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 24 

Abstract 25 

The multiple testing problem is a well-known statistical stumbling block in high-26 

throughput data analysis, where large scale repetition of statistical methods introduces 27 

unwanted noise into the results. While approaches exist to overcome the multiple testing 28 

problem, these methods focus on theoretical statistical clarification rather than incorporating 29 

experimentally-derived measures to ensure appropriately tailored analysis parameters. Here, 30 

we introduce a method for estimating inter-replicate variability in reference samples for a 31 

quantitative proteomics experiment using permutation analysis. This can function as a 32 

modulator to multiple testing corrections such as the Benjamini-Hochberg ordered Q value 33 

test. We refer to this as a ‘same-same’ analysis, since this method incorporates the use of six 34 

biological replicates of the reference sample and determines, through non-redundant triplet 35 

pairwise comparisons, the level of quantitative noise inherent within the system. The method 36 

can be used to produce an experiment-specific Q value cut-off that achieves a specified false 37 

discovery rate at the quantitation level, such as 1%. The same-same method is applicable to 38 

any experimental set that incorporates six replicates of a reference sample. To facilitate 39 

access to this approach, we have developed a same-same analysis R module that is freely 40 

available and ready to use via the internet. 41 

 42 

Keywords: Label-free shotgun proteomics, false discovery rates, data quality, data 43 

validation, statistics 44 
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 49 

1. Introduction 50 

 51 

Shotgun proteomics experiments that seek to compare ‘reference’ and ‘treated’ states of 52 

a given sample will often contain thousands of individual comparisons, each requiring 53 

statistical validation. In such circumstances, repeated use of the Student’s t-test will 54 

invariably introduce false discoveries into the results. A Student’s t-test with a significance 55 

cut-off threshold P value of 0.05 produces 95% confidence i.e. 5% of tests will have an equal 56 

likelihood to be attributable to chance instead of experimental factors [1-4]. This is a follow-57 

on conclusion from the probability that at least one test in an experiment will be significant, 58 

which is described as 1 – (1 - α)k, where α is the significance cut-off and k is the number of 59 

tests conducted [5]. 60 

Multiple Testing Corrections (MTCs) were introduced to help address this limitation [6], 61 

including the use of Q values rather than P values [7], Bonferroni correction [8,9], Benjamini-62 

Hochberg (BH) adjusted t-test [10], Bonferroni-Holm test [11], and the Benjamini-Yoav 63 

(BY) test [12]. MTCs, however, are often overly conservative and increase the false negative 64 

rate by eliminating otherwise valid protein identifications. This is especially a problem at the 65 

protein-quantitation level; MTCs, by their nature, contribute to a lessening of the protein 66 

quantitation false discovery rate (PQ-FDR) at the expense of otherwise valid protein 67 

identifications [13,14]. In the context of this article, PQ-FDR is defined as false discoveries 68 

arising from comparative quantitative proteomics calculations between one or more samples. 69 

There is always a balance to be struck between stringency and accuracy when controlling 70 

false discoveries at the protein quantitation level [15]. A recent study in this area applied 71 

Bayesian statistics to great effect, detecting a greater number of relevant protein quantitation 72 

changes in previously published data sets [16]. There are also numerous software packages 73 

available which incorporate various other MTC approaches, including Proteus [17], DAPAR 74 
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and ProStaR [18], MSqRob [19], UbiA-MS [20], ProteoSign [21], msVolcano [22], FDRtool 75 

[23], MSstats [24], and limma [25].  76 

Although the use of MTC correction methods in the proteomics field is not standardized 77 

[9,26-28], MTCs are an important tool that researchers can employ for extracting the best 78 

results from their dataset i.e. finding the balance between reducing noise without losing 79 

signal. This desire to reduce the noise in the system led us to ask the question: is there a better 80 

way to quantify variability between replicate analyses of a reference sample ? 81 

One established approach for assessing variability across a sample set is to use 82 

permutation analysis, based upon the Significance Analysis of Micro-array (SAM) 83 

permutation methodology [29,30]. This is a similar theoretical framework to that used for 84 

permutation analysis within Perseus [31], a well-established data analysis program in the 85 

