBI Bioproject PRJNA174315 and PRJNA576639.

1039

- 1040 **Supplemental table 12.** WGCNA module results for male accessory gland-enriched *Belgica antarctica*
- 1041 gene set. Expression values are in transcripts per million. RNA-seq datasets are available under the
- 1042 following NCBI Bioproject PRJNA174315 and PRJNA576639.

1044	Supplemental table 13. Transcript levels for gel-derived proteins from the Belgica antarctica gene set.
1045	Expression values are in transcripts per million. RNA-seq datasets are available under the following NCBI
1046	Bioproject PRJNA174315 and PRJNA576639. Relative abundance of protein amounts were based on the
1047	number of protein fragments that match a specific genes.
1048	
1049	Supplemental table 14. Transcript levels for transcription factors from the Belgica antarctica gene set.
1050	Expression values are in transcript per million. RNA-seq datasets are available under the following NCBI
1051	Bioproject PRJNA174315 and PRJNA576639.
1052	
1053	Supplemental table 15- Quantitative PCR primers used for the validation of RNA-seq result.
1054	
1055	
1056	
1057	
1058	
1059	
1060	
1061	
1062	
1063	
1064	
1065	
1066	
1067	
1068	

1069 **REFERENCES**

- 1070Abbott, K. C., & Dwyer, G. (2007). Food limitation and insect outbreaks: complex dynamics in plant–1071herbivore models. Journal of Animal Ecology, 76(5), 1004-1014.
- Abraham, S., Lara-Pérez, L. A., Rodríguez, C., Contreras-Navarro, Y., Nuñez-Beverido, N., Ovruski, S., &
 Pérez-Staples, D. (2016). The male ejaculate as inhibitor of female remating in two tephritid
 flies. *Journal of Insect Physiology*, *88*, 40-47.
- Afgan, E., Baker, D., Batut, B., Van Den Beek, M., Bouvier, D., Čech, M., . . . Grüning, B. A. (2018). The
 Galaxy platform for accessible, reproducible and collaborative biomedical analyses: 2018
 update. *Nucleic acids research, 46*(W1), W537-W544.
- Aguila, J. R., Hoshizaki, D. K., & Gibbs, A. G. (2013). Contribution of larval nutrition to adult reproduction
 in *Drosophila melanogaster*. *Journal of Experimental Biology*, *216*(3), 399-406.
- Aguila, J. R., Suszko, J., Gibbs, A. G., & Hoshizaki, D. K. (2007). The role of larval fat cells in adult
 Drosophila melanogaster. Journal of Experimental Biology, 210(6), 956-963.
- Alfonso-Parra, C., Ahmed-Braimah, Y. H., Degner, E. C., Avila, F. W., Villarreal, S. M., Pleiss, J. A., . . .
 Harrington, L. C. (2016). Mating-induced transcriptome changes in the reproductive tract of
 female Aedes aegypti. PLoS Neglected Tropical Diseases, 10(2), e0004451.
- Attardo, G. M., Abd-Alla, A. M., Acosta-Serrano, A., Allen, J. E., Bateta, R., Benoit, J., . . . Christensen, M.
 B. (2019). The Glossina genome cluster: comparative genomic analysis of the vectors of African
 trypanosomes. *bioRxiv*, 531749.
- Attardo, G. M., Benoit, J. B., Michalkova, V., Patrick, K. R., Krause, T. B., & Aksoy, S. (2014). Ladybird late
 homeodomain factor regulates lactation specific expression of milk proteins during pregnancy in
 the tsetse fly (*Glossina morsitans*). *PLoS neglected tropical diseases, 8*, e2645.
- 1091 Avila, F. W., Sirot, L. K., LaFlamme, B. A., Rubinstein, C. D., & Wolfner, M. F. (2011). Insect seminal fluid 1092 proteins: identification and function. *Annual review of entomology*, *56*, 21-40.
- Baldini, F., Gabrieli, P., Rogers, D. W., & Catteruccia, F. (2012). Function and composition of male
 accessory gland secretions in *Anopheles gambiae*: a comparison with other insect vectors of
 infectious diseases. *Pathogens and global health*, 106(2), 82-93.
- 1096 Bastock, R., & St Johnston, D. (2008). Drosophila oogenesis. Current Biology, 18(23), R1082-R1087.
- Bauer, R., Löer, B., Ostrowski, K., Martini, J., Weimbs, A., Lechner, H., & Hoch, M. (2005). Intercellular
 communication: the *Drosophila* innexin multiprotein family of gap junction proteins. *Chemistry & biology*, *12*(5), 515-526.
- Benoit, J., Kölliker, M., & Attardo, G. (2019). Putting invertebrate lactation in context. *Science (New York, NY), 363*(6427), 593-593.
- Benoit, J. B., Adelman, Z. N., Reinhardt, K., Dolan, A., Poelchau, M., Jennings, E. C., . . . Richards, S.
 (2016). Unique features of a global human ectoparasite identified through sequencing of the bed bug genome. *Nature Communications, 7*. doi:10.1038/ncomms10165
- Benoit, J. B., Attardo, G. M., Baumann., A. A., Michalkova, V., & Aksoy, S. (2015). Adenotrophic viviparity
 in tsetse flies: potential for population control and as an insect model for lactation. *Annual review of entomology, In press*
- Benoit, J. B., Lopez-Martinez, G., Elnitsky, M. A., Lee, R. E., & Denlinger, D. L. (2007). Moist habitats are
 essential for adults of the Antarctic midge, *Belgica antarctica* (Diptera : Chironomidae), to avoid
 dehydration. *European Journal of Entomology*, 104(1), 9-14.
- Benoit, J. B., Lopez-Martinez, G., Elnitsky, M. A., Lee, R. E., & Denlinger, D. L. (2009). Dehydration induced cross tolerance of *Belgica antarctica* larvae to cold and heat is facilitated by trehalose
 accumulation. *Comparative Biochemistry and Physiology a-Molecular & Integrative Physiology,* 114 152(4), 518-523. doi:DOI 10.1016/j.cbpa.2008.12.009

Benoit, J. B., Lopez-Martinez, G., Michaud, M. R., Elnitsky, M. A., Lee, R. E., Jr., & Denlinger, D. L. (2007).
 Mechanisms to reduce dehydration stress in larvae of the Antarctic midge, *Belgica antarctica*.
 Journal Insect Physiol, *53*(7), 656-667. doi:10.1016/j.jinsphys.2007.04.006

- Benoit, J. B., Michalkova, V., Didion, E. M., Xiao, Y., Baumann, A. A., Attardo, G. M., & Aksoy, S. (2018).
 Rapid autophagic regression of the milk gland during involution is critical for maximizing tsetse
 viviparous reproductive output. *PLoS neglected tropical diseases*, *12*(1), e0006204.
- Brucker, R. M., Funkhouser, L. J., Setia, S., Pauly, R., & Bordenstein, S. R. (2012). Insect Innate Immunity
 Database (IIID): an annotation tool for identifying immune genes in insect genomes. *PLoS One*,
 7(9), e45125.
- Burmester, T. (1999). Evolution and function of the insect hexamerins. *European Journal of Entomology*,
 96, 213-226.
- 1126 Burmester, T., Massey Jr, H. C., Zakharkin, S. O., & Benes, H. (1998). The evolution of hexamerins and the 1127 phylogeny of insects. *Journal of Molecular Evolution*, *47*(1), 93-108.
- 1128 Cao, X., & Jiang, H. (2017). An analysis of 67 RNA-seq datasets from various tissues at different stages of 1129 a model insect, *Manduca sexta*. *BMC genomics*, *18*(1), 796.
- Clark, A. G., Eisen, M. B., Smith, D. R., Bergman, C. M., Oliver, B., Markow, T. A., . . . MacCallum, I. (2007).
 Evolution of genes and genomes on the *Drosophila* phylogeny. *Nature*, 450(7167), 203-218.
 doi:nature06341 [pii]10.1038/nature06341
- Clark, N., & Ma'ayan, A. (2011). Introduction to statistical methods for analyzing large data sets: Gene
 Set Enrichment Analysis (GSEA). *Science Signaling*, *4*(190), tr4.
- 1135 Conesa, A., Gotz, S., Garcia-Gomez, J. M., Terol, J., Talon, M., & Robles, M. (2005). Blast2GO: a universal
 1136 tool for annotation, visualization and analysis in functional genomics research. *Bioinformatics*,
 1137 21(18), 3674-3676. doi:10.1093/bioinformatics/bti610
- Convey, P. (1992). Aspects of the biology of the midge, *Eretmoptera murphyi* Schaeffer (Diptera:
 Chironomidae), introduced to Signy Island, maritime Antarctic. *Polar Biology*, *12*(6-7), 653-657.
- 1140 Convey, P. (1997). How are the life history strategies of Antarctic terrestrial invertebrates influenced by
 1141 extreme environmental conditions? *Journal of Thermal Biology*, 22(6), 429-440.
- 1142 Convey, P., & Block, W. (1996). Antarctic Diptera: ecology, physiology and distribution. *European Journal* 1143 of Entomology, 93, 1-14.
- De Gregorio, E., Spellman, P. T., Rubin, G. M., & Lemaitre, B. (2001). Genome-wide analysis of the
 Drosophila immune response by using oligonucleotide microarrays. *Proceedings of the National* Academy of Sciences, 98(22), 12590-12595.
- 1147De Keuckelaere, E., Hulpiau, P., Saeys, Y., Berx, G., & Van Roy, F. (2018). Nanos genes and their role in1148development and beyond. Cellular and Molecular Life Sciences, 75(11), 1929-1946.
- Degrugillier, M. E. (1985). In vitro release of house fly, *Musca domestica* L.(Diptera: Muscidae),
 acrosomal material after treatments with secretion of female accessory gland and micropyle cap
 substance. *International Journal of Insect Morphology and Embryology*, *14*(6), 381-391.
- 1152DeLuca, S. Z., & O'Farrell, P. H. (2012). Barriers to male transmission of mitochondrial DNA in sperm1153development. Developmental cell, 22(3), 660-668.
- Denis, B., Claisse, G., Le Rouzic, A., Wicker-Thomas, C., Lepennetier, G., & Joly, D. (2017). Male accessory
 gland proteins affect differentially female sexual receptivity and remating in closely related
 Drosophila species. *Journal of Insect Physiology*, *99*, 67-77.
- Denlinger, D. L., & Ma, W.-C. (1974). Dynamics of the pregnancy cycle in the tsetse *Glossina morsitans Journal of insect physiology, 20*, 1015-1026.
- Dixon, S. M., Coyne, J. A., & Noor, M. A. (2003). The evolution of conspecific sperm precedence in
 Drosophila. Molecular Ecology, 12(5), 1179-1184.

