
 1 

Phenotype-Based Probabilistic Analysis of Heterogeneous Responses to Cancer 

Drugs and Their Combination Efficacy 

 

Natacha Comandante-Lou1, Mehwish Khaliq1,2, Divya Venkat3, Mohan Manikkam1 and Mohammad 

Fallahi-Sichani1,2,4 

 

1 Department of Biomedical Engineering, University of Michigan Medical School, Ann Arbor, MI, USA 

2 Program in Cancer Biology, University of Michigan Medical School, Ann Arbor, MI, USA 

3 Department of Biochemistry, University of Michigan Medical School, Ann Arbor, MI, USA 

4 Department of Dermatology, University of Michigan, Ann Arbor, MI, USA 

 

Running Title:  

Probabilistic analysis of cancer drug efficacy and interactions 

 

Address correspondence to:  

Mohammad Fallahi-Sichani 

Address: 1150 W. Medical Center Dr. Building MSRB II, Room 2560B, Ann Arbor, MI 48109 

ORCID ID: 0000-0003-0917-3525 

Email: fallahi@umich.edu 

Tel/Fax: (734) 647-2263 

 

 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted October 8, 2019. ; https://doi.org/10.1101/797225doi: bioRxiv preprint 

https://doi.org/10.1101/797225
http://creativecommons.org/licenses/by-nc-nd/4.0/


 2 

Abstract 

Cell-to-cell variability generates subpopulations of drug-tolerant cells that diminish the efficacy of 

cancer drugs. Efficacious combination therapies are thus needed to block drug-tolerant cells via 

minimizing the impact of heterogeneity. Probabilistic models such as Bliss independence are developed 

to evaluate drug interactions and their combination efficacy based on probabilities of specific actions 

mediated by drugs individually and in combination. In practice, however, these models are often applied 

to conventional dose-response curves in which a normalized parameter with a value between zero and 

one, generally referred to as fraction of cells affected (fa), is used to evaluate the efficacy of drugs and 

their combined interactions. We use basic probability theory, computer simulations, time-lapse live cell 

microscopy, and single-cell analysis to show that fa metrics may bias our assessment of drug efficacy 

and combination effectiveness. This bias may be corrected when dynamic probabilities of drug-induced 

phenotypic events, i.e. induction of cell death and inhibition of division, at a single-cell level are used as 

metrics to assess drug efficacy. Probabilistic phenotype metrics offer the following three benefits. First, 

in contrast to the commonly used fa metrics, they directly represent probabilities of drug action in a cell 

population. Therefore, they deconvolve differential degrees of drug effect on tumor cell killing versus 

inhibition of cell division, which may not be correlated for many drugs. Second, they increase the 

sensitivity of short-term drug response assays to cell-to-cell heterogeneities and the presence of drug-

tolerant subpopulations. Third, their probabilistic nature allows them to be used directly in unbiased 

evaluation of synergistic efficacy in drug combinations using probabilistic models such as Bliss 

independence. Altogether, we envision that probabilistic analysis of single-cell phenotypes complements 

currently available assays via improving our understanding of heterogeneity in drug response, thereby 

facilitating the discovery of more efficacious combination therapies to block drug-tolerant cells. 
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Author Summary 

Resistance to therapy due to tumor cell heterogeneity poses a major challenge to the use of cancer drugs. 

Cell-to-cell variability generates subpopulations of drug-tolerant cells that diminish therapeutic efficacy, 

even in populations of cells scored as highly sensitive based on drug potency. Overcoming such 

heterogeneity and blocking subpopulations of drug-tolerant cells motivate efforts toward identifying 

efficacious combination therapies. The success of these efforts depends on our ability to distinguish how 

heterogeneous populations of cells respond to individual drugs, and how these responses are influenced 

by combined drug interactions. In this paper, we propose mathematical and experimental frameworks to 

evaluate time-dependent drug interactions based on probabilistic metrics that quantify drug-induced 

tumor cell killing or inhibition of division at a single-cell level. These metrics can reveal heterogeneous 

drug responses and their changes with time and drug combinations. Thus, they have important 

implications for designing efficacious combination therapies, especially those designed to block or 

overcome drug-tolerant subpopulations of cancer cells. 

 

Introduction  

In pre-clinical studies, potentially effective drug combinations are usually identified based on evidence 

of synergy [1–4]. In the case of cancer drugs, synergistic interactions are typically assessed on the basis 

of bulk cell population measurements, such as relative viability (normalized cell count) and net growth 

rate inhibition, and their variations with drug dose and combination [5–9]. The benefit of drug 

combination is then evaluated based on whether using two drugs together improves the potency (via 

minimizing the dose) or efficacy of treatment (via enhancing the effect) as compared with using either of 

the drugs alone [10–16]. The benefit of drug combination with respect to efficacy and potency, however, 

may be decoupled [10], as each metric encodes distinct information about cellular response to a drug 
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[17]. Variations in potency are often explained by differences in target engagement (e.g. 

physicochemistry of drug-target interaction), concentration of drug available to cells (e.g. drug uptake 

and efflux), or existence of pathway redundancy (e.g. presence of a secondary oncogenic driver), among 

others [18]. Thus, a more potent drug combination enables engaging the target and achieving the desired 

effect in a cell population by using lower doses of treatment [19,20]. Efficacy, on the other hand, refers 

to the maximum response achievable using tolerable doses of a drug. A more efficacious drug or drug 

combination engages a larger proportion of cells [21,22]. Previous systematic studies have revealed that 

variation in cancer drug efficacy is associated with the extent of cell-to-cell variability in drug response 

[17,23], although such heterogeneity is not directly scored in most pre-clinical drug response assays. 

Cell-to-cell variability may generate subpopulations of drug-tolerant cells that diminish cancer 

drug efficacy [24–30]. An example of such heterogeneity is observed following the emergence of 

adaptive resistance or selection of resistant sub-clones even in populations of cells that are scored as 

highly responsive based on drug potency (e.g. EC50 measurements) in routine 3 to 5-day assays. In such 

cases, while more than half (often as many as 90-99%) of cells may respond to treatment (depending on 

time and dose), the remaining cells give rise to a drug-insensitive subpopulation of survivors that may 

stay quiescent or divide slowly in the presence of drug [31]. Although not obvious from the most 

commonly used potency measurements, the emergence of such survivors limits therapeutic efficacy, 

leading to residual cells from which drug-resistant clones may eventually arise and drive disease 

progression [32–35]. Overcoming such heterogeneity in drug response and eradicating subpopulations of 

drug-tolerant cells provide a strong motivation for identifying more efficacious combination therapies 

[36]. A key step toward this goal is the ability to distinguish how heterogeneous populations of cells 

respond to individual drugs in short-term assays, and how these responses are influenced by combined 

drug interactions. However, the standard way in which drugs or their combinations are screened using 
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normalized population assays obscures single-cell and subpopulation effects that likely play a major role 

in diminishing the therapeutic efficacy [21,37]. 

Focusing on efficacy, the benefit of drug combination in a heterogeneous population of cells may 

arise either from its cooperative inhibitory effect on target cells [22], or simply from the increased 

probability of cells being sensitive to any of the constituent drugs [38]. In both cases, the overall 

phenotypic consequences of drug interactions may be assessed in cell culture experiments based on null 

models of non-interaction [3]; synergistic efficacy is typically concluded when the observed 

combinatorial effect exceeds the expected effect from a given null model. The most commonly used 

model, Bliss independence, evaluates interactions based on the probability theory for statistically 

independent drug actions [16]. In cancer treatment, two basic phenotypic events affected by drug action 

are cell death and division. The effect of a drug on an individual cell changes the probability of its 

survival or division within a given time interval. However, current application of the Bliss independence 

typically uses fraction of cells affected (fa), a number between zero and one defined based on relative 

viability or net growth rate inhibition normalized to an untreated control at a fixed timepoint, as drug 

effect [3,7]. We argue that this commonly used approach leads to a bias in the estimation of both drug 

efficacy and combination effectiveness in heterogeneous cell populations, especially when the ultimate 

goal is to block or eradicate small subpopulations of drug-tolerant cells. This is because fa quantities are 

not equal to the time-dependent probabilities at which cell death or inhibition of cell division are 

induced by a drug. 

In this paper, we discuss evaluating time-dependent drug responses based on probabilistic 

metrics that quantify drug-induced tumor cell killing and inhibition of division at a single-cell level. 

