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Abstract

The intertwined effects of recency and practice on memory and learned behavior have long been studied

in psychology and neuroscience. We develop a bottom-up, mechanistic theory addressing the combined

effects of recency and practice, beginning with a classical single-neuron model, then applying insights

from this model to the network level. Combining error-based and associative learning, we mathematically

derive the forgetting curve for a single neuron and its dependence on practiced repetition, showing how

highly practiced memories or behaviors can become far more resistant to being overwritten by later

learning. At the network level, error-based learning is responsible for initial gains in performance, while

associative learning gradually transfers control of the downstream population from one input pathway

to the other. We interpret the model neurobiologically by identifying the inputs as cortex and thalamus,

and the downstream population as striatum, providing a framework for understanding the neural basis

of habit formation and the automatization of behavior through practice.

Introduction

The acquisition and retention of memories and learned behaviors are complex phenomena dependent upon

many factors. Among the most important of these are recency, i.e. how recently a memory or behavior has

been acquired, and practice, i.e. how many times it has been repeated during training. The combined effects

of these variables have been studied since the dawn of experimental psychology [1]. They were later codified

by Thorndike as the Law of Recency and the Law of Exercise, respectively [2], which have since served as

some of the basic organizing principles guiding research on human and animal behavior for more than a

century.

Although, historically, studies on humans have tended to focus on memory, while animal studies to focus

on learned behaviors, more modern approaches have suggested that these processes can be understood

within a common framework [3]. In studies of memory, the effects of recency and practice can be tested

and quantified with forgetting curves, which portray the decline in recall performance over time. Studies

addressing the interplay of both effects in human memory have shown that the strength of memories, as

measured by retention duration [1, 4, 5, 6] or reaction times [7], continues to increase through practice,

even after immediate recall performance is perfect. While phenomenological theories have been proposed to

describe the process of memory formation and recall [8, 9], including the effects of practice, the mechanistic

bases underlying such theories are not well understood. In studies of learned behavior, on the other hand,

the framework within which to study and understand recency and practice is somewhat less clear. Different

studies have tended to view the effects of practice through different lenses, including the improvement of
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speed and accuracy [10], formation of habit [11, 12], and decrease in cognitive effort [13]. It is not clear

whether these are all distinct phenomena or different facets of a common underlying cause, and, if the latter,

how they might be unified by a single mechanistic theory [14, 13, 15].

From a neurobiological perspective, memories and behaviors are understood to be encoded via the mod-

ification and consolidation of synaptic strengths, or “weights” [16, 17]. Multiple possibilities exist for how

the modification of synaptic weights may occur. One possibility is that such modifications should make

use of information about errors or rewards, making changes such that future behaviors will minimize errors

or maximize rewards [18, 19]. Such learning rules have had great success in recent years as the basis for

neural-network-based approaches to artificial intelligence [20]. Alternatively, synaptic modifications might

be blind to errors and rewards, instead simply strengthening associations between neurons whenever they are

coactive, as originally proposed by Hebb [21]. It is likely that both of these types of synaptic modification,

and possibly others as well, are realized in the brain, and understanding where they are implemented and

what computational purposes they serve is an ongoing challenge for neuroscience. The overwriting of these

modifications by newer ones as new memories and behaviors are acquired provides a plausible mechanism for

the effect of recency on retention [22, 23], while the continued strengthening of such modifications through

repetition provides a possible mechanism for the effect of practice [24]. A unified theory describing the

interplay of both effects at the neural level, however, has been lacking.

In recent years, artificial neural networks have emerged as powerful tools for modeling the ways in which

circuits in the brain might learn to solve challenging tasks and implement behaviors [25]. However, such

models typically do not meaningfully address the effects of recency and practice. First, because examples

during training are typically presented to the network repeatedly and in random order, even in tasks with

inherently episodic structure [26], there is no sense in which examples are learned and remembered sequen-

tially. In addition, such models also typically fail to address the effects of practice. This is because their

training is typically based on supervised or reinforcement learning, and, in both of these cases, performance

improves during training but stops once the error or reward is optimized. Hence, such models are unable to

address a key observation about practice from experimental studies, namely that it continues to have effects

through repetition even after a behavior has been learned or a fact memorized. This simple observation

suggests that there is an additional, covert process at play during practiced repetition. This process is not

immediately obvious from behavioral observation, but has effects that can be probed later by testing recall

performance.

In this work, we develop a bottom-up, mechanistic theory of learning and memory that addresses the

combined effects of recency and practice. We begin by studying sequential learning in the perceptron,

a well-studied classical model of a single neuron implementing supervised (i.e. error-based) learning [27],

deriving a mathematical expression for the forgetting curve, which describes how old information is lost

as new information is acquired. Because the simple perceptron cannot account for the effects of practice,

however, we next extend this model to include a second input pathway consisting of synapses that are

modified with association-based learning, deriving a generalized forgetting curve that includes the effects of

both recency and practice. We go on to show that networks of such neurons are capable of performing more

challenging computational tasks, with the first pathway facilitating initial learning, and the association-based

pathway facilitating the retention of well-practiced behaviors. Finally, we connect the model to neurobiology,

interpreting the two pathways as cortical and thalamic inputs to the striatum, the major site of reward-based

learning in the vertebrate brain. We show that learning in this model corresponds to a process by which

the fast adjustment of cortical weights leads to initial gains in performance, followed by the gradual transfer

of control from cortical to subcortical inputs as the behavior is repeatedly practiced. This interpretation

provides a quantitative theory for describing the automatization of behavior and the formation of habits
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through practiced repetition.

Results

Learning and memory depend on both how recently learning took place, as well as on the amount of practice

during learning. In the following sections, we address the ways in which learning and memory are affected

by recency and practice, beginning with the simplest possible case: a single neuron trained to classify input

patterns. We then proceed to build on the insights obtained from this simple model by extending it, first

by endowing it with associative learning in order to include the effects of practice, and then by investigating

the emergent network-level phenomena in populations of such neurons. Finally, we apply the theory to a

sensorimotor circuit, showing that it can provide a mechanism for habit formation and the automatization

of learned behaviors.

The single-neuron forgetting curve describes the effect of recency

In order to develop a quantitative theory of the effects of recency at the most basic level, we began by

studying a classical model of a single neuron: the perceptron [27]. In this model, Nx input signals xi are

multiplied by synaptic weights wi and then summed. If the summed value is greater than 0, the neuron’s

output is +1, otherwise the output is -1. This is described by the equation zµ = sgn(wµ ·xµ), where µ denotes

one of P possible input patterns (Figure 1a). The goal is then for the synaptic weights w to be adjusted

so that, for each pattern µ, the output matches a target value ẑµ. Thus, the task is binary classification, in

which random input patterns (xµi ∼ N (0, 1), where N denotes the standard normal distribution) are mapped

onto random output values (ẑµ = ±1).

This learning problem can be illustrated geometrically in the Nx-dimensional space of synaptic weights,

where the weight vector wµ just before learning pattern µ is represented as a vector in this space (Figure

1b). In order for the classification to be correct, the weight vector after training should have positive overlap

with the vector ẑµxµ, which defines a classification boundary (red line in Figure 1b), with all weight vectors

on one side of this boundary leading to correct classification. This can be effected by updating the weights

to wµ + ∆wµ, where

∆wµ =

(κẑµ − hµ)xµ/Nx, uµẑµ < κ,

0, else,
(1)

where uµ = wµ · xµ is the summed input to the neuron. The first line of this equation says that, if the

classification is initially incorrect or correct but within a margin κ of the classification boundary (dashed line

in Figure 1b), then an update is made such that the new weight vector wµ + ∆wµ lies on the correct side

of the classification boundary (Figure 1b) with margin κ. The second line, on the other hand, says that, if

the classification is initially correct with a margin of at least κ, then no update needs to be made. Because

κ can be absorbed into an overall rescaling of w, we henceforth set κ = 1.

Clearly a potential problem exists whenever more than one pattern is being learned, however. After

applying (1) to ensure correct classification of pattern µ, followed by applying the same update rule for

pattern µ+1, there is no guarantee that the weight vector will still be on the correct side of the classification

boundary for pattern µ. That is, the learning of new information in this model has the potential to interfere

with and overwrite previously learned information. In the standard paradigm for learning in the perceptron,

this problem is solved by cycling many times through all of the P patterns to be learned. In one of the
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Sequential learning in a perceptron is described by a drift-
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Figure 1: The perceptron forgetting curve. (a) The perceptron architecture, in which weights w are trained such

that random input patterns xµ produce the correct classifications zµ = ẑµ. (b) The input vector xµ defines a

hyperplane in the space of weights w, and the update rule modifies the weight vector to give the correct classification

with margin κ = 1. (c) The probability of incorrect classification when testing pattern ν after learning P = 2Nx

patterns sequentially. The most recently learned patterns are on the right, with earlier patterns on the left. The solid

curve is the theoretical result; points are simulated results. Inset shows the same result for a perceptron trained with

P = 5Nx patterns.

most celebrated results in computational neuroscience, it has been shown that, in the large-N limit, a weight

vector producing correct classification of all patterns can be obtained whenever P < 2Nx [28, 29].

In this work, we instead study the case in which the patterns are learned in sequence, so that no further

training with pattern µ occurs after training with pattern µ + 1 has begun. Concretely, we first train the

perceptron by applying the update rule (1) for each of the P patterns in the sequence. We then test the

perceptron by testing the classification of each pattern using the final weight vector wP . Intuitively, we

expect that the most recently learned classifications will remain correct with high probability during testing

since the weight vector will have been updated only a small number of times after learning these patterns.

On the other hand, for classifications learned much earlier and hence overwritten by a large number of

subsequent patterns, the probability of incorrect classification should approach chance level.

In order to describe this process of training, overwriting, and testing quantitatively, we calculated the

probability of incorrect classification (or “error rate”) for each pattern during testing. The full calculation is

presented in Appendix 1. To summarize, it begins by assuming the weight vector is wν just before learning

some generic pattern ν, then applies the update rule (1) using randomly drawn xν and ẑν . For the following

P − ν steps (µ = ν + 1, . . . , P ), the updates ∆wµ will be in directions that are random with respect to

wν . Hence, the evolution of the weight vector from wν to wP can be described as a drift-diffusion process

characterized by the probability distribution p(wP |wν + ∆wν). Once the probability distribution for wP is

known, the error rate during testing is calculated by averaging zν = sgn(wP · xν) over wP , as well as over

the initial weight vector wν and the random input pattern xν .

The result of this calculation is that the error rate during testing of pattern ν is given by

p(zν 6= ẑν) = F (γ), (2)

where the form of the function F is given in Appendix 1, and γ = e−q(P−ν)/Nx , where q ' 0.798 is the

probability that a nonzero update is made according to (1) during any particular step of training. This

result defines the forgetting curve of the perceptron, which is shown in Figure 1c. (N.b. While the pattern

index ν is the independent variable in the forgetting curve, we plot the curve as a function of (P − ν)/Nx

so that earlier times appear on the left and later times on the right, and so that the curve is independent

of P , which may be arbitrarily large.) As expected, the forgetting curve in Figure 1c shows that recently
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Figure 2: Forgetting curves in the two-pathway model with each pattern trained once. (a) The two-pathway

architecture, in which fast supervised learning of the weights w is accompanied by slow Hebbian learning of the

weights v. (b) The forgetting curve for different values of the Hebbian learning rate β, with α = 1 and Nx = Ny

(dotted line shows the case with no second pathway). (c) The forgetting curve for different values of Ny/Nx, with

α = β = 1. (d) The forgetting curve for different values of the Hebbian weight decay rate α, with β = 1 and

Nx = Ny. In (b)-(d), solid lines are theoretical results; points are simulations with Nx = Ny = 1000.

learned classifications are recalled with very low error rates, while those learned far in the past are recalled

with error rates approaching chance level. We can further observe that, because the number of synapses

Nx appears only through the parameter γ, the number of patterns that can be learned with error rate

at or below any particular threshold is proportional to Nx. This means that the memory is extensive in

the number of synapses, as in the classical result described above for the perceptron with cycled training.

Finally, because the perceptron implements learning in a single step and may therefore be questionable as a

neurobiological model of learning, we show using simulations that a similar forgetting curve is obtained using

a gradient-descent learning rule, in which small updates are accumulated over many repetitions to minimize

the readout error (Supplemental Figure 1).

In the case of the classical perceptron, in which patterns are cycled through repeatedly during training, the

classification error rate would be zero for up to P = 2Nx patterns. However, no further classifications could

be learned without drastically impairing the classification performance of the already-learned patterns. This

phenomenon, known as catastrophic forgetting [30], is obviated in the sequentially trained model studied

here. As previously pointed out in theoretical studies of related models [31, 23], although sequentially

trained neurons and neural networks have a smaller overall memory capacity than models in which training

is repeated, they have the advantage that learned patterns decay smoothly over time as new patterns are

learned, even as P/Nx →∞.

A two-pathway model describes the effects of recency and practice

In the preceding section, we derived the forgetting curve for the perceptron in order to quantitatively address

the effect of recency in learning. Because learning of any given pattern occurs in a single step and stops once

the error is zero, however, the simple perceptron is unable to describe the effects of practice. In order to

study the effects of practice, we made the simplest possible addition to the model by including a second input

pathway in which synaptic weights are modified with associative Hebbian learning (Figure 2a). Specifically,

as originally proposed by Hebb [21], these synapses are strengthened by coactivation of their inputs and

outputs, so that the same inputs will in the future tend to produce the same outputs. This strengthening,

which is independent of errors or rewards, continues to accumulate with each repetition if an input pattern

is presented many times. Importantly, the Hebbian learning should be slow compared to the supervised

learning, so that it will not strengthen an incorrect input-output association before the supervised learning
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has taken place. Intuitively, then, this picture suggests that repeated training of a particular classification

should strengthen the association and make it more resistant to being overwritten by later learning. We

shall show below that this is indeed the case.

Concretely, we extended the perceptron model by adding a second set of inputs yµ, where the Ny inputs

yµi ∼ N (0, 1) are random and independent of the first set of Nx inputs xµi . The output is then given by

zµ = sgn(w · xµ + v · yµ), where the synaptic weights v are updated according to a Hebbian learning rule.

Specifically, if vµ is the weight vector just before training on pattern µ, then the weight vector just after

training on pattern µ is given by vµ + ∆vµ, where

∆vµ = −αnµ
Nyn̄

vµ +
√

2
βnµ
Nyn̄

ẑµyµ. (3)

The second term in this equation is a modification to the synaptic weight that is proportional to the product

of the pre- and post-synaptic activity, making this a Hebbian learning rule. Because the learning of w is

assumed to be fast relative to this Hebbian learning, the downstream activity will have attained its target

value by the time the Hebbian learning has any significant effect, allowing us to use ẑµ rather than zµ in

(3). The nµ appearing in (3) is interpreted as the number of times that the behavior µ is repeated when it

is trained, and n̄ is the average of nµ over all patterns. The first term in (3) causes the weights to decrease

slightly in magnitude with each repetition of each pattern, so that they do not become arbitrarily large after

a large number of classifications have been learned. The constants α and β control how quickly the weights

decay and how strong the initial updates are, respectively. The weights w, meanwhile, are updated as before,

except that now the total summed input appearing in (1) is given by uµ = w · xµ + v · yµ.