Dottorini, T., Nicolaides, L., Ranson, H., Rogers, D. W., Crisanti, A., & Catteruccia, F. (2007). A genome wide analysis in *Anopheles gambiae* mosquitoes reveals 46 male accessory gland genes, possible
 modulators of female behavior. *Proceedings of the National Academy of Sciences, 104*(41),
 16215-16220.

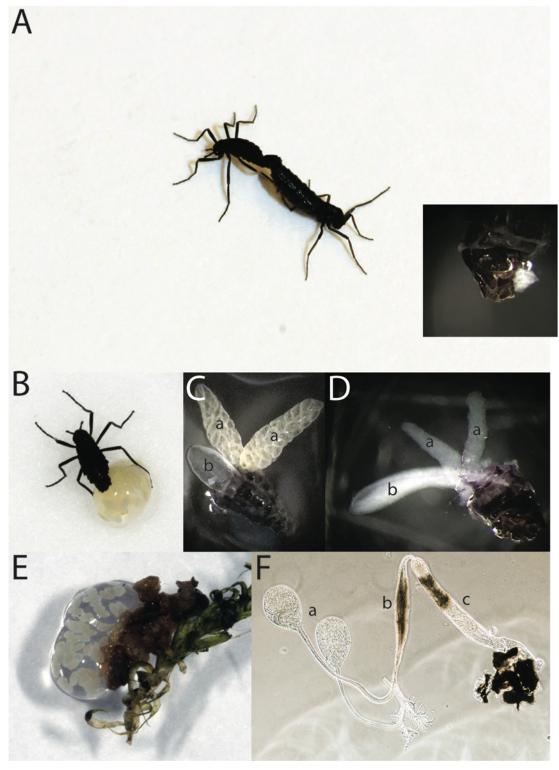
- Doyen, C. M., Chalkley, G. E., Voets, O., Bezstarosti, K., Demmers, J. A., Moshkin, Y. M., & Verrijzer, C. P.
 (2015). A testis-specific chaperone and the chromatin remodeler ISWI mediate repackaging of
 the paternal genome. *Cell reports*, *13*(7), 1310-1318.
- Dunning, L. T., Dennis, A. B., Park, D., Sinclair, B. J., Newcomb, R. D., & Buckley, T. R. (2013).
 Identification of cold-responsive genes in a New Zealand alpine stick insect using RNA-Seq. *Comparative Biochemistry and Physiology Part D: Genomics and Proteomics, 8*(1), 24-31.
 doi:10.1016/j.cbd.2012.10.005
- Eddy, S. R. (2009). A new generation of homology search tools based on probabilistic inference. *Genome Informatics 2009: Genome Informatics Series, 23*, 205-211.
- J.Edwards, J.S., & Baust, J. (1981). Sex ratio and adult behaviour of the Antarctic midge *Belgica antarctica* (Diptera, Chironomdae). *Ecological Entomology*, 6(3), 239-243.
- Gabrieli, P., Kakani, E. G., Mitchell, S. N., Mameli, E., Want, E. J., Anton, A. M., . . . Catteruccia, F. (2014).
 Sexual transfer of the steroid hormone 20E induces the postmating switch in *Anopheles gambiae*. *Proceedings of the National Academy of Sciences*, *111*(46), 16353-16358.
- Giglioli, M., & Mason, G. (1966). *The mating plug in anopheline mosquitoes.* Paper presented at the
 Proceedings of the Royal Entomological Society of London. Series A, General Entomology.
- Gilmore, T. D. (2006). Introduction to NF-κB: players, pathways, perspectives. *Oncogene*, *25*(51), 6680.
- Goecks, J., Nekrutenko, A., & Taylor, J. (2010). Galaxy: a comprehensive approach for supporting
 accessible, reproducible, and transparent computational research in the life sciences. *Genome Biology*, 11(8), R86.
- Grabherr, M. G., Haas, B. J., Yassour, M., Levin, J. Z., Thompson, D. A., Amit, I., ... Regev, A. (2011). Fulllength transcriptome assembly from RNA-Seq data without a reference genome. *Nature biotechnology*, *29*(7), 644-652. doi:nbt.1883 [pii]10.1038/nbt.1883
- Graveley, B. R., Brooks, A. N., Carlson, J. W., Duff, M. O., Landolin, J. M., Yang, L., . . . Booth, B. W. (2011).
 The developmental transcriptome of *Drosophila melanogaster*. *Nature*, *471*(7339), 473-479.
- Güiza, J., Barria, I., Saez, J. C., & Vega, J. L. (2018). Innexins: Expression, Regulation and Functions.
 Frontiers in physiology, *9*, 1414.
- Gusev, O., Suetsugu, Y., Cornette, R., Kawashima, T., Logacheva, M. D., Kondrashov, A. S., . . . Shimura, S.
 (2014). Comparative genome sequencing reveals genomic signature of extreme desiccation
 tolerance in the anhydrobiotic midge. *Nature Communication*, *5*, 4784.
- 1195 Gwynne, D.T. (2012). Male mating effort, confidence of paternity, and insect sperm competition. *Sperm* 1196 *competition and the evolution of animal mating systems*, 117.
- Hagan, R. W., Didion, E. M., Rosselot, A. E., Holmes, C. J., Siler, S. C., Rosendale, A. J., ... Nine, G. A.
 (2018). Dehydration prompts increased activity and blood feeding by mosquitoes. *Scientific reports*, 8(1), 6804.
- Hahn, S., & Reinhardt, K. (2006). Habitat preference and reproductive traits in the Antarctic midge
 Parochlus steinenii (Diptera: Chironomidae). *Antarctic Science*, 18(2), 175-181.
- Harada, E., Lee, R. E., Denlinger, D. L., & Goto, S. G. (2014). Life history traits of adults and embryos of
 the Antarctic midge *Belgica antarctica*. *Polar Biology*, *37*(8), 1213-1217.
- Heaven, M. R., Funk, A. J., Cobbs, A. L., Haffey, W. D., Norris, J. L., McCullumsmith, R. E., & Greis, K. D.
 (2016). Systematic evaluation of data-independent acquisition for sensitive and reproducible
 proteomics—a prototype design for a single injection assay. *Journal of Mass Spectrometry*,
 51(1), 1-11.

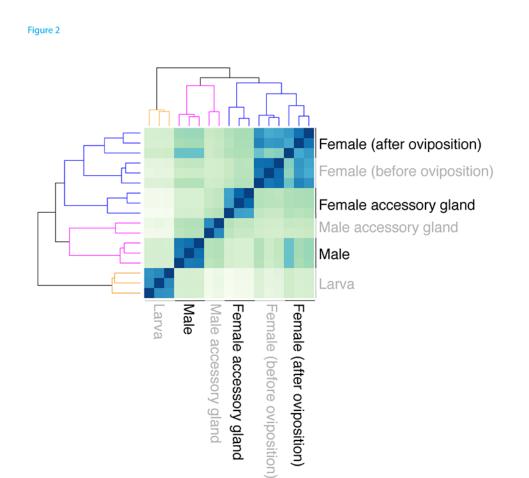
Hopkins, B. R., Sepil, I., Thézénas, M.-L., Craig, J. F., Miller, T., Charles, P. D., ... Pizzari, T. (2019).
Divergent allocation of sperm and the seminal proteome along a competition gradient in
Drosophila melanogaster. Proceedings of the National Academy of Sciences, 116(36), 1792517933.