Using these phenotype metrics, we re-evaluate criteria for statistical independence of drug interactions 

based on probability theory. Experimentally, phenotype metrics are measured using time-lapse live cell 
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microscopy via monitoring cells engineered to express fluorescent reporters for nucleus identification (to 

distinguish live versus dead cells) and cell cycle progression (to score division events). As a proof of 

concept, we evaluate the performance of the metrics in two BRAF-mutant melanoma cell lines exposed 

to a range of targeted drugs which have been tested or proposed to be studied in combination with 

standard of care BRAF and MEK kinase inhibitors. Dynamic measurements of the phenotype metrics 

reveal distinctive responses of melanoma cells to drug combinations that may not be distinguishable 

when assessed based on conventional assays. This is because these metrics deconvolve differential 

degrees of drug effect on tumor cell killing versus inhibition of division, which are not necessarily 

correlated across various drug treatments and their combinations. Furthermore, these metrics increase 

the sensitivity of short-term drug response assays to cell-to-cell heterogeneities and thus the presence or 

emergence of drug-tolerant subpopulations, which are typically overlooked in conventional drug 

response assays.  

 

Results 

Probabilistic description of drug-induced phenotypic events 

We model the arrival of phenotypic events, including cell division and death, in a given cell population 

as independent non-stationary Poisson processes with time-varying rate constants (kevent). These rate 

constants are linked to the actual probabilities (Pevent) with which such events occur in individual cells 

within a series of short time intervals (dt): 

𝑃"#"$% = 1 − 𝑒*+,-,./0% ≈ 𝑘"#"$%𝑑𝑡      (Equation 1) 

At a population level, the occurrence of these phenotypic events can be described by Poisson processes 

of which the time-dependent rates of occurrence are directly related to the probabilities of events at a 

single-cell level (Figure 1A). Therefore, the distribution of death and division events observed for a 
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population of N cells during a time period of Dt could be approximated using the following equation: 

𝑷{𝑁"#"$%(𝑡 → 𝑡 + D𝑡) = 𝑥} = (+,-,./(%)>D%)?

@!
𝑒*(+,-,./(%)>)D%     (Equation 2) 

where Nevent (t ® t + Dt) is the number of phenotypic events (death or division) occurring during the 

time interval between t and t + Dt.  

Assuming negligible cell death in the absence of any treatment, the model describes the 

cytotoxic effect of a drug on a given cell by the probability with which it induces cell death per unit of 

time (Pdeath = kdeathdt). The cytostatic effect of drug on a given cell is described by a conditional 

probability (Pstasis) with which it prevents the cell from dividing given that the same cell would have 

divided in the absence of drug with a probability of Pdivision (no drug) = kdivision (no drug)dt. The relationship 

between the conditional probability Pstasis and the probability of cell division in the presence of drug 

(Pdivision = kdivisiondt) and their associated rate constants could be described as follows (see Materials and 

Methods for details):  

𝑃B%CBDB = 1 −	 FGH-HIHJ.
FGH-HIHJ.	(.J	GKLM)

= 	1 −	 +GH-HIHJ.
+GH-HIHJ.	(.J	GKLM)

   (Equation 3) 

𝑘B%CBDB = 𝑃B%CBDB𝑘0D#DBDN$	($N	0OPQ)     (Equation 4) 

The model provides a framework to simulate how dose-dependent responses in populations of 

cells vary with Pdeath per unit of time (h) and Pstasis using input parameters (kdeath and kstasis) that represent 

drugs with a wide range of cytotoxic and cytostatic effects. For each condition, the fraction of cells 

affected (fa), defined based on changes in relative viability or net growth rate inhibition (using recently 

developed DIP and GR metrics [5,6]) normalized to an untreated control, are also derived as model 

outputs (Figure 1B, C). We compared fa quantities with probabilistic measures of drug action (Pdeath and 

Pstasis) across a number of drug response simulations. Except for extreme cases such as when Pdeath = 

Pstasis = 0 (i.e. there is no drug) or when Pdeath = 1 (i.e. all cells dying within the first time interval), fa 

quantities differed substantially from the probability with which drugs induced cell death or from the 
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probability with which they inhibited cell division (Figure 1D). fa gives a closer estimate of the overall 

probability with which a drug induces either cell death or inhibits cell division (Pdeath È stasis), i.e. the 

probability of a cell being affected (Figure 1D). However, it still fails to accurately represent the 

probabilistic nature of drug action in cells. Together, simulation results suggest that using fa for 

evaluating drug response or drug combination efficacy (such as in Bliss independence) may lead to 

inaccurate conclusions. Instead, we propose to use direct measures of probabilistic phenotype metrics 

(Pdeath and Pstasis or kdeath and kstasis) for such analyses. 

 

Probabilistic rate constants capture time-dependent heterogeneities in phenotypic responses 

Probabilistic rate constants are estimated based on the frequencies of occurrence of individual 

phenotypic events. These metrics are expected to exhibit high sensitivity in distinguishing cell-to-cell 

heterogeneities that lead to selection of small subpopulations of drug-tolerant cells. To test this 

hypothesis, we simulated drug treatment scenarios where the initial cell population consisted of 

heterogeneous subpopulations, in which a small fraction (w £ 5%) of cells were substantially less 

sensitive (by up to r = 16-fold) to treatment relative to the majority of the cell population (Figure 2A). 

We then defined and calculated “resistance enrichment ratio” for each of the fa metrics (described based 

on viability, GR and DIP) or for phenotype rate constants (kdeath and kstasis) by normalizing each metric 

measured for the heterogeneous population to that in a homogeneous population (i.e. w = 0 or r = 0) at 

different times of treatment. Smaller resistance enrichment ratios represent greater ability to distinguish 

heterogeneous drug-tolerant subpopulations. 

We first compared the ability of each metric to distinguish the presence of small subpopulations 

of drug-tolerant cells by analyzing how resistance enrichment ratio varies with w and time (Figure 2B). 

Simulation results show that fa metrics, defined based on either normalized cell viability or growth rate 
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inhibition (GR and DIP), are significantly less sensitive than kdeath and kstasis to the presence of drug-

tolerant cells (Figure 2B). Furthermore, for any given initial fraction of drug-tolerant cells (w), 

phenotype rate constants distinguished the emergence of drug resistance at earlier timepoints. Using 

similar simulations, we also tested how the relative level of drug resistance (r) in a fixed initial fraction 

of drug-tolerant cells would influence each of the drug response metrics. Simulation results show that 

for a given w, phenotype rate constants detect subpopulations with weaker levels of resistance (i.e. 

smaller r values) and at earlier timepoints (Figure 2C). 

Most conventional drug screening assays are performed following exposure of cells to drug for 3 

to 5 days. While variations in drug potency are distinguishable in such assays, it is often suggested that 

longer periods of treatment are essential to distinguish the presence of drug-tolerant persisters that 

diminish the efficacy. However, our results show that phenotype rate constants can capture 

heterogeneities that would otherwise require significantly longer experiments when using population-

level fa metrics. The benefit of using phenotype rate constants would be especially significant in the case 

of potent drugs that induce substantial cell death, while sparing a small fraction of drug-tolerant cells. In 

particular, as the efficiency of drug-induced cell killing increases, the sensitivity of fa metrics to detect 

drug tolerance in the surviving fraction of cells decreases. 

 

Estimating probabilistic rate constants using time-lapse live cell microscopy 

To experimentally capture stochastic processes of induction of cell death and inhibition of division in 

drug-treated tumor cell populations, we used time-lapse live cell microscopy and cells engineered to 

express two fluorescent reporters. The reporters included: (i) an H2B-Venus reporter which labels 

chromatin, allowing identification of nuclei and scoring cell death based on changes in nucleus 

morphology, and (ii) an mCherry-Geminin reporter for cell cycle progression [39] which allows tracking 
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of cell division events. Using a high-throughput, automated image analysis workflow (see Materials and 

Methods), the occurrence of individual phenotypic events (death and division) in single cells was 

tracked in time across a variety of drug treatment conditions (Supplementary Figure S1). To estimate 

time-dependent changes in probabilistic phenotype rate constants, the number of cell death and division 

events (Nevent) were quantified over a series of uniform time intervals of length Dt. Phenotype rate 

constants were then estimated via normalizing Nevent in each time interval to the length (Dt) and the 

average number of live cells over that time interval [Nlive(t ® t + Dt)]avg as detailed below:   

𝑘0"C%R(𝑡) =
>G,S/T(%	→	%	U	D%)

[>WH-,(%	→	%	U	D%)]S-MD%
        (Equation 5) 

𝑘0D#DBDN$(𝑡) =
>GH-HIHJ.(%	→	%	U	D%)

[>WH-,(%	→	%	U	D%)]S-MD%
        (Equation 6) 

𝑘B%CBDB(𝑡) = 𝑘0D#DBDN$	($N	0OPQ) − 𝑘0D#DBDN$(𝑡)     (Equation 7) 

As a proof of concept, we monitored responses of two BRAF-mutated melanoma cell lines 

(COLO858 and MMACSF) following exposure to a BRAF inhibitor Vemurafenib at 6 doses for a 

period of ~120 h. Heterogeneity in drug response was then visualized through the estimation and 

analysis of phenotype rate constants, kdeath and kstasis, as a function of drug dose and time in each cell line 

(Figure 3A, B). In COLO858 cells, which have been shown to be initially sensitive but rapidly develop 

adaptive resistance to Vemurafenib [21,22], increasing drug concentration enhanced both the amplitude 

and the rate of increase in kdeath and kstasis within the first 36 h. After that, these responses were 

attenuated concurrent with the activation of drug-induced adaptive responses (Figure 3A). Responses of 

MMACSF cells involved a relatively monotonic and dose-dependent decrease in the number of live 

cells. At the highest drug concentration (3.2 µM), however, we observed two peaks of apoptotic 

response, one similar to COLO858 cells at t » 36 h and a higher peak later at t » 108 h (Figure 3B). 