For this two-pathway model, we derived a generalized forgetting curve using the same approach as that

used for the perceptron, describing the evolution of both weight vectors w and v as drift-diffusion processes

and computing statistical averages over weights and patterns. The generalized forgetting curve for the

two-pathway model has the form

p(zν 6= ẑν) = G
(
γ, ρ, α, β,

nν
n̄

)
, (4)

where ρ = e−α(P−ν)/Ny = γαNx/(qNy), and the function G is derived in Appendix 2. From (4), we see that

the forgetting curve now additionally depends on the Hebbian learning rate β, the ratio Ny/Nx, the Hebbian

decay rate α, and the number of repetitions nν for each pattern.

To begin, we kept nν = n̄ constant for all patterns and investigated the dependence of the forgetting curve

(4) on its other parameters. Starting with the Hebbian learning rate, we found that nonzero values of β

shifted the forgetting curve slightly downward, modestly reducing the error rate for all patterns (Figure 2b).

Whether this qualifies as a true improvement, however, depends somewhat on bookkeeping. For a fixed total

number of synapses Nx +Ny, the error rate can be reduced by allowing for Hebbian learning. However, the

error rate is reduced even more by eliminating the Hebbian synapses entirely (dashed curve in Figure 2b),

which decreases the denominator Nx + Ny by setting Ny = 0. Stated differently, if the goal is to minimize

the error rate for a fixed total number of synapses, this is accomplished most effectively by letting all of the

synapses be updated with supervised learning rather than with Hebbian learning (Figure 2c). If, on the other

hand, the goal is to minimize the error rate for a fixed number Nx of supervised synapses, then a benefit

is obtained from including additional synapses with Hebbian learning. The exception to these conclusions

occurs for small values of the Hebbian decay rate α, in which case very old memories can persist for longer

with error rates below chance level (Figure 2d). In this case, there is a benefit to adding Hebbian synapses

even if they are counted against the total Nx +Ny.

We further investigated the effects of the parameters α and β, while still holding nν constant for all

patterns, by setting a threshold pθ for the acceptable error rate, then defining the memory capacity as the
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Figure 3: Error tolerance determines the optimal forgetting rate and memory capacity. (a) Given a threshold pθ of

incorrect classification probability, the memory capacity is defined as the area above the forgetting curve and below

the threshold, normalized by pθ. (b) For each value of pθ, the memory capacity is optimized with respect to the

Hebbian forgetting rate α. (For all curves, β = 1 is fixed, Nx = Ny, and nν = n̄ for all patterns.) (c) The optimal

forgetting rate from (b) as a function of pθ. (d) The memory capacity from (b) as a function of the classification

threshold pθ. Dashed line shows the capacity with a second pathway with no learning (Ny = Nx, β = 0); Dotted line

shows the capacity with no second pathway (Ny = 0).

integrated area between the forgetting curve and this threshold value, normalized by pθ (Figure 3a). Because

the forgetting curve was found to have relatively weak dependence on β (Figure 2b), we fixed β = 1 and

considered the effects of α and of pθ on the memory capacity. For a given choice of pθ, we found the value

of α that maximized the memory capacity (Figure 3b). This led to the conclusion that, the larger the error

tolerance pθ, the smaller the forgetting rate α should be in order to maximize the memory capacity (Figure

3c). Finally, we found that the optimized memory capacity increases as the error tolerance becomes greater

(Figure 3d). Consistent with our observations from Figure 2, we found that the memory capacity, which

is normalized by the total number of synapses Nx + Ny, is improved by learning in the second pathway if

Nx + Ny is held constant (solid vs. dashed curve in Figure 3d), but is even larger if the second pathway is

left out entirely (dotted curve in Figure 3d), again indicating that adding supervised synapses is a better

strategy than adding unsupervised synapses if the goal is to optimize the forgetting curve for a fixed total

number of synapses.

This conclusion changes considerably, however, in the case where some patterns are repeated more than

others during training. In this case, repeating particular patterns multiple times consecutively during train-

ing causes those patterns to be retained much better than nonrepeated patterns. If trained with enough

repetitions, particular patterns can be recalled essentially perfectly even after ∼ (Nx +Ny) additional pat-

terns have been learned (Figure 4a). Further, as long as the number of highly practiced patterns is much

less than Nx + Ny, the error rate for the remaining patterns is not significantly increased (solid line versus

dotted line in Figure 4a). This shows that it is possible for a neuron to become an “expert” at a small

number of classifications without performing significantly worse on other classifications that have recently

been learned.

We next investigated the dependence of the error rate for a particular pattern ν∗ on the interval (the

“testing interval”) between training and testing, as well as on the number of repetitions nν∗ , for that

pattern, again assuming that all other patterns are presented only once during training. We found that the

effect of practice is to shift the forgetting curves in a roughly parallel manner (Figure 4b). This parallel

shifting of forgetting curves via practiced repetition is a well known result from experimental psychology

studies in human subjects performing memory tasks [4, 6, 5, 32, 3]. This shows that the error rate during

testing, given a fixed amount of practice, decreases a function of the recency of the practiced pattern.

Plotting the data instead as a function of the number of repetitions nν∗ for a fixed testing interval shows
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Figure 4: Repetition during training improves recall in the two-pathway model. (a) The forgetting curve (top) in a

network in which six patterns are repeated multiple times during training, while all other patterns are presented only

once (bottom). Solid curve is theoretical result (α = 1, β = 1); points are simulations with Nx = Ny = 1000; dotted

curve shows the case in which no patterns are repeated multiple times. (b) The error rate for pattern ν∗, which is

repeated nν∗ times during training, while other patterns are presented only once. (c) The error rate as a function

of nν∗ , with curves corresponding to different choices of ν∗. (d) Top: A single pattern ν∗ is trained multiple times

while all other patterns are trained once. Bottom: the number of times that pattern ν∗ must be repeated during

training in order to obtain a classification error rate below a threshold pθ during testing.

the error rate smoothly decreasing with practice (Figure 4c), again bearing similarity to results from memory

studies in humans [33]. This shows that the error rate during testing, for a fixed recency of the practiced

pattern, decreases as a function of how many times that pattern was practiced.

We next asked, if just a single pattern ν∗ is repeated multiple times while all other patterns are trained

just once, how many times must pattern ν∗ be repeated in order to obtain an error rate below a threshold

pθ during later testing of that pattern? The number of necessary repetitions was found to be a supralinear

function of the interval between the training and testing of pattern ν∗ (Figure 4d). This dependence could

potentially be (and, to our knowledge, has not already been) measured experimentally, for example in human

subjects learning paired associations (as in, e.g., Refs. [32, 3]), with certain associations presented multiple

times in succession during training, and with varying intervals between training on these repeated patterns

and testing.

Not all of the results obtained from the two-pathway model were in agreement with published results

from experiments on human memory, however. The fact that memory recall performance decays roughly

as a power law has been relatively well established experimentally [3]. However, the forgetting curves in

the two-pathway model are better described by exponential decay than by power laws (Supplemental Figure

2). In addition, experimental study of spaced-repetition effects in human memory has shown that there

exists an optimal interval between presentations during training [34], such that the interval between the

two training presentations should match that between the second presentation and the time of testing. In

the two-pathway model, however, we found that shorter training intervals always lead to better testing

performance, regardless of the testing interval (Supplemental Figure 3). Of course, it is not surprising that

a simple single-neuron model fails to capture the full range of experimental results on human memory.

Characterizing the additional mechanisms that could lead to such effects as power law memory decay and

optimal intervals for spaced repetition will be a promising direction for future study.

Thus far we have considered just a single-neuron model. We next asked whether the basic mechanism

illustrated in Figure 4—namely, the enhanced retention of learned classifications that are practiced multiple
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Figure 5: A two-pathway neural network trained to perform a reaching task exhibits enhanced retention of highly

practiced behaviors. (a) In this task, the agent, given one of four cues, is trained to perform a center-out reach over

10 timesteps to a particular target. (b) The neural network trained to perform the task receives a target-specific

cue and the current position as input. The network contains one pathway learned with supervised learning (SL) and

another with Hebbian learning (HL). The output is a two-dimensional vector determining the movement velocity in

the next timestep. (c) The loss (mean squared error) on each of the four targets in sequence during training, with

a longer training period for the first target, and with Hebbian learning either active (SL+HL) or inactive (SL only).

(d) The loss during testing on each of the four targets, after training is complete. The green bar shows a control

network in which targets were randomly interleaved during training.

times—could also be implemented in a neural network performing a more challenging task. We thus extended

the two-pathway architecture to a neural network with one hidden layer and trained the network to perform

a center-out reaching task (Figure 5a,b). In this task, the velocity of a cursor moving in two dimensions is

controlled by a neural network, which receives as input the current location of the cursor together with a

context input indicating which target to move toward. In each trial, the network was trained with supervised

learning to follow a smooth, minimal-jerk trajectory to the specified target, with each trial having a duration

of 10 timesteps. As in the single-neuron two-pathway model, the inputs were divided into two pathways,

with supervised learning in one pathway and Hebbian learning in the other.

The network was first trained in a block of trials to reach to target 1, then in another block to reach

to target 2, and so on, with more trials in the first block than in the later blocks (Figure 5c). When the

network was tested after training was complete, we found that, when Hebbian learning was activated, the

performance for target 1 was better than that for target 2 (p = 0.011), despite the fact that the training

for target 2 had occurred more recently (Figure 5d). This did not occur in the network without Hebbian

learning, where performance for target 1 was worse than that for other targets despite the larger amount

of practice. This result shows that, in this trained network model as in the single-neuron case, associative

Hebbian learning enables practiced behaviors to be better retained, protecting them from being overwritten

as new behaviors are learned.

Input alignment and control transfer in the two-pathway model

In the previous section, we showed that, due to the reinforcement of the input-to-output mapping that comes

about by slow Hebbian learning in the single-neuron model, input from the second pathway can contribute to

driving the readout unit to its target state. We next asked how the learning process in the two-pathway model

9

.CC-BY-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted October 8, 2019. ; https://doi.org/10.1101/797548doi: bioRxiv preprint 

https://doi.org/10.1101/797548
http://creativecommons.org/licenses/by-nd/4.0/


Inputs to the downstream population become aligned 
through repetition

mµ hµzµ = �( + )

a

b

c

mµ hµ

Repetition

mµ + hµ

d

Figure 6: Inputs to the downstream population become aligned through repetition. (a) A downstream population

receives input from two pathways, where the first input m is trained with fast supervised learning, while the second

input h is modified with slow Hebbian learning. (b) Through repetition, the second input becomes increasingly

aligned with the first, while its projection along the readout direction ẑ grows. (c) Top: The normalized overlap

between m and h for one particular pattern that is repeated nν times. Bottom: The ratio of the projection of

each input component along the readout direction (m · ẑ or h · ẑ) to the total input along the readout direction

((m + h) · ẑ). (d) Top: In a two-pathway network trained on P patterns sequentially, one pattern is repeated 10

times during training, while others are trained only once. Middle panels: The alignment for each pattern during

sequential training and testing (upper panel, where shaded region is chance alignment for randomly oriented vectors),

and the ratio of the input h along ẑ to the total input along ẑ (lower panel). Bottom: The error rate, averaged

over Nz readout units, for the trained network with either both inputs intact (black) or with one input removed

(blue and orange) (curves offset slightly for clarity). All points in (c)-(d) are simulations with α = β = 1 and

Nx = Ny = Nz = 1000.

could be described at the population level. Specifically, we defined m and h as the Nz-dimensional inputs to

the readout population from the first and second pathway, respectively (Figure 6a), where mi =
∑Nx
j=1Wijxj

and hi =
∑Ny
j=1 Vijyj , and the weight vectors w and v have been promoted to weight matrices W and V.

The activity in the readout population is then described by the Nz-dimensional vector z = sgn(m + h). In

this case, applying the updates (1) and (3) for each synapse when training on pattern µ leads to updated

input currents mµ + ∆mµ = ẑµ − hµ and hµ + ∆hµ = (1 − α/Ny)hµ +
√

2βnµẑµ/n̄ in the two pathways.

Thus, following the updates, both of the input currents obtain a component of magnitude ∼ O(1) along the

target activity ẑµ, so that they become aligned with the target activity and with each other. Further, for

the Hebbian update, this component continues to grow as the pattern is repeated nµ times in succession

(Figure 6b).

As a single input pattern is repeated more times in succession, the normalized alignment between the

inputs, defined as m · h/(|m||h|) grows, meaning that the inputs from the two pathways are driving the

downstream population in similar ways (Figure 6c, top), a process that we refer to as input alignment. In

addition, as the number of repetitions grows, the input from the second pathway along ẑ constitutes an

increasingly dominant proportion of the total input along ẑ (Figure 6c, bottom), a process that we refer to

as control transfer. Both of these processes—alignment of the two inputs and the transfer of control from
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one pathway to the other—are covert, in the sense that they occur gradually during repetition and do not

have any obvious immediate behavioral correlate, since the learning in the first pathway causes the activity

in the downstream population to attain its target value already by the first repetition.

In order to further illustrate the implications of input alignment and control transfer, we sequentially

trained a two-pathway network with a multi-neuron readout population to produce P classifications, gen-

eralizing the task from previous sections to the case Nz > 1. During training, one particular pattern was

repeated many times in succession, while all others were trained only once (Figure 6d, top). We found

that input alignment became large and positive during training and, particularly for the repeated pattern,

remained large and positive during testing after training was complete (Figure 6d, second panel). Similarly,

the ratio of the input h along ẑ from the second pathway to the total input along ẑ became large for the

repeated pattern during training and remained large during testing, illustrating the occurrence of control

transfer (Figure 6d, third panel). Finally, when testing the error rate for each pattern after training was

complete, we performed “lesions” by shutting off each of the inputs during testing (Figure 6d, bottom).

In the case m = 0, we observed that the error rate increased for all patterns except for the pattern that

was repeated multiple times during training, which retained an error rate of zero. This shows that, via the

mechanisms of input alignment and control transfer for the highly practiced behavior, the second pathway

was able to compensate for the loss of the first pathway, driving the downstream population to produce the

correct activity even in the absence of the first input. In the case h = 0, on the other hand, the repeated

pattern was not recalled accurately, illustrating that the input from the second pathway is necessary to

protect practiced patterns from being overwritten.

In summary, when an input pathway with fast supervised learning and another with slow associative

learning drive a downstream population in tandem, the mechanisms of input alignment and control transfer

enable the second input to gradually overtake the role of the first in driving the downstream activity. For

highly practiced patterns, this enables the second input to produce the correct downstream activity even if

the first input is removed completely. As we show in Supplemental Figure 4, these mechanisms also occur in

the case where reinforcement learning is used rather than supervised learning in the first pathway, but not in

the case where both pathways feature reward-driven learning, illustrating that the combination of Hebbian

learning together with error- or reward-based learning is necessary in order for input alignment and control

transfer to take place.

Implementation in the sensorimotor brain circuit: Automatization of behavior

through practice

In the previous sections we showed that, for a single-layer neural network in which two input pathways

operate with different types of learning, fast error-driven learning in the first pathway causes the downstream

neurons to produce the correct output, while slow associative learning in the second pathway reinforces the

association between the input to the network and the correct output. After many repetitions, this scheme

enables the second input pathway to assume control for driving the downstream layer.

