1	TITLE:
2	Genomic Polymorphisms in Toxin-Antitoxin Systems and Identification of Novel Phylo-
3	SNPs and Polymorphisms Associated with Drug Resistance/Susceptibility in Clinical Isolates
4	of Mycobacterium tuberculosis from Mumbai, India
5	
6	
7	RUNNING TITLE:
8	Genomic Polymorphisms in Toxin-Antitoxin Systems of M. tb
9	
10	
11	AUTHORS:
12	Kayzad Nilgiriwala*, Vidushi Chitalia, Sanchi Shah and Akshata Papewar
13	
14	
15	AFFILIATION:
16	The Foundation for Medical Research, 84-A, R. G. Thadani Marg, Worli,
17	Mumbai 400 018
18	
19	*CORRESPONDENCE TO:
20	Dr. Kayzad Soli Nilgiriwala
21	The Foundation for Medical Research (FMR)
22	84-A, R. G. Thadani Marg, Worli, Mumbai 400 018
23	Tel: 91 22 24934989 / 24938601
24	Fax: 91 22 24932876
25	E-mail: fmr@fmrindia.org Website: www.fmrindia.org
26	
	Toxin-Antitoxin Manuscript Page 1

27 ABSTRACT

28 Toxin-antitoxin (TA) modules are one of the prominent determinants that triggers a persistent 29 state aiding Mycobacterium tuberculosis evasion to host generated stresses. The 79 30 characterized and putative TA systems described in *M. tuberculosis* are dominated by the 31 VapBC, MazEF, HigAB, RelBE and ParDE TA families, largely involved in persistence and 32 cell arrest. Hence, there is a need to maintain and conserve the TA loci in the chromosome of 33 the pathogen. It is essential to study the genomic differences of the TA systems in clinical 34 isolates along with its association to drug susceptibility patterns and lineage. In the current 35 study, the TA loci and their promoter sequences were analysed from the whole genome 36 sequence data of 74 clinical isolates. Mykrobe Predictor was used for lineage identification 37 and drug resistance predictions in the clinical isolates. Polymorphisms associated with 79.8% 38 (63/79) TA systems were observed across 72 clinical isolates. Among the TA systems, the 39 isolates had a varying number of polymorphisms localised primarily in the toxin genes 40 (58.7%), antitoxin genes (40.7%) and chaperones (0.6%), due to Single Nucleotide 41 Polymorphism (SNP) resulting in transition (67.3%), transversion or frameshift mutations. 42 Our analysis suggests the presence of novel Phylo-SNPs by establishing high confidence 43 association of specific lineages to polymorphisms in the TA systems. Notably, association of 44 polymorphisms in Rv1838c-1839c (VapBC13), Rv3358-3357 (YefM/YoeB) and Rv0240-45 0239 (VapBC24) to Delhi/Central Asia lineage. The polymorphic loci of the 3 TA systems is 46 localised in the antitoxin gene of the Delhi/Central Asia strains, with a resultant silent 47 mutation. The assessment of correlation between TA polymorphisms and the drug resistance 48 profile revealed correlation of SNPs in VapBC35 with drug resistant *M. tuberculosis* strains 49 and SNPs in VapBC24, VapBC13 and YefM/YoeB to drug sensitive strains.

51 **1. INTRODUCTION**

52 Tuberculosis (TB), a disease caused by *Mycobacterium tuberculosis*, with an annual estimate 53 of 10.4 million new cases globally, imposes a major burden of mortality and morbidity on the 54 human population [1]. The long duration of treatment and a large reservoir of people with 55 latent infection are major obstacles in controlling spread of the disease. Furthermore, 56 multidrug resistance is a deterrent for effective treatment of TB. Besides acquired drug 57 resistance, *M. tuberculosis* exhibits modified virulence, transmissibility and pathogenicity 58 [2]. The organism may employ endogenous mechanisms of stress evasion due to persistence 59 of the bacilli in the infected individual. The 'persister' state is a dormant state wherein the 60 bacterial cells are recalcitrant to the unfavourable conditions. The persistent cells revert back 61 to its proliferative growth on removal of the environmental stress factor such as nutrient 62 starvation or antibiotic presence. The persister cells are therefore not antibiotic resistant 63 mutants, but are highly antibiotic tolerant cells [3]. An important determinant of persistence 64 is the presence of multiple toxin-antitoxin (TA) systems [4].

65 The TA systems are ubiquitous in prokaryotes; and typically consist of a stable 66 protein toxin and a relatively unstable protein or non-coding RNA antitoxin against the 67 cognate toxin protein neutralizing the toxin. On the basis of the nature of the antitoxin and its 68 mode of interaction, toxin-antitoxin systems have been classified into five types [5]. The TA 69 systems in numerous organisms are associated to post-segregational killing of daughter cells 70 devoid of plasmid in plasmid encoded TA systems; however, chromosomally encoded TA 71 systems as in case of *M. tuberculosis*, the role of TA system seems to be central in bacterial 72 persistence [6]. *M. tuberculosis* has the highest number of TA systems than any other known 73 bacteria (79 characterized and putative TA systems). The involvement of TA systems in 74 persistence is proposed to be linked to increased pathogenesis. A majority of the TA systems in *M. tuberculosis* belong to class II type that includes VapBC, MazEF, HigAB, RelBE and
ParDE families of TA systems [6].