These data are consistent with previous data reporting high sensitivity of MMACSF cells to 5 days of 
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exposure to Vemurafenib [21,22], but also highlight the impact of cell-to-cell heterogeneity and the 

presence of subpopulations of cells with different levels of drug tolerance.  

In addition to interrogating dynamic aspects of heterogeneous drug response, we also tested the 

performance of our automated image analysis workflow by comparing the estimated phenotype rate 

constants with those measured from data generated by manual single-cell tracking using a MATLAB-

based software [40]. The software allowed accurate tracking and cell fate annotation of individual cells 

across time-lapse images taken over a period of multiple days. Single-cell profiles from manual tracking 

confirmed heterogeneity in the number and timing of death and division events in cells exposed to drug. 

In COLO858, for example, cell-to-cell variability ranged from cells that died rapidly (as early as ~24 h) 

in response to high concentrations of Vemurafenib, to cells that survived but did not divide, to cells that 

slowly divided following a temporary delay in their cell cycle, the proportion and dynamics of which 

changed with drug dose (Figure 3C). By comparing rate constants between two image analysis methods 

across a variety of conditions in two cell lines, we identified quantitatively similar patterns 

(Supplemental Figure S2). This consistency confirms that the automated workflow would be suitable for 

high-throughput analysis of drug response. 

We also used single-cell phenotype data to empirically evaluate the assumption of non-stationary 

Poisson process to model drug-induced death and division events. We compared the distribution of 

phenotypic events measured from time-lapse microscopy experiments with those simulated based on 

Poisson processes using estimates of phenotype rate constants. We observed similarity across patterns of 

response at the single-cell level and between distributions of events at the population level (Figures 3C-

3E), suggesting that a simplified model of non-stationary Poisson process for drug-induced death and 

division events is a reasonable one.  

Taken together, high-throughput estimation and analysis of phenotype rate constants and their 
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changes with time and dose provide an efficient tool to capture critical dynamic aspects of probabilistic 

and heterogeneous drug response that would be overlooked in bulk population assays. 

 

Evaluating statistical independence of drug combination efficacies using probabilistic phenotype 

metrics 

Among the most widely used reference models in evaluation of synergistic efficacy for cancer drug 

combinations is Bliss independence [16]. The Bliss model assumes that drug effects are consequences of 

probabilistic processes, and that two drugs act independently if their combined effect confers 

probabilistic or statistical independence: 

𝑃YUZ[ = 𝑃Y + 𝑃Z−𝑃Y𝑃Z       (Equation 8) 

where PIA+B describes the expected probability of the combinatorial effect of drugs A and B when they 

act independently. 0 ≤ PA ≤ 1 and 0 ≤ PB ≤ 1 represent probabilities of effect mediated by drugs A and B 

when tested individually. The Bliss combination index (CI) for drugs A and B may be calculated as: 

𝐶𝐼YUZZ^DBB = F_`a
b

F_`a
         (Equation 9) 

, where PA+B describes the actual probability of effect induced by drugs A and B when used in 

combination. Synergistic combination efficacy is concluded if CI < 1, i.e. when the observed 

combinatorial effect exceeds the expected effect from the Bliss independence model. Despite its 

probabilistic definition, however, the Bliss model is broadly applied to a variety of fa metrics (such as 

normalized viability or net growth rate inhibition), thereby leading to unreliable conclusions which are 

largely due to the following limitations. First, although fa measurements satisfy the mathematical 

requirement of 0 ≤ fa ≤ 1, they do not have a probabilistic nature and thus do not necessarily follow the 

rules of probability theory. Second, fa quantities are the result of two distinct probabilistic processes, 

induction of cell death and inhibition of cell division. These processes, even when induced by drugs with 
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the same probabilities, do not necessarily have the same impact on fa. Third, for drugs A and B with fa < 

1, the Bliss model (when applied to fa) is unable to account for the difference between being affected by 

drug A, drug B, or both. For example, consider the combined effect of two truly independent and purely 

cytostatic drugs A and B, whose phenotypic effects individually could be described by Pstasis = 1 (and 

Pdeath = 0). By Bliss independence when applied to fa metrics such as viability or normalized growth rate 

inhibition, drugs A and B are expected to have a substantial cytotoxic effect and thus their combination 

would be scored incorrectly as antagonistic (CI > 1) (Figures 4A, B). To overcome such limitations and 

to avoid erroneous conclusions about drug combination efficacies, we propose to use probabilities of 

phenotypic events or their associated rate constants in evaluation of Bliss independence according to its 

definition. 

 When applied to probabilistic events of drug-induced cell death, Bliss independence for the 

combined cytotoxic effect of drugs A and B may be described as follows: 

𝑃0"C%R	(YUZ)
[ = 𝑘0"C%R	(YUZ)

[ 𝑑𝑡 = 𝑃0"C%R	(Y) + 𝑃0"C%R	(Z) − 𝑃0"C%R	(Y)𝑃0"C%R	(Z) ≈ 	 (𝑘0"C%R	(Y) + 𝑘0"C%R	(Z))𝑑𝑡  

           (Equation 10) 

, where Pdeath (A) and Pdeath (B) represent the probabilities with which drugs A and B induce cell death 

within a short time interval of dt, respectively. PIdeath (A+B) represents the probability of death induced by 

the combination of drugs A and B when they act independently. kdeath (A), kdeath (B) and kIdeath (A+B) 

represent rate constants associated with these probabilistic events, respectively. When applied to the 

conditional event of inhibition of cell division given that cells divide at a rate of kdivision (no drug) in the 

absence of drug, the Bliss independence may be described as follows: 

𝑃B%CBDB	(YUZ)
[ =

+I/SIHI	(_`a)
b

+GH-HIHJ.	(.J	GKLM)
= 𝑃B%CBDB	(Y) + 𝑃	B%CBDB(Z) − 𝑃B%CBDB	(Y)𝑃B%CBDB	(Z)  (Equation 11) 

, where Pstasis (A) and Pstasis (B) represent the probabilities with which drugs A and B inhibit cell division 

given that cells would divide with a probability of Pdivision (no drug) = kdivision (no drug)dt within a short time 
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interval of dt. PIstasis (A+B) represents the cytostatic effect for the combination of drugs A and B when they 

act independently. kstasis (A), kstasis (B) and kIstasis (A+B) represent rate constants associated with these 

probabilistic events. Based on these definitions, the Bliss combination index for each individual drug-

induced effect could be described as follows: 

𝐶𝐼0"C%R	(YUZ)
Z^DBB =

FG,S/T	(_`a)
b

FG,S/T	(_`a)
=

+G,S/T	(_`a)
b

+G,S/T	(_`a)
      (Equation 12) 

𝐶𝐼B%CBDB	(YUZ)
Z^DBB =

FI/SIHI	(_`a)
b

FI/SIHI	(_`a)
=

+I/SIHI(_`a)
b

+I/SIHI	(_`a)
      (Equation 13) 

Systematic simulation results show that evaluating probabilistic independence based on drug-

induced phenotypic events can distinguish a variety of possible drug interactions that would be 

otherwise overlooked when assessed on the basis of fa quantities (Figure 4C). The discrepancy is 

particularly substantial under conditions where drug combinations have uneven cytotoxic and cytostatic 

interactions, e.g. when two compounds act synergistically with respect to inhibition of division but act 

independently or antagonistically with respect to induction of cell death, and vice versa.  