Could this framework for learning be realized in the brain? As a neurobiological interpretation, we propose

identifying the readout population in the two-pathway model as sensorimotor striatum, a primary site of

reward-based learning in the vertebrate brain. The descending pathway through sensorimotor striatum

plays a major role in both the learning and execution of learned motor behaviors [35, 36, 37] as well as habit

formation and the automatization of highly practiced behaviors [38, 39]. These processes are facilitated by

dopamine-dependent plasticity at input synapses to striatum, where this plasticity plays a role in reinforcing

behaviors that have previously led to reward [40].
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Figure 7: Two-pathway implementation in the sensorimotor brain circuit and predicted responses to perturbations.

(a) In the proposed neurobiological implementation of the two-pathway model, motor cortex and thalamus provide

inputs to the sensorimotor region of striatum. (b) The population-averaged error rate in the readout population in

the presence of noise perturbations to m (noise amplitude σm, green lines) or upon removing the input m (dotted

line) for a single pattern repeated n times during training. (c) The normalized alignment between the population

activity z with m = 0 and with h = 0 (blue line), and the normalized alignment between z with m = 0 and with

m 6= 0. In (b) and (c), points are from simulations in a network with α = β = 1 and Nx = Ny = Nz = 1000.

The dominant cortical input to sensorimotor striatum is sensorimotor cortex [41, 42], and a great deal

of research has implicated this pathway in motor learning [43, 44]. We propose to identify this as the first

input in the two-pathway model, where this input is characterized by fast, error-driven learning. As the

second input, which is characterized by slow, associative learning, we identify the parafasicular nucleus of

the thalamus, which is the dominant subcortical input to sensorimotor striatum [45]. Although this pathway

has received less attention than the corticostriatal pathway, it has also been shown to be important for the

production of learned behaviors [46].

Taken together, these identifications suggest a picture in which information about state, including sensory

feedback, cues, and context, is represented in cortex and thalamus, and in which plasticity at the synapses

descending from these structures to striatum allows for state information to be mapped onto actions that

will tend to minimize errors and maximize rewards (Figure 7a). The mechanisms and roles of learning in

the two pathways are distinct, with fast changes to corticostriatal synapses serving to learn and produce the

correct behavior, and slower changes to thalamostriatal synapses serving to associate a given state with a

behavioral output, with this association becoming stronger and more persistent the more that it is practiced.

As described in the previous section, the transfer of control from corticostriatal to thalamostriatal inputs

would suggest that motor cortex should be necessary for the initial learning of a behavior, but not for

the production of the behavior after a sufficient amount of practice. Evidence for this has recently been

found in studies using lesions [47] or inactivations [48] to test the involvement of motor cortex in rodents

performing skilled forelimb tasks. In addition, studies of learned motor behaviors in humans have suggested

that motor cortex becomes less involved in driving behaviors with practice [49, 50], consistent with the

proposed sensorimotor implementation of the two-pathway model.

With the neurobiological implementation proposed above, the two-pathway model also leads to a number

of testable experimental predictions. First and most obviously, the theory predicts that cortico- vs. thala-

mostriatal synapses should be modified by different types of plasticity (fast and reward-driven vs. slow and
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associative, respectively). Because both synapses are glutamatergic, they have typically not been studied

separately or even distinguished in past experiments [51]. Future experiments could test for differences

between the types of modifications at these synapses, either in vivo or in slice preparations.

Second, because motor cortex plays less of a role in driving striatum as behaviors become highly practiced,

lesioning, inactivating, or randomly perturbing activity in motor cortex during behavior should have a

decreasingly small effect on the behavior the more that it has been trained (Figure 7b). This effect has in

fact already been observed in very recent experiments using optogenetic inactivation throughout learning of

a targeted forelimb task [48].

Third, online optogenetic inactivation could be used so that only motor cortex or only thalamus drives

striatum in a given trial. The theory would predict that the striatal activities observed in these two cases

would be correlated due to input alignment, with the degree of correlation increasing with the amount of

training (Figure 7c, blue line). Similarly, striatal population activity should be similar before and after

cortical lesion or inactivation in a trained animal, with the degree of similarity increasing with the amount

of training (Figure 7c, red line).

Fourth, lesions of motor cortex and of thalamus are predicted to produce different results, especially

if a substantial amount of time elapses between training and testing of a behavior, allowing for potential

overwriting. As shown in the previous section and as observed in experiments [47], highly practiced behaviors

are robust to motor cortical lesion due to input alignment and control transfer. They are not expected to

be robust to thalamic lesions, however (Figure 6d, bottom panel). Comparing the effects of motor cortical

and thalamic lesions in trained animals could thus provide a test of input alignment and control transfer in

the two-pathway model.

Finally, if thalamostriatal plasticity is blocked during training of a behavior, then the model predicts

that the behavior will still be learned due to the fact that motor cortex is responsible for driving initial

learning. Since input alignment cannot occur in the absence of thalamostriatal plasticity, however, the

learned behavior will no longer be robust to cortical lesion or inactivation. This would be a challenging

experiment to perform due to the fact that both thalamo- and corticostriatal synapses are glutamatergic,

making selective manipulation difficult. If it could be done, however, it would provide strong evidence for

our proposed neurobiological implementation of the two-pathway model.

Discussion

In this work, we have developed a bottom-up, mechanistic theory addressing the combined effects of recency

and practice in memory and learned behavior. In particular, this theory proposes two simultaneously oc-

curring learning processes: a fast process that minimizes errors, paired with a slow process that strengthens

associations. From a computational perspective, this work provides a quantitative theoretical framework

in which the effects of recency and practice can be analyzed for the simplest possible case, namely a sin-

gle neuron. From a cognitive perspective, including both of these processes provides an explanation for

why repeated practice can continue to have effects even after a memory or behavior has been learned to

be performed with zero error. From a neurobiological perspective, this work provides a framework for un-

derstanding the automatization of learned behavior and the formation of habits, and proposes how these

processes might be implemented in neural circuits.

In the Introduction, we described the multiple effects of practice: improved performance, habit formation,

and decrease in cognitive effort [15]. The two-pathway model, and its proposed implementation in the brain’s

sensorimotor circuitry in particular, provides a unified account of these effects. First, fast learning in the

first pathway provides a mechanism for improved performance, with the greatest gains coming in the early
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stages of practice. Second, the two-pathway model provides a mechanistic description of habit formation,

in which behaviors are produced consistently in response to particular stimuli, even when the behavior

is no longer rewarded. Going further, it may even provide a description of addiction and compulsion, in

which behaviors persist even if they lead to negative outcomes. Finally, the two-pathway model provides

a mechanistic description of behavioral automatization, with the amount of conscious effort devoted to a

behavior decreasing with increasing amounts of practice, as control of the behavior is transferred from a

cortical to a subcortical circuit.

In Supplemental Figures 2 and 3 we showed that our simple model does not reproduce all of the relevant

results from human memory studies. One successful approach for obtaining power law memory decay has

been to allow individual synapses to have multiple states, with a different timescale associated with each state

[52, 23]. Incorporating associative learning and the effects of practice into such multi-state models could be

a promising direction for future work on the mechanistic modeling of learning and memory. More broadly,

future work in this area will need to identify the network-level mechanisms that emerge in circuits with large

numbers of neurons and multiple layers and might underlie phenomena such as power-law forgetting curves

and the effects of spaced repetition. In addition, memory performance can also be affected by higher-level

cognitive strategies such as chunking or creating narratives to link information meaningfully [3]. Clearly,

such complex strategies cannot be addressed by a single-neuron model, though it might be hoped that such

a model could be a building block for addressing such phenomena in the future.

Other promising directions for future theoretical work include modeling neurons with continuous output

values or sign-constrained synapses, as well as scaling the two-pathway idea up to multilayer architectures.

Future work should also extend the model from supervised learning to reinforcement learning, which is less

theoretically tractable but more plausible as a model of reward-based learning at corticostriatal synapses [40].

Reinforcement learning is also more plausible from a behavioral perspective, since it allows for performance

to improve gradually by trial and error, leading to a richer description of learned motor behaviors than the

single-step perceptron learning rule can provide. While a first step in this direction was taken in Supplemental

Figure 4, which shows that the mechanisms of input alignment and control transfer are realized in a circuit

trained with reinforcement learning, extending the theoretical framework underlying the two-pathway model

to the case of reinforcement learning is an important direction for future work. Finally, in our implementation

interpretation, we have focused on sensorimotor striatum and its inputs. The thalamocortico-basal ganglia

circuits that are involved in higher-level cognitive functions and that exist in parallel with the sensorimotor

circuit could provide alternative interpretations of the model that we have presented [38, 53]. More broadly,

this two-pathway motif might be found in other brain areas and could in part explain the large degree of

apparent redundancy found throughout the neural circuitry of the brain.
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Materials and Methods

Parameters and equations for the simulations in Figures 1, 2, 3, 4, 6, and 7 are provided in the Main Text.

For the simulations in Figure 5, n = 21 networks were trained for each of the conditions shown (SL only,

SL+HL, and SL shuffled), where each network had Nx = Ny = 50, Nz = 10, and a 2-dimensional linear

readout. The readout controlled the velocity of a cursor, which began at position r = 0 and moved to one

of the four target positions: (1,0), (0,1), (-1,0), (0,-1). The target velocity in each trial was given by

û(t) = ri
[
30(t/T )2 − 60(t/T )3 + 30(t/T )4

]
,

where t is the timestep, T = 10 is the number of timesteps in each trial, and ri denotes one of the four

target positions. This bell-shaped velocity profile describes a minimum-jerk trajectory from the initial to

the target point. Both input layer populations receive fixed random projections of the network readout from

the previous timestep, as well as a tonic random input associated with one of the four targets.

During training, the mean squared difference between the network output and û(t) was minimized by

gradient descent on the weights W (labelled SL in Figure 5b), with learning rate ηSL = 0.001 (found by

grid search). The weights V (labelled HL in Figure 5b) were either not trained (in the cases SL only and

SL shuffled) or trained with the Hebbian update rule ∆Vij = ηHL[−Vij + zi(t)yj(t)], where ηHL = 10−6

was found by grid search. The networks were sequentially trained on each target, as shown in Figure 5c.

The bars in Figure 5d show the median test loss over the trained networks for each target, with error bars

denoting the 25th and 75th percentiles.
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Appendix 1: The perceptron forgetting curve

As described in the main text, we wish to train a perceptron having Nx = N inputs and subject to the

update rule (1) to map P random input patterns onto randomly chosen binary outputs. The question that

we seek to answer is, after P patterns have been trained using the update rule in (1), what will be the

probability of misclassification if we then test the output produced by a particular pattern ν without any

further learning? Clearly, the most recently learned patterns are likely to produce correct outputs, while

those learned long in the past are more likely to produce errors due to accumulated changes in the weights

w during subsequent learning. In general, the probability of an error when testing on pattern ν is, using the

Heaviside step function Θ(·), given by

p(zν 6= 1) =

∫
dxνp(xν)

∫
dwνp(wν)

∫
dwP

[
p(wP |wν + [1−wν · xν ]xν/N)Θ(−wP · xν)Θ(1−wν · xν)

+ p(wP |wν)Θ(−wP · xν)Θ(wν · xν − 1)

]
.

(5)

In this equation, we have, without loss of generality, redefined xµ → ẑµxµ, so that the target output becomes

zµ = 1 for every pattern. We have also set the classification margin κ = 1, which amounts to a choice for

scaling the overall magnitude |w|. In this equation, the weight vector just before training pattern ν is

assumed to come from a distribution p(wν), which we shall derive below. The first line in (5) counts the

cases in which the classification using this weight vector is initially incorrect or correct with margin less

than κ = 1 (so 1−wν · x > 0) and in which, after making the initial update wν → wν + ∆wν , the weight

vector evolves through P − ν successive updates into the final weight vector wP , which leads to incorrect

classification when pattern ν is again tested (−wP · xν > 0). Similarly, the second line of (5) counts the

cases in which the classification is initially correct with a sufficiently large margin and in which, after making

successive weight updates, the final weight vector wP again leads to incorrect classification.

At this stage, the probability distributions p(wν) and p(wP |wν) in (5) are unknown. For the latter

distribution, however, we can track its evolution step by step using the update rule (1). Because x is a

random variable, we first seek to find the distribution p(∆w|w) by averaging over x. In fact, it will be

sufficient just to calculate the first two moments of this distribution. Let x = x‖ + x⊥, where x‖ is the

component along w, and the index ν has been dropped for simplicity. In this case the weight update (1), in

the case where an update occurs, can be written as

∆w =
1

N
(1− |w|x‖)(x‖w/|w|+ x⊥). (6)

Using (6), in the case where a weight update occurs, the first moment is given by

µi(w) ≡ 〈∆wi〉x

=
1

N

∫
dx‖√

2π
e−(x

‖)2/2

∫
dx⊥

(2π)(N−1)/2
e−|x

⊥|2/2(1− |w|x‖)(x‖wi/|w|+ x⊥i )

= − 1

N
wi

∫
dx‖√

2π
e−(x

‖)2/2(x‖)2

= − 1

N
wi.

(7)
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Similarly, the second moment of the distribution is

Σij(w) ≡ 〈∆wi∆wj〉x − µi(w)µj(w)

=
1

N2

∫
dx‖√

2π
e−(x

‖)2/2

∫
dx⊥

(2π)(N−1)/2
e−|x

⊥|2/2(1− |w|x‖)2
(
x‖wi
|w| + x⊥i

)(
x‖wj
|w| + x⊥j

)
− µi(w)µj(w)

=
1

N2

∫
dx‖√

2π
e−(x

‖)2/2
[
1 + |w|2(x‖)2

] [
(x‖)2

wiwj
|w|2 + δij

]
− µi(w)µj(w)

=
2

N2
[g(|w|)δij + h(|w|)wiwj ]

(8)

where

g(|w|) ≡ 1 + |w|2
2

h(|w|) ≡ 2|w|2 + 1

2|w|2 .

(9)

Together, (7)-(9) describe a drift-diffusion process. If we neglect higher-order moments, then the single-step

probability distribution is given by

p(∆w|w) = qN (µ(w),Σ(w)) + (1− q)δ(∆w), (10)

where q (to be calculated below) is the probability that a weight update occurs in a given step, and N (·, ·) is

the multinormal distribution. The time evolution of the probability distribution of the weights is then given

by the Fokker-Planck equation [54]:

dp(wτ )

dτ
= −

∑
i

∂

∂wτi
[µi(w

τ )p(wτ )] +
1

2

∑
ij

∂2

∂wτi ∂w
τ
j

[Σij(w
τ )p(wτ )] , (11)

where the initial condition from (5) is either p(w) = δ(w−wν) or p(w) = δ(w−wν−∆wν), and τ ≡ q(P−ν)

is the effective time variable.

Because the coefficients in (11) depend on |wτ |, the full solution is not known in general. However, it is

straightforward to calculate the time evolution of the moments of p(wτ ) by multiplying both sides by powers

of wτ and using integration by parts [54]. Denoting the first two moments (not to be confused with the

moments of ∆w defined above) as

µ̃i(τ) ≡ 〈wi〉
Σ̃ij(τ) ≡ 〈wiwj〉 − 〈wi〉〈wj〉,

(12)

the time evolution is given by

˙̃µi = − µ̃i
N

˙̃Σij = − 2

N

(
1− h

N

)
Σ̃ij +

2h

N2
µ̃iµ̃j +

2g

N2
δij .