MaxQuant environment [32]. The SAM permutation analysis method assigns a score to each 86 

gene on the basis of change in gene expression relative to the standard deviation of repeated 87 

measurements. SAM then uses redundant permutations of repeated measurements to estimate 88 

the percentage of genes identified by chance, which is used to calculate the false discovery 89 

rate. The permutations are performed across all of the ‘reference’ and ‘treated’ sample 90 

replicates within a given experimental data set. Those genes with scores higher than the 91 

specified threshold are deemed potentially significant, and the threshold can be adjusted to 92 

identify smaller or larger sets of genes, with FDR calculated for each set. 93 

The same – same method introduced in this study, in contrast, employs non-redundant 94 

permutations of experimentally repeated measurements of protein abundance in replicate 95 

analysis of a defined reference sample. The permutations are performed on data from the 96 

reference samples only, isolated from the ‘treated’ samples This is used to generate a single 97 

average Q value indicative of the degree of variation of abundance across the reference 98 

sample replicates. Proteins which reach a defined statistical significance threshold are 99 

deemed to be false discoveries at the protein quantitation level, since comparing a reference 100 
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sample against itself should theoretically yield no changes in protein abundance. It is 101 

important to emphasize that the underlying assumption is that the biological variability 102 

between reference samples is zero, so this approach is accounting for the technical variability. 103 

This facilitates subsequent assessment of induced biological variation between reference 104 

samples and treated samples. 105 

A specified false discovery rate in the same – same analysis of replicates of the reference 106 

sample is used to generate a Q value threshold, and that value can then be carried forward to 107 

the subsequent analysis of a reference sample versus ‘treated’ sample within the same larger 108 

experimental data set. One of main the applications of this method for determining an 109 

experimentally-derived measure of reference sample variability is that it can subsequently be 110 

used to modify an existing MTC protocol for downstream analysis, thus minimising the PQ-111 

FDR without introducing false negatives. By performing a specific permutation analysis to 112 

measure the variability inherent within reference sample replicates, we can produce an 113 

experimentally modulated Q value threshold for use with MTCs when comparing the 114 

reference sample to treated samples. In essence, rather than using a default Q value of .05, or 115 

choosing a more stringent value, we are employing a Q value threshold that is experimentally 116 

determined for each set of samples analyzed. The same-same method represents another tool 117 

in the proteomics toolbox, and can be used to enable the extraction of additional biological 118 

knowledge from large-scale datasets. 119 

 120 

 121 

2. Materials and Methods  122 

 123 

2.1 Label free quantitative proteomics data sets 124 

To demonstrate the utility of the sam-same approach we reanalyzed two sets of previously 125 

published label free quantitative shotgun proteomics data. Protein identification and 126 

Normalized Spectral Abundance Factor (NSAF) values [33,34] were sourced from 127 

.CC-BY-NC-ND 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted October 8, 2019. ; https://doi.org/10.1101/797217doi: bioRxiv preprint 

https://doi.org/10.1101/797217
http://creativecommons.org/licenses/by-nc-nd/4.0/


 6 of 20 

 

previously published studies from our laboratory on cultured Cabernet Sauvignon grape cells 128 

grown at different temperatures [35] (ProteomeXchange identifier PXD000977) and leaf 129 

tissue of IAC1131 rice plants exposed to drought stress [36] (ProteomeXchange identifier 130 

PXD004096). The cultured Cabernet Sauvignon grape cell data consists of six biological 131 

replicates of cell cultures maintained at 26°C, as the optimum, or control, temperature, and 132 

biological triplicate analysis of cells maintained at 18°C and 10°C as moderate and extreme 133 

cold stress conditions, and 34°C and 42°C as moderate and extreme heat stress conditions. 134 

The rice leaf data consists of two sets of three biological replicates each of unstressed plants 135 

as controls, and biological triplicate analysis of plants exposed to moderate drought stress, 136 

extreme drought stress, and extreme drought stress followed by recovery. 137 

2.2 Same – same permutation analysis of reference samples 138 

For analysis using the same-same workflow, six replicates of a reference sample are run 139 

through a PSM (peptide-to-spectrum matching) engine and protein identification lists are 140 

exported as csv files. Next, these six replicates are grouped into two sets of triplicates by the 141 

use of inner joins (dummy state ‘control’, dummy state ‘treatment’), and a test array is formed 142 

through a full join of the states [37]. One hundred Student’s t-tests are conducted on each 143 

identified protein comparison with significance cut-off values from 0.01 to 1, stepped at 0.01 144 

intervals. All proteins found at different quantitation levels are considered false discoveries, 145 

since comparison between two data sets of the same sample type would theoretically give 146 

identical quantitation with no observed changes. This process is repeated for all ten 147 

combinations of non-redundant triplet pairs that six replicates can form. The MTC analysis 148 

then begins by iterating over this 10x t-test array and applying one of five user-specified 149 