The present study analyzes the differences in the genomic structure of the TA systems of clinical isolates in comparison to H₃₇Rv and correlate the polymorphisms in TA system to the drug resistance pattern and strain lineage.

80

81 2. MATERIALS AND METHODS

82 2.1. *M. tuberculosis* strains

A total of seventy-four clinical isolates of *M. tuberculosis* from TB patients (49 new, 12
follow-ups and 13 re-treatment cases) were used in the study [7]. Along with the clinical
isolates, standard strain H₃₇Rv (ATCC 27294) was also processed in triplicate.

86

87 2.2. Genomic DNA extraction, whole genome sequencing and analysis

88 Genomic DNA was isolated from the clinical strains of M. tuberculosis using FastPrep24 89 lysis method (MP Biomedicals, California, USA) as per standard protocol [7]. The extracted 90 DNA was quantified using Qubit (Life Technologies, Carlsbad, California, USA). The DNA 91 from the samples was processed using MiSeq Reagent Kit V2 in a MiSeq sequencer (Illumina 92 Inc., San Diego, California, USA) as per manufacturer's protocol producing 151 base-pair 93 paired end reads. The sequencing data can be accessed online (NCBI, SRA Accession ID: 94 SRP101835). Sequencing reads were assembled using M. tuberculosis H₃₇Rv reference 95 genome (GenBank version ID: NC 000962.3) using Geneious software (v10.1.3) [8], with 96 default parameters. To diminish the possibility of assembly errors and resultant false SNPs, 97 chimeric and low-quality reads were discarded. The sequences were aligned, visualized and 98 analysed for toxin-antitoxin systems along with the associated SNPs, insertions and deletions 99 which were determined with minimum coverage of 10x, Q-score of ≥ 20 and variant
100 frequency > 90%.

101	The TA gene loci were identified from Tuberculist database (v 2.6) and as reported by Sala et
102	al [6]. Regions of 100 bp upstream for each of the 79 distinct TA gene modules was selected
103	as the promoter sequence and analysed for polymorphisms. The polymorphisms in the TA
104	gene modules and promoters were extracted using R (v 3.4.2). The table (Table 1) describes
105	the putative or characterized TA system considered for the study. The lineage identification
106	and drug susceptibility pattern were predicted using Mykrobe Predictor (v 0.4.2) [9, 10].
107	

108 2.3. Statistical analysis

109 The association of the polymorphisms in the TA systems to a particular drug resistance-based 110 category was analysed by paired *t*-test with significance established at P values ≤ 0.01 using 111 MS Excel (2010).

112

113 **3. RESULTS**

114 **3.1.** Polymorphisms in the TA genes and promoters

115 The polymorphisms within the toxin-antitoxin modules and the promoter regions were 116 examined for 79 known and putative TA systems using H₃₇Rv as a reference. Polymorphisms 117 were detected in 80% (63/79) TA systems. The polymorphisms were primarily observed at 118 up to 2 loci in a majority of the TA systems; however, few TA systems had polymorphisms at 119 more than 2 loci. A maximum of 12 loci polymorphisms were observed in Rv0960-0959A 120 (VapBC9), followed by 8 loci polymorphisms in Rv0059-0060 and Rv0836c-0837c. Overall, 121 a comparatively higher number of polymorphic loci were localised in the toxin genes (58.7%) 122 as compared to the antitoxin genes (40.7%). A single isolate exhibited polymorphism in the 123 gene encoding the chaperone.

Single nucleotide polymorphism (SNP) reflecting transition mutation was found in 67.3% of the polymorphic loci. The second major type of polymorphism demonstrated transversion effect; while substitution, insertion and deletion were associated with a limited number of loci. Non-synonymous substitutions were observed in about 66% of the polymorphic sites in the TA genes; other polymorphisms resulted in either truncation or frameshift mutations. Truncation was indicated in the antitoxin genes of TA systems, Rv0059-0060 and Rv1495-1494 (MazEF4).

Of the 74 isolates analysed, 97.3% (72/74) isolates had at least one polymorphism in one of the TA systems. About 95% of the isolates exhibited a SNP R21R in RelBE2 TA system followed by Rv0919-0918 F141F (94.6%), VapBC47 S46L (94.6%) and VapBC22 A56V (90.5%) with a polymorphism at a particular locus which maybe annotated as a hotspot. In case of the promoters, 28 isolates exhibited polymorphism in the VapBC18 promoter sequence. Details of the number and type of polymorphisms, and the resultant change in the codon are summarised in Tables 2 and 3.

138

139 **3.2.** Polymorphisms in TA systems and drug susceptibility pattern

140 On the basis of the drug susceptibility data obtained using *Mykrobe Predictor*, the isolates 141 were classified into Drug sensitive (DS) and Drug Resistant (DR) strains including multidrug 142 resistant TB (MDR, resistant to isoniazid and rifampicin), pre-extensively drug resistant TB 143 (pre-XDR, resistant to quinolones or any of the second line injectable in addition to isoniazid 144 and rifampicin) and extensively drug resistant TB (XDR, resistant to quinolone and second 145 line injectable along with isoniazid and rifampicin). The analysis for the presence of TA 146 system polymorphisms in the genes of the strains with different categories using paired t-test 147 revealed significant correlation between DS and DR strains detailed in Table 4. No

- 148 significant difference was found within the DS and DR strains with respect to polymorphisms
- 149 in the promoter sequences of the TA systems.
- 150