(13)

In the N →∞ limit, we can assume (to be checked below) that |wτ | is constant. In this case, (13) has the

solutions

µ̃i(τ) = − 1

N
wνi e

−τ/N

Σ̃ij(τ)
(N→∞)

=
2hτ

N2
e−2τ/Nwνi w

ν
j + δij

g

N

(
1− e−2τ/N

)
,

(14)
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where terms ∼ O(1/N2) in the second equation have been dropped in the large-N limit (while the first term

is kept because τ may be ∼ O(N)).

With (14), the solution to the Fokker-Planck equation (11) when just the first two moments are kept is

p(wP |wν) =
1

[2πg(1− γ2)/N ]N/2

× exp

(
− N

2g(1− γ2)

[
wP − γwν

]
·
[
1− 2hγ2q(P − ν)

Ng(1− γ2)
wν ⊗wν

]
·
[
wP − γwν

])
,

(15)

where “⊗” denotes the outer product (i.e. [w ⊗w]ij = wiwj), and we have defined

γ ≡ e−q(P−ν)/N . (16)

In the N →∞ limit, the anisotropic term can be ignored, giving

p(wP |wν)
(N→∞)

=
1

[2πg(1− γ2)/N ]N/2
exp

(
− N

2g(1− γ2)

[
wP − γwν

]2)
, (17)

which is the probability density evolution corresponding to an Ornstein-Uhlenbeck stochastic process [54].

After a long time, γ → 0 and p(wP |wν) from (15) approaches the steady-state distribution

p(w) ≡ 1

[2πg/N ]N/2
exp

(
−N

2g
|w|2

)
. (18)

Thus, the deterministic update rule (1) leads to a bounded steady-state weight distribution p(w) after a

large number of classifications have been learned. This differs somewhat from previous models of sequential

learning with random synaptic weight updates, such a bounded distribution as P/N → ∞ was achieved

either by requiring that the synaptic weights should be bounded [31] or that that they should decay slightly

at each step [23].

Given the steady-state distribution (18), we can assume that ŵ ≡ |w| is constant in the large-N limit and

let ĝ ≡ g(ŵ). Then, with g = ĝ, (18) can be used to calculate the variance of w, leading to the self-consistent

equation ŵ2 = ĝ, which, using the definition of g(|w|) from (9), has the solution ŵ2 = ĝ = 1. This is close

to but differs somewhat from the steady-state norm found in numerical simulations, from which ŵ ' 1.19.

The reason for this is presumably because of the decision to approximate p(∆w|w) using only the first two

moments of the distribution in (11). In general, the higher-order moments do not vanish, and these will

contribute higher-order derivative terms in the Fokker-Planck equation (12). In turn, such terms will lead

to nonvanishing higher-order moments in the distribution p(w), beyond the two that were calculated in

(12)-(14). Presumably, it is these higher-order terms which cause the discrepancy between the simulated

result and the self-consistent calculation. In the theoretical curves shown in the Results section, we use the

value of ŵ obtained from simulations. Using (18), we can also calculate the probability of making a weight

update in a given step, which is given by

q =

∫
dw

(2πŵ2/N)N/2

∫
dx

(2π)N/2
e−|x|

2/2e−N |w|
2/2ŵ2

Θ(1−w · x)

=
1

2
erfc

(
− 1√

2ŵ

) (19)

and evaluates to q ' 0.798.

With the preceding points in mind, and making use of the probability distributions (17) and (18), we

can proceed to evaluate the integrals in (5) to obtain the probability of incorrect classification when testing
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pattern ν. In order to factorize the arguments of the Heaviside step functions, we make use of the following

identity:

Θ(ρ) =

∫ ∞
0

du δ(u− ρ)

=

∫ ∞
0

du

∫ ∞
−∞

dv

2π
eiv(u−ρ).

(20)

with this trick, (5) becomes

p(zν 6= 1) = I1 + I2, (21)

where

I1 =

∫ ∞
0

du

∫ ∞
0

du′
∫ ∞
−∞

dv

2π

∫ ∞
−∞

dv′

2π
ei(uv+u

′v′)

∫
dx

(2π)N/2
e−x

2/2

×
∫

dwν

(2πĝ/N)N/2
e−N |w

ν |2/2ĝ
∫

dwP

[2π(1− γ2)ĝ/N ]
N/2

ei[vw
P ·x+v′(wν ·x−1)]

× exp

(
−N

[
wP − γ(wν + [1−wν · x]x/N)

]2
2ĝ(1− γ2)

) (22)

and

I2 =

∫ ∞
0

du

∫ ∞
0

du′
∫ ∞
−∞

dv

2π

∫ ∞
−∞

dv′

2π
ei(uv+u

′v′)

∫
dx

(2π)N/2
e−x

2/2

×
∫

dwν

(2πĝ/N)N/2
e−N |w

ν |2/2ĝ
∫

dwP

[2π(1− γ2)ĝ/N ]
N/2

ei[vw
P ·x+v′(1−wν ·x)]

× exp

(
−N

[
wP − γwν

]2
2ĝ(1− γ2)

) (23)

Beginning with I1, the integral over wP can be performed, which, after simplification and using x2 = N in

the N →∞ limit, leads to

I1 =

∫ ∞
0

du

∫ ∞
0

du′
∫ ∞
−∞

dv

2π

∫ ∞
−∞

dv′

2π
ei[(u+γ)v+(u′−1)v′]

∫
dx

(2π)N/2
e−x

2/2

×
∫

dwν

(2πĝ/N)N/2
exp

(
−N

2ĝ
|wν |2 + iv′wν · x− ĝ(1− γ2)

2
v2
)
.

(24)

Performing the integrals over wν and x then leads to

I1 =

∫ ∞
0

du

∫ ∞
0

du′
∫ ∞
−∞

dv

2π

∫ ∞
−∞

dv′

2π
ei[(u+γ)v+(u′−1)v′]−ĝ(1−γ2)v2/2

(
1 +

ĝv′2

N

)−N/2
(N→∞)

=

∫ ∞
0

du

∫ ∞
0

du′
∫ ∞
−∞

dv

2π

∫ ∞
−∞

dv′

2π
ei[(u+γ)v+(u′−1)v′]−ĝ(1−γ2)v2/2−ĝv′2/2.

(25)

Finally, the integrals over v and v′ can be performed exactly, then those over u and u′ can be evaluated

using the complementary error function, yielding the final result

I1 =
1

4
erfc

(
γ√

2ĝ(1− γ2)

)
erfc

(
− 1√

2ĝ

)
. (26)
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In a similar manner, the integrals in (23) can be evaluated to get

I2 =

∫ ∞
0

du

∫ ∞
0

du′
∫ ∞
−∞

dv

2π

∫ ∞
−∞

dv′

2π
ei[uv+(u′+1)v′]

∫
dx

(2π)N/2
e−x

2/2

×
∫

dwν

(2πĝ/N)N/2
exp

(
−N

2ĝ
|wν |2 + [γv − v′]wν · x− ĝ(1− γ2)

2
v2
)

=

∫ ∞
0

du

∫ ∞
0

du′
∫ ∞
−∞

dv

2π

∫ ∞
−∞

dv′

2π
ei[uv+(u′+1)v′]

[
1 +

ĝ

N
(v2 + v′2 − 2γvv′)

]−N/2
(N→∞)

=

∫ ∞
0

du

∫ ∞
0

du′
∫ ∞
−∞

dv

2π

∫ ∞
−∞

dv′

2π
exp

(
i[uv + (u′ + 1)v′]− ĝ

2
(v2 + v′2 − 2γvv′)

)
.

(27)

After performing the integrals over v, v′, and u′, then changing variables for the u integral, the final result is

I2 =
1√
8π

∫ ∞
0

dr e−r
2/2erfc

(
γr + 1/

√
ĝ√

2(1− γ2)

)
, (28)

where the final integral in this case must be performed numerically.

As a check, we can evaluate these results in their extreme limits. In the case γ = 1, which corresponds

to testing the most recently learned pattern, we have I1 ∼ I2 ∼ erfc(∞) → 0, so that there is perfect

classification for very recently learned patterns. In the opposite limit of γ = 0, which corresponds to testing

patterns learned in the distant past, we obtain I1 + I2 = 1
4 [erfc(−1/

√
ĝ) + erfc(1/

√
ĝ)] = 1

2 , which means

that very old patterns are completely overwritten and so are classified at chance level.

Appendix 2: The two-pathway forgetting curve

Let us introduce a second source of input to the downstream units, so that zµ = φ(w · xµ + v · yµ), where

xµi , y
µ
i ∼ N (0, 1). Though it is not necessary, we will assume for notational simplicity that the numbers of

units in the two input layers are the same, so that Nx = Ny = N . The weights w are again trained using

supervised learning:

∆wµ =

(κẑµ −wµ · xµ − vµ · yµ)xµ/N, (wµ · xµ + vµ · yµ)ẑµ < κ,

0, else,
(29)

The second set of weights, meanwhile, is updated using the following rule:

∆vµ = −αnµ
Nn̄

vµ +
√

2
βnµ
Nn̄

ẑµyµ. (30)

This Hebbian update rule defines an N -dimensional Ornstein-Uhlenbeck stochastic process with time-

dependent coefficients. The evolution of the probability distribution p(v,∆t) is given by the master equation:

p(v, t+ ∆t) =

∫
d∆vp(∆v|v −∆v)p(v −∆v, t), (31)

where

p(∆v|v −∆v) = N
(
−αn(t)

Nn̄
(v −∆v), 2

(
βn(t)

Nn̄

)2
)
. (32)

We can further note that, since the components of v are not coupled to one another in (30), we can, without

loss of generality, consider the evolution of just a single component vi. In this case the two sides of (31) can
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be expanded to obtain

p(vi, t) + ∆t
∂p(vi, t)

∂t
+O(∆t2) = p(vi, t)−

∂p(vi, t)

∂vi

∫
d∆vip(∆vi|vi −∆vi)∆vi

+
1

2

∂2

∂v2i
p(vi, t)

∫
d∆vip(∆vi|vi −∆vi)(∆vi)

2 +O((∆vi)
3).

(33)

Then, using (32) to obtain 〈∆vi〉 and 〈(∆vi)2〉, (33) leads to the Fokker-Planck equation, which describes

the evolution of the probability distribution p(v) as new patterns are learned:

dp(v)

dt
=
αn(t)

n̄

∑
i

∂

∂vi
[vip(v)] +

(βn(t)/n̄)2

N

∑
i

∂2p(v)

∂v2i
. (34)

In this equation, we have taken the continuous-time limit by letting ∆t = 1/N and t ≡ (µ − ν)/N , where

µ > ν, the number of repetitions to be n(t) ≡ nµ, and the initial condition to be given by the distribution

(to be calculated below) p(vν).

The Fokker-Planck equation (34) can be solved using the Fourier transform [54]

p(k) =

∫
dve−ik·vp(v). (35)

With this, (34) becomes

dp(k)

dt
= −αn(t)

n̄
k · ∇kp(k)− (βn(t)/n̄)2

N
|k|2p(k). (36)

This equation can be solved by making the following ansatz:

p(k) = exp

(
−ik ·m(t)− 1

2
k · S(t) · k)

)
, (37)

which, by substituting into (36) and requiring that the terms at each order in k vanish, leads to the following

equations for the time-dependent coefficients:

dmi

dt
= −αn(t)

n̄
mi

dSij
dt

= −2
αn(t)

n̄
Sij + 2

(βn(t)/n̄)2

N
δij .

(38)

These equations then have the solutions

mi(t) = mi(0) exp

(
−α
n̄

∫ t

0

dt′n(t′)

)
Sij(t) = 2δij

β2

Nn̄2

∫ t

0

dt′ exp

(
−2

α

n̄

∫ t

t′
dt′′n(t′′)

)
n2(t− t′)

(39)

With this, and letting t = (P − µ)/N , we can take the inverse Fourier transform of (37) to obtain the

distribution of the final weight vector given the weights at pattern ν:

p(vP |vν) =
1

(2πσ2
P /N)N/2

exp

(
− N

2σ2
P

[vP − ρvν ]2
)
, (40)

where we have identified Sij(t) = σ2
P (P, ν)δij , with

σ2
P (P, ν) ≡ 2β2

n̄2N

P∑
µ=ν

ρ2(P, µ)n2
µ, (41)
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and we have also identified mi(t) = vνi ρ(P, ν), with

ρ(P, ν) ≡ exp

(
− α

Nn̄

P∑
µ=ν

nµ

)
. (42)

In what follows below, in order to keep expressions compact, we shall write σ2
P = σ2

P (P, ν) and ρ = ρ(P, ν).

Further, though it is not strictly necessary, these expressions can be considerably simplified if we make the

simplifying assumption that the average of nµ in (42) over the last P − ν patterns is equal to its average n̄

over the full set of P patterns (or, in the case of (41), that n2µ can be replaced by n̄2). In this case, (42)

becomes ρ(P, ν) = e−α(P−ν)/N , while (41), after performing the summation, becomes σ2
P = β2(1− ρ2)/α.

Returning to the distribution (40), we can see that it begins as a δ function at vν and, as more patterns

are introduced and ρ→ 0, evolves to the following steady-state distribution:

p(v) =
1

(2πβ2/αN)N/2
e−αNv2/2β2

. (43)

This is the distribution from which vν will be drawn in order to calculate the error rate for pattern ν below.

In addition to driving a drift-diffusion process for the weights v, the updates to v also affect the evolution of

the distribution of weights w due to the appearance of v in the update rule (29). In order to account for this

change, the first two moments of the update ∆w must be reevaluated as in (7)-(8), but now averaging over

the random variable y in addition to averaging over x. Because 〈yi〉 = 0, the first moment in (7) remains

unchanged. As for the second moment, (8) generalizes to

Σij(w,v) ≡ 〈∆wi∆wj〉x,y − µi(w)µj(w)

=
1

N2

∫
dx p(x)

∫
dy p(y)(1−w · x− v · y)2xixj − µi(w)µj(w)

=
2

N2

([
g(|w|) +

|v|2
2

]
δij + h(|w|)wiwj

)
.

(44)

As before, we will assume that |w|2 and |v|2 can be replaced by their average values in the N → ∞
limit. Noting from (43) that 〈v2〉 = β2/α, we have the diffusion tensor Σij = 2[g̃δij + ĥwiwj ]/N

2, where

g̃ ≡ g(ŵ) + β2/2α, where, as before, ŵ ≡
√
〈|w|2〉 is taken from numerical simulations. From this result, we

see that the equations (17)-(18) determining the evolution of w can also be applied in the two-pathway case

by making the substitution g → g̃.

As in the previous section, our goal is to calculate the probability of incorrect classification when testing

pattern ν after training P patterns in sequence. Including the second input pathway, this quantity is given

by

p(zν 6= ẑν) =

∫
dxνp(xν)

∫
dyνp(yν)

∫
dwνp(wν)

∫
dvνp(vν)

∫
dvP p

(
vP
∣∣∣∣vν − αnν

Nn̄
vν +

√
2
βnν
Nn̄

yν
)

×
∫
dwPΘ(−wP · xν − vP · yν)

×
[
Θ(1−wν · xν − vν · yν)p(wP |wν + [1−wν · xν − vν · yν ]xν/N)

+ Θ(wν · xν + vν · xν − 1)p(wP |wν)
]
.

