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Cell lineage consists of cell division timing, cell migration and cell fate, which are

highly reproducible during the development of some nematode species, including C.

elegans. Due to the lack of high spatiotemporal resolution of imaging technique and
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reliable shape-reconstruction algorithm, cell morphology have not been systemati-

cally characterized in depth over development for any metazoan. This significantly

inhibits the study of space-related problems in developmental biology, including cell

segregation, cell-cell contact and cell shape change over development. Here we de-

velop an automated pipeline, CShaper, to help address these issues. By quantifying

morphological parameters of densely packed cells in developing C. elegans emrbyo

through segmentation of fluorescene-labelled membrance, we generate a time-lapse

framework of cellular shape and migration for C. elegans embryos from 4- to 350-

cell stage, including a full migration trajectory, morphological dynamics of 226 cells

and 877 reproducible cell-cell contacts. In combination with automated cell tracing,

cell-fate associated cell shape change becomes within reach. Our work provides a

quantitative resource for C. elegans early development, which is expected to facilitate

the research such as signaling transduction and cell biology of division.

Introduction1

Embryogenesis in metazoans is a spatio-temporal biological process formed by a series2

of multicellular structure evolution including proliferation and morphogenesis. As “eu-3

tely” C. elegans has invariant and reproducible cell lineage consisting of division tim-4

ing, migration trajectory and fate specification for each cell1, it has been wildly used as5
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an animal model for developmental biology research2. Thanks to advanced imaging e-6

quipment with single-cell resolution as well as automatic cell-tracing softwares3–5, a few7

researchers have made great effort to quantitatively reconstruct its developmental atlas8

in several dimensions of developmental properties, including cell division timing6, gene9

expression and morphogenesis7, 8, cell-cell contact mapping and signaling9, 10. Despite al-10

l this, little is known about cell morphology experimentally and systematically, due to11

lack of high-resolution cell membrane signaling marker and reliable imaging-based algo-12

rithm for cell segmentation, in particular for late stage which has hundreds of cells11, 12.13

Cell morphology (e.g. cell shape, cell volume, cell-cell contact) is also a set of critical14

developmental properties and information for metazoan embryogenesis, which is tight-15

ly correlated to cell-cycle control13–15, spindle formation16, cell-fate symmetry break-16

ing and differentiation17, 18, intercellular signal transmission10, 12, 19, 20, cytomechanics and17

morphogenesis21–24, etc.18

Recent studies also emphasized the necessity of 3-dimensional cellular segmenta-19

tion aside from the nucleus25, 26. With large quantities of volumetric data involved in the20

embryogenesis of C. elegans, visual inspection on these images is time-consuming and21

error-prone. Computer-assisted analysis accommodates the difficulty in large-scale image22

segmentation, paving the way to efficient and accurate researches. Compared to manual23

annotation, automated image analysis has better objective quantification, consistency and24
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reproducibility. Confocal microscopy is popularly used in 3D imaging, which allows op-25

tical section in tissue or even cells at different depth. Whereas large quantities of works26

have been proposed to segment nuclei or cells in 2D27–30, cell’s morphological features27

varies from those in 3D. Without information between slices, simply stacking 2D seg-28

mentations into 3D volume may yield misalignment in the depth direction. Some recent29

methods have addressed cell tracing based on nucleus information31, however, they can30

hardly characterize cell geometry information (e.g. cell volume, cell surface area, cell31

topology, cell-cell neighbour relationship). The performance of 3D cell segmentation suf-32

fers from three factors. First, unlike the nuclei, which are thick and separated ellipsoid33

components, cell membranes are thin planar structures, forming complicated networks34

by contacting with each other. Second, compared to plant tissue, highly dynamic cellular35

morphology in C. elegans limits the application of diverse techniques based on deformable36

model. Furthermore, as shown in Fig. S1A, laser attenuation makes the segmentation more37

challenging in deeper slices. Theoretically, large exposure times can improve the image38

quality. Poisonous laser rays, however, could harm or even kill cells in time-lapse imaging39