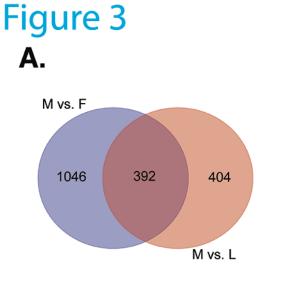
- 1212 Hopkins, B. R., Sepil, I., & Wigby, S. (2017). Seminal fluid. *Current Biology*, 27(11), R404-R405.
- Huang da, W., Sherman, B. T., Zheng, X., Yang, J., Imamichi, T., Stephens, R., & Lempicki, R. A. (2009).
 Extracting biological meaning from large gene lists with DAVID. *Current Protocols in Bioinformatics, Chapter 13.* doi:10.1002/0471250953.bi1311s27
- 1216 Initiative, I. G. G. (2014). Genome sequence of the tsetse fly (*Glossina morsitans*): vector of African 1217 trypanosomiasis. *Science*, *25*(6182), 380-386.
- Irving, P., Troxler, L., Heuer, T. S., Belvin, M., Kopczynski, C., Reichhart, J. M., . . . Hetru, C. (2001). A
 genome-wide analysis of immune responses in *Drosophila*. *Proceedings of the National Academy* of Sciences of the United States of America, 98(26), 15119-15124. doi:10.1073/pnas.261573998
- Izquierdo, A., Fahrenberger, M., Persampieri, T., Benedict, M. Q., Giles, T., Catteruccia, F., . . . Dottorini,
 T. (2019). Evolution of gene expression levels in the male reproductive organs of *Anopheles* mosquitoes. *Life science alliance*, 2(1), e201800191.
- 1224 Kaiser, T. S., Poehn, B., Szkiba, D., Preussner, M., Sedlazeck, F. J., Zrim, A., . . . Hummel, T. (2016). The 1225 genomic basis of circadian and circalunar timing adaptations in a midge. *Nature, 540*(7631), 69.
- Kaiwa, N., Hosokawa, T., Nikoh, N., Tanahashi, M., Moriyama, M., Meng, X.-Y., . . . Ito, M. (2014).
 Symbiont-supplemented maternal investment underpinning host's ecological adaptation.
 Current Biology, 24(20), 2465-2470.
- Kaulenas, M. (1992). Structure and function of the female accessory reproductive systems. In *Insect Accessory Reproductive Structures* (pp. 33-121): Springer.
- Kaulenas, M. (2012). *Insect accessory reproductive structures: function, structure, and development* (Vol.
 31): Springer Science & Business Media.
- Keeley, L. (1978). Endocrine regulation of fat body development and function. *Annual Review of Entomology, 23*(1), 329-352.
- Kelley, J. L., Peyton, J. T., Fiston-Lavier, A.-S., Teets, N. M., Yee, M.-C., Johnston, J. S., . . . Denlinger, D. L.
 (2014). Compact genome of the Antarctic midge is likely an adaptation to an extreme
 environment. *Nature Communications*, *5*, 4611.
- Kennedy, A. D. (1993). Water as a limiting factor in the Antarctic terrestrial environment: a
 biogeographical synthesis. *Arctic and Alpine Research*, 25(4), 308-315.
- 1240 Kim, S., Oh, M., Jung, W., Park, J., Choi, H.-G., & Shin, S. C. (2017). Genome sequencing of the winged 1241 midge, *Parochlus steinenii*, from the Antarctic Peninsula. *GigaScience*, 6(3), giw009.
- 1242 Kim, T., & Kim, Y. (2005). Overview of innate immunity in *Drosophila*. *Journal of biochemistry and* 1243 *molecular biology*, *38*(2), 121.
- Kotrba, M. (1996). Sperm transfer by spermatophore in Diptera: new results from the Diopsidae.
 Zoological Journal of the Linnean Society, 117(3), 305-323.
- Langfelder, P., & Horvath, S. (2008). WGCNA: an R package for weighted correlation network analysis.
 BMC bioinformatics, 9(1), 559.
- 1248 Larsen, W. J. (1976). Cell remodeling in the fat body of an insect. *Tissue and Cell, 8*(1), 73-92.
- Lee, K. P., Simpson, S. J., Clissold, F. J., Brooks, R., Ballard, J. W. O., Taylor, P. W., . . . Raubenheimer, D.
 (2008). Lifespan and reproduction in *Drosophila*: new insights from nutritional geometry.
 Proceedings of the National Academy of Sciences, 105(7), 2498-2503.
- Lee, S.-M., Lee, S.-B., Park, C.-H., & Choi, J. (2006). Expression of heat shock protein and hemoglobin
 genes in *Chironomus tentans* (Diptera, chironomidae) larvae exposed to various environmental
 pollutants: a potential biomarker of freshwater monitoring. *Chemosphere, 65*(6), 1074-1081.

1255	Lefebvre, F. A., & Lécuyer, É. (2018). Flying the RNA nest: Drosophila reveals novel insights into the
1256	transcriptome dynamics of early development. Journal of developmental biology, 6(1), 5.
1257	Lefkovitch, L. (1965). The study of population growth in organisms grouped by stages. <i>Biometrics</i> , 1-18.
1258	Leopold, R. A., & Degrugillier, M. E. (1973). Sperm penetration of housefly eggs: evidence for
1259	involvement of a female accessory secretion. Science, 181(4099), 555-557.
1260	Lococo, D., & Huebner, E. (1980). The ultrastructure of the female accessory gland, the cement gland, in
1261	the insect Rhodnius prolixus. Tissue and Cell, 12(3), 557-580.
1262	Lopez-Martinez, G., Benoit, J. B., Rinehart, J. P., Elnitsky, M. A., Lee, R. E., & Denlinger, D. L. (2009).
1263	Dehydration, rehydration, and overhydration alter patterns of gene expression in the Antarctic
1264	midge, Belgica antarctica. Journal of Comparative Physiology B-Biochemical Systemic and
1265	Environmental Physiology, 179(4), 481-491. doi:DOI 10.1007/s00360-008-0334-0
1266	Lopez-Martinez, G., Elnitsky, M. A., Benoit, J. B., Lee, R. E., Jr., & Denlinger, D. L. (2008). High resistance
1267	to oxidative damage in the Antarctic midge <i>Belgica antarctica</i> , and developmentally linked
1268	expression of genes encoding superoxide dismutase, catalase and heat shock proteins. Insect
1269	<i>Biochem Mol Biol, 38</i> (8), 796-804. doi:10.1016/j.ibmb.2008.05.006
1270	Loppin, B., Dubruille, R., & Horard, B. (2015). The intimate genetics of Drosophila fertilization. Open
1271	<i>biology, 5</i> (8), 150076.
1272	Love, M. I., Huber, W., & Anders, S. (2014). Moderated estimation of fold change and dispersion for
1273	RNA-seq data with DESeq2. Genome Biol, 15(12), 550.
1274	Lung, O., Kuo, L., & Wolfner, M. F. (2001). <i>Drosophila</i> males transfer antibacterial proteins from their
1275	accessory gland and ejaculatory duct to their mates. Journal of Insect Physiology, 47(6), 617-622.
1276	Lung, O., & Wolfner, M. F. (2001). Identification and characterization of the major Drosophila
1277	melanogaster mating plug protein. Insect biochemistry and molecular biology, 31(6-7), 543-551.
1278	Lv, D. K., Bai, X., Li, Y., Ding, X. D., Ge, Y., Cai, H., Zhu, Y. M. (2010). Profiling of cold-stress-responsive
1279	miRNAs in rice by microarrays. <i>Gene, 459</i> (1-2), 39-47. doi:DOI 10.1016/j.gene.2010.03.011
1280	Ma, W. C., Denlinger, D. L., Jarlfors, U., & Smith, D. S. (1975). Structural modulations in the tsetse fly milk
1281	gland during a pregnancy cycle. <i>Tissue Cell, 7</i> (2), 319-330. doi:0040-8166(75)90008-7 [pii]
1282	Malik, A., Khan, K. M., Asif, M., Arsalan, H. M., Zahid, S., Manan, A., & Rasool, M. (2016). Development of
1283	Resistance Mechanism in Mosquitoes: Cytochrome P450, the Ultimate Detoxifier. Journal of
1284	Applied and Emerging Sciences, 4(2), pp100-117.
1285	Marchini, D., Bernini, L. F., Marri, L., Giordano, P. C., & Dallai, R. (1991). The female reproductive
1286	accessory glands of the medfly Ceratitis capitata: antibacterial activity of the secretion fluid.
1287	Insect Biochemistry, 21(6), 597-605.
1288	Masci, V. L., Di Luca, M., Gambellini, G., Taddei, A. R., Belardinelli, M. C., Guerra, L., Fausto, A. M.
1289	(2015). Reproductive biology in Anophelinae mosquitoes (Diptera, Culicidae): fine structure of
1290	the female accessory gland. Arthropod structure & development, 44(4), 378-387.
1291	McGraw, L. A., Clark, A. G., & Wolfner, M. F. (2008). Post-mating gene expression profiles of female
1292	Drosophila melanogaster in response to time and to four male accessory gland proteins.
1293	Genetics, 179(3), 1395-1408. doi:10.1534/genetics.108.086934
1294	McKenna, D. D., Scully, E. D., Pauchet, Y., Hoover, K., Kirsch, R., Geib, S. M., Arsala, D. (2016).
1295	Genome of the Asian longhorned beetle (Anoplophora glabripennis), a globally significant
1296	invasive species, reveals key functional and evolutionary innovations at the beetle-plant
1297	interface. <i>Genome biology, 17</i> (1), 227.
1298	Meier, R., Kotrba, M., & Ferrar, P. (1999). Ovoviviparity and viviparity in the Diptera. Biological Reviews
1299	of the Cambridge Philosophical Society, 74(3), 199-258.
1300	Michaud, M. R., Benoit, J. B., Lopez-Martinez, G., Elnitsky, M. A., Lee, R. E., & Denlinger, D. L. (2008).
1301	Metabolomics reveals unique and shared metabolic changes in response to heat shock, freezing