151 **3.3.** Polymorphisms in TA systems and strain lineages

152 A total of 27 isolates (36.5%) belonged to Beijing/East Asia lineage, followed by 25 (33.8%) 153 Delhi/Central Asia, 17 (23%) European/American and 5 (6.8%) East Africa/Indian Ocean 154 lineage. On analysing the presence of polymorphisms in various TA systems across the 155 lineages, it was noted that specific polymorphisms in the TA systems were common in all the 156 lineages; while others were specific to certain lineages. Polymorphisms in Rv0919-0918, 157 Rv2829c-2830c (VapBC22), Rv2866-2865 (RelBE2) and Rv3408-3407 (VapBC47) were 158 observed across all isolates irrespective of their lineage. The polymorphisms found 159 exclusively or having significant association to specific lineages are presented in Table 5. 160 With respect to the promoter sequences, polymorphisms in Rv2546-2545 (VapBC18) at a 161 single locus was found to be associated to Beijing/East Asia lineage with 88.88% (n=24) 162 prevalence rate. However, presence of additional polymorphisms at 3 other loci in the same 163 sequence was found in one isolate which belonged to the East Africa/Indian Ocean lineage.

164

Another interesting aspect in TA systems was polymorphism in the overlapping region between the toxin and the antitoxin genes. The overlapping region is found in 55/79 TA systems with regions varying from 1 bp to 17 bp. However, polymorphisms in the overlapping region were observed in 2 TA systems namely - Rv1838c-1839c (VapBC13) and Rv0595c-0596c (VapBC4), resulting in 2 different protein effects. In case of VapBC13, a substitution in the toxin VapC13 leading to a change in valine to methionine was observed; while in the antitoxin gene *vapB13*, no effect on the protein was observed. Similarly, in

172 Rv0595c-0596c (VapBC4), a substitution of valine with methionine in the toxin VapC4 and
173 truncation in the *vapB4* antitoxin gene were observed.

174

175 **4. DISCUSSION**

176 The persistence is principally mediated by the toxin-antitoxin systems in the bacteria [11]. 177 The TA systems play a prominent role in development of persister cells rather than drug 178 resistant cells [12]. There is limited correlation between the polymorphism in TA systems and 179 drug susceptibility. A significant association was observed in 4/79 TA systems. Paired t-test 180 revealed significant association of the presence of polymorphisms within Rv1962c-1963c 181 (VapBC35) with respect to DR strains. An earlier study has shown altered expression pattern 182 of VapBC35 TA module on exposure to antibiotics; this may be correlated to the 183 polymorphisms associated with the DR strains [13]. Also, presence of polymorphisms in 184 Rv0240-0239 (VapBC24), Rv1838c-1839c (VapBC13) and Rv3358-3357 (YefM/YoeB) are

significantly associated with the DS strains of *M. tuberculosis*.

186 Polymorphisms resulting in substitution mutations observed within the overlapping regions 187 of Rv1838c-1839c (VapBC13) and Rv0595c-0596c (VapBC4) resulted in a change from 188 valine to methionine (GTG to ATG). Based on codon usage in *M. tuberculosis*, the codon 189 change of GTG to ATG would likely result in higher translation rates of the toxins VapB13 190 and VapB3 [14]. Association of polymorphisms in the TA systems with the strain lineages 191 was observed in case of the TA systems. In a novel finding in the present study, we showed 192 association of polymorphism in Rv1838c-1839c (VapBC13), Rv3358-3357 (YefM/YoeB) 193 and Rv0240-0239 (VapBC24) to Delhi Central Asia strains. The unique polymorphisms 194 related to each of the three TA systems were observed exclusively in 100% (25/25) of the 195 Delhi Central Asia strains. The polymorphic loci of all the 3 TA systems is localised in the 196 antitoxin gene, with resultant silent (synonymous) mutations. Interestingly, polymorphisms in 197 these TA systems are significantly associated with drug sensitive strains. Also, a unique SNP 198 in Rv1102c-1103c (MazEF3) was observed in all the Beijing and Delhi Central Asia strains. 199 A previous study has linked the SNPs in Toxin-Antitoxin-Chaperon (TAC) Rv1955-1956-200 1957 system with Beijing strains [15]. In the present study, 77% (21/27) Beijing strains 201 exhibited polymorphism in the TAC system. With respect to the promoter sequences, 202 polymorphism in Rv2546-2545 (VapBC18) at a single locus associated Beijing/East Asia 203 lineage with a high (88.9%; 24/27) prevalence rate. Therefore, SNPs in TA systems may 204 serve as targets in identification of the lineage of *M. tuberculosis* as reported by earlier 205 studies [2, 16]. 206 An interesting aspect in TA systems, is polymorphism in the overlapping region between the 207 toxin and the antitoxin genes. The overlapping region is found in 55/79 TA systems with 208 regions varying from 1 bp to 17 bp. However, polymorphisms in the overlapping region was

observed only in 2 TA systems namely - Rv1838c-1839c (VapBC13) and Rv0595c-0596c
(VapBC4) resulting in 2 different protein effects. A future perspective is to analyze the effect
of SNP on the stability of the toxin and antitoxin protein molecules, and to determine the
promoter strength for the variants using various bioinformatics tools. Experimental analyses
of the effect of the polymorphisms in the expression of the toxin and antitoxin molecules will
provide a better perspective on the precise effect of the polymorphisms.