MTC methods (BH, Benjamini-Yoav, Bonferroni, Hommel [38], and Bioconductor Q [39]. 150 

The program then averages the MTC test results from all arrays examined, and reports the 151 

point at which the significance cut-off corresponds to a user-specified PQ-FDR. 152 
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The same-same methodology is automated through an R script. Source code is available 153 

from https://bitbucket.org/peptidewitch/samesame/, and a freely accessible working web 154 

version can be found at https://peptidewitch.shinyapps.io/samesame. The R Shiny web-app 155 

provides three distinct outputs from the same-same analysis: 156 

1) A series of Q value vs FDR bar plots (x axis 0.01 to 1, stepped at 0.01) from all ten 157 

triplet paired combinations, 158 

2) A series of P value histograms of these same combinations, and, 159 

3) A numerical value that corresponds to the user-specified MTC cut-off that produces 160 

the desired PQ-FDR (default 1%). 161 

Input data types are not constrained to spectral counts, as in theory any data type that 162 

consists of protein identifications coupled with abundance or intensity value measurements 163 

can be used. However, the first generation of the analysis tool was designed and tested using 164 

spectral counting-based data, so it is recommended that spectral counts or spectral abundance 165 

factors be used initially.  166 

2.3 Perseus permutation analysis of reference samples 167 

 To serve as a comparison against the same-same process, the same NSAF data from both 168 

Grape and Rice samples as above were reanalyzed using Perseus software [31]. Spreadsheet 169 

files containing NSAF values for each set of samples were uploaded to Perseus through a 170 

generic matrix upload. Using the two-sample module, we applied the Perseus permutation 171 

method as a form of truncation using ungrouped (no grouping preserved), 250-count 172 

permutation analysis on two-tailed Student’s t-testing arrays with BH correction, comparing 173 

six reference replicates with three replicates from each of the ‘treated’ sample states, with the 174 

specified FDR thresholds ranging from 1-5%. 175 

 176 

 177 

 178 

  179 
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3. Results 180 

 181 

The following section details how same-same approach was applied to the published data 182 

from Grape and Rice cells. Figure 1 displays the outputs described above for the same-same 183 

analysis conducted on the grape cell culture label-free data when specifying BH correction 184 

and 1% PQ-FDR. The end-point of the same-same process is the modulated Q value, in this 185 

example 0.054 (Figure 1C), produced from averaging the threshold values in Figure 1A at 186 

the desired PQ-FDR value. This value can be used for downstream analysis on subsequent 187 

control vs treatment samples as a modulator for the chosen MTC. 188 

Figure 2 presents the subsequent downstream analysis of the grape cell cultures grown at 189 

different temperatures. Figure 2A shows the number of proteins found to be significantly 190 

differentially expressed in terms of protein fold change when compare the set of six reference 191 

replicates to the set of three replicates of cells grown at each temperature. These are analysed 192 

using different statistical measures of significance: P values of 0.05 and 0.01 for a student’s 193 

t-test, BH Q value of 0.05, and BH using the same-same derived Q value (SS-Q), and 194 

specifying PQ – FDR of 1%, 2% or 3%. It is evident that the same-same derived Q values at 195 

1% PQ-FDR produce results very similar to the use of default BH Q values, which is expected 196 

given that the SS-Q value used is very close to the 0.05 BH-Q value threshold. The two 197 

approaches give similar results, although it is noticeable that at a specified PQ – FDR of 3%, 198 

the comparison with the largest effect size (Figure 2E) shows significantly more differentially 199 

expressed proteins. 200 

 201 

 202 
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Figure 1 203 

 204 

 205 
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 206 

Figure 2 207 

 208 
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 209 

Figure 3 presents the same type of analyses as shown in Figure 1 for the data derived 210 

from comparative analysis of leaf tissue from IAC1131 rice plants exposed to different levels 211 

of drought stress. Interestingly, in contrast to figure 2, it is clear that in this case there is a 212 

direct correlation between observed effect size and number of differentially expressed 213 

proteins identified using the SS-Q approach. In comparisons with greater effect size as 214 

observed in P value histograms (Figure 3E,3F,3G), the same-same derived Q Values are able 215 

to identify a greater number of differentially expressed proteins than were found using the 216 

default BH Q value, and at 3% PQ-FDR are approaching the number of differentially 217 

expressed proteins found using uncorrected P values. 218 

Table 1 presents the results of analyzing the grape and rice cell NSAF data referred to 219 

above using different analysis approaches, including Student t-tests with and without BH 220 

correction, application of same – same derived Q values to a BH corrected t-test at specified 221 