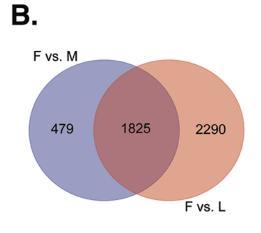
1302	and desiccation in the Antarctic midge, <i>Belgica antarctica</i> . <i>Journal of insect physiology</i> , 54(4),
1303	645-655. doi:DOI 10.1016/j.jinsphys.2008.01.003
1304	Mitchell, S. N., Kakani, E. G., South, A., Howell, P. I., Waterhouse, R. M., & Catteruccia, F. (2015).
1305	Evolution of sexual traits influencing vectorial capacity in anopheline mosquitoes. <i>Science</i> ,
1306	<i>347</i> (6225), 985-988.
1307	Newfeld, S. J., Chartoff, E. H., Graff, J. M., Melton, D. A., & Gelbart, W. M. (1996). Mothers against dpp
1308	encodes a conserved cytoplasmic protein required in DPP/TGF-beta responsive cells.
1309	Development, 122(7), 2099-2108.
1310	Olafson, P. U., Aksoy, S., Attardo, G. M., Buckmeier, G., Chen, X., Coates, C. J., Friedrich, M. (2019).
1311	Functional genomics of the stable fly, <i>Stomoxys calcitrans</i> , reveals mechanisms underlying
1312	reproduction, host interactions, and novel targets for pest control. <i>bioRxiv</i> , 623009.
1313	Orr-Weaver, T. L. (2015). When bigger is better: the role of polyploidy in organogenesis. <i>Trends in</i>
1314	Genetics, 31(6), 307-315.
1315	Otti, O., McTighe, A. P., & Reinhardt, K. (2013). In vitro antimicrobial sperm protection by an ejaculate-
1316	like substance. Functional Ecology, 27(1), 219-226.
1317	Otti, O., Naylor, R. A., Siva-Jothy, M. T., & Reinhardt, K. (2009). Bacteriolytic activity in the ejaculate of an
1318 1319	insect. <i>American Naturalist, 174</i> (2), 292-295. doi:Doi 10.1086/600099 Palmer, W. J., & Jiggins, F. M. (2015). Comparative genomics reveals the origins and diversity of
1319	arthropod immune systems. <i>Molecular biology and evolution, 32</i> (8), 2111-2129.
1320	Panfilio, K. A., Jentzsch, I. M. V., Benoit, J. B., Erezyilmaz, D., Suzuki, Y., Colella, S., Ioannidis, P.
1321	(2019). Molecular evolutionary trends and feeding ecology diversification in the Hemiptera,
1323	anchored by the milkweed bug genome. <i>Genome Biology</i> , 20(1), 64.
1324	Papa, F., Windbichler, N., Waterhouse, R. M., Cagnetti, A., D'Amato, R., Persampieri, T., Papathanos,
1325	P. A. (2017). Rapid evolution of female-biased genes among four species of <i>Anopheles</i> malaria
1326	mosquitoes. <i>Genome research, 27</i> (9), 1536-1548.
1327	Parisi, M., Nuttall, R., Edwards, P., Minor, J., Naiman, D., Lu, J., Oliver, B. (2004). A survey of ovary-,
1328	testis-, and soma-biased gene expression in <i>Drosophila melanogaster</i> adults. <i>Genome Biology</i> ,
1329	5(6), R40. doi:10.1186/gb-2004-5-6-r40
1330	Pauchet, Y., Wilkinson, P., Vogel, H., Nelson, D., Reynolds, S., Heckel, D. G., & Ffrench-Constant, R.
1331	(2010). Pyrosequencing the <i>Manduca sexta</i> larval midgut transcriptome: messages for digestion,
1332	detoxification and defence. Insect molecular biology, 19(1), 61-75.
1333	Perry, J. C., Harrison, P. W., & Mank, J. E. (2014). The ontogeny and evolution of sex-biased gene
1334	expression in Drosophila melanogaster. Molecular biology and evolution, 31(5), 1206-1219.
1335	Poiani, A. (2006). Complexity of seminal fluid: a review. Behavioral Ecology and Sociobiology, 60(3), 289-
1336	310.
1337	Polak, M., Simmons, L. W., Benoit, J. B., Ruohonen, K., Simpson, S. J., & Solon-Biet, S. M. (2017).
1338	Nutritional geometry of paternal effects on embryo mortality. Proceedings of the Royal Society
1339	B: Biological Sciences, 284(1864), 20171492.
1340	Price, C. S. (1997). Conspecific sperm precedence in <i>Drosophila. Nature, 388</i> (6643), 663.
1341	Qazi, M. C. B., Heifetz, Y., & Wolfner, M. F. (2003). The developments between gametogenesis and
1342	fertilization: ovulation and female sperm storage in Drosophila melanogaster. Dev Biol, 256(2),
1343	195-211.
1344	Quinlan, M. E. (2016). Cytoplasmic streaming in the Drosophila oocyte. Annual review of cell and
1345	developmental biology, 32, 173-195.
1346	Ramalho-Santos, J., Varum, S., Amaral, S., Mota, P. C., Sousa, A. P., & Amaral, A. (2009). Mitochondrial
1347	functionality in reproduction: from gonads and gametes to embryos and embryonic stem cells.
1348	Human reproduction update, 15(5), 553-572.