Artificial activation of the TA systems in general have been reviewed earlier in the direction of discovering toxin activators or peptide disruptors of toxin-antitoxin for their possible application in antibacterial strategy [17, 18]. The TA systems in *M. tb* have been reviewed for the multiple toxin-antitoxin systems for their mechanisms and potential role in physiology and virulence [6]. There is a dearth of studies towards testing the TA system(s) in *M. tb* as a potential therapeutic tool, due to the risk of transformation into persister bacteria. With the increase in the incidence of drug resistance and with limited tools to deal with such resistant

- strains, it may be worth looking at the TA systems to seek a solution. Such studies will be
- 223 beneficial in selection of TA systems for potential application in therapeutics.
- 224

225 DECLARATION OF INTERESTS

- 226 The authors declare no conflict of interest.
- 227

228 ETHICS STATEMENT

- 229 Ethical clearance is not required for this study.
- 230

231 ACKNOWLEDGMENTS

- 232 The authors would like to thank Dr. Nerges Mistry, The Foundation for Medical Research
- 233 (FMR) and Dr. Dhananjaya Saranath, Consultant, FMR, for critical reading of the
- 234 manuscript.
- 235

236 FUNDING

- 237 The study was supported by the Foundation for Medical Research.
- 238

239	REFERENCES
240	1. World Health Organization. Global Tuberculosis Report: WHO Report 2016. Geneva:
241	World Health Organization; 2016.
242	2. Zaychikova MV, Zakharevich NV, Sagaidak MO, Bogolubova NA, Smirnova TG,
243	Andreevskaya SN, et al. Mycobacterium tuberculosis type II toxin-antitoxin systems: genetic
244	polymorphisms and functional properties and the possibility of their use for genotyping. PloS
245	one. 2015;10(12):e0143682.
246	3. Keren I, Minami S, Rubin E, Lewis K. Characterization and transcriptome analysis of
247	Mycobacterium tuberculosis persisters. MBio. 2011;2(3):e00100-11.
248	4. Unterholzner SJ, Poppenberger B, Rozhon W. Toxin-antitoxin systems: biology,
249	identification, and application. Mobile genetic elements. 2013;3(5):e26219.
250	5. Fernández-García L, Blasco L, Lopez M, Bou G, García-Contreras R, Wood T, et al.
251	Toxin-antitoxin systems in clinical pathogens. Toxins. 2016;8(7):227.
252	6. Sala A, Bordes P, Genevaux P. Multiple toxin-antitoxin systems in Mycobacterium
253	tuberculosis. Toxins. 2014;6(3):1002-20.
254	7. Chatterjee A, Nilgiriwala K, Saranath D, Rodrigues C, Mistry N. Whole genome
255	sequencing of clinical strains of Mycobacterium tuberculosis from Mumbai, India: A
256	potential tool for determining drug-resistance and strain lineage. Tuberculosis (Edinb).
257	2017;107:63-72. doi: 10.1016/j.tube.2017.08.002. PubMed PMID: 29050774.
258	8. Kearse M, Moir R, Wilson A, Stones-Havas S, Cheung M, Sturrock S, et al. Geneious
259	Basic: an integrated and extendable desktop software platform for the organization and
260	analysis of sequence data. Bioinformatics. 2012;28(12):1647-9.
261	9. Bradley P, Gordon NC, Walker TM, Dunn L, Heys S, Huang B, et al. Rapid
262	antibiotic-resistance predictions from genome sequence data for Staphylococcus aureus and
263	Mycobacterium tuberculosis. Nature communications. 2015;6:10063.

- 264 10. Stucki D, Malla B, Hostettler S, Huna T, Feldmann J, Yeboah-Manu D, et al. Two
- 265 new rapid SNP-typing methods for classifying Mycobacterium tuberculosis complex into the
- 266 main phylogenetic lineages. PloS one. 2012;7(7):e41253.
- 267 11. Page R, Peti W. Toxin-antitoxin systems in bacterial growth arrest and persistence.
- 268 Nature chemical biology. 2016;12(4):208-14.
- 269 12. Torrey HL, Keren I, Via LE, Lee JS, Lewis K. High Persister Mutants in
- 270 Mycobacterium tuberculosis. PLoS ONE. 2016;11(5):e0155127. doi:
- 271 10.1371/journal.pone.0155127. PubMed PMID: PMC4866775.
- 272 13. Gupta A, Venkataraman B, Vasudevan M, Bankar KG. Co-expression network
- analysis of toxin-antitoxin loci in Mycobacterium tuberculosis reveals key modulators of
- cellular stress. Scientific Reports. 2017;7(1):5868.
- 14. DeJesus MA, Sacchettini JC, Ioerger TR. Reannotation of translational start sites in
 the genome of Mycobacterium tuberculosis. Tuberculosis. 2013;93(1):18-25.
- 277 15. Xiao T, Zhao L, Liu H, Li M, Zhao X, Wan K. Polymorphisms of toxin-antitoxin-
- 278 chaperone system of Mycobacterium tuberculosis complex in China. Chinese Journal of
- 279 Epidemiology. 2016;37(3):394-7. Epub 2016/03/24. doi: 10.3760/cma.j.issn.0254-
- 280 6450.2016.03.021. PubMed PMID: 27005544.
- 16. Harris D, Perdigão J, Viveiros M, Portugal I, Drobniewski F, Gagneux S, et al.
 PolyTB: A genomic variation map for Mycobacterium tuberculosis. Tuberculosis.
 2014;30:1e9.
- 284 17. Williams JJ, Hergenrother PJ. Artificial activation of toxin–antitoxin systems as an
 285 antibacterial strategy. Trends in microbiology. 2012;20(6):291-8.
- 18. Hayes F, Kędzierska B. Regulating toxin-antitoxin expression: Controlled detonation
 of intracellular molecular timebombs. Toxins. 2014;6(1):337-58.