PQ-FDR values ranging from 1% to 5%, and t-tests using Perseus permutations at specified 222 

PQ-FDR values ranging from 1% to 5%. The table shows the number of proteins which are 223 

reported to be significantly differentially expressed when comparing the reference samples 224 

against the grape cells grown at four different temperatures, and the rice cells grown under 225 

three different watering regimes. It is clear from these comparisons that, as expected, the 226 

uncorrected student’s t-test gives a much greater number than any sort of correction. The BH 227 

correction reduces the number of significant proteins by approximately 95%. The Perseus 228 

permutation processing is even more strict and, for example, produces zero significant 229 

identifiers in more than half of the grape sample comparisons. In contrast, the same-same-230 
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modulated BH test is able to detect significantly differentially regulated proteins for every 231 

test case for both tissue types while always remaining well below the results reported from 232 

uncorrected Student’s t-testing P values. Multiple testing correction still takes place, but the 233 

experimentally derived Q value thresholds allow for the recovery of a greater number of 234 

significant differences at the protein quantitation level. 235 

 236 

 237 

Table 1 – Comparison of number of protein identifications retained using different 238 

analysis approaches to assess protein quantitation false discovery rate 239 

Comparisons t-testa Perseus permutations BH Same-Same BH 

Grape .05 BH 1%b 2% 3% 4% 5% 1% 2% 3% 4% 5% 

Cont vs 10 C 735 42 0 0 0 0 0 48 54 72 91 99 

Cont vs 18 C 560 29 0 0 0 9 9 29 34 43 51 65 

Cont vs 34 C 432 21 0 0 0 0 6 24 28 36 42 48 

Cont vs 42 C 775 83 0 0 0 0 44 108 116 133 166 199 

 

Rice .05 BH 1% 2% 3% 4% 5% 1% 2% 3% 4% 5% 

Cont vs Ext 543 12 0 0 0 0 0 15 16 17 17 17 

Cont vs Mod 481 13 0 0 0 0 0 13 17 20 20 20 

Cont vs Recov 568 21 0 0 0 0 0 22 33 40 40 40 

 

a .05 = standard 2-sample t-test, BH = Benjamin-Hochberg corrected 2 sample t-test 240 

b protein quantitation false discovery rate assessed at 1%-5% using the approaches indicated 241 

 242 

 243 

  244 
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Figure 3 245 

 246 

 247 

.CC-BY-NC-ND 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted October 8, 2019. ; https://doi.org/10.1101/797217doi: bioRxiv preprint 

https://doi.org/10.1101/797217
http://creativecommons.org/licenses/by-nc-nd/4.0/


 14 of 20 

 

 248 

4. Discussion 249 

 250 

The correlation observed between effect size and number of differentially expressed 251 

proteins found in the dataset presented in Figure 3 has also been found in numerous other 252 

datasets we have analysed. In general, SS-Q values are generally better suited to those 253 

datasets that show a larger effect size. This may be due to the fact that not all quantitatively 254 

different proteins in a small effect sample are false positives, or may be a consequence of 255 

NSAFs overstating expression change ratios for protein identifications based on lower 256 

spectral counts, which can help to increase the effect size [4]. While the use of higher Q value 257 

thresholds raises the implicit question of whether or not the dataset contains too much noise, 258 

it is important to remember why the same-same experiment is conducted in the first place. If, 259 

in an experiment where we expect there to be minimal noise, we demonstrate that there is a 260 

SS-Q threshold value that produces 1% PQ-FDR between sets of control or reference 261 

replicates, then in a closely related experiment with the same reference sample using the same 262 

threshold value, we can infer experimentally that the specified PQ-FDR has been achieved.  263 

It is important to stress, however, that this method is suited more towards initial 264 

discovery, and that follow-up experimentation must employ orthogonal validation protocols. 265 