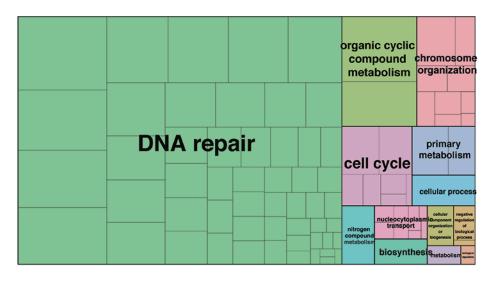

- Rato, L., Alves, M. G., Socorro, S., Duarte, A. I., Cavaco, J. E., & Oliveira, P. F. (2012). Metabolic regulation
 is important for spermatogenesis. *Nature Reviews Urology*, 9(6), 330.
- Raudvere, U., Kolberg, L., Kuzmin, I., Arak, T., Adler, P., Peterson, H., & Vilo, J. (2019). g: Profiler: a web
 server for functional enrichment analysis and conversions of gene lists (2019 update). *Nucleic acids research*.
- Ravi Ram, K., & Wolfner, M. F. (2007). Seminal influences: *Drosophila* Acps and the molecular interplay
 between males and females during reproduction. *Integrative and comparative biology*, 47(3),
 427-445.
- Rial, D., Santos-Echeandía, J., Álvarez-Salgado, X. A., Jordi, A., Tovar-Sánchez, A., & Bellas, J. (2016).
 Toxicity of seabird guano to sea urchin embryos and interaction with Cu and Pb. *Chemosphere*, 1359
 145, 384-393.
- 1360Richard, M., & Hoch, M. (2015). Drosophila eye size is determined by innexin 2-dependent1361decapentaplegic signalling. Developmental Biology, 408(1), 26-40.
- Rinehart, J. P., Hayward, S. A. L., Elnitsky, M. A., Sandro, L. H., Lee, R. E., & Denlinger, D. L. (2006).
 Continuous up-regulation of heat shock proteins in larvae, but not adults, of a polar insect.
 Proceedings of the National Academy of Sciences of the United States of America, 103(38),
 14223-14227. doi:DOI 10.1073/pnas.0606840103
- Rogers, D. W., Whitten, M. M., Thailayil, J., Soichot, J., Levashina, E. A., & Catteruccia, F. (2008).
 Molecular and cellular components of the mating machinery in *Anopheles gambiae* females.
 Proceedings of the National Academy of Sciences, 105(49), 19390-19395.
- Ronges, D., Walsh, J. P., Sinclair, B. J., & Stillman, J. H. (2012). Changes in extreme cold tolerance,
 membrane composition and cardiac transcriptome during the first day of thermal acclimation in
 the porcelain crab *Petrolisthes cinctipes. Journal of Experimental Biology, 215* (Pt 11), 1824-1836.
 doi:10.1242/jeb.069658
- 1373Rosa, E., & Saastamoinen, M. (2017). Sex-dependent effects of larval food stress on adult performance1374under semi-natural conditions: only a matter of size? *Oecologia, 184*(3), 633-642.
- Rosendale, A. J., Dunlevy, M. E., McCue, M. D., & Benoit, J. B. (2019). Progressive behavioural,
 physiological and transcriptomic shifts over the course of prolonged starvation in ticks.
 Molecular Ecology, 28(1), 49-65.
- Rosendale, A. J., Romick-Rosendale, L. E., Watanabe, M., Dunlevy, M. E., & Benoit, J. B. (2016).
 Mechanistic underpinnings of dehydration stress in ticks revealed through RNA-seq and metabolomics. *Journal of Experimental Biology, Submitted*.
- Rosetto, M., Belardinelli, M., Fausto, A., Marchini, D., Bongiorno, G., Maroli, M., & Mazzini, M. (2003). A
 mammalian-like lipase gene is expressed in the female reproductive accessory glands of the
 sand fly *Phlebotomus papatasi* (Diptera, Psychodidae). *Insect molecular biology*, *12*(5), 501-508.
- 1384Sato, M., & Sato, K. (2011). Degradation of paternal mitochondria by fertilization-triggered autophagy in1385*C. elegans* embryos. *Science*, *334*(6059), 1141-1144.
- Scolari, F., Benoit, J. B., Michalkova, V., Aksoy, E., Takac, P., Abd-Alla, A. M., . . . Attardo, G. M. (2016).
 The spermatophore in *Glossina morsitans morsitans*: insights into male montributions to
 reproduction. *Scientific reports, 6,* 20334.
- Shim, J., Gururaja-Rao, S., & Banerjee, U. (2013). Nutritional regulation of stem and progenitor cells in
 Drosophila. Development, 140(23), 4647-4656.
- Shutt, B., Stables, L., Aboagye-Antwi, F., Moran, J., & Tripet, F. (2010). Male accessory gland proteins
 induce female monogamy in anopheline mosquitoes. *Medical and veterinary entomology, 24*(1),
 91-94.

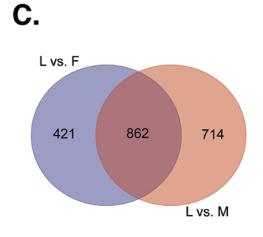

- Sibley, P. K., Ankley, G. T., & Benoit, D. A. (2001). Factors affecting reproduction and the importance of
 adult size on reproductive output of the midge *Chironomus tentans*. *Environmental Toxicology and Chemistry: An International Journal, 20*(6), 1296-1303.
- Silva, J. V., Yoon, S., Domingues, S., Guimarães, S., Goltsev, A. V., e Silva, E. F. d. C., . . . Fardilha, M.
 (2015). Amyloid precursor protein interaction network in human testis: sentinel proteins for
 male reproduction. *BMC bioinformatics, 16*(1), 12.
- Sirot, L. K., Wong, A., Chapman, T., & Wolfner, M. F. (2015). Sexual conflict and seminal fluid proteins: a
 dynamic landscape of sexual interactions. *Cold Spring Harbor perspectives in biology*, 7(2),
 a017533.
- Soller, M., Bownes, M., & Kubli, E. (1999). Control of oocyte maturation in sexually mature *Drosophila* females. *Developmental biology*, 208(2), 337-351. doi:10.1006/dbio.1999.9210
- Sosic, D., & Olson, E. N. (2003). A new twist on twist: Modulation of the NF-KappaB pathway. *Cell Cycle*, 2(2), 75-77.
- 1407Strong, J. (1967). Ecology of terrestrial arthropods at Palmer station, Antarctic Peninsula. Entomology of1408Antarctica, 357-371.
- Stroumbakis, N. D., Li, Z., & Tolias, P. P. (1996). A homolog of human transcription factor NF-X1 encoded
 by the *Drosophila* shuttle craft gene is required in the embryonic central nervous system.
 Molecular and cellular biology, 16(1), 192-201.
- Sugg, P., Edwards, J. S., & Baust, J. (1983). Phenology and life history of *Belgica antarctica*, an Antarctic
 midge (Diptera: Chironomidae). *Ecological Entomology*, 8(1), 105-113.
- Supek, F., Bošnjak, M., Škunca, N., & Šmuc, T. (2011). REVIGO summarizes and visualizes long lists of
 gene ontology terms. *PLoS One*, *6*(7), e21800.
- Swanson, W. J., Wong, A., Wolfner, M. F., & Aquadro, C. F. (2004). Evolutionary expressed sequence tag
 analysis of *Drosophila* female reproductive tracts identifies genes subjected to positive
 selection. *Genetics*, 168(3), 1457-1465.
- Swevers, L., Raikhel, A., Sappington, T., Shirk, P., & latrou, K. (2005). Vitellogenesis and post-vitellogenic
 maturation of the insect ovarian follicle. In L.I. Gilbert, S. Gill, & K. latrou (Eds.), *Comprehensive molecular insect science* (pp. 87-155). Elsevier, NY
- 1422Teets, N. M., Elnitsky, M. A., Benoit, J. B., Lopez-Martinez, G., Denlinger, D. L., & Lee, R. E. (2008). Rapid1423cold-hardening in larvae of the Antarctic midge *Belgica antarctica*: cellular cold-sensing and a1424role for calcium. American Journal of Physiology-Regulatory Integrative and Comparative1425Physiology, 294(6), R1938-R1946. doi:DOI 10.1152/ajpregu.00459.2007
- Teets, N. M., Kawarasaki, Y., Lee, R. E., Jr., & Denlinger, D. L. (2013). Expression of genes involved in
 energy mobilization and osmoprotectant synthesis during thermal and dehydration stress in the
 Antarctic midge, *Belgica antarctica. Journal of Comparative Physiology B*, 183(2), 189-201.
 doi:10.1007/s00360-012-0707-2
- Teets, N. M., Peyton, J. T., Colinet, H., Renault, D., Kelley, J. L., Kawarasaki, Y., . . . Denlinger, D. L. (2012).
 Gene expression changes governing extreme dehydration tolerance in an Antarctic insect. *Proceedings of the National Academy of Sciences of the United States of America, 109*(50),
 20744-20749. doi:10.1073/pnas.1218661109
- 1434Telfer, W. H., & Kunkel, J. G. (1991). The function and evolution of insect storage hexamers. Annual1435Review of Entomology, 36(1), 205-228.
- 1436Terashima, J., & Bownes, M. (2005). A microarray analysis of genes involved in relating egg production1437to nutritional intake in *Drosophila melanogaster*. *Cell Death Differ, 12*(5), 429.
- Thailayil, J., Magnusson, K., Godfray, H. C. J., Crisanti, A., & Catteruccia, F. (2011). Spermless males elicit
 large-scale female responses to mating in the malaria mosquito *Anopheles gambiae*.
 Proceedings of the National Academy of Sciences, 108(33), 13677-13681.