288 TABLE LEGEND

289

290 Table 1 The TA systems included in the present study

291

- 292 Table 2 Polymorphisms in the TA genes
- 293
- **294** Table 3 Polymorphisms in the promoters of the TA systems

- 296 Table 4 Polymorphisms associated with DS and DR strains
- 297
- 298 Table 5 Polymorphisms associated with strain lineages

TA	TA system	TA	TA system
system ID		system ID	
1	Rv0059-0060 (DarTG)	41	Rv1962c-1963c (VapBC35)
2	Rv0065-0064A (VapBC1)	42	Rv1982c-1982A (VapBC36)
3	Rv0240-0239 (VapBC24)	43	Rv1989c-1990c
4	Rv0277c-0277A (VapBC25)	44	Rv1991c-1991A (MazEF6)
5	Rv0299-0298 (MazEF10)	45	Rv2010-2009 (VapBC15)
6	Rv0301-0300 (VapBC2)	46	Rv2019-2018
7	Rv0456A-0456B (MazEF1)	47	Rv2022c-2021c (HigBA2)
8	Rv0549c-0550c (VapBC3)	48	Rv2035-2034
9	Rv0582-0581 (VapBC26)	49	Rv2063A-2063 (MazEF7)
10	Rv0595c-0596c (VapBC4)	50	Rv2103c-2104c (VapBC37)
11	Rv0598c-0599c (VapBC27)	51	Rv2142c-2142A (ParDE2)
12	Rv0609-0608 (VapBC28)	52	Rv2231A-2231B (vapBC16)
13	Rv0617-0616A (VapBC29)	53	Rv2274c-2274A (MazEF8)
14	Rv0624-0623 (VapBC30)	54	Rv2494-2493 (VapBC38)
15	Rv0627-0626 (VapBC5)	55	Rv2527-2526 (VapBC17)
16	Rv0656c-0657c (VapBC6)	56	Rv2530c-2530A (VapBC39)
17	Rv0659c-0660c (MazEF2)	57	Rv2546-2545 (VapBC18)
18	Rv0661c-0662c (VapBC7)	58	Rv2548-2547 (VapBC19)
19	Rv0665-0664 (VapBC8)	59	Rv2549c-2550c (VapBC20)
20	Rv0749-0748 (VapBC31)	60	Rv2596-2595 (VapBC40)
21	Rv0836c-0837c*	61	Rv2602-2601A (VapBC41)
22	Rv0910-0909	62	Rv2653c-2654c
23	Rv0919-0918	63	Rv2757c-2758c (VapBC21)
24	Rv0960-0959A (VapBC9)	64	Rv2759c-2760c (VapBC42)
25	Rv1045-1044*	65	Rv2801c-2801A (MazEF9)
23	Rv1102c-1103c (MazEF3)	66	Rv2806c-2827c*
20	Rv1102e-1103e (WazEF3) Rv1114-1113 (VapBC32)	67	Rv2829c-2830c (VapBC22)
	Rv1242-1241 (VapBC32)	<u> </u>	· · · /
28	× 1 /		Rv2863-2862A (VapBC23)
29	Rv1246c-1247c (RelBE1)	<u>69</u> 70	Rv2866-2865 (RelBE2)
30	Rv1397c-1398c (VapBC10)	70	Rv2872-2871 (VapBC43)
31	Rv1495-1494 (MazEF4)	71	Rv3180c-3181c (VapBC45)
32	Rv1546-1545	72	Rv3182-3183 (HigBA3)
33	Rv1561-1560 (VapBC11)	73	Rv3189-3188
34	Rv1720c-1721c (VapBC12)	74	Rv3320c-3321c (VapBC44)
35	Rv1741-1740 (VapBC34)	75	Rv3358-3357 (YefM/YoeB)
36	Rv1838c-1839c (VapBC13)	76	Rv3384c-3385c (VapBC46)
37	Rv1942c-1943c (MazEF5)	77	Rv3408-3407 (VapBC47)
38	Rv1953-1952 (VapBC14)	78	Rv3697c-3697A (VapBC48)
39	Rv1955-1956-1957 (TAC)	79	Rv3749c-3750c (VapBC50)
40	Rv1959c-1960c (ParDE1)		