In order to obtain an experimentally-derived PQ-FDR of 1%, or other specified value, the 266 

same-same method is a very useful tool, because inferring the PQ-FDR based on the Q value 267 

cut-off alone does not yield corresponding PQ-FDR levels (i.e. a Q value of 0.05 does not 268 

specifically produce either 5% or 1% PQ-FDR). Modifying the MTC significance value cut-269 

off so that it takes into account the experimental variability inherent within the replicates 270 

helps to produce a more tailored list of differentially expressed protein identifications whilst 271 

controlling for PQ-FDR. Also, compounding the same-same technique with another method 272 

of filtering, such as fold change cut-offs, can reduce the number of false positives included 273 

in the final dataset, further reducing the PQ-FDR [30,31]. 274 

.CC-BY-NC-ND 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted October 8, 2019. ; https://doi.org/10.1101/797217doi: bioRxiv preprint 

https://doi.org/10.1101/797217
http://creativecommons.org/licenses/by-nc-nd/4.0/


 15 of 20 

 

In this research article, we have demonstrated a revised method for statistical analysis for 275 

shotgun proteomics datasets. The same-same method facilitates the construction of post 276 

analysis P value histograms and aids the researcher in choosing an appropriate statistical 277 

testing protocol for their analysis. We have shown that in the right circumstances, using BH 278 

Q value cut-offs derived from the same-same analysis yields a set of results that provide more 279 

significantly differentially expressed proteins from a given dataset, while also determining 280 

PQ-FDR at the experimental level. In the future, we hope to expand on this methodology so 281 

that it can be applied equally well to other quantitative proteomics data types, and also 282 

develop new tests to build onto the existing same-same architecture to further improve the 283 

statistical rigour for all shotgun proteomics results. 284 

 285 

----------||-----------  286 
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 298 

7. Figure Legends 299 

Figure 1. Screenshots from the same/same shiny apps module 300 

(https://peptidewitch.shinyapps.io/SameSame), using the grape cell control samples and 301 

specifying BH correction at 1% PQ-FDR. (A) Q value vs PQ-FDR bar plots (x axis 0.01 to 302 

1, stepped at 0.01) for all ten triplet paired permutations generated from six replicate analyses 303 

of a reference sample (see Figure 1) (B) P value histograms for each permutation, showing 304 

number of significantly expressed protein identifications sorted into P values bins in 305 

increments of 0.05. (C) displays a single numerical value which produces the desired PQ-306 

FDR value (default BH at 1%, can be user specified). 307 

Figure 2.  Grape cell culture comparisons with application of different statistical 308 

significance measures. Cells grown at 26°C were designated as the reference sample, and 309 

compared with cells grown at 18°C (moderate cold), 10°C (extreme cold), 34°C (moderate 310 

.CC-BY-NC-ND 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted October 8, 2019. ; https://doi.org/10.1101/797217doi: bioRxiv preprint 

https://doi.org/10.1101/797217
http://creativecommons.org/licenses/by-nc-nd/4.0/


 17 of 20 

 

heat), and 42°C (extreme heat). Panel A displays the number of significantly differentially 311 

expressed protein identifications found for each comparison using P values at .05 and .01, 312 

Benjamini-Hochberg adjusted values at 0.05, and BH using the same-same derived Q value 313 

(SS-Q), and specifying PQ – FDR of 1%, 2% or 3%. Panels B to E contain P value histograms 314 

showing the number of significantly expressed protein identifications sorted into P value bins 315 

in increments of 0.05, for each of the four experimental comparisons performed, as indicated. 316 

Figure 3.  IAC1131 rice samples drought stress comparisons with application of different 317 

statistical significance measures. Control plants were unstressed, and compared with plants 318 

exposed to moderate drought stress, extreme drought stress, or extreme drought stress 319 

followed by recovery. Panel A displays the number of significantly differentially expressed 320 

protein identifications found for each comparison using P values at .05 and .01, Benjamini-321 

Hochberg adjusted values at 0.05, and BH using the same-same derived Q value (SS-Q), and 322 

specifying PQ – FDR of 1%, 2% or 3%. Panels B to G are P value histograms showing the 323 

number of significantly expressed protein identifications sorted into P value bins in 324 

increments of 0.05, for each of the six experimental comparisons performed, as indicated. 325 

 326 

 327 

 328 

 329 

 330 

331 
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