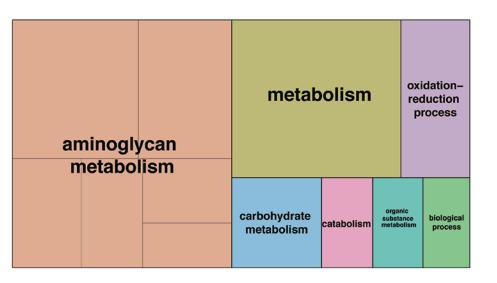

1441	Tian, CB., Wei, D., Xiao, LF., Dou, W., Liu, H., & Wang, JJ. (2017). Comparative transcriptome analysis
1442	of three Bactrocera dorsalis (Diptera: Tephritidae) organs to identify functional genes in the
1443	male accessory glands and ejaculatory duct. <i>Florida Entomologist, 100</i> (1), 42-51.
1444	Tian, E., & Hagen, K. G. T. (2007). O-linked glycan expression during <i>Drosophila</i> development.
1445	Glycobiology, 17(8), 820-827.
1446	Tirmarche, S., Kimura, S., Dubruille, R., Horard, B., & Loppin, B. (2016). Unlocking sperm chromatin at
1447	fertilization requires a dedicated egg thioredoxin in Drosophila. Nature communications, 7,
1448	13539.
1449	Tran, D. T., & Ten Hagen, K. G. (2013). Mucin-type O-glycosylation during development. <i>Journal of</i>
1450	Biological Chemistry, 288(10), 6921-6929.
1451	Tran, D. T., Zhang, L., Zhang, Y., Tian, E., Earl, L. A., & Ten Hagen, K. G. (2012). Multiple members of the
1452	UDP-GalNAc: polypeptide N-acetylgalactosaminyltransferase family are essential for viability in
1453	Drosophila. Journal of Biological Chemistry, 287(8), 5243-5252.
1454	Turnier, J. L., Brunner, H. I., Bennett, M., Aleed, A., Gulati, G., Haffey, W. D., Witte, D. (2018).
1455	Discovery of SERPINA3 as a candidate urinary biomarker of lupus nephritis activity.
1456	Rheumatology, 58(2), 321-330.
1457	Usher, M. B., & Edwards, M. (1984). A dipteran from south of the Antarctic Circle: <i>Belgica antarctica</i>
1458	(Chironomidae) with a description of its larva. Biological Journal of the Linnean Society, 23(1),
1459	19-31.
1460	Vanderperre, B., Cermakova, K., Escoffier, J., Kaba, M., Bender, T., Nef, S., & Martinou, JC. (2016).
1461	MPC1-like is a placental mammal-specific mitochondrial pyruvate carrier subunit expressed in
1462	postmeiotic male germ cells. Journal of Biological Chemistry, 291(32), 16448-16461.
1463	Venancio, T., Cristofoletti, P., Ferreira, C., Verjovski-Almeida, S., & Terra, W. (2009). The Aedes aegypti
1464	larval transcriptome: a comparative perspective with emphasis on trypsins and the domain
1465	structure of peritrophins. <i>Insect molecular biology, 18</i> (1), 33-44.
1466	Villarreal, S. M., Pitcher, S., Helinski, M. E., Johnson, L., Wolfner, M. F., & Harrington, L. C. (2018). Male
1467	contributions during mating increase female survival in the disease vector mosquito Aedes
1468	aegypti. Journal of insect physiology, 108, 1-9.
1469	Vogt, C., Belz, D., Galluba, S., Nowak, C., Oetken, M., & Oehlmann, J. (2007). Effects of cadmium and
1470	tributyltin on development and reproduction of the non-biting midge Chironomus riparius
1471	(Diptera)—baseline experiments for future multi-generation studies. Journal of Environmental
1472	Science and Health Part A, 42(1), 1-9.
1473	Weirauch, M. T., & Hughes, T. (2011). A catalogue of eukaryotic transcription factor types, their
1474	evolutionary origin, and species distribution. In A handbook of transcription factors (pp. 25-73):
1475	Springer.
1476	Weirauch, M. T., Yang, A., Albu, M., Cote, A. G., Montenegro-Montero, A., Drewe, P., Cook, K. (2014).
1477	Determination and inference of eukaryotic transcription factor sequence specificity. Cell, 158(6),
1478	1431-1443.
1479	Wensler, R. J., & Rempel, J. (1962). The morphology of the male and female reproductive systems of the
1480	midge, Chironomus plumosus L. Canadian Journal of Zoology, 40(2), 199-229.
1481	Xie, T., & Spradling, A. C. (1998). Decapentaplegic is essential for the maintenance and division of
1482	germline stem cells in the Drosophila ovary. Cell, 94(2), 251-260.
1483	Zhang, J., Marshall, K. E., Westwood, J. T., Clark, M. S., & Sinclair, B. J. (2011). Divergent transcriptomic
1484	responses to repeated and single cold exposures in Drosophila melanogaster. Journal of
1485	<i>Experimental Biology, 214</i> (Pt 23), 4021-4029. doi:10.1242/jeb.059535

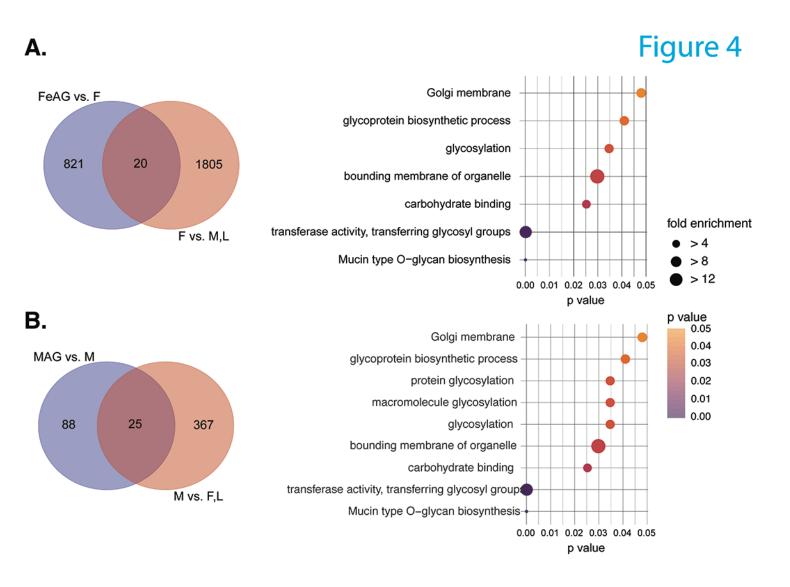
1486 Zhang, L., Zhang, Y., & Ten Hagen, K. G. (2008). A mucin-type O-glycosyltransferase modulates cell
1487 adhesion during *Drosophila* development. *Journal of Biological Chemistry*, 283(49), 340761488 34086.

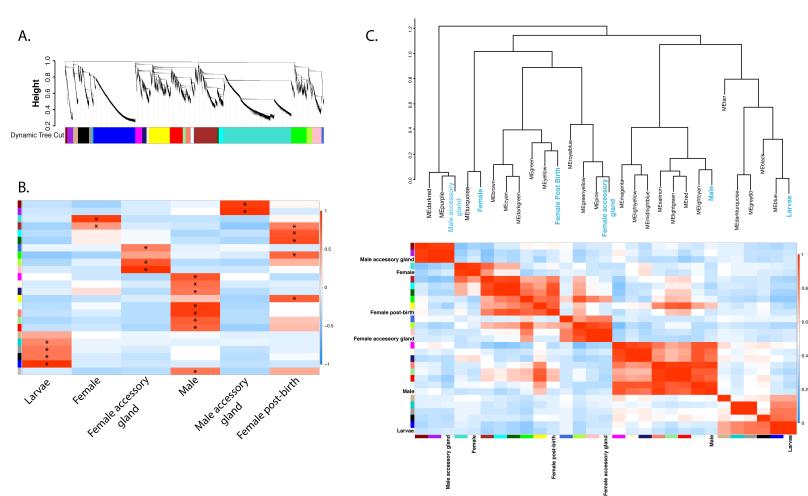


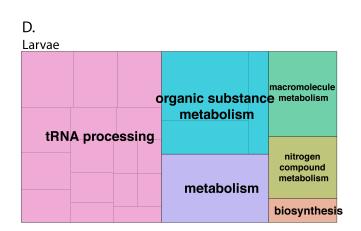


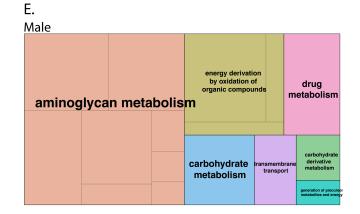


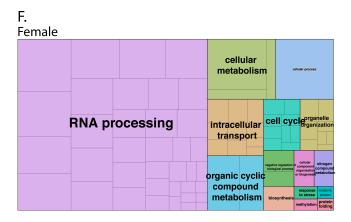


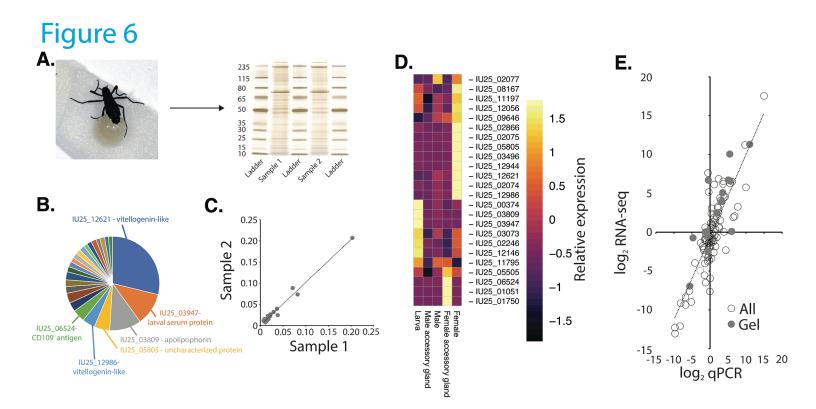

				anion tr	ansport
carboxylic ac	carboxylic acid biosynthesis				
				_	
				antibiotic metabolism	localization