process.40

In the last few decades, Several attempts have been made to leverage the segmenta-41

tion performance on microscopy. Classical techniques are based on pre-defined model and42

image intensity features. Among these, active contours and level sets are two of the most43
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compelling methods in segmenting microscopy. Active contour deals with segmentation44

as a energy minimization process where the image forces pull the contour toward the ob-45

ject boundary and internal forces resist the deformation. Different evolution equations,46

mediating the internal and external forces, are designed to control the deformation process47

precisely32–35. To diminish the difficulty in finding desirable forces representation, level set48

is used to embed the boundary curve as a real-valued solution of an equation, which makes49

it straightforward to follow topology changes, such as splits and holes. By using coupling50

constrains in level set evolution, Nath et al. proposed a computationally efficient method51

to segment hundreds of cells simultaneously27. Kiss et al. used level set to segment plant52

tissues at multiple scales, which reduced the error at blurry surface effectively36. Instead53

of processing multiple slices in 3D simultaneously, Sharp et al. described the possibility54

of inferring 3D shape features indirectly from 2D images in a statistical way37. In practice,55

however, the performance of level set is limited by considerable computational complexity56

and incomplete cell boundary. Methods driven by energy functions could be problematic57

due to the presence of artifacts and lack of strong edge information. Xing et al. provides58

a compressive review about classical cell segmentation techniques38. Data-dependent and59

parameterized pre-processing stage is always needed in these methods, otherwise the sys-60

tem would be exposed to under-or-over segmentation errors.61

Recently, deep learning based methods provide a promising tool for recognition62
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tasks, such as denoising39–42, tumor segmentation43, 44 and image synthesis45–48. Compared63

to classical methods, convolutional neural network (CNN) shows remarkable improve-64

ment on biological image analysis by mining subtle texture and shape changes. Since65

U-net was proposed by Ronneberger et al.49, this kind of encoder-and-decoder structure66

has extensively promoted learning-based segmentations on medical images50. For fluores-67

cent images, the ability of deep learning in discriminating and filtering useful information68

is further verified48, 51. To mitigate the complexity in cellular networks, the segmentation69

is usually decomposed into multiple intermediate tasks, such as nucleus detection and70

membrane segmentation?, 52, 53. 3D convolution attracts increasing attention because of its71

advantage in combining multi-directional information. However, 3D deep network relies72

heavily on computation resource and training data. Some works are proposed to alleviate73

the computational complexity in 3D54–57.74

In this work, we propose a complete pipeline CShaper for analyzing cellular shapes75

in C. elegans. Deep learning is utilized to accommodate the complications associated in76

volumetric C. elegans embryo. First, instead of segmenting cells as a binary classification77

task directly, CShaper generates the discrete distance map from the membrane stack image78

with a distance regularized neural network DMapNet. Second, Delaunay triangulation is79

employed to construct a weighted graph based on the binary segmentation extracted from80

the DMapNet. Local minima are clustered as different seeds for watershed segmentations.81
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Last, nucleus images are used to filter out hollow regions among cells. Automatic seeding82

procedure precludes substantial computations involved in most current works due to the83

over-segmentation problem. After adjusting position variations in wide-type emrbyos, we84

establish a spatio-temporal morphogenesis reference for C. elegans embryogenesis during85

4- to 350-cell stage. Both individual evaluation and experimental verification on previous86

conclusions demonstrate the unprecedented performance of CShaper.87

Results88

By measuring the consistency between segmentations of prevalent methods and manual89

annotations, CShaper outperforms regarding both accuracy and robustness. Besides, based90

on the segmentations, cell volume and cell surface area, which usually get involved in cell-91

cycle control and cell-fate specification13–18, were firstly investigated and found to have92

high reproducibility among individuals.93

Dataset In C. elegans embryo, nucleus and membrane were stained in vivo with mCherry94

marker on nucleus and GFP marker on cell membrane, respectively. 4D (space + time)95

nucleus and membrane stacks from two channels were collected by Leisa SP8 confocal96

microscopy at 1.5-min interval. All images with a resolution 512 × 712 × 70 (voxel size97