 

Probabilistic phenotype metrics uncover target-specific differences in drug combination efficacies 

We applied the probabilistic definition of Bliss independence to evaluate time-dependent changes in the 

efficacies of a group of 12 compounds in sequential combination with BRAF kinase inhibitor, 

Vemurafenib, plus MEK kinase inhibitor, Trametinib, in two BRAF-mutated melanoma cell lines 

COLO858 and MMACSF over the course of five days (see Methods for details). Single-cell drug 

responses were monitored using time-lapse fluorescence microscopy, and changes in probabilistic rate 

constants kstasis and kdeath were tracked for the entire period of experiment for each drug condition 

individually or in combinations (Supplementary Figures S3, S4). The list of compounds based on their 

nominal targets included two HDAC inhibitors (Fimepinostat and Givinostat), two BET bromodomain 

inhibitors (Birabresib and I-BET762), two KDM1A inhibitors (SP2509 and ORY-1001), a pan Jmj-
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KDM inhibitor (JIB-04), a KDM5 inhibitor (CPI-455), two Tankyrase inhibitors (AZ6102 and NVP-

TNKS656), and two CDK4/6 inhibitors (Palbociclib and Abemaciclib). These compounds were selected 

from two broad classes of anti-cancer drugs, referred to as epigenetic-modifying compounds and cell 

cycle inhibitors, which have been proposed to be used in combination with standard of care BRAF and 

MEK inhibitors to overcome drug-adapted subpopulations of cells in BRAF-mutant melanomas 

[10,21,41–48].  

The analysis of variations in Bliss combination index, defined based on probabilistic cytotoxic 

and cytostatic actions, with drug and time (following unsupervised clustering) led to two major 

conclusions (Figure 5A). First, effective drugs with comparable mechanisms of action (e.g. BET 

inhibitors, HDAC inhibitors or CDK4/6 inhibitors) exhibited similar dynamic patterns of interaction 

with BRAF and MEK kinase inhibitors, suggesting that differences in probabilistic drug action and 

interactions are target-specific. Second, cytostatic and cytotoxic drug interactions among efficacious 

drug combinations often varied in time and did not necessarily correlate with one another. BET 

inhibitors, for example, exhibited a strong synergistic cytotoxic interaction (CIdeath < 1) with the 

combination of BRAF and MEK inhibitors within 48-72 h of treatment in both COLO858 and 

MMACSF cell lines, whereas their interaction was scored as independent (CIstasis » 1) with respect to 

inhibition of cell division (Figure 5A, B). Furthermore, the benefit of BET inhibitors combined with 

Vemurafenib and Trametinib diminished following 96 h, concomitant with the emergence of a small 

proliferating subpopulation (kdivision > 0) (Figure 5B). CDK4/6 inhibitors acted independently with 

BRAF and MEK inhibitor combination to inhibit cell division within 72-96 h in both cell lines (Figure 

5A and Supplementary Figures S3 and S4). Surprisingly, however, their effects on cell death appeared to 

be antagonistic especially in MMACSF cells (Figure 5C). This might be due the possibility that upon 

G0/G1 arrest, BRAF-mutant cells become less responsive to the effect of BRAF and MEK inhibitors, an 
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interesting observation which requires further investigation across more cell lines.  

Altogether, experimental results and simulation outcomes suggest that dynamic measurements of 

the phenotype metrics and probabilistic evaluation of combination index reveal distinctive responses of 

cells to drug combinations that might be indistinguishable when assessed based on conventional assays. 

Phenotype metrics deconvolve differential (and sometimes opposing) degrees of drug effect on tumor 

cell killing versus inhibition of cell division, a potentially important consideration in choosing 

appropriate drug combinations. Furthermore, the probabilistic nature of these metrics makes them 

sensitive to cell-to-cell heterogeneities which are typically overlooked in conventional bulk drug 

response assays. They are therefore appropriate choices to assess synergistic efficacy in drug 

combinations aimed at blocking heterogeneous subpopulations of drug-tolerant cells. 

 

Discussion 

Synergistic interactions in cancer drug efficacy are typically assessed using Bliss independence or other 

models (e.g. Highest Single Agent approach [2]). These models are commonly applied to drug response 

measurements, whose outcomes are normalized to those measured in untreated controls to identify the 

fraction of cells affected (fa) by drugs. Examples of these metrics include drug-induced changes in 

viability (normalized live cell count) or net growth rate inhibition, which are analyzed across drug doses 

and combinations. Synergistic efficacy is then concluded when the observed combinatorial effect on fa 

metrics exceeds the expected effect from the null model. In this paper, we use basic probability theory 

and computer simulations to demonstrate that using fa metrics may bias our estimation of drug 

combination effectiveness and synergistic efficacy, especially when the ultimate goal is to block 

heterogeneous drug-tolerant subpopulations. Instead, we propose to use direct measures of time-

dependent probabilities of key drug-induced phenotypic events, i.e. induction of cell death and inhibition 
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of cell division, and their associated rate constants (kdeath and kstasis) to evaluate synergistic efficacy using 

probabilistic models such as Bliss.  

Probabilistic phenotype metrics improve our ability to quantify drug efficacy and characterize 

drug combination interactions in the following three ways. First, in contrast to the commonly used fa 

metrics, phenotype metrics are directly related to the probabilities of drug action in a cell population 

within any given time interval following drug exposure. Furthermore, they deconvolve differential 

degrees of drug effect on tumor cell killing versus inhibition of cell division, which may not be 

correlated in many cases. Second, kdeath and kstasis dramatically increase the sensitivity of short-term drug 

response assays to dynamic cell-to-cell heterogeneities and the presence (or emergence) of drug-resistant 

sub-clones, which are typically overlooked in conventional fa based drug response analyses. This is a 

critical issue especially when heterogeneous tumor cell populations consist of cells that are differentially 

sensitive to drugs and that their sensitivity changes with time. Third, the probabilistic nature of 

phenotype metrics allows us to use them directly in unbiased evaluation of independence, synergistic or 

antagonistic efficacy in drug combinations using probabilistic models such as Bliss independence.  

While we focused on Bliss independence as a probabilistic framework to study synergistic 

efficacy, phenotype metrics and their dose- and time-dependent variations could be used in other 

platforms for broad evaluation of synergy. A recently developed multi-dimensional framework (MuSyC) 

uses a two-dimensional extension of Hill equation to distinguish synergistic efficacy versus synergistic 

potency, thereby allowing for a comprehensive understanding of drug interactions. Such understanding 

not only helps with improving therapeutic efficacy via enhancing effect, but also reducing off-target 

toxicities via dose reduction [10]. Probabilistic phenotype rate constants follow dose-response patterns 

suitable to be fit by Hill equation and therefore could be used as input to platforms such as MuSyC.  

Estimating probabilistic phenotype metrics requires continuous time-lapse experiments along 
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periods of multiple days, followed by computational single-cell analysis. Such integrative methods may 

not be cost-effective and not recommended for large-scale drug screening projects, in which many drugs 

are filtered out because of lack of potency. The benefit of these methods is significant, however, when 

there is a need for increased ability to distinguish cell-to-cell heterogeneities or detecting small 

subpopulations of drug-tolerant cells that influence drug efficacy rather than potency. Therefore, we 

envision that probabilistic analysis of single-cell phenotypes will complement currently available 

methods via improving our understanding of heterogeneity in drug response, thereby facilitating the 

discovery of more efficacious combination therapies to block drug-tolerant tumor cells. 

 

Materials and Methods 

Cell culture 

BRAF-mutated melanoma cell lines used in this study were obtained from the Massachusetts General 

Hospital Cancer Center with the following primary sources: COLO858 (ECACC) and MMACSF (Riken 

Bioresource Center). Each cell line was independently authenticated by Short Tandem Repeats (STR) 

profiling by ATCC. COLO858 cells were grown in RMPI 1640 (Corning cellgro, Cat. 10-040 CV), and 

MMACSF cells were grown in DMEM/F-12 (Thermo Fisher Scientific, Cat. 11330-032). For both cell 

lines, growth media were supplemented with 5% fetal bovine serum (Thermo Fisher Scientific, Cat. 