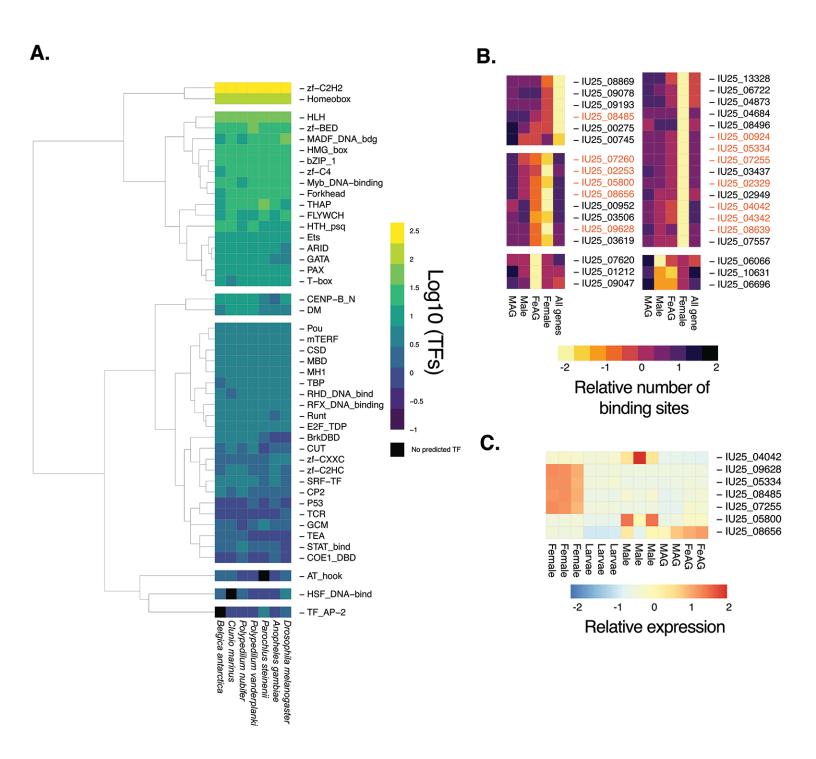


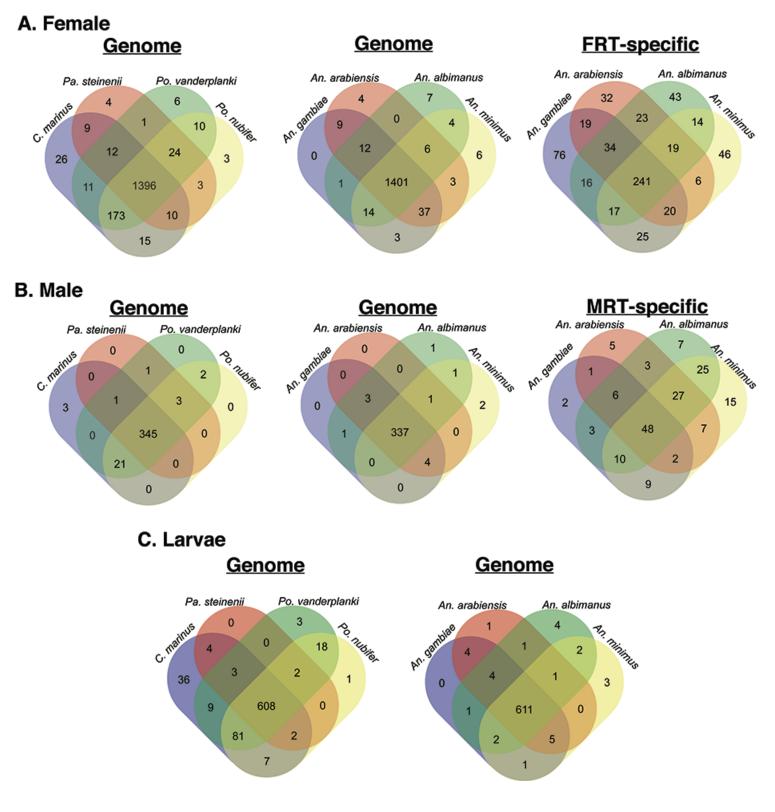


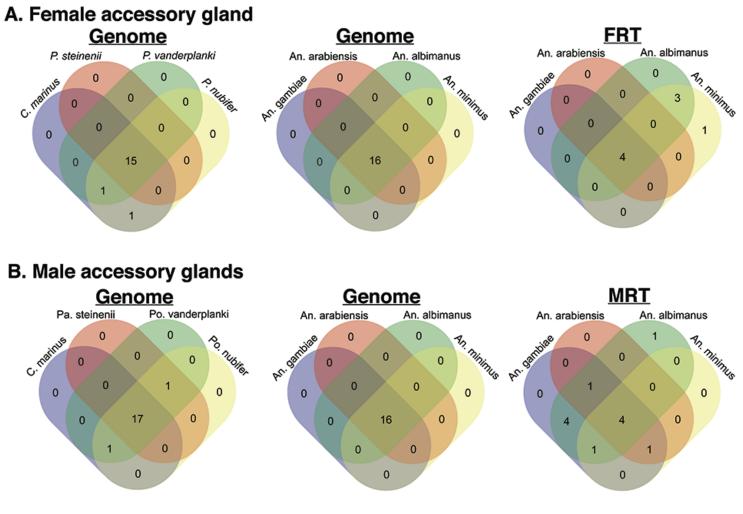


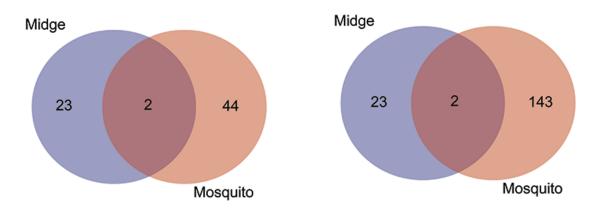

bioRxiv preprint doi: https://doi.org/10.1101/796797; this version posted November 25, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.