0.09× 0.09× 0.43µm) were resized into isotropic volume images with a resolution 205×98
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285×134 (voxel size 0.22×0.22×0.22µm) before analysis. Different wide-type embryos99

are used in different stages as listed in Supplementary Table. S1.100

Manual annotations are needed to train the DMapNet and compare different meth-101

ods. In plant tissue, cells are encased within cell walls that physically adhere to their102

neighbors, yielding better image quality and uniform size. In the animal embryo, howev-103

er, irregular cells are separated by thin membrane, making it much challenging to segment104

each cell accurately. Besides, since only 2D slice can be shown on computer screen, full105

annotation of volumetric data is very tedious. Therefore, the gold standard is produced106

by semi-automatic software with the results revised by experts. Membrane stacks are107

pre-segmented by 3DMMS 58 first, and then checked by two experts with ITK-SNAP 59
108

slice-by-slice. Nucleus image is also imposed to prevent invalid gaps between cells. Please109

note that annotations are composed by cell-wise regions, which can be transformed into110

membrane mask with morphological operations. Most annotations have less than 100 cells111

to prevent annotation quality deteriorating with the image quality and segmentation error112

of 3DMMS. Although DMapNet is trained on frames within 150-cell stage, experiments113

show that it is able to process the embryo in 350-cell stage with high quality owning to the114

multi-scale input features. All datasets companied with annotations or segmentations will115

be publicly available.116
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Comparison with other method Here a through comparison among CShaper and other117

sate-of-the-art methods is discussed. To be a fair comparison, watershed algorithm is118

also used as a postprocessing procedure in 3D U-net and FusionNet where only binary119

membrane segmentation is available. However, different from CShaper, the seeds are120

collected from the nucleus locations generated by AceTree, which theoretically produces121

more accurate estimation on real nucleus images. In order to compare the CShaper without122

distance learning strategy, the CShaper was changed to a naive binary segmentation by123

replacing the last layer of DMapNet (see Methods) with two channel filters, while other124

parameters kept the same as that in CShaper.125

Experimental results are reported in Fig. 1. It shows that CShaper achieves much126

higher accuracy on three different wide types at various time points (Fig. 1A), which127

validates the accuracy and generality of our approach. Such improvement benefits from:128

1). CShaper allows segmentation on weak boundaries because of the distance constrained129

learning strategy (Supplementary Fig. S1); 2). In RACE and FusionNet, segmentation-130

s are implemented slice-by-slice. Although slices are combined into stack statistically131

during the post-processing stage, few inter-slice information, if any, in raw images are uti-132

lized to establish a promising result; 3). In contrast to naive binary segmentation methods,133

DMapNet reaches a compromise at the membrane boundary by constructing a relatively s-134

mooth transition between the membrane and the background. This encourages the network135
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to learn more morphological features around the membrane.136
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Ground truthRaw image

FusionNet

RACE

CShaper3DUnet

A

B
C

D

r

Figure 1: Analysis on the segmentation results. (A) Comparison on the Dice ratio of the
segmentations from 3D U-Net, FusionNet, RACE, CShaper and naive binary. All values
are calculated based on seven manual annotations of three wide types, respectively. (C)
The distribution of cell volume consistency ρc with respect to time tc in four embryos. (D)
The distribution of lost nucleus with respect to time in four embryos. (D) Comparison of
the segmentations from RACE, 3DUnet, FusionNet and CShaper.
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As Fig. 1D shows, RACE and FusionNet suffer severe leakage at the button layers of137

the embryo, where the membrane signal is too weak to be discriminated because of laser138

attenuation. 3DUnet provides better feature extraction by applying convolution between139

slices. However, partial membrane, especially at the boundary of the embryo, is still140

too weak to be recognized, which deteriorates the lost cells in the periphery. Under the141

distance map constraint, CShaper learns to depict weak or lost membrane as annotated in142

the training data.143

Robustness on extensive datasets To measure the performance of CShaper on more144

datasets, whose annotations are not available, we quantitatively measured the volume con-145

sistency, as well as the lost nucleus, of serial segmentations. CShaper segments each146

embryo independently, frame by frame, without capturing typical temporal patterns across147

time. Successive imaged cells, theoretically, should have temporally consistent volume, or148

with limited variance when considering biological dynamics. Therefore, we can examine149

the performance of CShaper on extensive time-lapse stacks by analyzing series informa-150

tion. Besides the membrane images, their corresponding nucleus stacks were processed by151