26140-079) and 1% sodium pyruvate (Thermo Fisher Scientific, Cat. 11360-070). We added penicillin 

and streptomycin at 100 U/ml (Thermo Fisher Scientific, Cat. 15140-122) and plasmocin at 0.5 µg/ml 

(InvivoGen, Cat. ant-mpp) to all growth media. Cells were engineered to stably express H2B-Venus and 

mCherry-Geminin fluorescent reporters as described previously [21]. Engineered and parental cell lines 

were confirmed to grow at comparable rates in the absence of any treatment or in the presence of 

different concentrations of BRAF inhibitor Vemurafenib over 72 hours of treatment. 
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Reagents  

Chemical inhibitors used in this study were obtained from Selleck Chemicals with the following catalog 

numbers: Vemurafenib (Cat. S1267), Trametinib (Cat. S2673), SP2509 (Cat. S7680), ORY-1001 (Cat. 

S7795), Palbociclib (Cat. S1116), Abemaciclib (Cat. S7158), AZ6102 (Cat. S7767), NVP-TNKS656 

(Cat. S7238), Givinostat (Cat. S2170), Fimepinostat (CUDC-907; Cat. S2759), JIB-04 (Cat. S7281), 

CPI-455 (Cat. S8287), I-BET762 (Cat. S7189) and Birabresib (OTX-015; Cat. S7360). All chemical 

inhibitors were dissolved in dimethyl sulfoxide (DMSO) as 10 mM stock solution, except Palbociclib of 

which the stock concentration was 5 mM. 

 

Cell seeding and drug treatment  

COLO858 and MMACSF cells expressing fluorescent reporters were seeded into Costar 96-well black 

clear-bottom tissue culture plates (Corning 2603) in 220 µL full growth medium without phenol red at a 

density of 2000 and 3000 cells/well, respectively. Cells were counted using a TC20™ Automated Cell 

Counter (Bio Rad). In the case of Vemurafenib dose-response experiments, cells were treated ~24 h after 

seeding with either DMSO or five different concentrations of Vemurafenib (0.0316, 0.1, 0.316, 1 and 

3.16 µM) for a period of ~5 days. In the case of drug combination experiments, cells were treated (also 

24 h after seeding) with DMSO control or one of the epigenetic-modifying compounds or cell cycle 

inhibitors at the following concentrations: Fimepinostat (0.02 µM), Givinostat (0.2 µM), Birabresib (0.5 

µM), I-BET762 (1 µM), SP2509 (1 µM), ORY-1001 (1 µM), JIB-04 (0.2 µM), CPI-455 (5 µM), 

AZ6102 (1 µM), NVP-TNKS656 (1 µM), Palbociclib (1 µM), and Abemaciclib (1 µM); drug 

concentrations were chosen based on previous reports exhibiting maximal target inhibition in cells. After 

24 h, Vemurafenib at 0.3 µM plus Trametinib at 0.03 µM, or DMSO control were added to each 
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treatment condition. All drug treatments were performed in at least 4 replicates using a Hewlett-Packard 

(HP) D300 Digital Dispenser.  

 

High-throughput time-lapse live cell microscopy 

Within 50-60 min after each treatment, cells were imaged every 10 min (for COLO858) and every 15 

min (for MMACSF) using a Nikon Ti2-E inverted microscope with motorized stage, Perfect Focus 

System, 20´ objective, and a Photometrics Prime 95B camera followed by 2´2 binning. The process of 

image acquisition was controlled using NIS element software. Illumination was powered by the 

Lumencor Spectra X light engine. H2B-Venus fluorescence was captured using 510 nm excitation and 

535 nm emission at 25 ms exposure for MMACSF cells and 20 ms exposure for COLO858 cells.  

mCherry-Geminin fluorescence was captured using 575 nm excitation and a 629.5 nm emission at 80 ms 

exposure for MMACSF cells and 100 ms exposure for COLO858 cells. Throughout the entire period of 

image acquisition, environmental conditions were maintained at 37°C, 5% CO2, and 93% humidity 

using an OkoLab Enclosure. 

 

Image analysis and automated cell tracking workflow 

Images were first processed using Fiji [49] for rolling ball background subtraction with radius of 20 

pixels. Background-subtracted images were then analyzed using CellProfiler (3.1.8) for segmentation 

and classification of cellular phenotypic states, including cells that express high and low levels of 

Geminin (referred to as Gemininhigh and Gemininlow cells, respectively), or live versus dead cells. 

Briefly, CellProfiler analysis (Supplementary Figure S1) involved: (1) edge enhancement and dark hole 

feature enhancement of the background-subtracted H2B images to facilitate segmentation; (2) 

segmenting individual cell nuclei using the Otsu thresholding method; (3) using nuclei segmentations as 
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masks to measure object intensities for all channels as well as object sizes and shapes; (4) classification 

of phenotypic states of each cell object using the classification model output from CellProfiler Analyst 

(2.2.1) [50] based on features measured from the previous step. Gemininhigh versus Gemininlow cell 

classifiers and live versus dead cell classifiers were trained separately using fast gentle boosting 

algorithm in CellProfiler Analyst with eight and fifteen maximum rules, respectively. The training set 

used to develop each phenotype classifier was an annotated set, generated via manually sorting the cell 

object tiles into their corresponding phenotype classes in CellProfiler Analyst. The process of manual 

sorting followed by model training was iterated until approximately 80% of true positive accuracy was 

achieved. 

Based on phenotype classifications of individual cells for each image output from CellProfiler, 

corresponding synthetic images were generated in MATLAB (2018b) for each phenotype of interest. 

Synthetic images contained synthetic pixels at locations of cells, indicating phenotypes of interest (i.e. 

Gemininhigh or dead cells). Synthetic images for Gemininhigh cells, dead cells, background-subtracted 

H2B and Geminin images acquired from the same site were merged into a single multi-channel image 

composite using Fiji. Image composites were then analyzed using Fiji plugin TrackMate (3.8.0) with 

TrackMate extras and Track Analysis extensions [51] for automated tracking. Synthetic pixels of a 

selected channel were detected by the Laplacian of Gaussian detector and spots were linked with Linear 

Assignment Problem (LAP) Tracker. Additional spots filtering (based on intensities from multiple 

channels) and track filtering (based on track duration, track median velocity, and velocity standard 

deviation) were implemented to optimize tracking results.  

 

Estimating probabilistic phenotype rate constants from individual cell tracking data 
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Single-cell tracking data generated using TrackMate was analyzed using MATLAB. Transition of a live 

cell from Gemininhigh to Gemininlow was recorded as a division event, whereas the beginning of a dead 

cell track was recorded as a death event (Supplementary Figure S1). To estimate time-dependent 

changes in probabilistic phenotype rate constants, kdeath and kdivision, the number of recorded cell death 

and division events (Ndeath and Ndivision) were quantified over a series of uniformly distributed time 

intervals (t ® t + Dt), where Dt = 12 h or 24 h. Normalizing Ndeath and Ndivision to the length of each time 

interval (Dt) and the average number of live cells within the same interval [Nlive(t ® t + Dt)]avg , 

phenotype rate constant were estimated using Equations 5-7. As expected, we observed that the 

magnitude of noise in single-cell tracking data and consequently the relative error in the estimation of 

kdivision and kdeath, increased under conditions where Gemininhigh and dead cells were highly concentrated, 

respectively. To mitigate the effect of noise under such conditions, we imposed the following constraints 

in our estimation of Ndivision (when Ndeath < Ndivision) and Ndeath (when Ndeath > Ndivision) during each time 

interval, respectively: 

𝑁0D#DBDN$(𝑡	 → 	𝑡	 + 	D𝑡) = 	 c𝑁^D#"(𝑡	 + 	D𝑡) − 𝑁^D#"(𝑡)d − 𝑁0"C%R(𝑡	 → 	𝑡	 + 	D𝑡)  (Equation 14) 

𝑁0"C%R(𝑡	 → 	𝑡	 + 	D𝑡) = 	𝑁0D#DBDN$(𝑡	 → 	𝑡	 + 	D𝑡) − (𝑁^D#"(𝑡	 + 	D𝑡) − 𝑁^D#"(𝑡))  (Equation 15) 

These constraints are consistent with the assumption that the overall change in the number of live cells 

during each time interval (Dt) must be equal to the number of division events minus the number of death 

events during the same time interval. 

 

Verifying the accuracy of automated cell tracking workflow using manual single-cell tracking 

To test the performance of our automated image analysis workflow, we compared the phenotype rate 

constants measured using data from the automated pipeline with those measured using data generated 

from manual single-cell tracking. This was accomplished using a MATLAB-based software, allowing 
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accurate single-cell tracking and cell fate annotation of individual cells across time-lapse images taken 

over a period of multiple days [40]. Briefly, the manual tracking method relies on identification of 

individual cells using intensity and shape information of the nuclear marker (H2B-Venus), track 

propagation using nearest neighbor criteria, and real-time user correction of tracking, and annotation of 

cell death and division events based on H2B and Geminin signal intensities. For each condition, about 

150-250 cells pooled from four replicates were manually tracked and cell death and division events were 

recorded. Phenotype rate constants were then calculated using Equations 5-7. 