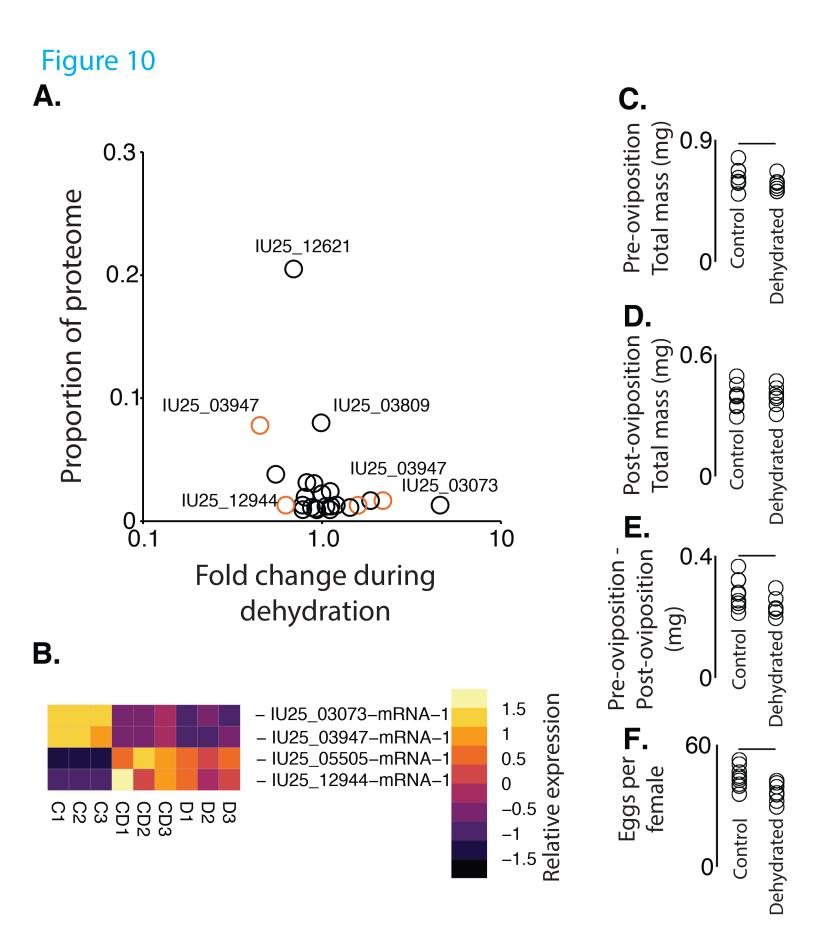

Figure 5

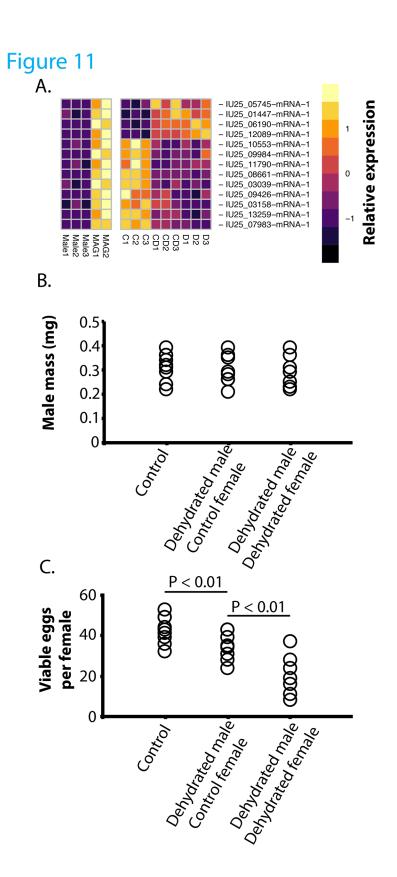


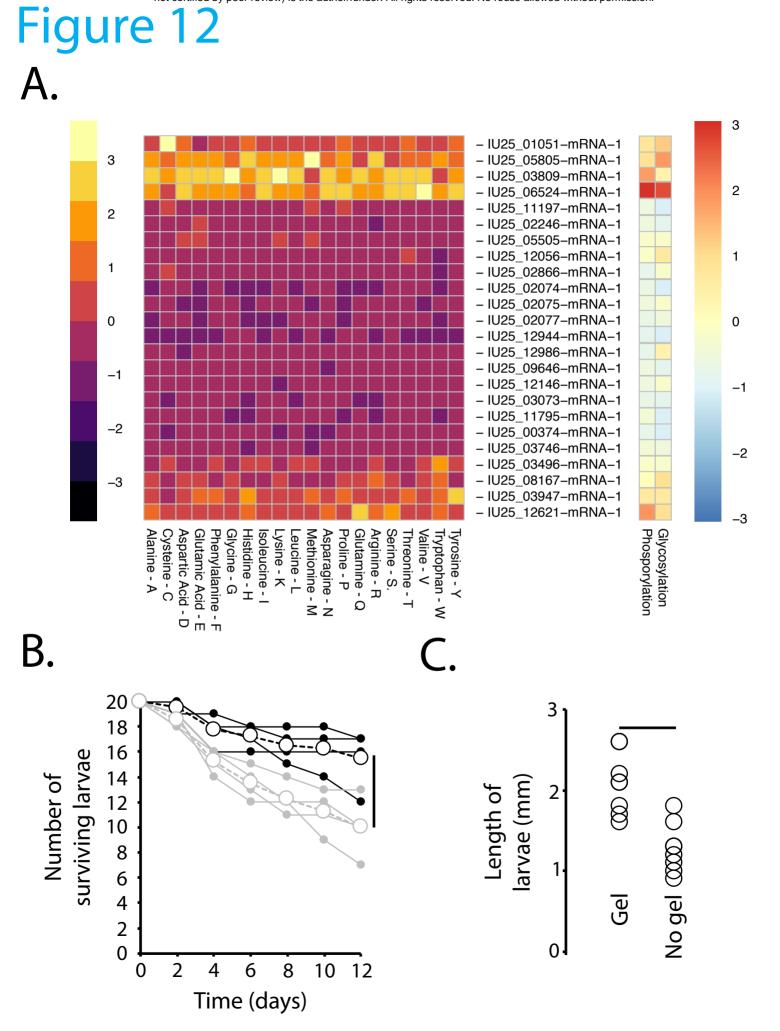



Figure 7

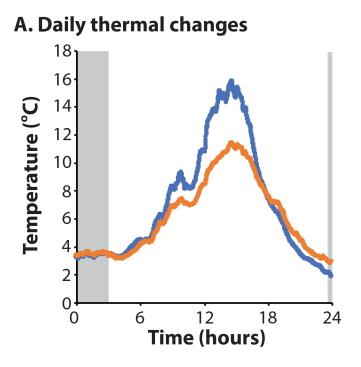

Figure 8

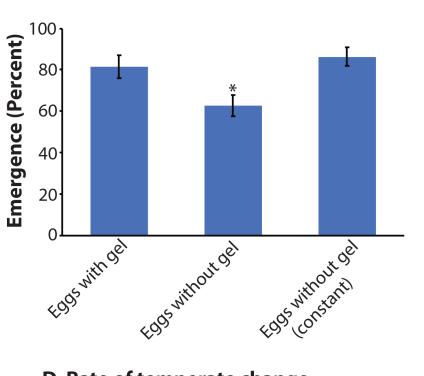



Figure 9

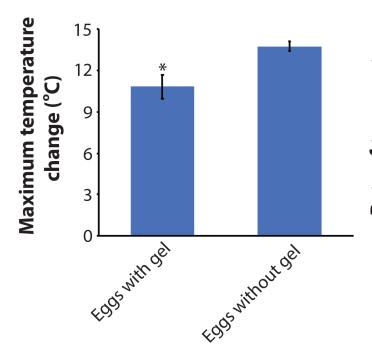


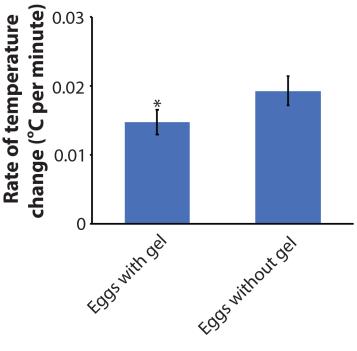
C. Male accessory glands enriched genes of mosquitoes



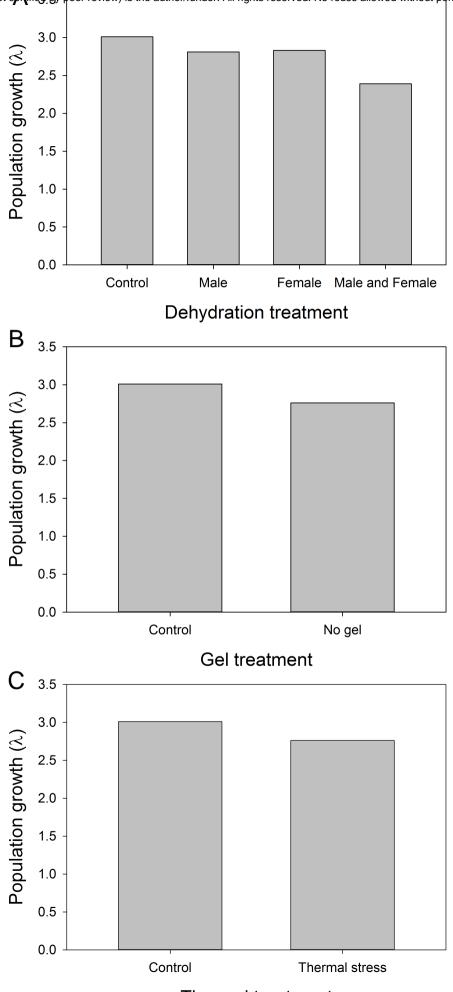


not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.


Figure 13


B. Exposure to 20°C

C. Maximum temperate shift



D. Rate of temperate change

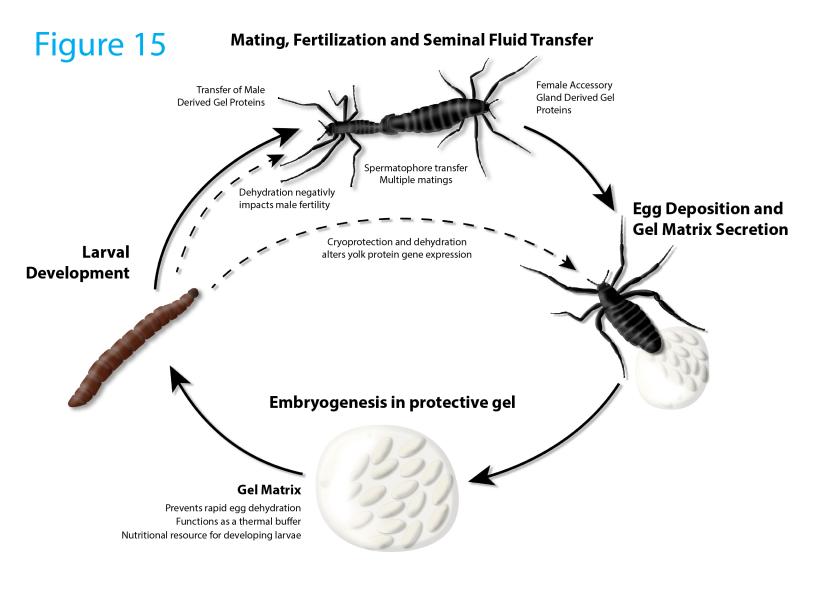


Figure 1&

bioRxiv preprint doi: https://doi.org/10.1101/796797; this version posted November 25, 2019. The copyright holder for this preprint (which was not certifieg by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.

Thermal treatment