299 Table 1 The TA systems included in the present study

300	Table 2	Polymor	ohisms in	the TA genes

TA system ID	TA system	No. of Polymorp hisms	Toxin/Antitoxin gene	Polymorphism type	Codon Change	No. of isolates
1	Rv0059-0060	8	Antitoxin	SNP (transition)	ACC -> ACT	2
			Toxin	SNP (transition)	CCC -> CTC	2
			Antitoxin	SNP	GGG ->	1
				(transversion)	GCG	
			Antitoxin	Truncation	-	1
			Antitoxin	SNP (transition)	CCG -> CTG	2
			Antitoxin	SNP (transition)	GTC -> GTT	1
			Toxin	SNP (transition)	CCC -> CCT	4
			Toxin	SNP (transition)	GGG -> GAG	1
3	Rv0240-0239 (VapBC24)	1	Antitoxin	SNP (transition)	GAC -> GAT	25
4	Rv0277c-0277A (VapBC25)	5	Toxin	SNP (transition)	GAG -> GGG	2
			Toxin	SNP	GCC ->	2
				(transversion)	GCA	
			Toxin	SNP	ATC -> ATA	2
				(transversion)		
			Toxin	SNP (transition)	$GTC \rightarrow GCC$	1
			Toxin	Substitution	CTC,ATC -> CTT,CTC	1
5	Rv0299-0298	3	Antitoxin	SNP	CTG -> ATG	3
	(MazEF10)			(transversion)		
			Antitoxin	SNP (transition)	CGG -> CGA	23
			Toxin	SNP (transition)	GCG -> ACG	23
7	Rv0456A-0456B	2	Toxin	SNP	GTC -> TTC	1
	(MazEF1)			(transversion)		
			Antitoxin	SNP	$TCT \rightarrow TAT$	3
				(transversion)		
8	Rv0549c-0550c (VapBC3)	1	Toxin	SNP (transition)	GTG -> ATG	1
9	Rv0582-0581 (VapBC26)	1	Toxin	SNP (transition)	CTC -> CCC	1
10	Rv0595c-0596c (VapBC4)	2	Toxin	SNP (transition)	GTG -> ATG	2
			Antitoxin	SNP (transition)	-	2
12	Rv0609-0608 (VapBC28)	4	Antitoxin	SNP (transversion)	AGA -> AGC	1
	· • /		Toxin	SNP (transition)	GTC -> GCC	1
			Toxin	SNP	GCG ->	2
			TOXIII	(transversion)	GCC	

					CGC	
13	Rv0617-0616A (VapBC29)	2	Toxin	SNP (transition)	GTG -> GTA	1
			Toxin	SNP (transition)	CCA -> CTA	1
14	Rv0624-0623	2	Toxin	SNP	GAG ->	1
	(VapBC30)			(transversion)	GTG	
			Toxin	SNP (transition)	ACG ->	1
					ACA	
16	Rv0656c-0657c	3	Toxin	SNP (transition)	GCG ->	3
	(VapBC6)				ACG	
			Toxin	SNP	TGG -> TTG	21
				(transversion)		
			Antitoxin	SNP (transition)	ATC -> ACC	3
18	Rv0661c-0662c	1	Toxin	SNP (transition)	GCC -> GTC	2
	(VapBC7)					
20	Rv0749-0748	5	Toxin	SNP (transition)	ATG ->	5
	(VapBC31)				ACG	
			Toxin	SNP (transition)	ACG ->	1
					ACA	
			Toxin	SNP (transition)	AAC ->	1
					AGC	
			Toxin	SNP (transition)	GGT ->	1
					GGC	
			Toxin	Substitution	CTC,ATG ->	4
					CTG,GTG	
21	Rv0836c-0837c*	8	Toxin	SNP (transition)	-	56
			Toxin	SNP (transition)	TCC -> TCT	2
			Toxin	SNP (transition)	GGG ->	2
					AGG	
			Antitoxin	SNP (transition)	GCC ->	1
			<u> </u>		ACC	
			Antitoxin	SNP (transition)	GAC ->	2
			<u> </u>		GAT	
			Toxin	SNP (transition)		1
			Antitoxin	SNP	GCC -> TCC	2
			A (*/	(transversion)		4
			Antitoxin	SNP (transient)	GGC ->	4
	D0010 0000	2	A	(transversion)	GGA	4
22	Rv0910-0909	2	Antitoxin	SNP (transient)	CAT ->	4
			Toxin	(transversion)	CAG	2
			I OX1N	SNP (transition)	GTA ->	3
1 2	D ₁ 0010 0010	1	Antitania	CNID (terre aitie)	ATA	5(
23	Rv0919-0918	4	Antitoxin	SNP (transition)	AGT ->	56
			Autitatio	CNID (4	$\frac{\text{GGT}}{\text{CCC}}$	1
			Antitoxin	SNP (transition)	$\frac{\text{CCC} \rightarrow \text{CTC}}{\text{CTC} \rightarrow \text{CTC}}$	1
			Toxin	SNP (transien)	GTG -> CTG	1
			Tari	(transversion)		70
24	Rv0960-0959A	12	Toxin Antitoxin	SNP (transition) SNP (transition)	TTT -> TTC GCC ->	$\frac{70}{2}$
		1 ' 1				