AceTree, which can be used to identify cell’s name and the lifespan of each nucleus. We152

defined volume consistency and ratio of lost nuclei to estimate the error of segmentations153

in four wide-type embryos with 200 frames in each, which are used for following spatio-154

temporal reference reconstruction. A index matrix Vtc|t∈[1,2,3,...200],c∈C was constructed155
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such that “0” represents the existence of cell c at time t, otherwise the element is kept as156

NaN (invalid value), where C is the collection of cell names. We assembled cell’s volume157

of all segmentations of one wide-type embryo into the matrix V. Then for each cell c, the158

volume consistency ρc is defined as the ratio of the standard deviation and mean applied159

to volume series Vt,c|t=1,2,...,200. Note that all invalid values NaN were not taken into160

consideration. The start time point of cell c is also labelled as tc in order to discriminate161

the error at different developmental stages. Larger ρc means the segmentation of cell c has162

better temporal consistency, yielding higher performance. The distribution of consistency163

coefficients (tc, ρc) of the four wide-type embryos is plotted in Fig. 1B. In these segmen-164

tations, most cells have relative small volume variation through the development, although165

temporal information are not applied to CShaper in the segmentation procedures intention-166

ally. With the number of cells increasing over time, the cell volume becomes smaller and167

the signal-to-noise ratio decreases dramatically, which makes it more challenging to be168

segmented precisely. Simultaneously, because nuclei are not involved in the segmentation169

stage, nucleus information processed by AceTree can be used to justify the accuracy. In170

Fig. 1C, we show the ratio of lost nucleus (see Supplementary note 1) at different time171

points. Few cells before 200-cells stage are lost in the four embryos. With the number172

of cells increasing and density of fluorescence shrinking, the number of cells that are lost173

becomes larger when entering the eighth round of cell divisions. However the lost cells174
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in the entire embryos only occupy a small proportion (around 11.9% at 350-cells). There-175

fore, we can safely conclude that CShaper has superior ability on segmenting extensive176

time-lapse embryo images.177

Establishment of spatio-temporal morphogenesis reference Using experimental meth-178

ods and quality-control standards described before6, 60, 4 wild-type embryos within 350-179

cell stage were used to construct the morphogenesis reference of early C. elegans embryo.180

All the 17 embryos (4 embryos with both nucleus and membrane markers and the other 13181

embryos with only nucleus marker) were first linearly normalized to minimize their posi-182

tional variation according to a proposed computational pipeline60; secondly, translation in183

yz plane and rotation around x axis were successively performed on the 4 embryos with184

membrane marker, to ensure the compressed contact faces were parallel to xz plane; third-185

ly, translation in xz plane and rotation around y axis were successively performed on the186

4 embryos, so that their projection to xz plane could be embedded by a centralized ellipse187

with minimum area; after that, the 4 embryos were rescaled to the same length in x, y, z188

directions; at last, the other 13 embryos were normalized to the nucleus-position averages189

of the 4 embryos using methods proposed previously60 (Supplementary Fig. S2).190

Morphological developmental properties at single-cell level Using the cell-segmentation191

algorithm designed above, a total of 226 cells ( ≈ 70%) among AB4-128, MS1-MS16,192
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E1-E8, C1-C8, D1-D4, P3 and P4 were recorded with complete lifespans and segmented193

without any error in all the 4 wild-type embryos, generating 4-dimensional morphological194

dynamic information at single-cell level with high confidence, such as cell shape (e.g. cell195

volume, cell surface area, topology) and cell-cell contact (e.g. contact duration, contact196