 

Estimating fraction of cells affected (fa) by drug 

Currently, evaluation of Bliss independence (and other drug interaction frameworks) is based on fraction 

of cells affected (fa), a normalized parameter between zero and one, that represents the fractional effect 

of drugs individually or in combination [52]. Conventionally, relative viability (or cell count normalized 

to an untreated control) measured at a fixed time-point (typically 72 or 96 h) following drug treatment 

has been used to calculate fa: 

𝑓C(𝑣𝑖𝑎𝑏𝑖𝑙𝑖𝑡𝑦) = 1 − 𝑣𝑖𝑎𝑏𝑖𝑙𝑖𝑡𝑦       (Equation 16) 

Despite its wide-spread usage, however, the relative viability approach in assessing drug response 

suffers from a fundamental flaw, which is being confounded by variation in cell proliferation rates and 

assay duration. The reason is that cell count, which is used as a normalization factor in this approach, is 

non-linearly time-dependent. Therefore, new generation drug response metrics have recently been 

introduced to correct for this bias [5,6]. The nature of these metrics is based on modeling drug-induced 

changes in the net growth rate of the cancer cell population (instead of relative viability) as a function of 

drug dose. These metrics include drug-induced proliferation (DIP) rate [6] and growth rate (GR) 

inhibition [5], both of which consider and correct for the variability in growth rate that is irrelevant to 
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drug treatment via normalizing the net growth rate of the drug-treated cell population to that of the 

untreated control. Given the dynamic range of each metric, the definition of fraction of cells affected (fa) 

for these new metrics, fa(DIP) and fa(GR), is modified as follows so that 0 ≤ fa ≤ 1:  

𝑓C(𝐷𝐼𝑃) =
m*n[F

m*opq	(n[F)
       (Equation 17) 

𝑓C(𝐺𝑅) =
m*tu
v

        (Equation 18) 

 

Stochastic simulation of cytotoxic and cytostatic drug effects  

We modeled phenotypic events in a heterogeneous tumor cell population as a series of independent 

stochastic reaction processes at a single-cell level. Drug-induced death events were described by the 

following reaction: 

𝑐𝑒𝑙𝑙
+G,S/Tx⎯⎯⎯z𝑑𝑒𝑎𝑑	𝑐𝑒𝑙𝑙 

, where the rate constant of death kdeath is defined such that a given cell dies with a probability of kdeathdt 

within a reasonably short time interval (dt). Cell division in the absence of drug could be described by 

the following reaction: 

𝑐𝑒𝑙𝑙
+GH-HIHJ.	(.J	GKLM)
x⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯z2𝑐𝑒𝑙𝑙𝑠 

, where kdivision (no drug) is the inherent rate of division of a given cell. The cytostatic effect of a drug on a 

cell was described by a conditional probability (Pstasis = Pinhibition of division (with drug) | division (no drug)) with 

which it prevents a cell from dividing given that it would have divided in the absence of drug with a 

probability of Pdivision (no drug). For cancer drugs that have inhibitory effect on cell division, the 

relationship between Pstasis and Pdivision in the presence of drug could be derived as follows:   

𝑃0D#DBDN$	($N	0OPQ) = 	𝑃0D#DBDN$	($N	0OPQ)	∩	0D#DBDN$	(~D%R	0OPQ) + 	𝑃0D#DBDN$	($N	0OPQ)	∩	D$RD�D%DN$	N�	0D#DBDN$	(~D%R	0OPQ) 

𝑃0D#DBDN$	($N	0OPQ) = 	𝑃0D#DBDN$	(~D%R	0OPQ) + 	𝑃	D$RD�D%DN$	N�	0D#DBDN$	(~D%R	0OPQ)	|	0D#DBDN$	($N	0OPQ). 𝑃0D#DBDN$	($N	0OPQ) 
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𝑃	D$RD�D%DN$	N�	0D#DBDN$	(~D%R	0OPQ)	|	0D#DBDN$	($N	0OPQ) = 	
𝑃0D#DBDN$	($N	0OPQ) − 𝑃0D#DBDN$	(~D%R	0OPQ)

𝑃0D#DBDN$	($N	0OPQ)
 

𝑃B%CBDB = 1 −	
𝑃0D#DBDN$

𝑃0D#DBDN$	($N	0OPQ)
 

𝑃0D#DBDN$ = (1 − 𝑃B%CBDB)𝑃0D#DBDN$	($N	0OPQ) 

In the presence of drug, cell division and inhibition of cell division (stasis) could be described by the 

following reactions, respectively: 

𝑐𝑒𝑙𝑙
+GH-HIHJ.	x⎯⎯⎯⎯⎯z2𝑐𝑒𝑙𝑙𝑠 

𝑐𝑒𝑙𝑙
+I/SIHIx⎯⎯⎯z 𝑐𝑒𝑙𝑙 

, where the rate constants are as follow: 

𝑘B%CBDB = 𝑃B%CBDB𝑘0D#DBDN$	($N	0OPQ) 

𝑘0D#DBDN$ = (1 − 𝑃B%CBDB)𝑘0D#DBDN$	($N	0OPQ) 

The model assumes that the processes of drug-induced cell death and inhibition of cell division are 

independent of each other. 

At the population level, Poisson processes of drug-induced phenotypic events in a tumor cell 

population were simulated using the Gillespie algorithm. Briefly, the Gillespie algorithm determines the 

time to the next reaction event in the cell population based on an exponential distribution that 

statistically characterizes the Poisson processes. The algorithm then stochastically determines whether 

the event is death or division based on probabilities that are proportional to the rates of these two 

processes (kdeath and kdivision). If the chosen event is division, then with probability Pstasis that division 

event is rejected. 

 

Validation of non-stationary Poisson models for live cell microscopy data 

To test whether a simplified model of non-stationary Poisson process may explain the distribution of 
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drug-induced death and division events in time-lapse microscopy data, we used maximum likelihood 

estimation to fit two non-stationary Poisson models, one to the single-cell death data and one to the 

single-cell division data. The rate function k(t) of the non-stationary Poisson models used for data fitting 

was assumed to be a piece-wise function in time, where for each 12 h interval the rate was given by a 

single parameter. Hence, to capture 120 h of data, we set the rate function for each Poisson process with 

10 parameters. The log-likelihood function for fitting a non-stationary Poisson model is given as 

follows: 

𝑙(𝜃) =�log{𝑘(𝑡�;
$

��m

𝜃)} − � 𝑘(𝜏;
�

�
𝜃)𝑑𝜏 

, where q  is a vector of the 10 parameters to be estimated from the data, n is the number of data-points, 

ti is the time of the ith event and T is the end time of the experiment. The log-likelihood function was 

then maximized using the constrained optimization function ‘fmincon()’ in MATLAB. Using the fit 

parameters, we then simulated drug responses for 30 times and the normalized mean counts of 

phenotypic events were compared to that of the same data used for parameter estimation. 

 

Simulations of combined drug responses with variable modes of drug interaction 

For combined drug response simulations, we modified the Gillespie algorithm as follows. After 

determining the time of the next event, the algorithm stochastically determines whether that event is a 

death event induced by drug A, a death event induced by drug B, or a division event based on 

probabilities proportional to their rates of occurrence. In cases where the two drugs confer statistically 

independent cell killing, the probabilities of the next event being drug A-induced death and drug B-

induced death are respectively proportional to their single drug-induced rates of death, i.e. kdeath(A) and 

kdeath(B), whereas the probability of the next event being a division event is proportional to the inherent 

division rate of the cell, kdivision (no drug). If the next event is division, then with a probability of Pstasis(A+B) 
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that division event is rejected. For independent cytostatic interactions, Pstasis(A+B) is set to PIstasis(A+B) as 

defined in Equation 11. In cases where drug combinations are not independent, Pstasis(A+B) and Pdeath(A+B) 

will be calculated as PIstasis(A+B) and PIdeath(A+B) divided by CIdeath and CIstasis to simulate different modes 

of drug interaction, respectively. For the purpose of comparison, we also evaluated Bliss combination 

index while replacing probabilistic metrics with fa quantities measured for each drug condition 

individually and in combination. 