	(VapBC9)				ACC	
			Antitoxin	SNP	GAA ->	2
				(transversion)	GCA	
			Toxin	SNP (transition)	CGG -> TGG	1
			Toxin	SNP (transversion)	GCG -> GGG	2
			Antitoxin	Substitution	CTC,GAG,C GC,CTC -> CGG,CGT,G GA,AGC	1
			Antitoxin	Substitution	GAG,CGC,C TC -> GGT,GGA,A GC	1
			Antitoxin	Substitution	CTC,GCC -> GCG,AGC	2
			Antitoxin	Substitution	AAG -> GCT	2
			Antitoxin	Substitution	ACG,TCG - > ACA,CCG	2
			Antitoxin	Substitution	GTG,TCC -> AGA,AGC	2
			Antitoxin	Substitution	GCG -> TGG	2
			Antitoxin	Substitution	GTT,GCT -> CCA,CCT	2
25	Rv1045-1044*	2	Antitoxin	SNP (transition)	CAG -> CGG	2
			Toxin	SNP (transversion)	AAG -> CAG	1
26	Rv1102c-1103c (MazEF3)	1	Toxin	SNP (transition)	ACC -> ATC	56
27	Rv1114-1113 (VapBC32)	1	Toxin	SNP (transition)	TCG -> TTG	2
30	Rv1397c-1398c (VapBC10)	2	Toxin	SNP (transition)	CGG -> TGG	3
			Toxin	SNP (transition)	GAC -> GGC	3
31	Rv1495-1494 (MazEF4)	2	Antitoxin	SNP (transversion)	-	2
	· · · · · · · · · · · · · · · · · · ·		Antitoxin	SNP (transition)	GCC -> GTC	1
32	Rv1546-1545	1	Toxin	SNP (transition)	CTG -> TTG	3
84	Rv1720c-1721c (VapBC12)	1	Toxin	SNP (transition)		4
35	Rv1741-1740 (VapBC34)	1	Antitoxin	SNP (transition)	ACC ->GCC	2
36	Rv1838c-1839c (VapBC13)	2	Toxin	SNP (transition)	GTG -> ATG	25

			Antitoxin	()	CGG -> CGA	25
38	Rv1953-1952 (VapBC14)	1	Toxin	SNP (transition)	GGG -> AGG	1
39	Rv1955-1956-1957	5	Toxin		GAC ->	4
	(TAC)			(transversion)	GAG	
			Toxin	SNP	TTC -> GTC	1
				(transversion)		
			Antitoxin	SNP (transition)	CAC -> CAT	21
			Antitoxin	SNP	GCA ->	3
				(transversion)	TCA	
			Chaperon	SNP (transition)	GAC ->	1
			-		AAC	
41	Rv1962c-1963c	4	Toxin	Insertion	-	1
	(VapBC35)			(tandem repeat)		
			Toxin	SNP (transition)	GCG ->	4
					ACG	
			Antitoxin	SNP (transition)	CGG ->	2
					CGA	
			Antitoxin	SNP (transition)	AAG ->	1
					AAA	
42	Rv1982c-1982A	2	Toxin	SNP	CTT -> CAT	1
	(VapBC36)			(transversion)		
			Toxin	SNP (transition)	GGC ->	2
					GGT	
43	Rv1989c-1990c	1	Toxin	SNP (transition)	GCG ->	1
					GTG	
44	Rv1991c-1991A	1	Toxin	SNP (transition)	GGC ->	3
	(MazEF6)				AGC	
45	Rv2010-2009	1	Toxin	SNP (transition)	CGG ->	1
	(VapBC15)				CGA	
47	Rv2022c-2021c	6	Toxin	SNP (transition)	GCA ->	23
	(HigBA2)				GCG	
			Antitoxin	SNP (transition)	GAC ->	1
					AAC	
			Antitoxin	SNP (transition)	GTG ->	2
					GCG	
			Antitoxin	SNP (transition)	ACC ->	1
					GCC	
			Antitoxin	SNP (transition)	GTG ->	2
				· · · ·	GTA	
			Antitoxin	SNP (transition)	CGT -> CGC	1
48	Rv2035-2034	1	Toxin	SNP (transition)	CTA -> TTA	2
49	Rv2063A-2063	1	Toxin	SNP	CGC -> CCC	4
	(MazEF7)			(transversion)		
50	Rv2103c-2104c	2	Toxin	SNP (transition)	GCC -> GTC	2
	(VapBC37)		Toxin	· · · · · · · · · · · · · · · · · · ·	ACA ->	16
	· • /			(/	GCA	
51	Rv2142c-2142A	1	Toxin		GAC ->	1