(45)

As before, we have absorbed all ẑµ into the definition of the input activity vectors xµ and yµ by letting

xµ → ẑµxµ and yµ → ẑµyµ, effectively setting all ẑµ = 1. The first term in the integrand corresponds to

cases in which the classification of pattern ν is initially incorrect, so that the weights w and v are both

updated. The second term corresponds to cases in which the initial classification is correct, so that only the
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weights v are updated. In both cases, the weight distributions for w and v evolve according to drift-diffusion

processes, as new patterns are learned up until pattern P , at which time, the classification of pattern ν is

tested using the final weights wP and vP (the first Θ function appearing in the integrand).

Again using the trick (20) to represent the Heaviside step functions, the two terms in (45) can be written

as

p(zν 6= ẑν) = J1 + J2, (46)

where

J1 =

∫ ∞
0

du

∫ ∞
0

du′
∫

dv

2π

∫
dv′

2π
ei[vu+v

′(u′−1)]
∫
dx p(x)

∫
dy p(y)

×
∫
dwνp∗(wν)

∫
dvνp∗(vν)

∫
dvP p

(
vP
∣∣∣∣vν − αnν

Nn̄
vν +

√
2
βnν
Nn̄

y

)
×
∫
dwP p(wP |wν + [1−wν · xν − vν · yν ]xν/N)ei[(vw

P+v′wν)·x+(vvP+v′vν)·y]

(47)

and

J2 =

∫ ∞
0

du

∫ ∞
0

du′
∫

dv

2π

∫
dv′

2π
ei[vu+v

′(u′+1)]

∫
dx p(x)

∫
dy p(y)

×
∫
dwνp∗(wν)

∫
dvνp∗(vν)

∫
dvP p

(
vP
∣∣∣∣vν − αnν

Nn̄
vν +

√
2
βnν
Nn̄

y

)
×
∫
dwP p(wP |wν)ei[(vw

P−v′wν)·x+(vvP−v′vν)·y].

(48)

Beginning with J1, we can shift the integration variable wP → wP − γ(vν · y)x/N and use x2 = N in the

N →∞ limit to obtain

J1
(N→∞)

=

∫ ∞
0

du

∫ ∞
0

du′
∫

dv

2π

∫
dv′

2π
ei[vu+v

′(u′−1)]
∫
dx p(x)

∫
dwνp∗(wν)

×
∫
dwP p(wP |wν + [1−wν · x]x/N)ei(vw

P+v′wν)·xK1(v, v′),

(49)

where

K1(v, v′) ≡
∫
dy p(y)

∫
dvνp∗(vν)

∫
dvP p

(
vP
∣∣∣∣vν +

√
2
βnν
Nn̄

y

)
ei[vv

P+(v′−γv)vν ]·y

=

∫
dy

(2π)N/2
e−y

2/2

∫
dvν

(2πβ2/αN)N/2
e−αN |v

ν |2/2β2

×
∫

dvP

(2πσ2
P /N)N/2

exp

(
− N

2σ2
P

[
vP − ρ

(
vν +

√
2
βnν
Nn̄

y

)]2)
ei[vv

P+(v′−γv)vν ]·y

=

∫
dy

(2π)N/2
e−y

2/2

∫
dvν

(2πβ2/αN)N/2

∫
dvP

(2πσ2
P /N)N/2

× exp

(
−αN

2β2
|vν |2 − N

2σ2
P

|vP |2 + iy ·
[
vvP + (v′ + (ρ− γ)v)vν +

√
2
ρβnν
Nn̄

vy

])
=

∫
dy

(2π)N/2
exp

(
−y2

2

[
1 +

1

N

(
σ2
P v

2 +
β2

α
(v′ + (ρ− γ)v)2 − 2

√
2i
ρβnν
n̄

v

)])
=

[
1 +

1

N

(
σ2
P v

2 +
β2

α
(v′ + (ρ− γ)v)2 − 2

√
2i
ρβnν
n̄

v

)]−N/2
(N→∞)

= exp

(
−σ

2
P

2
v2 − β2

2α
[v′ + (ρ− γ)v)]2 +

√
2i
βρnν
n̄

v

)

(50)
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Where the Hebbian decay term ∼ αvν/N was dropped in the first line because it vanishes as N →∞, and

the integration variable vP was shifted in the third line. Using this result, and noting that the integrals over

x, wν , and wP are the same as those appearing in (22) (with ĝ → g̃), (49) becomes

J1 =

∫ ∞
0

du

∫ ∞
0

du′
∫

dv

2π

∫
dv′

2π
exp

(
− v2

2

[
(1− γ2)g̃ + σ2

P + (ρ− γ)2
β2

α

]
− v′2

2

[
g̃ +

β2

α

]
+ iv

[
u+ γ +

√
2
βρnν
n̄

+ i(ρ− γ)
β2

α
v′
]

+ iv′[u′ − 1]

)
=

1√
8π

∫ ∞
r1

dr e−r
2/2erfc

(
s1(r)√

2

)
,

(51)

where we have defined

r1 ≡
γ +
√

2βρnν/n̄√
(1− γ2)g̃ + σ2

P + (ρ− γ)2β2/α
(52)

and

s1(r) =
−
√

(1− γ2)g̃ + σ2
P + (ρ− γ)2β2/α+ r(γ − ρ)β2/α√(

g̃ + β2

α

)
[(1− γ2)g̃ + σ2

P + (ρ− γ)2β2/α]− (ρ− γ)2 β
4

α2

. (53)

As in the case without the Hebbian pathway, the last remaining integral in (51) must be performed numeri-

cally.

Equation (48) for J2 can be evaluated in a similar manner. To begin, we express it as

J2
(N→∞)

=

∫ ∞
0

du

∫ ∞
0

du′
∫

dv

2π

∫
dv′

2π
ei[vu+v

′(u′+1)]

∫
dx p(x)

∫
dwνp∗(wν)

×
∫
dwP p

(
wP |wν

)
ei(vw

P−v′wν)·xK2(v, v′),

(54)

where

K2(v, v′) ≡
∫
dy p(y)

∫
dvνp∗(vν)

∫
dvP p

(
vP
∣∣∣∣vν +

√
2
βnν
Nn̄

y

)
ei(vv

P−v′vν)·y

=

∫
dy

(2π)N/2
e−y

2/2

∫
dvν

(2πβ2/Nα)N/2
e−αN |v

ν |2/2β2

×
∫

dvP

(2πσ2
P /N)N/2

exp

(
− N

2σ2
P

[
vP − ρ

(
vν +

√
2
βnν
Nn̄

y

)]2)
ei(vv

P−v′vν)·y

=

∫
dy

(2π)N/2
exp

(
−y2

2

[
1 +

1

N

(
σ2
P v

2 +
β2

α
(ρv − v′)2 − 2

√
2i
ρβnν
n̄

v

)])
=

[
1 +

1

N

(
σ2
P v

2 +
β2

α
(ρv − v′)2 − 2

√
2i
ρβnν
n̄

v

)]−N/2
(N→∞)

= exp

(
−σ

2
P

2
v2 − β2

2α
(ρv − v′)2 +

√
2i
ρβnν
n̄

v

)

(55)

Using this result, and noting that the integrals over x, wν , and wP are the same as those appearing in (23)

(with ĝ → g̃), (54) becomes

J2 =

∫ ∞
0

du

∫ ∞
0

du′
∫

dv

2π

∫
dv′

2π
exp

(
i[uv + (u′ + 1)v′]− g̃

2
[v2 + v′2 − 2γvv′]

)
× exp

(
−σ

2
P

2
v2 − β2

2α
(ρv − v′)2 +

√
2i
ρβnν
n̄

v

)
=

1√
8π

∫ ∞
r2

dr e−r
2/2erfc

(
s2(r)√

2

)
,

(56)
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where we have defined

r2 =

√
2ρβnν/n̄√

g̃ + σ2
P + ρ2β2/α

(57)

and

s2(r) =

√
g̃ + σ2

P + ρ2β2/α+ (γg̃ + ρβ2/α)r√(
g̃ + β2

α

)
(g̃ + σ2

P + ρ2β2/α)− (γg̃ + ρβ2/α)2
. (58)

It is straightforward to check that, in the limit β → 0, which corresponds to shutting off the Hebbian input

pathway, we recover J1,2 → I1,2 from the simple perceptron result.

Finally, we can calculate the probability of making a weight update in a given step, which in the two-

pathway case is given by

q =

∫
dx

(2π)N/2
e−|x|

2/2

∫
dy

(2π)N/2
e−|y|

2/2

∫
dw

(2πŵ2/N)N/2
e−N |w|

2/2ŵ2

×
∫

dv

(2πβ2/αN)N/2
e−Nα|v|

2/2β2

Θ(1−w · x− v · y)

=
1

2
erfc

(
− 1√

2(ŵ2 + β2/α)

)
.

(59)

In the case where β2/α = 0, this evaluates to the earlier result q ' 0.798. For nonzero β, on the other hand,

q decreases and approaches 0.5 as β2/α→∞.
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Supplemental Information

Learning with gradient descent

(Supplemental figure) The forgetting curves are similar for a 
neuron trained by gradient descent and for the perceptron

(P � ⌫)/Nx

p
(z

⌫
6=

ẑ
⌫
)

Supplemental Figure 1: Training with gradient descent yields a forgetting curve similar to the perceptron case.

The perceptron learning rule, according to which synaptic weights are adjusted to produce the correct

output in a single step, is mathematically convenient but biologically questionable. In order to address

this, we simulated the forgetting curve using gradient descent learning, a widely used supervised learning

algorithm in which small updates are accumulated over many repetitions to minimize the readout error.

In this case the output of the neuron is zµa = sgn(wµ · xµ + σξa), where ξa ∼ N (0, 1) is drawn randomly

for step a. The number of steps for each pattern was chosen to be Nsteps = 100, and the learning rate

η = 0.01 and the noise amplitude σ = 0.2 were chosen by grid search to maximize the area between the

forgetting curve and chance performance. The noise is not strictly necessary in gradient descent learning,

but is included here so that a finite classification margin will be obtained, as in the case of the perceptron

learning rule (Figure 1b). In this case, the synaptic weights were updated according to the gradient-descent

update rule ∆wµi =
∑Nsteps

a=1 δwµi,a, where

δwµi,a =
η

Nx
[ẑµ − zµa ]xµi . (60)

As shown in Supplemental Figure 1, the forgetting curve obtained for the perceptron with this alternative

learning rule is similar to that obtained using the perceptron learning rule.
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Forgetting curves decay exponentially

(Supplemental figure) Power-law forgetting curves? Not 
really

Same curves from previous figure:

r2 = 0.79
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r2 = 0.79
<latexit sha1_base64="9Z7lcp8NgBXULvdeFimiynxcaOo=">AAAB8XicbVDLSgMxFL3xWeur6tJNsAiuykwR2i6EohuXFewD27Fk0kwbmskMSUYoQ//CjQtF3Po37vwb03ZArR4InJxzL/fe48eCa+M4n2hldW19YzO3ld/e2d3bLxwctnSUKMqaNBKR6vhEM8ElaxpuBOvEipHQF6ztj69mfvuBKc0jeWsmMfNCMpQ84JQYK92p+zK+wE6pUusXik6p6pZrjmv/zhzfxM1IETI0+oWP3iCiScikoYJo3XWd2HgpUYZTwab5XqJZTOiYDFnXUklCpr10vvEUn1plgINI2ScNnqs/O1ISaj0JfVsZEjPSy95M/M/rJiaoeimXcWKYpItBQSKwifDsfDzgilEjJpYQqrjdFdMRUYQaG1LehuAun/yXtMol1/Kb82L9MosjB8dwAmfgQgXqcA0NaAIFCY/wDC9Ioyf0it4WpSso6zmCX0DvXyS7j0A=</latexit><latexit sha1_base64="9Z7lcp8NgBXULvdeFimiynxcaOo=">AAAB8XicbVDLSgMxFL3xWeur6tJNsAiuykwR2i6EohuXFewD27Fk0kwbmskMSUYoQ//CjQtF3Po37vwb03ZArR4InJxzL/fe48eCa+M4n2hldW19YzO3ld/e2d3bLxwctnSUKMqaNBKR6vhEM8ElaxpuBOvEipHQF6ztj69mfvuBKc0jeWsmMfNCMpQ84JQYK92p+zK+wE6pUusXik6p6pZrjmv/zhzfxM1IETI0+oWP3iCiScikoYJo3XWd2HgpUYZTwab5XqJZTOiYDFnXUklCpr10vvEUn1plgINI2ScNnqs/O1ISaj0JfVsZEjPSy95M/M/rJiaoeimXcWKYpItBQSKwifDsfDzgilEjJpYQqrjdFdMRUYQaG1LehuAun/yXtMol1/Kb82L9MosjB8dwAmfgQgXqcA0NaAIFCY/wDC9Ioyf0it4WpSso6zmCX0DvXyS7j0A=</latexit><latexit sha1_base64="9Z7lcp8NgBXULvdeFimiynxcaOo=">AAAB8XicbVDLSgMxFL3xWeur6tJNsAiuykwR2i6EohuXFewD27Fk0kwbmskMSUYoQ//CjQtF3Po37vwb03ZArR4InJxzL/fe48eCa+M4n2hldW19YzO3ld/e2d3bLxwctnSUKMqaNBKR6vhEM8ElaxpuBOvEipHQF6ztj69mfvuBKc0jeWsmMfNCMpQ84JQYK92p+zK+wE6pUusXik6p6pZrjmv/zhzfxM1IETI0+oWP3iCiScikoYJo3XWd2HgpUYZTwab5XqJZTOiYDFnXUklCpr10vvEUn1plgINI2ScNnqs/O1ISaj0JfVsZEjPSy95M/M/rJiaoeimXcWKYpItBQSKwifDsfDzgilEjJpYQqrjdFdMRUYQaG1LehuAun/yXtMol1/Kb82L9MosjB8dwAmfgQgXqcA0NaAIFCY/wDC9Ioyf0it4WpSso6zmCX0DvXyS7j0A=</latexit><latexit sha1_base64="9Z7lcp8NgBXULvdeFimiynxcaOo=">AAAB8XicbVDLSgMxFL3xWeur6tJNsAiuykwR2i6EohuXFewD27Fk0kwbmskMSUYoQ//CjQtF3Po37vwb03ZArR4InJxzL/fe48eCa+M4n2hldW19YzO3ld/e2d3bLxwctnSUKMqaNBKR6vhEM8ElaxpuBOvEipHQF6ztj69mfvuBKc0jeWsmMfNCMpQ84JQYK92p+zK+wE6pUusXik6p6pZrjmv/zhzfxM1IETI0+oWP3iCiScikoYJo3XWd2HgpUYZTwab5XqJZTOiYDFnXUklCpr10vvEUn1plgINI2ScNnqs/O1ISaj0JfVsZEjPSy95M/M/rJiaoeimXcWKYpItBQSKwifDsfDzgilEjJpYQqrjdFdMRUYQaG1LehuAun/yXtMol1/Kb82L9MosjB8dwAmfgQgXqcA0NaAIFCY/wDC9Ioyf0it4WpSso6zmCX0DvXyS7j0A=</latexit>