area, neighbour relationship) (Fig. 2, Supplementary Fig. S3)(Table. S2).197

To test the data quality and further refine the information useful to biological study,198

here we focus on three low-dimensional but valuable developmental properties : cell vol-199

ume, cell surface area and cell-cell contact. Cell volume and cell surface area, which200

usually get involved in cell-cycle control and cell-fate specification13–18, were firstly inves-201

tigated and found to have high reproducibility among individuals (Fig. 2 A,B). Cell-fate202

induction (e.g. Wnt signaling19, 20 and Notch signaling10, 61) during embryo development203

intimately depends on continuous, sufficient and direct physical contact between specif-204

ic cells for interaction between receptors and ligands and consequent effective signaling205

transmission. Based on the contact relationship acquired from raw experimental images206

and automatic segmentation, we filtered the most reliable and valid contact between two207

specific cells by adding three empirical criteria10, 1) with contact area larger than 1/36 of at208

least one cell’s surface area (sufficiency, Scontact/Ssurface > 1/36); 2) with contact duration209

no shorter than 3 minutes, i.e. consecutive two time points (continuity, Tcontact ≥ 3 min)210

; 3) be reproducible in all the 4 wild-type embryos (reproducibility, Nreplicate = Nembryo).211
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At last, totally 877 contact pairs of two specific cells are identified (Fig. 2C). Cells with212

missing information are listed in Supplementary Table. S3. Please note that the criteria213

are set arbitrarily and can be readjusted for different research purposes.214

Figure 2: Reproducibility, precision, validity of cell volume, cell surface area, and cell-cell
contact. All the cells involved are completely recorded and segmented without any error
during their lifespans (Table 1). (A) Highly reproducible volume of cells in the 4 wild-type
embryos. Inset, variation coefficients of cell volume. (B) Highly reproducible surface area
of cells in the 4 wild-type embryos. Inset, variation coefficients of cell surface area. (C)
Selection filter of sufficient, continuous and reproducible cell-cell contact pairs according
to a set of arbitrary criteria.

Discussion215

Cell morphology is critical and useful developmental property involved with different bio-216

logical process. In this paper, a complete pipeline CShaper for analyzing spatio-temporal217

morphological features of C. elegans embryo at single-cell level is proposed. The CShaper218

benefits from the well-defined distance learning task. By learning to capture multiple219
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discrete distances, DMapNet extracts the membrane mask by considering shape infor-220

mation, instead of just intensity features. Remarkable performance is examined by both221

intrinsic geometric constrains and previous notable discoveries. Based on these accurate222

segmentations, we merged the embryos and quantitatively generated a spatio-temporal223

morphogenesis reference for 4- to 350-cell stage of C. elegans embryogenesis, including224

single-cell properties such as cell shape (e.g. cell volume, cell surface area, topology),225

cell-cell contact (e.g. contact duration, contact area, neighbour relationship), cell posi-226

tional variability, etc. In all, 226 cells with complete lifespans and dynamic morphology227

trajectory were produced. Furthermore, a total of 877 contact pairs between two specific228

cells were identified with high reproducibility, continuous contact duration and sufficient229

contact area, which could be a solid foundation for searching potential signaling pathways230

between cells. Our work provides a quantitative and statistical framework for C. elegans231

morphogenesis, which is a powerful resource to push forward multiple biological research232

fields like signaling transmission, fate specification and asymmetric segregation. Next, we233

discuss the coincidence of CShaper with three well-known experimental discoveries and234

inspect its valuable applications on different datasets.235

Verifications on previous studies To further validate the C. elegans morphogenesis ref-236

erence with single-cell developmental properties (e.g. cell volume, cell position, cell-cell237

contact), here we use our new quantitative data to repeat and verify three separate sets of238
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experimental conclusions about C. elegans embryonic development10, 13, 61–63.239

Firstly, Arata et al. found the power law relationship between cell cycle duration and240

cell volume in the early C. elegans development, that is, AB and MS cells adopt the same241

power exponent (≈-0.27) while C and P cells adopt another different power exponent (≈-242