 

Simulations of heterogeneous drug response in the presence of drug-tolerant subpopulations  

We simulated drug treatment scenarios where the initial cell population consisted of heterogeneous 

subpopulations, in which a small fraction of cells was substantially less sensitive to treatment relative to 

the majority of the cell population. Stochastic arrival of death and inhibition of division events were 

modeled using Gillespie algorithm as described above, while considering two subpopulations: a larger 

sensitive (S) subpopulation and a small drug-tolerant or resistant (R) subpopulation. We initialized 

simulations with 300 cells, a small fraction of which (w, varied from 0%-5%) had a more resistant 

phenotype, i.e. a lower death rate constant and a higher probability of stasis than that of the sensitive 

population, in the presence of drug. We modeled such resistant phenotype by defining the level of 

resistance (r ³ 1, varied from 1-16) as the fold-change in the rates of death and probability of stasis 

relative to the sensitive population. We used same fold-changes for death and cytostasis rates. In 

particular, parameters used for the sensitive population are: kSdivision (no drug) = 0.035 hr-1, kSdeath (drug) = 0.03 

hr-1, PSstasis (drug) = 0.8. Parameters for the drug-tolerant subpopulation are kRdivision (no drug) = 0.02 hr-1, 

kRdeath (drug) = kSdeath (drug) / r, PRstasis (drug) = PSstasis (drug) / r. We assumed that phenotypic responses of both 

subpopulations are independent of each other and that daughter cells within the same subpopulation 

inherit the exact same probabilities of phenotypic events as their mother cells. The responses (i.e. 
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number of live cells, death and division events) of the two subpopulations were summed together to 

show the overall response of the entire cell population. To compare quantitatively the sensitivity of 

different metrics in capturing the differences in drug effect in the presence of phenotypic heterogeneity, 

we systematically varied the initial fraction of drug-tolerant subpopulation (w) and its level of resistance 

(r) as input parameters in simulations. For each simulation, overall drug effect using different metrics 

(fraction affected or phenotype rate constants) were calculated. To evaluate the sensitivity of each metric 

to the presence of drug-tolerant subpopulations, we defined and calculated “resistance enrichment ratio” 

as the ratio of these metrics between two treatment scenarios, one in the presence of a heterogeneous 

population (varying w > 0 and r > 1) and one in the absence of heterogeneity (w = 0 and r = 1). The 

smaller the resistance enrichment ratio becomes, the more significant decrease in drug effect is captured 

by a given metric in the presence of drug-tolerant cells. 

 

Hierarchical clustering 

Unsupervised hierarchical clustering of combination index (CI) values estimated from the application of 

Bliss independence to probabilistic phenotype rate constants measured for 24 h time intervals of drug 

treatments was carried out using MATLAB 2018b and the Euclidean distance as the metric. 

 

Statistical analysis 

All data with error bars were presented as mean ± standard error of the mean (SEM) using indicated 

numbers of replicates.  

 

Acknowledgments 

We thank members of the Fallahi-Sichani laboratory and Wendy Thomas for help and discussion. This 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted October 8, 2019. ; https://doi.org/10.1101/797225doi: bioRxiv preprint 

https://doi.org/10.1101/797225
http://creativecommons.org/licenses/by-nc-nd/4.0/


 29 

work was supported by awards from the Elsa Pardee Foundation and V Foundation for Cancer Research 

V2017-011, Department of Defense PRCRP Career Development Award W81XWH1810427, NIH 

grants R00-CA194163 and R35-GM133404 (to MFS), P30-CA046592 (University of Michigan Rogel 

Cancer Center), Rackham International Student Fellowship (to NCL), and NCI Training Grant award 

T32-CA009676 (to MK). 

 

Author Contributions 

NCL and MFS designed the project, performed the experiments, analyzed the results, and wrote the 

manuscript. NCL developed computational models and performed computational and statistical analysis. 

MK and MM assisted with experiments. DV assisted with data analysis. MFS supervised the research. 

All authors reviewed the manuscript. 

 

Figure Legends 

Figure 1. Probabilistic description of drug-induced phenotypic events. (A) Schematic representation 

of phenotypic effects of drug action in a cell population. Drug effect is described as probabilistic events, 

involving induction of cell death and inhibition of cell division, at a single-cell level. Cytotoxic effect of 

a drug on a given cell is described by the probability with which it induces cell death per unit of time 

(Pdeath). The cytostatic effect of drug on a given cell is described by a conditional probability (Pstasis) 

with which it prevents the cell from dividing given that the same cell would have divided in the absence 

of drug with a probability of Pdivision (no drug). (B) Dose-dependent changes in phenotype rate constants 

(kdeath and kstasis) in simulation of drug effect in a population of cells. (C) Model outputs showing 

variations in the fraction of cells affected (fa) at t = 96 h corresponding to phenotype rate constant values 

shown in (B). fa may be calculated in three different ways based on bulk response metrics such as 
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relative viability and net growth rate inhibition (GR and DIP) following normalization to an untreated 

control. (D) Simulation results comparing fa quantities at t = 96 h with probabilistic measures of drug 

action, Pdeath quantified per unit of time (h) and conditional probability Pstasis, and the overall probability 

with which a drug induces cell death or inhibits cell division (Pdeath È stasis) across a variety of conditions, 

representing drugs with different levels of cytotoxic and cytostatic effect. Each data-point represents the 

mean of 30 stochastic simulations. Cells grow from an initial number of Nlive (t = 0) = 1000 and at a rate 

of kdivision (no drug) = 0.025 h-1. 

 

Figure 2. Probabilistic rate constants capture time-dependent heterogeneities in phenotypic 

responses. (A) Schematic representation of drug response in a heterogeneous cell population. Prior to 

drug-treatment, cells consist of a dominantly drug-sensitive population plus a small fraction (w £ 5%) of 

drug-tolerant subpopulation which is r times more drug-resistant than the majority of cells. Upon drug 

treatment, the drug-tolerant subpopulation is gradually enriched over time. (B-C) Analysis of our ability 

to distinguish the presence of drug-tolerant subpopulation based on variations in resistance enrichment 

ratio for different drug response metrics with time, w (B) and r (C).  We defined and calculated 

resistance enrichment ratio for each of the fa metrics (described based on viability, GR and DIP) or for 

phenotype rate constants (kdeath and kstasis) by normalizing each metric measured for a heterogeneous 

population to that in a homogeneous population (i.e. w = 0 or r = 0) at different times of treatment. 

Smaller resistance enrichment ratios represent greater ability to distinguish heterogeneous drug-tolerant 

subpopulations. Data shown are mean values from 50 simulations. 

 

Figure 3. Dynamic analysis of heterogeneous drug response using estimates of probabilistic 

phenotype rate constants from time-lapse live cell microscopy. (A-B) Dynamics of (A) COLO858 
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and (B) MMACSF cell responses to BRAF inhibitor Vemurafenib across 6 doses (0-3.2 µM). Time- and 

dose-dependent changes in live cell count and estimates of kdeath, kdivision and kstasis for time intervals of Dt 

= 12 h are shown. Experimental data for Vemurafenib concentrations of 0 and 0.032 µM are shown until 

48 h, that is when cells reached confluency under these conditions. Data are shown as mean ± SEM 

across four replicates. (C) Single-cell profiles of COLO858 response to Vemurafenib depicted based on 

manual tracking of individual cells exposed to different concentrations of Vemurafenib as described in 

(A). Each cell track is presented horizontally along time axis. Division events are marked as red circles. 

Transition from white to black represents a cell death event. Times at which cells spend out of field of 

view are shown in light green. (D) Single-cell profiles of COLO858 response to Vemurafenib simulated 

based on Poisson processes using rate parameters estimated from COLO858 experimental data along 12 

h time intervals. (E) Comparison of normalized distributions of division and death events along 12 h 

time intervals between experiments performed in COLO858 cells and the simulated responses for the 

same conditions. Experimental data-points represent pooled data from all four replicates. Simulated 

data-points represent mean ± SEM across 30 simulations. 

 

Figure 4. Probabilistic phenotype metrics, but not fa based metrics, reveal statistical independence 

in drug combination efficacies. (A) Simulation results shown for the effect of two independent and 

purely cytostatic drugs, A and B, with identical dose-effect profiles used individually and in 

combination. Dose-effect profiles of drugs A and B are shown as Pdeath and Pstasis, quantified per unit of 

time (h). Normalized changes in relative viability and growth rate (GR) inhibition are reported for each 

condition at 48 h and the predicted combination effects are shown for scenarios where either the 

probabilistic metric Pdeath and Pstasis or fa quantities (based on viability and GR) where used in the 

evaluation of Bliss independence. (B) Bliss combination index values calculated (at t = 48 h) using 
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different drug response metrics, fa (viability), fa (GR) and Pstasis, in simulations of combined effects of 

two independent and identical drugs with variable cytostatic effects represented by variations in Psatsis. 