r2 = 0.77
<latexit sha1_base64="jpBl10WL/J+VyltkrFuEXpFo1iA=">AAAB8XicbVDLSgMxFL1TX7W+qi7dBIvgqszUgdaFUHTjsoJ9YDuWTJppQzOZIckIZehfuHGhiFv/xp1/Y9oOqNUDgZNz7uXee/yYM6Vt+9PKrayurW/kNwtb2zu7e8X9g5aKEklok0Q8kh0fK8qZoE3NNKedWFIc+py2/fHVzG8/UKlYJG71JKZeiIeCBYxgbaQ7eV9BF8guV6v9Yskuu+fuWc0xf3uOb+JkpAQZGv3iR28QkSSkQhOOleo6dqy9FEvNCKfTQi9RNMZkjIe0a6jAIVVeOt94ik6MMkBBJM0TGs3Vnx0pDpWahL6pDLEeqWVvJv7ndRMd1LyUiTjRVJDFoCDhSEdodj4aMEmJ5hNDMJHM7IrICEtMtAmpYEJwlk/+S1qVsmP4jVuqX2Zx5OEIjuEUHKhCHa6hAU0gIOARnuHFUtaT9Wq9LUpzVtZzCL9gvX8BLYmPRg==</latexit><latexit sha1_base64="jpBl10WL/J+VyltkrFuEXpFo1iA=">AAAB8XicbVDLSgMxFL1TX7W+qi7dBIvgqszUgdaFUHTjsoJ9YDuWTJppQzOZIckIZehfuHGhiFv/xp1/Y9oOqNUDgZNz7uXee/yYM6Vt+9PKrayurW/kNwtb2zu7e8X9g5aKEklok0Q8kh0fK8qZoE3NNKedWFIc+py2/fHVzG8/UKlYJG71JKZeiIeCBYxgbaQ7eV9BF8guV6v9Yskuu+fuWc0xf3uOb+JkpAQZGv3iR28QkSSkQhOOleo6dqy9FEvNCKfTQi9RNMZkjIe0a6jAIVVeOt94ik6MMkBBJM0TGs3Vnx0pDpWahL6pDLEeqWVvJv7ndRMd1LyUiTjRVJDFoCDhSEdodj4aMEmJ5hNDMJHM7IrICEtMtAmpYEJwlk/+S1qVsmP4jVuqX2Zx5OEIjuEUHKhCHa6hAU0gIOARnuHFUtaT9Wq9LUpzVtZzCL9gvX8BLYmPRg==</latexit><latexit sha1_base64="jpBl10WL/J+VyltkrFuEXpFo1iA=">AAAB8XicbVDLSgMxFL1TX7W+qi7dBIvgqszUgdaFUHTjsoJ9YDuWTJppQzOZIckIZehfuHGhiFv/xp1/Y9oOqNUDgZNz7uXee/yYM6Vt+9PKrayurW/kNwtb2zu7e8X9g5aKEklok0Q8kh0fK8qZoE3NNKedWFIc+py2/fHVzG8/UKlYJG71JKZeiIeCBYxgbaQ7eV9BF8guV6v9Yskuu+fuWc0xf3uOb+JkpAQZGv3iR28QkSSkQhOOleo6dqy9FEvNCKfTQi9RNMZkjIe0a6jAIVVeOt94ik6MMkBBJM0TGs3Vnx0pDpWahL6pDLEeqWVvJv7ndRMd1LyUiTjRVJDFoCDhSEdodj4aMEmJ5hNDMJHM7IrICEtMtAmpYEJwlk/+S1qVsmP4jVuqX2Zx5OEIjuEUHKhCHa6hAU0gIOARnuHFUtaT9Wq9LUpzVtZzCL9gvX8BLYmPRg==</latexit><latexit sha1_base64="jpBl10WL/J+VyltkrFuEXpFo1iA=">AAAB8XicbVDLSgMxFL1TX7W+qi7dBIvgqszUgdaFUHTjsoJ9YDuWTJppQzOZIckIZehfuHGhiFv/xp1/Y9oOqNUDgZNz7uXee/yYM6Vt+9PKrayurW/kNwtb2zu7e8X9g5aKEklok0Q8kh0fK8qZoE3NNKedWFIc+py2/fHVzG8/UKlYJG71JKZeiIeCBYxgbaQ7eV9BF8guV6v9Yskuu+fuWc0xf3uOb+JkpAQZGv3iR28QkSSkQhOOleo6dqy9FEvNCKfTQi9RNMZkjIe0a6jAIVVeOt94ik6MMkBBJM0TGs3Vnx0pDpWahL6pDLEeqWVvJv7ndRMd1LyUiTjRVJDFoCDhSEdodj4aMEmJ5hNDMJHM7IrICEtMtAmpYEJwlk/+S1qVsmP4jVuqX2Zx5OEIjuEUHKhCHa6hAU0gIOARnuHFUtaT9Wq9LUpzVtZzCL9gvX8BLYmPRg==</latexit>

r2 = 0.91
<latexit sha1_base64="KB2yIPTffaeSigDKD/J3SmWGEHQ=">AAAB8XicbVDLSgMxFL1TX7W+qi7dBIvgqsyUSutCKLpxWcE+sB1LJs20oZnMkGSEMvQv3LhQxK1/486/MdMOotUDgZNz7uXee7yIM6Vt+9PKrayurW/kNwtb2zu7e8X9g7YKY0loi4Q8lF0PK8qZoC3NNKfdSFIceJx2vMlV6nceqFQsFLd6GlE3wCPBfEawNtKdvK+gC2SXz51BsWSX7TnMv+7YZ9Ua+lacjJQgQ3NQ/OgPQxIHVGjCsVI9x460m2CpGeF0VujHikaYTPCI9gwVOKDKTeYbz9CJUYbID6V5QqO5+rMjwYFS08AzlQHWY7XspeJ/Xi/Wft1NmIhiTQVZDPJjjnSI0vPRkElKNJ8agolkZldExlhiok1IBROCs3zyX9KulB3Db6qlxmUWRx6O4BhOwYEaNOAamtACAgIe4RleLGU9Wa/W26I0Z2U9h/AL1vsXIJ6PPg==</latexit><latexit sha1_base64="KB2yIPTffaeSigDKD/J3SmWGEHQ=">AAAB8XicbVDLSgMxFL1TX7W+qi7dBIvgqsyUSutCKLpxWcE+sB1LJs20oZnMkGSEMvQv3LhQxK1/486/MdMOotUDgZNz7uXee7yIM6Vt+9PKrayurW/kNwtb2zu7e8X9g7YKY0loi4Q8lF0PK8qZoC3NNKfdSFIceJx2vMlV6nceqFQsFLd6GlE3wCPBfEawNtKdvK+gC2SXz51BsWSX7TnMv+7YZ9Ua+lacjJQgQ3NQ/OgPQxIHVGjCsVI9x460m2CpGeF0VujHikaYTPCI9gwVOKDKTeYbz9CJUYbID6V5QqO5+rMjwYFS08AzlQHWY7XspeJ/Xi/Wft1NmIhiTQVZDPJjjnSI0vPRkElKNJ8agolkZldExlhiok1IBROCs3zyX9KulB3Db6qlxmUWRx6O4BhOwYEaNOAamtACAgIe4RleLGU9Wa/W26I0Z2U9h/AL1vsXIJ6PPg==</latexit><latexit sha1_base64="KB2yIPTffaeSigDKD/J3SmWGEHQ=">AAAB8XicbVDLSgMxFL1TX7W+qi7dBIvgqsyUSutCKLpxWcE+sB1LJs20oZnMkGSEMvQv3LhQxK1/486/MdMOotUDgZNz7uXee7yIM6Vt+9PKrayurW/kNwtb2zu7e8X9g7YKY0loi4Q8lF0PK8qZoC3NNKfdSFIceJx2vMlV6nceqFQsFLd6GlE3wCPBfEawNtKdvK+gC2SXz51BsWSX7TnMv+7YZ9Ua+lacjJQgQ3NQ/OgPQxIHVGjCsVI9x460m2CpGeF0VujHikaYTPCI9gwVOKDKTeYbz9CJUYbID6V5QqO5+rMjwYFS08AzlQHWY7XspeJ/Xi/Wft1NmIhiTQVZDPJjjnSI0vPRkElKNJ8agolkZldExlhiok1IBROCs3zyX9KulB3Db6qlxmUWRx6O4BhOwYEaNOAamtACAgIe4RleLGU9Wa/W26I0Z2U9h/AL1vsXIJ6PPg==</latexit><latexit sha1_base64="KB2yIPTffaeSigDKD/J3SmWGEHQ=">AAAB8XicbVDLSgMxFL1TX7W+qi7dBIvgqsyUSutCKLpxWcE+sB1LJs20oZnMkGSEMvQv3LhQxK1/486/MdMOotUDgZNz7uXee7yIM6Vt+9PKrayurW/kNwtb2zu7e8X9g7YKY0loi4Q8lF0PK8qZoC3NNKfdSFIceJx2vMlV6nceqFQsFLd6GlE3wCPBfEawNtKdvK+gC2SXz51BsWSX7TnMv+7YZ9Ua+lacjJQgQ3NQ/OgPQxIHVGjCsVI9x460m2CpGeF0VujHikaYTPCI9gwVOKDKTeYbz9CJUYbID6V5QqO5+rMjwYFS08AzlQHWY7XspeJ/Xi/Wft1NmIhiTQVZDPJjjnSI0vPRkElKNJ8agolkZldExlhiok1IBROCs3zyX9KulB3Db6qlxmUWRx6O4BhOwYEaNOAamtACAgIe4RleLGU9Wa/W26I0Z2U9h/AL1vsXIJ6PPg==</latexit>

r2 = 0.83
<latexit sha1_base64="8fzO/mwVa3f8KRzC+puLs5cThOs=">AAAB8XicbVDLSgMxFL1TX7W+qi7dBIvgqsxUxW6EohuXFewD27Fk0kwbmkmGJCOUoX/hxoUibv0bd/6NaTuCVg8ETs65l3vvCWLOtHHdTye3tLyyupZfL2xsbm3vFHf3mlomitAGkVyqdoA15UzQhmGG03asKI4CTlvB6Grqtx6o0kyKWzOOqR/hgWAhI9hY6U7dV9AFcsvVk16x5JbdGez/7JtkipeREmSo94of3b4kSUSFIRxr3fHc2PgpVoYRTieFbqJpjMkID2jHUoEjqv10tvEEHVmlj0Kp7BMGzdSfHSmOtB5Hga2MsBnqRW8q/ud1EhNW/ZSJODFUkPmgMOHISDQ9H/WZosTwsSWYKGZ3RWSIFSbGhlSwIXiLJ/8lzUrZs/zmtFS7zOLIwwEcwjF4cA41uIY6NICAgEd4hhdHO0/Oq/M2L805Wc8+/ILz/gUFQI8r</latexit><latexit sha1_base64="8fzO/mwVa3f8KRzC+puLs5cThOs=">AAAB8XicbVDLSgMxFL1TX7W+qi7dBIvgqsxUxW6EohuXFewD27Fk0kwbmkmGJCOUoX/hxoUibv0bd/6NaTuCVg8ETs65l3vvCWLOtHHdTye3tLyyupZfL2xsbm3vFHf3mlomitAGkVyqdoA15UzQhmGG03asKI4CTlvB6Grqtx6o0kyKWzOOqR/hgWAhI9hY6U7dV9AFcsvVk16x5JbdGez/7JtkipeREmSo94of3b4kSUSFIRxr3fHc2PgpVoYRTieFbqJpjMkID2jHUoEjqv10tvEEHVmlj0Kp7BMGzdSfHSmOtB5Hga2MsBnqRW8q/ud1EhNW/ZSJODFUkPmgMOHISDQ9H/WZosTwsSWYKGZ3RWSIFSbGhlSwIXiLJ/8lzUrZs/zmtFS7zOLIwwEcwjF4cA41uIY6NICAgEd4hhdHO0/Oq/M2L805Wc8+/ILz/gUFQI8r</latexit><latexit sha1_base64="8fzO/mwVa3f8KRzC+puLs5cThOs=">AAAB8XicbVDLSgMxFL1TX7W+qi7dBIvgqsxUxW6EohuXFewD27Fk0kwbmkmGJCOUoX/hxoUibv0bd/6NaTuCVg8ETs65l3vvCWLOtHHdTye3tLyyupZfL2xsbm3vFHf3mlomitAGkVyqdoA15UzQhmGG03asKI4CTlvB6Grqtx6o0kyKWzOOqR/hgWAhI9hY6U7dV9AFcsvVk16x5JbdGez/7JtkipeREmSo94of3b4kSUSFIRxr3fHc2PgpVoYRTieFbqJpjMkID2jHUoEjqv10tvEEHVmlj0Kp7BMGzdSfHSmOtB5Hga2MsBnqRW8q/ud1EhNW/ZSJODFUkPmgMOHISDQ9H/WZosTwsSWYKGZ3RWSIFSbGhlSwIXiLJ/8lzUrZs/zmtFS7zOLIwwEcwjF4cA41uIY6NICAgEd4hhdHO0/Oq/M2L805Wc8+/ILz/gUFQI8r</latexit><latexit sha1_base64="8fzO/mwVa3f8KRzC+puLs5cThOs=">AAAB8XicbVDLSgMxFL1TX7W+qi7dBIvgqsxUxW6EohuXFewD27Fk0kwbmkmGJCOUoX/hxoUibv0bd/6NaTuCVg8ETs65l3vvCWLOtHHdTye3tLyyupZfL2xsbm3vFHf3mlomitAGkVyqdoA15UzQhmGG03asKI4CTlvB6Grqtx6o0kyKWzOOqR/hgWAhI9hY6U7dV9AFcsvVk16x5JbdGez/7JtkipeREmSo94of3b4kSUSFIRxr3fHc2PgpVoYRTieFbqJpjMkID2jHUoEjqv10tvEEHVmlj0Kp7BMGzdSfHSmOtB5Hga2MsBnqRW8q/ud1EhNW/ZSJODFUkPmgMOHISDQ9H/WZosTwsSWYKGZ3RWSIFSbGhlSwIXiLJ/8lzUrZs/zmtFS7zOLIwwEcwjF4cA41uIY6NICAgEd4hhdHO0/Oq/M2L805Wc8+/ILz/gUFQI8r</latexit>