0.41)13. Under log-log scale coordinates system, we also performed linear fitting between243

cell cycle duration and cell volume and found that the two exponents obtained (AB and244

MS, -0.2990 ; C and P, -0.4244) are very close to the values proposed before (Fig. 3A, B).245

Secondly, Li et al. uncovered the “low-high-low” dynamic pattern of cell positional246

variability during 4- to 350-cell stage of C. elegans embryogenesis62. Using the same eval-247

uation method on positional variability (RMSD) proposed before, we used our normalized248

cell positions (nucleus positions) to calculate their spatial variation and reconstructed a249

similar curve with a turning point occurring when cell number reaches around ninety (Fig.250

3C).251

Thirdly, several intercellular signaling based on accurate cell-cell contact have been252

identified to play important roles in asymmetric segregation, spindle formation and cell-253

fate induction10, 19, 20, 61, 63. Here, we compared the known cell-cell signaling pairs with our254

cell-cell contact dataset (877 pairs in total). The majority of known contact pairs past255
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through our filter criteria with continuous contact duration as well as sufficient contact256

area, except C −→ ABar and MS −→ ABalp (Table. 1). The contact between C and257

ABar can be found in all the 4 wild-type embryos with at least two consecutive time point258

(≈3 minutes), however, the relative contact area is smaller than the arbitrary filter criterion259

(Scontact/Ssurface > 1/36) in one of the embryos (Fig. 2C), revealing that the threshold260

for identifying valid cell-cell contact should be reestimated and readjusted on the basis of261

the actual biological scenes (e.g. surface density of ligands or receptors), nevertheless,262

the original contact information from image segmentation is objective and can be used for263

different research purposes. For the other contact pair MS −→ ABalp, one of the cells264

ABalp are missing (i.e. fail to be segmented) due to its location near the top of embryo265

and consequent dim fluorescent signal.266
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Figure 3: Verification of our newly proposed morphogenesis reference using experimental
results from References13, 62. (A) Power law relationship between cell cycle duration and
cell volume in AB and MS cells, with power exponent ≈-0.2990. Inset, illustration in
log-log scale coordinates system. (B) Power law relationship between cell cycle duration
and cell volume in C and P cells, with power exponent ≈-0.4244. Inset, illustration in
log-log scale coordinates system. (C) “Low-high-low” dynamic pattern of cell positional
variability during 4- to 350-cell stage.
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Table 1: Verification of our newly proposed morphogenesis reference using experimental results from references.

Cell-Cell Contact Pair
Validity

&
Reproducibility

Contact
Duration

(min)

Relative
Contact Area
Surface (%)

Relative
Contact Area
Surface (%)

Remark Ref.

P2 −→ EMS 4/4 7.04 9.61±2.30 12.31±2.15 Wnt Signaling Thorpe et al19

MS −→ ABal 4/4 7.04 15.70±2.60 15.03±2.66 Latrophilin Signaling Langenhan et al63

C −→ ABar 3/4# 7.04 2.37±2.57 2.60±2.79 Wnt/β-catenin Signaling Walston et al20

P2 −→ ABp 4/4 5.63 13.38±1.99 20.47±2.01 Notch Signaling (1st) Priess et al61

MS −→ ABalp /* / / / Notch Signaling (2nd) Chen et al10, Priess et al61

MS −→ ABara 4/4 5.63 9.28±1.19 12.98±2.14 Notch Signaling (2nd) Chen et al10, Priess et al61

ABalapa −→ ABplaaa 4/4 5.63 14.22±3.86 11.13±3.26 Notch Signaling (3rd) Chen et al10, Priess et al61

ABalapp −→ ABplaaa 4/4 5.63 13.06±3.91 10.66±2.65 Notch Signaling (3rd) Chen et al10, Priess et al61

MSapp −→ ABplpapp 4/4 5.63 12.58±3.69 13.92±3.86 Notch Signaling (4th) Chen et al10, Priess et al61