	(ParDE2)				GAT	
53	Rv2274c-2274A (MazEF8)	2	Toxin	SNP (transition)	GCA -> GTA	1
			Toxin	SNP (transversion)	GGT -> GTT	10
54	Rv2494-2493 (VapBC38)	3	Toxin	SNP (transition)	GTG -> GCG	17
			Toxin	SNP (transversion)	CGG -> CCG	2
			Toxin	SNP (transversion)	GTC -> CTC	1
55	Rv2527-2526	2	Antitoxin	Deletion	_	13
00	(VapBC17)	2	Toxin	SNP (transition)		3
56	Rv2530c-2530A (VapBC39)	1	Antitoxin	SNP (transition)		2
57	Rv2546-2545	3	Toxin	SNP (transition)	TTG -> CTG	1
	(VapBC18)	5	Toxin	SNP (transition)		1
	("upbero)		I UAIII		AAA	1
			Toxin	SNP (transition)		1
			TOAIII	Sivi (dansidon)	AAA	1
58	Rv2548-2547	2	Toxin	SNP (transition)	CTG -> CTA	3
50	(VapBC19)	2	Toxin	SNP (transition)		1
60	Rv2596-2595	3	Antitoxin	SNP (transition)	$CTG \rightarrow CTA$	4
00	(VapBC40)	5	Toxin	SNP (transition)	GCG ->	1
	(vapbe+0)		TOXIII		GTG	1
			Toxin	SNP (transition)	TGC -> CGC	54
62	Rv2653c-2654c	1	Antitoxin	SNP (transition)		1
<u>63</u>	Rv2757c-2758c	2	Toxin	SNP	$TCG \rightarrow TCT$	2
05	(VapBC21)	2	TOXIII	(transversion)		2
	(vapbC21)		Antitoxin	SNP (transition)	GGA ->	2
			7 mittoxiii		AGA	2
64	Rv2759c-2760c	2	Toxin	SNP	CGT ->	2
70	(VapBC42)	2	TOXIII	(transversion)	CGG	2
	(vapbC+2)		Antitoxin	SNP (transition)	GTC -> ATC	2
66	Rv2826c-2827c*	3	Toxin	SNP (transition)	$GCT \rightarrow GTT$	$\frac{2}{2}$
00	Kv2020C-2027C	5	Antitoxin	SNP (transition)	TCG -> TTG	1
			Antitoxin	SNP (transition)		18
			Antitoxin		GTA	10
67	Rv2829c-2830c	1	Antitoxin	SNP (transition)	GCG ->	67
07	(VapBC22)	1			GTG	07
68	Rv2863-2862A	1	Toxin	SNP	CTG -> CTC	2
00	(VapBC23)	1	I UAIII	(transversion)		2
69	Rv2866-2865	2	Toxin	SNP (transition)	GTG ->GCG	1
0)	(RelBE2)	4	Toxin	SNP	CGC ->	71
	(RCIDE2)		ΤΟΛΠΙ	(transversion)	CGA	/1
70	Rv2872-2871	1	Antitoxin	SNP (transition)	ACC ->	2
/0		1	AIIIIOXIII	SINF (Hallshindl)	GCC	L
71	(VapBC43)	2	Toxin	CND (transition)		`
/ 1	Rv3180c-3181c	3	Toxin	SNP (transition)	GCC -> GCT	2

	(VapBC45)		Toxin	SNP (transition)	CAG -> CGG	3
			Antitoxin	Insertion	-	1
72	Rv3182-3183	1	Toxin	SNP (transmission)	GCC ->	22
73	(HigBA3) Rv3189-3188	2	Antitoxin	(transversion) SNP (transition)	GCG AAA -> AAG	2
			Antitoxin	SNP (transition)	GGC -> AGC	1
74	Rv3320c-3321c (VapBC44)	1	Toxin	SNP (transversion)	CCC -> GCC	1
75	Rv3358-3357 (YefM/YoeB)	1	Antitoxin	SNP (transversion)	TCT -> TCG	25
76	Rv3384c-3385c (VapBC46)	3	Toxin	SNP (transition)	GCG -> ACG	23
			Antitoxin	SNP (transition)	GAC -> GAT	2
			Antitoxin	Substitution	GCT -> AAT	1
77	Rv3408-3407	3	Antitoxin	SNP (transition)	CGC -> TGC	10
	(VapBC47)		Toxin	SNP (transversion)	ACA -> CCA	1
			Toxin	SNP (transition)	TCG -> TTG	70
78	Rv3697c-3697A	2	Toxin	SNP (transition)	GTC -> GTT	2
	(VapBC48)		Antitoxin	SNP (transition)	CGC -> TGC	3

ТА	TA system	No. of unique	Types of	Codon	No. of
system		variant	polymorphisms	Change	isolates
ID		Polymorphisms			
2	Rv0065-0064A (VapBC1)	1	Substitution	GGT→ AGT	2
20	Rv0749-0748 (VapBC31)	1	None	$GGC \rightarrow GGT$	7
24	Rv0960-0959A (VapBC9)	1	Substitution	$CTG \rightarrow ATG$	1
57	Rv2546-2545 (VapBC18)	4	None	$GAC \rightarrow GAT$	1
			None	$CCC \rightarrow CCG$	1
			None	$ATT \rightarrow ATC$	25
			None	$CCG \rightarrow CCA$	1
63	Rv2757c-2758c	1	None	CGT -> CGG	2
	(VapBC21)				

302 Table 3 Polymorphisms in the promoters of the TA systems

303

TA system				
ID	TA system	Polymorphisms	Association	p value
3	Rv0240-0239	vapB24 D50D		0.0056
	(VapBC24)		DS	
36	Rv1838c-1839c	vapC13 V1M/		0.0056
	(VapBC13)	<i>vap</i> B13 R87R	DS	
41		vapC35 A109T/		
	Rv1962c-1963c	vapC35 Ins133/	DB	
	(VapBC35)	<i>vap</i> B35 R89R/	DR	0.0059
		<i>vap</i> B35 K33K		
75	Rv3358-3357	yefM S79S		
	(YefM/YoeB)		DS	0.0056

305 Table 4 Polymorphisms associated with DS and DR strains

TA system				No. of	
ID	TA system	Polymorphism	Association	isolates	
36	Rv1838c-1839c	<i>vap</i> C13 V1M +	Delhi/Central Asia	25 (100%)	
	(VapBC13)	<i>vap</i> B13 R87R	Denni Central Asia		
75	Rv3358-3357	yefM S79S	Delhi/Central Asia	25 (100%)	
	(YefM/YoeB)	yejivi 3793			
3	Rv0240-0239			25 (1000())	
	(VapBC24)	<i>vap</i> B24 D50D	Delhi/Central Asia	25 (100%)	
26	Rv1102c-1103c		Delhi/Central Asia	25 (100%)	
	(MazEF3)	mazF T65I	Beijing/East Asia	27 (100%)	

307 Table 5 Polymorphisms associated with strain lineages