r2 = 0.77
<latexit sha1_base64="i8Ww96ViZGtJIT4Qd4Uv6Z1odFU=">AAAB8XicbVDLSgMxFL1TX7W+qi7dBIvgqswUy9SFUHTjsoJ9YDuWTJppQzOZIckIZehfuHGhiFv/xp1/Y9oOotUDgZNz7uXee/yYM6Vt+9PKrayurW/kNwtb2zu7e8X9g5aKEklok0Q8kh0fK8qZoE3NNKedWFIc+py2/fHVzG8/UKlYJG71JKZeiIeCBYxgbaQ7eV9BF8guu26/WLLL9hzm75zXqq6LvhUnIyXI0OgXP3qDiCQhFZpwrFTXsWPtpVhqRjidFnqJojEmYzykXUMFDqny0vnGU3RilAEKImme0Giu/uxIcajUJPRNZYj1SC17M/E/r5vooOalTMSJpoIsBgUJRzpCs/PRgElKNJ8YgolkZldERlhiok1IBROCs3zyX9KqlB3Db85K9cssjjwcwTGcggMu1OEaGtAEAgIe4RleLGU9Wa/W26I0Z2U9h/AL1vsXOASPTg==</latexit><latexit sha1_base64="i8Ww96ViZGtJIT4Qd4Uv6Z1odFU=">AAAB8XicbVDLSgMxFL1TX7W+qi7dBIvgqswUy9SFUHTjsoJ9YDuWTJppQzOZIckIZehfuHGhiFv/xp1/Y9oOotUDgZNz7uXee/yYM6Vt+9PKrayurW/kNwtb2zu7e8X9g5aKEklok0Q8kh0fK8qZoE3NNKedWFIc+py2/fHVzG8/UKlYJG71JKZeiIeCBYxgbaQ7eV9BF8guu26/WLLL9hzm75zXqq6LvhUnIyXI0OgXP3qDiCQhFZpwrFTXsWPtpVhqRjidFnqJojEmYzykXUMFDqny0vnGU3RilAEKImme0Giu/uxIcajUJPRNZYj1SC17M/E/r5vooOalTMSJpoIsBgUJRzpCs/PRgElKNJ8YgolkZldERlhiok1IBROCs3zyX9KqlB3Db85K9cssjjwcwTGcggMu1OEaGtAEAgIe4RleLGU9Wa/W26I0Z2U9h/AL1vsXOASPTg==</latexit><latexit sha1_base64="i8Ww96ViZGtJIT4Qd4Uv6Z1odFU=">AAAB8XicbVDLSgMxFL1TX7W+qi7dBIvgqswUy9SFUHTjsoJ9YDuWTJppQzOZIckIZehfuHGhiFv/xp1/Y9oOotUDgZNz7uXee/yYM6Vt+9PKrayurW/kNwtb2zu7e8X9g5aKEklok0Q8kh0fK8qZoE3NNKedWFIc+py2/fHVzG8/UKlYJG71JKZeiIeCBYxgbaQ7eV9BF8guu26/WLLL9hzm75zXqq6LvhUnIyXI0OgXP3qDiCQhFZpwrFTXsWPtpVhqRjidFnqJojEmYzykXUMFDqny0vnGU3RilAEKImme0Giu/uxIcajUJPRNZYj1SC17M/E/r5vooOalTMSJpoIsBgUJRzpCs/PRgElKNJ8YgolkZldERlhiok1IBROCs3zyX9KqlB3Db85K9cssjjwcwTGcggMu1OEaGtAEAgIe4RleLGU9Wa/W26I0Z2U9h/AL1vsXOASPTg==</latexit><latexit sha1_base64="i8Ww96ViZGtJIT4Qd4Uv6Z1odFU=">AAAB8XicbVDLSgMxFL1TX7W+qi7dBIvgqswUy9SFUHTjsoJ9YDuWTJppQzOZIckIZehfuHGhiFv/xp1/Y9oOotUDgZNz7uXee/yYM6Vt+9PKrayurW/kNwtb2zu7e8X9g5aKEklok0Q8kh0fK8qZoE3NNKedWFIc+py2/fHVzG8/UKlYJG71JKZeiIeCBYxgbaQ7eV9BF8guu26/WLLL9hzm75zXqq6LvhUnIyXI0OgXP3qDiCQhFZpwrFTXsWPtpVhqRjidFnqJojEmYzykXUMFDqny0vnGU3RilAEKImme0Giu/uxIcajUJPRNZYj1SC17M/E/r5vooOalTMSJpoIsBgUJRzpCs/PRgElKNJ8YgolkZldERlhiok1IBROCs3zyX9KqlB3Db85K9cssjjwcwTGcggMu1OEaGtAEAgIe4RleLGU9Wa/W26I0Z2U9h/AL1vsXOASPTg==</latexit>

r2 > 0.99
<latexit sha1_base64="oSiRToPvZu7QalEd8PVVj9+ebQA=">AAAB8XicbVDLTgIxFL2DL8QX6tJNIzFxRWYQUTaG6MYlJvKIMJJO6UBDpzNpOyZkwl+4caExbv0bd/6NBSZR0ZM0OT3n3tx7jxdxprRtf1qZpeWV1bXsem5jc2t7J7+711RhLAltkJCHsu1hRTkTtKGZ5rQdSYoDj9OWN7qa+q0HKhULxa0eR9QN8EAwnxGsjXQn70voAtnFarWXL9hFp1o5Oa2Yvz3DN3FSUoAU9V7+o9sPSRxQoQnHSnUcO9JugqVmhNNJrhsrGmEywgPaMVTggCo3mW08QUdG6SM/lOYJjWbqz44EB0qNA89UBlgP1aI3Ff/zOrH2z92EiSjWVJD5ID/mSIdoej7qM0mJ5mNDMJHM7IrIEEtMtAkpZ0JwFk/+S5qlomP4TblQu0zjyMIBHMIxOHAGNbiGOjSAgIBHeIYXS1lP1qv1Ni/NWGnPPvyC9f4FNpGPTA==</latexit><latexit sha1_base64="oSiRToPvZu7QalEd8PVVj9+ebQA=">AAAB8XicbVDLTgIxFL2DL8QX6tJNIzFxRWYQUTaG6MYlJvKIMJJO6UBDpzNpOyZkwl+4caExbv0bd/6NBSZR0ZM0OT3n3tx7jxdxprRtf1qZpeWV1bXsem5jc2t7J7+711RhLAltkJCHsu1hRTkTtKGZ5rQdSYoDj9OWN7qa+q0HKhULxa0eR9QN8EAwnxGsjXQn70voAtnFarWXL9hFp1o5Oa2Yvz3DN3FSUoAU9V7+o9sPSRxQoQnHSnUcO9JugqVmhNNJrhsrGmEywgPaMVTggCo3mW08QUdG6SM/lOYJjWbqz44EB0qNA89UBlgP1aI3Ff/zOrH2z92EiSjWVJD5ID/mSIdoej7qM0mJ5mNDMJHM7IrIEEtMtAkpZ0JwFk/+S5qlomP4TblQu0zjyMIBHMIxOHAGNbiGOjSAgIBHeIYXS1lP1qv1Ni/NWGnPPvyC9f4FNpGPTA==</latexit><latexit sha1_base64="oSiRToPvZu7QalEd8PVVj9+ebQA=">AAAB8XicbVDLTgIxFL2DL8QX6tJNIzFxRWYQUTaG6MYlJvKIMJJO6UBDpzNpOyZkwl+4caExbv0bd/6NBSZR0ZM0OT3n3tx7jxdxprRtf1qZpeWV1bXsem5jc2t7J7+711RhLAltkJCHsu1hRTkTtKGZ5rQdSYoDj9OWN7qa+q0HKhULxa0eR9QN8EAwnxGsjXQn70voAtnFarWXL9hFp1o5Oa2Yvz3DN3FSUoAU9V7+o9sPSRxQoQnHSnUcO9JugqVmhNNJrhsrGmEywgPaMVTggCo3mW08QUdG6SM/lOYJjWbqz44EB0qNA89UBlgP1aI3Ff/zOrH2z92EiSjWVJD5ID/mSIdoej7qM0mJ5mNDMJHM7IrIEEtMtAkpZ0JwFk/+S5qlomP4TblQu0zjyMIBHMIxOHAGNbiGOjSAgIBHeIYXS1lP1qv1Ni/NWGnPPvyC9f4FNpGPTA==</latexit><latexit sha1_base64="oSiRToPvZu7QalEd8PVVj9+ebQA=">AAAB8XicbVDLTgIxFL2DL8QX6tJNIzFxRWYQUTaG6MYlJvKIMJJO6UBDpzNpOyZkwl+4caExbv0bd/6NBSZR0ZM0OT3n3tx7jxdxprRtf1qZpeWV1bXsem5jc2t7J7+711RhLAltkJCHsu1hRTkTtKGZ5rQdSYoDj9OWN7qa+q0HKhULxa0eR9QN8EAwnxGsjXQn70voAtnFarWXL9hFp1o5Oa2Yvz3DN3FSUoAU9V7+o9sPSRxQoQnHSnUcO9JugqVmhNNJrhsrGmEywgPaMVTggCo3mW08QUdG6SM/lOYJjWbqz44EB0qNA89UBlgP1aI3Ff/zOrH2z92EiSjWVJD5ID/mSIdoej7qM0mJ5mNDMJHM7IrIEEtMtAkpZ0JwFk/+S5qlomP4TblQu0zjyMIBHMIxOHAGNbiGOjSAgIBHeIYXS1lP1qv1Ni/NWGnPPvyC9f4FNpGPTA==</latexit>

r2 > 0.99
<latexit sha1_base64="CMAF5tXsB+uBD4HDkrvwTXCawTo=">AAAB8XicbVDLSgMxFL3js9ZX1aWbYBFclUxRtBspunFZwT6wHUsmzbShmcyQZIQy9C/cuFDErX/jzr8x085CqwcCJ+fcy733+LHg2mD85Swtr6yurRc2iptb2zu7pb39lo4SRVmTRiJSHZ9oJrhkTcONYJ1YMRL6grX98XXmtx+Z0jySd2YSMy8kQ8kDTomx0r16qKJLhCu1Wr9UxpUznMH+8QJxc1KGHI1+6bM3iGgSMmmoIFp3XRwbLyXKcCrYtNhLNIsJHZMh61oqSci0l842nqJjqwxQECn7pEEz9WdHSkKtJ6FvK0NiRnrRy8T/vG5iggsv5TJODJN0PihIBDIRys5HA64YNWJiCaGK210RHRFFqLEhFW0I7uLJf0mrWnEtvz0t16/yOApwCEdwAi6cQx1uoAFNoCDhCV7g1dHOs/PmvM9Ll5y85wB+wfn4BhGTjzM=</latexit><latexit sha1_base64="CMAF5tXsB+uBD4HDkrvwTXCawTo=">AAAB8XicbVDLSgMxFL3js9ZX1aWbYBFclUxRtBspunFZwT6wHUsmzbShmcyQZIQy9C/cuFDErX/jzr8x085CqwcCJ+fcy733+LHg2mD85Swtr6yurRc2iptb2zu7pb39lo4SRVmTRiJSHZ9oJrhkTcONYJ1YMRL6grX98XXmtx+Z0jySd2YSMy8kQ8kDTomx0r16qKJLhCu1Wr9UxpUznMH+8QJxc1KGHI1+6bM3iGgSMmmoIFp3XRwbLyXKcCrYtNhLNIsJHZMh61oqSci0l842nqJjqwxQECn7pEEz9WdHSkKtJ6FvK0NiRnrRy8T/vG5iggsv5TJODJN0PihIBDIRys5HA64YNWJiCaGK210RHRFFqLEhFW0I7uLJf0mrWnEtvz0t16/yOApwCEdwAi6cQx1uoAFNoCDhCV7g1dHOs/PmvM9Ll5y85wB+wfn4BhGTjzM=</latexit><latexit sha1_base64="CMAF5tXsB+uBD4HDkrvwTXCawTo=">AAAB8XicbVDLSgMxFL3js9ZX1aWbYBFclUxRtBspunFZwT6wHUsmzbShmcyQZIQy9C/cuFDErX/jzr8x085CqwcCJ+fcy733+LHg2mD85Swtr6yurRc2iptb2zu7pb39lo4SRVmTRiJSHZ9oJrhkTcONYJ1YMRL6grX98XXmtx+Z0jySd2YSMy8kQ8kDTomx0r16qKJLhCu1Wr9UxpUznMH+8QJxc1KGHI1+6bM3iGgSMmmoIFp3XRwbLyXKcCrYtNhLNIsJHZMh61oqSci0l842nqJjqwxQECn7pEEz9WdHSkKtJ6FvK0NiRnrRy8T/vG5iggsv5TJODJN0PihIBDIRys5HA64YNWJiCaGK210RHRFFqLEhFW0I7uLJf0mrWnEtvz0t16/yOApwCEdwAi6cQx1uoAFNoCDhCV7g1dHOs/PmvM9Ll5y85wB+wfn4BhGTjzM=</latexit><latexit sha1_base64="CMAF5tXsB+uBD4HDkrvwTXCawTo=">AAAB8XicbVDLSgMxFL3js9ZX1aWbYBFclUxRtBspunFZwT6wHUsmzbShmcyQZIQy9C/cuFDErX/jzr8x085CqwcCJ+fcy733+LHg2mD85Swtr6yurRc2iptb2zu7pb39lo4SRVmTRiJSHZ9oJrhkTcONYJ1YMRL6grX98XXmtx+Z0jySd2YSMy8kQ8kDTomx0r16qKJLhCu1Wr9UxpUznMH+8QJxc1KGHI1+6bM3iGgSMmmoIFp3XRwbLyXKcCrYtNhLNIsJHZMh61oqSci0l842nqJjqwxQECn7pEEz9WdHSkKtJ6FvK0NiRnrRy8T/vG5iggsv5TJODJN0PihIBDIRys5HA64YNWJiCaGK210RHRFFqLEhFW0I7uLJf0mrWnEtvz0t16/yOApwCEdwAi6cQx1uoAFNoCDhCV7g1dHOs/PmvM9Ll5y85wB+wfn4BhGTjzM=</latexit>

r2 > 0.99
<latexit sha1_base64="hbrnJ8YyJjHrqzRYWTPeXLBfRHc=">AAAB8XicbVDLSgMxFL1TX7W+qi7dBIvgqswUqdONFN24rGAf2I4lk2ba0ExmSDJCGfoXblwo4ta/ceffmLYDavVA4OSce7n3Hj/mTGnb/rRyK6tr6xv5zcLW9s7uXnH/oKWiRBLaJBGPZMfHinImaFMzzWknlhSHPqdtf3w189sPVCoWiVs9iakX4qFgASNYG+lO3lfQBbLLtVq/WLLLru3Wqq7523N8EycjJcjQ6Bc/eoOIJCEVmnCsVNexY+2lWGpGOJ0WeomiMSZjPKRdQwUOqfLS+cZTdGKUAQoiaZ7QaK7+7EhxqNQk9E1liPVILXsz8T+vm+jA9VIm4kRTQRaDgoQjHaHZ+WjAJCWaTwzBRDKzKyIjLDHRJqSCCcFZPvkvaVXKjuE3Z6X6ZRZHHo7gGE7BgXOowzU0oAkEBDzCM7xYynqyXq23RWnOynoO4Res9y9D5I9V</latexit><latexit sha1_base64="hbrnJ8YyJjHrqzRYWTPeXLBfRHc=">AAAB8XicbVDLSgMxFL1TX7W+qi7dBIvgqswUqdONFN24rGAf2I4lk2ba0ExmSDJCGfoXblwo4ta/ceffmLYDavVA4OSce7n3Hj/mTGnb/rRyK6tr6xv5zcLW9s7uXnH/oKWiRBLaJBGPZMfHinImaFMzzWknlhSHPqdtf3w189sPVCoWiVs9iakX4qFgASNYG+lO3lfQBbLLtVq/WLLLru3Wqq7523N8EycjJcjQ6Bc/eoOIJCEVmnCsVNexY+2lWGpGOJ0WeomiMSZjPKRdQwUOqfLS+cZTdGKUAQoiaZ7QaK7+7EhxqNQk9E1liPVILXsz8T+vm+jA9VIm4kRTQRaDgoQjHaHZ+WjAJCWaTwzBRDKzKyIjLDHRJqSCCcFZPvkvaVXKjuE3Z6X6ZRZHHo7gGE7BgXOowzU0oAkEBDzCM7xYynqyXq23RWnOynoO4Res9y9D5I9V</latexit><latexit sha1_base64="hbrnJ8YyJjHrqzRYWTPeXLBfRHc=">AAAB8XicbVDLSgMxFL1TX7W+qi7dBIvgqswUqdONFN24rGAf2I4lk2ba0ExmSDJCGfoXblwo4ta/ceffmLYDavVA4OSce7n3Hj/mTGnb/rRyK6tr6xv5zcLW9s7uXnH/oKWiRBLaJBGPZMfHinImaFMzzWknlhSHPqdtf3w189sPVCoWiVs9iakX4qFgASNYG+lO3lfQBbLLtVq/WLLLru3Wqq7523N8EycjJcjQ6Bc/eoOIJCEVmnCsVNexY+2lWGpGOJ0WeomiMSZjPKRdQwUOqfLS+cZTdGKUAQoiaZ7QaK7+7EhxqNQk9E1liPVILXsz8T+vm+jA9VIm4kRTQRaDgoQjHaHZ+WjAJCWaTwzBRDKzKyIjLDHRJqSCCcFZPvkvaVXKjuE3Z6X6ZRZHHo7gGE7BgXOowzU0oAkEBDzCM7xYynqyXq23RWnOynoO4Res9y9D5I9V</latexit><latexit sha1_base64="hbrnJ8YyJjHrqzRYWTPeXLBfRHc=">AAAB8XicbVDLSgMxFL1TX7W+qi7dBIvgqswUqdONFN24rGAf2I4lk2ba0ExmSDJCGfoXblwo4ta/ceffmLYDavVA4OSce7n3Hj/mTGnb/rRyK6tr6xv5zcLW9s7uXnH/oKWiRBLaJBGPZMfHinImaFMzzWknlhSHPqdtf3w189sPVCoWiVs9iakX4qFgASNYG+lO3lfQBbLLtVq/WLLLru3Wqq7523N8EycjJcjQ6Bc/eoOIJCEVmnCsVNexY+2lWGpGOJ0WeomiMSZjPKRdQwUOqfLS+cZTdGKUAQoiaZ7QaK7+7EhxqNQk9E1liPVILXsz8T+vm+jA9VIm4kRTQRaDgoQjHaHZ+WjAJCWaTwzBRDKzKyIjLDHRJqSCCcFZPvkvaVXKjuE3Z6X6ZRZHHo7gGE7BgXOowzU0oAkEBDzCM7xYynqyXq23RWnOynoO4Res9y9D5I9V</latexit>