MSapppp −→ ABplpppp 4/4 5.63 7.58±0.21 9.19±2.61 Notch Signaling (5th) Chen et al10, Priess et al61

# Without complete reproducibility in the 4 wild-type embryos under designed filter criteria.
* Including missing cell (ABalp).
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Application on different datasets To evaluate the performance of CShaper on different267

kinds of images, the plant tissue images used by Fernandez et al64 were segmented with268

our method. In the work, Arabidopsis thaliana stem cells were processed with MARS65,269

which provides reasonable discrimination on inner parts of the tissue by fusing multi-angle270

acquisitions. Different from MARS, CShaper processes the stem in a more challenging271

way, segmenting single-direction membrane stack without the fusion stage. Because of272

the large shape difference between animal and plant cells, we retrained DMapNet with273

two segmentation results from the MARS. Negative segmentations were filtered when its274

volume deviates the average level too much. The comparison result is listed in Supple-275

mentary Fig. S4. Both MARS and CShaper show promising segmentations of cells at276

shallow layers. However, CShaper shows stronger results on inner parts with extreme-277

ly low intensity. Although DMapNet was trained with defective reference as shown in278

Supplementary Fig. S4B, C and D, CShaper escaped these irregular errors during the279

inference stage.280

Constrains of CShaper CShaper provides new insights into the study of C. elegans em-281

bryogenesis at single-cell level, both in spatial and temporal aspects. First, to promote the282

accuracy of automatic C. elegans embryo segmentation, especially at later developmental283

stage, some constrains of CShaper need to be emphasized here. First, as the cell shape284

changes with time continuously, the temporal features between consecutive frames are285
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supposed to elevate the segmentation performance. LSTM, originally designed for natu-286

ral language process (NLP), is an obvious candidate to capture temporal features across287

time26. However, CShaper doesn’t adopt LSTM-based model, such as convLSTM66, be-288

cause of the considerable computational resources involved in 3D convolution. We also289

find that the segmentation errors of CShaper concentrate at the top of the embryo, where290

the membrane signal intensity decreases critically because of the laser attenuation. In291

the framework of CShaper, potential strategies could be used to normalize the quality292

of top half embryo based on the button one. For example, Generative Adversarial Net-293

works (GAN) can be employed to transform low-quality images into the target with higher294

resolution40, 45.295

Methods296

CShaper consists of three phases. The first step is to extract the membrane mask by deep297

learning based DMapNet. After that, Delaunay triangulation is used to cluster local mini-298

mum for the followed watershed segmentation. The negative segmentations and potential299

gaps among cells are filtered with the nucleus channel. The final cell shape lineage is con-300

structed based on the series information provided by the nucleus lineage. The framework301

of CShaper is shown in Fig. 4.302
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Figure 4: The framework of CShaper. Serial nucleus and membrane stacks are imaged
simultaneously. For membrane image, CShaper is applied to segment the embryo at single-
cell level automatically. Nucleus stack is processed by AceTree, which tracks nucleus
through the entire development process. Finally, CShaper embedded cellular shape into
the nucleus lineage.
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Distance Constrained Learning The noise and physical imaging limitation degrade the303

quality of automatic segmentations. This problem prevails in embryo segmentation since304

the membrane enclosing a cell can be hardly imaged completely. DMapNet adopts a305

distance constrained learning to address the problem in segmenting noisy embryo images.306

By implicitly learning the distance map, the DMapNet is able to discriminate weak or even307

lost membrane signal.308

With the membrane labelled as front label 1, the binary membrane annotation MB
309

was prepared as discrete distance map MD with310

MD(x, y, z) =


minMB(i,j,k)=1((x− i)2 + (y − j)2 + (z − k)2) if MB(x, y, z) = 0

0 if MB(x, y, z) = 1

(1)311

MD = max(MD)−MD (2)