The rate of cell division in the absence of drug was simulated as kdivision (no drug) = 0.035 h-1. (C) 

Simulation results quantifying Bliss combination index values (at t = 48 h) calculated using fa response 

metrics, fa (viability) and fa (GR), in comparison with probabilistic combination index values (CIdeath and 

CIstatsis). Each data-point represents the mean of 10 simulations for a drug combination condition with a 

given set of probabilistic drug interaction condition quantified as CIdeath and CIstasis. Conditions where 

CIdeath = CIstasis are highlighted in yellow. Representative simulations were performed using an initial 

live cell number of Nlive (t = 0) = 2000, kdivision (no drugl) = 0.035 h-1, kdeath (drug A) = kdeath (drug B) = 0.01 h-1, 

Pstasis (drug A) = Pstasis (drug A) = 0.2. 

 

Figure 5. Probabilistic phenotype metrics uncover target-specific differences in drug combination 

efficacies and their interactions. (A) Unsupervised clustering of Bliss combination index values 

(CIdeath and CIstasis) calculated using probabilistic metrics kdeath and kstasis in COLO858 and MMACSF 

cells between 48-120 h of exposure to various drugs in sequential combination with Vemurafenib and 

Trametinib. Cells were treated initially for 24 h with DMSO control or one of the epigenetic-modifying 

compounds or cell cycle inhibitors (3rd compound) at the following concentrations: Fimepinostat (0.02 

µM), Givinostat (0.2 µM), Birabresib (0.5 µM), I-BET762 (1 µM), SP2509 (1 µM), ORY-1001 (1 µM), 

JIB-04 (0.2 µM), CPI-455 (5 µM), AZ6102 (1 µM), NVP-TNKS656 (1 µM), Palbociclib (1 µM), and 

Abemaciclib (1 µM). Nominal targets of compounds are highlighted. After 24 h, Vemurafenib at 0.3 µM 

plus Trametinib at 0.03 µM, or DMSO control were added to each treatment condition. Combination 

index data-points represent mean values across 2-3 replicates. NaN data-points represent conditions 

where the effect of drug combination or that of the independence model are within measurement error, 
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making the ratio (combination index) unreliable. (B) Estimated dynamics of changes in live cell count, 

kdeath, kstasis and kdivision measured from time-lapse live cell microscopy data for COLO858 and MMACSF 

cell responses to the combination of Vemurafenib (0.32 µM) and Trametinib (0.032 µM), BET 

bromodomain inhibitor I-BET762 (1 µM), their triple combination, or vehicle (DMSO) control. (C) 

Estimated dynamics of changes in live cell count, kdeath, kstasis and kdivision measured from time-lapse live 

cell microscopy data for MMACSF cell responses to the combination of Vemurafenib (0.32 µM) and 

Trametinib (0.032 µM), CDK4/6 inhibitors Palbociclib (1 µM) and Abemaciclib (1 µM), their triple 

combination, or vehicle (DMSO) control. kdivision (no drug) used for the estimation of kstasis for each cell line 

was estimated using cell division data averaged for the first 24 h in cells treated with DMSO only. In 

conditions where confluency was achieved, data-points were replaced with the last available data-point 

(dotted line). Data-points represent mean ± SEM across 2 or 3 replicates. 

 

Supplementary Figure Legends 

Figure S1. Overview of the time-lapse image analysis pipeline to quantify occurrence of single-cell 

phenotypic events from time-lapse live cell microscopy data. The automated image analysis pipeline 

involves four steps: (1) Each background (BG) subtracted H2B image was segmented in CellProfiler for 

nucleus identification. For each nucleus object, a variety of features (e.g. mean signal intensities across 

multiple channels, area and shape) were measured. (2) To classify the phenotypes of interest (i.e. live or 

dead cells, Gemininhigh or Gemininlow cells) in each image, classification models were trained in 

CellProfiler Analyst based on feature measurements of the user-annotated training sets. (3) Based on 

phenotype classifications of individual cells for each image output from CellProfiler, corresponding 

synthetic images were generated in MATLAB for each phenotype of interest. Synthetic images 

contained synthetic pixels at locations of Gemininhigh or dead cells. To facilitate tracking of individual 
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cells, relative intensities of the synthetic pixels for each phenotype were scaled with the mean intensity 

of the signal associated with that phenotype. For example, intensities of death synthetic pixels were 

scaled with the mean H2B signal intensities of individual cells, whereas intensities of the Gemininhigh 

synthetic pixels were scaled with the mean Geminin signal intensities. (4) Synthetic pixels for each 

phenotype were tracked separately in TrackMate. Since Geminin level drops at the M phase, a division 

event is marked when the Geminin track ends. The beginning of a death track is also marked as a death 

event. 

 

Figure S2. Probabilistic rate constants of phenotypic events measured using automated tracking is 

consistent with the rate constants acquired from manual single-cell tracking across different cell 

lines and drug conditions. (A-B) Probabilistic rate constants of death (kdeath) and division events 

(kdivision) measured in (A) COLO858 and (B) MMACSF cells treated with Vemurafenib at the indicated 

doses, using automated tracking analysis pipeline (top row) versus manual tracking (bottom row) on the 

same set of time-lapse images. For each condition, the automated tracking estimates at each timepoint 

are the mean values across four replicated wells. Error bars represent SEM. The rate constants calculated 

from manual tracking data are based on individually tracked cells pooled from four replicated wells, 

including about 150-220 cells per condition. 

 

Figure S3. Dynamic responses of COLO858 cells to epigenetic-modifying compounds and cell 

cycle inhibitors in sequential combination with Vemurafenib plus Trametinib. Estimated dynamics 

of changes in live cell count, kdeath, kstasis and kdivision measured from time-lapse live cell microscopy data 

for COLO858 cell responses to the combination of Vemurafenib (0.32 µM) and Trametinib (0.032 µM), 

a 3rd compound (including epigenetic-modifying compounds or cell cycle inhibitors), their triple 
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combination, or vehicle (DMSO) control. Cells were treated initially for 24 h with DMSO control or one 

of the epigenetic-modifying compounds or cell cycle inhibitors (3rd compound) at the following 

concentrations: Fimepinostat (0.02 µM), Givinostat (0.2 µM), Birabresib (0.5 µM), I-BET762 (1 µM), 

SP2509 (1 µM), ORY-1001 (1 µM), JIB-04 (0.2 µM), CPI-455 (5 µM), AZ6102 (1 µM), NVP-

TNKS656 (1 µM), Palbociclib (1 µM), and Abemaciclib (1 µM). After 24 h, Vemurafenib at 0.3 µM 

plus Trametinib at 0.03 µM, or DMSO control were added to each treatment condition. kdivision (no drug) 

used for the estimation of kstasis is estimated using cell division data averaged for the first 24 h in cells 

treated with DMSO only. In conditions where confluency was achieved, data-points were replaced with 

the last available data-point (dotted line). Data-points represent mean ± SEM across 2 or 3 replicates.  

 

Figure S4. Dynamic responses of MMACSF cells to epigenetic-modifying compounds and cell 

cycle inhibitors in sequential combination with Vemurafenib plus Trametinib. Estimated dynamics 

of changes in live cell count, kdeath, kstasis and kdivision measured from time-lapse live cell microscopy data 

for MMACSF cell responses to the combination of Vemurafenib (0.32 µM) and Trametinib (0.032 µM), 

a 3rd compound (including epigenetic-modifying compounds or cell cycle inhibitors), their triple 

combination, or vehicle (DMSO) control. Cells were treated initially for 24 h with DMSO control or one 

of the epigenetic-modifying compounds or cell cycle inhibitors (3rd compound) at the following 

concentrations: Fimepinostat (0.02 µM), Givinostat (0.2 µM), Birabresib (0.5 µM), I-BET762 (1 µM), 

SP2509 (1 µM), ORY-1001 (1 µM), JIB-04 (0.2 µM), CPI-455 (5 µM), AZ6102 (1 µM), NVP-

TNKS656 (1 µM), Palbociclib (1 µM), and Abemaciclib (1 µM). After 24 h, Vemurafenib at 0.3 µM 

plus Trametinib at 0.03 µM, or DMSO control were added to each treatment condition. kdivision (no drug) 

used for the estimation of kstasis is estimated using cell division data averaged for the first 24 h in cells 

treated with DMSO only. In conditions where confluency was achieved, data-points were replaced with 
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the last available data-point (dotted line). Data-points represent mean ± SEM across 2 or 3 replicates.  
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