r2 > 0.99
<latexit sha1_base64="3Q4aj8kO7TGt4Ci4QvW18J+JzJA=">AAAB8XicbVDLSgMxFL1TX7W+qi7dBIvgqsy0Be1Gim5cVrAPbMeSSTNtaCYzJBmhDP0LNy4UcevfuPNvzLSDaPVA4OSce7n3Hi/iTGnb/rRyK6tr6xv5zcLW9s7uXnH/oK3CWBLaIiEPZdfDinImaEszzWk3khQHHqcdb3KV+p0HKhULxa2eRtQN8EgwnxGsjXQn7yvoAtnlen1QLNllew7zd+rVmlNF34qTkRJkaA6KH/1hSOKACk04Vqrn2JF2Eyw1I5zOCv1Y0QiTCR7RnqECB1S5yXzjGToxyhD5oTRPaDRXf3YkOFBqGnimMsB6rJa9VPzP68XaP3cTJqJYU0EWg/yYIx2i9Hw0ZJISzaeGYCKZ2RWRMZaYaBNSwYTgLJ/8l7QrZcfwm1qpcZnFkYcjOIZTcOAMGnANTWgBAQGP8AwvlrKerFfrbVGas7KeQ/gF6/0LKIiPQw==</latexit><latexit sha1_base64="3Q4aj8kO7TGt4Ci4QvW18J+JzJA=">AAAB8XicbVDLSgMxFL1TX7W+qi7dBIvgqsy0Be1Gim5cVrAPbMeSSTNtaCYzJBmhDP0LNy4UcevfuPNvzLSDaPVA4OSce7n3Hi/iTGnb/rRyK6tr6xv5zcLW9s7uXnH/oK3CWBLaIiEPZdfDinImaEszzWk3khQHHqcdb3KV+p0HKhULxa2eRtQN8EgwnxGsjXQn7yvoAtnlen1QLNllew7zd+rVmlNF34qTkRJkaA6KH/1hSOKACk04Vqrn2JF2Eyw1I5zOCv1Y0QiTCR7RnqECB1S5yXzjGToxyhD5oTRPaDRXf3YkOFBqGnimMsB6rJa9VPzP68XaP3cTJqJYU0EWg/yYIx2i9Hw0ZJISzaeGYCKZ2RWRMZaYaBNSwYTgLJ/8l7QrZcfwm1qpcZnFkYcjOIZTcOAMGnANTWgBAQGP8AwvlrKerFfrbVGas7KeQ/gF6/0LKIiPQw==</latexit><latexit sha1_base64="3Q4aj8kO7TGt4Ci4QvW18J+JzJA=">AAAB8XicbVDLSgMxFL1TX7W+qi7dBIvgqsy0Be1Gim5cVrAPbMeSSTNtaCYzJBmhDP0LNy4UcevfuPNvzLSDaPVA4OSce7n3Hi/iTGnb/rRyK6tr6xv5zcLW9s7uXnH/oK3CWBLaIiEPZdfDinImaEszzWk3khQHHqcdb3KV+p0HKhULxa2eRtQN8EgwnxGsjXQn7yvoAtnlen1QLNllew7zd+rVmlNF34qTkRJkaA6KH/1hSOKACk04Vqrn2JF2Eyw1I5zOCv1Y0QiTCR7RnqECB1S5yXzjGToxyhD5oTRPaDRXf3YkOFBqGnimMsB6rJa9VPzP68XaP3cTJqJYU0EWg/yYIx2i9Hw0ZJISzaeGYCKZ2RWRMZaYaBNSwYTgLJ/8l7QrZcfwm1qpcZnFkYcjOIZTcOAMGnANTWgBAQGP8AwvlrKerFfrbVGas7KeQ/gF6/0LKIiPQw==</latexit><latexit sha1_base64="3Q4aj8kO7TGt4Ci4QvW18J+JzJA=">AAAB8XicbVDLSgMxFL1TX7W+qi7dBIvgqsy0Be1Gim5cVrAPbMeSSTNtaCYzJBmhDP0LNy4UcevfuPNvzLSDaPVA4OSce7n3Hi/iTGnb/rRyK6tr6xv5zcLW9s7uXnH/oK3CWBLaIiEPZdfDinImaEszzWk3khQHHqcdb3KV+p0HKhULxa2eRtQN8EgwnxGsjXQn7yvoAtnlen1QLNllew7zd+rVmlNF34qTkRJkaA6KH/1hSOKACk04Vqrn2JF2Eyw1I5zOCv1Y0QiTCR7RnqECB1S5yXzjGToxyhD5oTRPaDRXf3YkOFBqGnimMsB6rJa9VPzP68XaP3cTJqJYU0EWg/yYIx2i9Hw0ZJISzaeGYCKZ2RWRMZaYaBNSwYTgLJ/8l7QrZcfwm1qpcZnFkYcjOIZTcOAMGnANTWgBAQGP8AwvlrKerFfrbVGas7KeQ/gF6/0LKIiPQw==</latexit>

r2 > 0.99
<latexit sha1_base64="DNmVEkqFp/E6gyjji4tWUlgio38=">AAAB8XicbVDLSgMxFL1TX7W+qi7dBIvgqswURbuRohuXFewD27Fk0kwbmkmGJCOUoX/hxoUibv0bd/6NaTuCVg8ETs65l3vvCWLOtHHdTye3tLyyupZfL2xsbm3vFHf3mlomitAGkVyqdoA15UzQhmGG03asKI4CTlvB6Grqtx6o0kyKWzOOqR/hgWAhI9hY6U7dV9AFcsvVaq9YcsvuDPZ/+k0yxctICTLUe8WPbl+SJKLCEI617nhubPwUK8MIp5NCN9E0xmSEB7RjqcAR1X4623iCjqzSR6FU9gmDZurPjhRHWo+jwFZG2Az1ojcV//M6iQnP/ZSJODFUkPmgMOHISDQ9H/WZosTwsSWYKGZ3RWSIFSbGhlSwIXiLJ/8lzUrZs/zmpFS7zOLIwwEcwjF4cAY1uIY6NICAgEd4hhdHO0/Oq/M2L805Wc8+/ILz/gURZo8z</latexit><latexit sha1_base64="DNmVEkqFp/E6gyjji4tWUlgio38=">AAAB8XicbVDLSgMxFL1TX7W+qi7dBIvgqswURbuRohuXFewD27Fk0kwbmkmGJCOUoX/hxoUibv0bd/6NaTuCVg8ETs65l3vvCWLOtHHdTye3tLyyupZfL2xsbm3vFHf3mlomitAGkVyqdoA15UzQhmGG03asKI4CTlvB6Grqtx6o0kyKWzOOqR/hgWAhI9hY6U7dV9AFcsvVaq9YcsvuDPZ/+k0yxctICTLUe8WPbl+SJKLCEI617nhubPwUK8MIp5NCN9E0xmSEB7RjqcAR1X4623iCjqzSR6FU9gmDZurPjhRHWo+jwFZG2Az1ojcV//M6iQnP/ZSJODFUkPmgMOHISDQ9H/WZosTwsSWYKGZ3RWSIFSbGhlSwIXiLJ/8lzUrZs/zmpFS7zOLIwwEcwjF4cAY1uIY6NICAgEd4hhdHO0/Oq/M2L805Wc8+/ILz/gURZo8z</latexit><latexit sha1_base64="DNmVEkqFp/E6gyjji4tWUlgio38=">AAAB8XicbVDLSgMxFL1TX7W+qi7dBIvgqswURbuRohuXFewD27Fk0kwbmkmGJCOUoX/hxoUibv0bd/6NaTuCVg8ETs65l3vvCWLOtHHdTye3tLyyupZfL2xsbm3vFHf3mlomitAGkVyqdoA15UzQhmGG03asKI4CTlvB6Grqtx6o0kyKWzOOqR/hgWAhI9hY6U7dV9AFcsvVaq9YcsvuDPZ/+k0yxctICTLUe8WPbl+SJKLCEI617nhubPwUK8MIp5NCN9E0xmSEB7RjqcAR1X4623iCjqzSR6FU9gmDZurPjhRHWo+jwFZG2Az1ojcV//M6iQnP/ZSJODFUkPmgMOHISDQ9H/WZosTwsSWYKGZ3RWSIFSbGhlSwIXiLJ/8lzUrZs/zmpFS7zOLIwwEcwjF4cAY1uIY6NICAgEd4hhdHO0/Oq/M2L805Wc8+/ILz/gURZo8z</latexit><latexit sha1_base64="DNmVEkqFp/E6gyjji4tWUlgio38=">AAAB8XicbVDLSgMxFL1TX7W+qi7dBIvgqswURbuRohuXFewD27Fk0kwbmkmGJCOUoX/hxoUibv0bd/6NaTuCVg8ETs65l3vvCWLOtHHdTye3tLyyupZfL2xsbm3vFHf3mlomitAGkVyqdoA15UzQhmGG03asKI4CTlvB6Grqtx6o0kyKWzOOqR/hgWAhI9hY6U7dV9AFcsvVaq9YcsvuDPZ/+k0yxctICTLUe8WPbl+SJKLCEI617nhubPwUK8MIp5NCN9E0xmSEB7RjqcAR1X4623iCjqzSR6FU9gmDZurPjhRHWo+jwFZG2Az1ojcV//M6iQnP/ZSJODFUkPmgMOHISDQ9H/WZosTwsSWYKGZ3RWSIFSbGhlSwIXiLJ/8lzUrZs/zmpFS7zOLIwwEcwjF4cAY1uIY6NICAgEd4hhdHO0/Oq/M2L805Wc8+/ILz/gURZo8z</latexit>

r2 = 0.95
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Supplemental Figure 2: Forgetting curves exhibit approximately exponential decay. (a) Forgetting curves from

Figure 2b (left) and 2d (right) plotted on logarithmic axes, with Nx = N . Dotted lines are best fits with power law

decay. (b) Forgetting curves as in (a), but plotted with just one logarithmic axis. Dotted lines are best fits with

exponential decay.

Many previous studies on memory have shown that forgetting curves are well described by curves decaying

as a power law [3], in which the probability of correct recall has the form ∼ t−a, where t is time and a > 0.

Supplemental Figure 2a shows that such a fitting function, which appears as a straight line in a log-log

plot, does a relatively poor job of fitting the forgetting curves from the two-pathway model. In contrast,

exponentially decaying functions, in which the probability of correct recall ∼ e−at and which appear as

straight lines on semilogarithmic plots, provide a good fit to the forgetting curves (Supplemental Figure 2b).
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Supplemental Figure 3: Short training intervals during spaced repetition lead to better testing performance. (a)

The two-pathway network is trained with random sequential patterns, with one particular pattern presented twice.

(b) For any interval ∆test between the second presentation and the testing phase, the testing performance for the

repeated pattern is best when the interval between the presentations during training is short. Results are simulations

from a two-pathway network with Nx = Ny = 1000 and α = β = 1.

In simulations of the two-pathway model, the neuron was trained in sequence to perform P classifications.

All of the input patterns were distinct, except for a single pattern that was presented twice during training,

with an interval ∆train between presentations. The interval between the second presentation and the testing

phase was ∆test. For any ∆test, smaller values of ∆train always led to a lower error rate for the repeated

pattern during testing (Figure 3b).

In addition, we note that repetition of patterns has no significant effect at all in the single-pathway model

without Hebbian weights. In this case, upon the second presentation of the repeated pattern during training,

the weight vector will either not be updated at all (if classification is already correct with sufficient margin)

or will be updated to lie on the correct side of the classification boundary plus a margin (if the classification

is initially incorrect or correct with insufficient margin). In neither of these two cases is there a benefit to

having seen the pattern before, since one of these same things would have happened if the first presentation

had not occurred.

Thus, while the information accumulated in the Hebbian weights of the two-pathway model is an important

ingredient for describing nontrivial effects due to spaced repetition, the single-neuron model appears to be

unable to account for the experimentally observed existence of optimal repetition intervals [34], and thus

leaves room for future work on this topic.
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Input alignment with reinforcement learning
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Supplemental Figure 4: Input alignment and control transfer in a network with reinforcement learning and

Hebbian learning. (a) Version of the two-pathway model in which synaptic weights in the first pathway are updated

with RL. (b) As training is repeated, the normalized alignment between m and h grows. The alignment does not

occur if the second input pathway is updated with RL instead of Hebbian learning (dashed line) (c) The mean

squared error between the output activity and the target state decreases with training and remains low if the first

input pathway is removed.

We checked that the mechanisms of input alignment and control transfer could also be obtained using

reinforcement learning (RL), which is a more plausible form of synaptic plasticity than the perceptron

learning rule for describing changes at corticostriatal synapses. In this case, a noise current ξ was added to

the readout layer, with ξi ∼ N (0, 1), and the updates to input weights in the first pathway were given by

[55, 56]

∆Wij = η(r − r̄)ξi. (61)

Over the course of many trials, where each trial consists of a complete presentation of all P = 10 patterns,

the input currents from the two pathways become aligned when one pathway was trained with RL and the

other with HL, but not if both pathways were trained with RL (Supplemental Figure 4b). Further, due to

input alignment and control transfer, the first input m can be removed once the network is trained, without

significantly impairing performance (Supplemental Figure 4c).
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