In Eq. (2), we reversed the distance map to keep it monotonically decreasing from312

the membrane to the background. To relieve the burden on learning the distance where313

pixel was too away from the membrane to have recognizable signal, MD was clipped to314

prevent long-range spatial dependencies. Then MD was further discretized nonlinearly315

into Mdmap, the learning target, with smaller intervals around the membrane mask. The316

cross-entropy loss was used to evaluate the learning progress. However, different from317

traditional multi-classification, DMapNet should ideally provide a class distribution such318
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that the predicted class closer to the real class has higher probability than that is further319

away. For example, the penalty of predicting l = 1 as l = 2 should be smaller than that of320

the prediction l = 15. Therefore, the cross-entropy loss is weighted by the class distance321

as322

l =
N∑
i=1

K∑
k=1

ξkwi,k(ti,k log pi,k + (1− ti,k) log(1− pi,k)) (3)

where ξk is the weight for each interval, wi,k is the class distance weight for each pixel i,323

ti,k is the k-th element of the one-hot target vector at pixel i, and pi,k is the k-th channel324

of the network output at pixel i. N and K are the number of pixels and distance intervals,325

respectively. The K-th interval denotes the mask at the center of the membrane, while326

0-th class represents the background far away from the membrane. Larger weight wk on327

classes closer to the membrane helps the network put more attention on cell boundary. The328

class distance weight wi,k is calculated as329

wi,k = exp(
|k −Ddmap

i |
K

) (4)

where Ddmap
i is the real class at pixel i.330

Network structure The structure of DMapNet is shown in Supplementary Fig. S5. Tak-331

ing the fully convolutional network as the backbone, DMapNet is constructed by consid-332

ering some specific problems in fluorescent images. In order to reduce 3D computational333

complexity, DMapNet utilizes inter-slice information by using 3×3×1 and 1×1×3 con-334
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volution successively. The dilation convolution, from the output of inner-slice convolution335

to its input, is added to enlarge the receptive filed. The residual block is composed of two336

convolutional layers67. Parametric Rectified Linear Units (PReLU)68 are used as the acti-337

vation layer. To help the higher layers retain the information from pixel, the input is scaled338

down and concatenated with the feature map, which also helps to train the network on cells339

in different sizes51. This is essential for segmenting cells when annotations corresponding340

to late development stage are not reliable. Feature maps at lower resolution are upsampled341

and concatenated together to generate the probability map. The membrane image volume342

is split into multiple overlapped slice series ID×W×H , which are processed by DMapNet343

individually. The final prediction of whole volume Mprop
K×(D−8)×W×H is achieved by pack-344

ing these predictions sequentially as discussed in Distance Constrained Learning. Then the345

discrete distance map can be derived by Mpred(z, x, y) = maxc=[1,...K]M
prob(c, z, x, y).346

Automatic seeds clustering based on Delaunay triangulation Till now, we have just347

obtained the discrete distance map Mpred from the DMapNet, as shown in Fig. 4. Wa-348

tershed segmentation is well suited for separating individual cells from the map, where349

black cell interiors are surrounded by bright boundaries. The learned map Mpred, includ-350

ing multiple discrete distance intervals, approximates the distance transformation on the351

latent binary membrane mask. With the holistic information embedded in the ordered352

intervals, cell boundaries can be extracted. However, watershed algorithm cannot be ap-353
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plied on Mpred directly because of redundant local minima and low distance resolution. In354

this part, Delaunay triangulation is employed to detect seeds for watershed segmentation355

automatically.356

First, by selecting the K-th interval as the foreground mask Mpred
K , a reversed357

EDT was applied to Mpred
K , yielding Iedt. All local H-minima in Iedt are noted as S =358

{si}i=1,..,S , where S is number of local minima. In order to filter sis that belong to the359

same cell or background, a weighted graph G is constructed. Edges E = {E1, E2} in G360

come from two sources: one is the Delaunay triangulation on S, noted as E1; another one361

is the edges E2 among all local minima locating on the boundary of the volume. Weight362

of the edge eij is defined as363

W(eij) =


∑

(x,y,z)∈eij

Mpred
K (x, y, z) eij ∈ E1

0 eij ∈ E2

(5)

where (x, y, z) ∈ eij represents all points on the edge eij . The edge is moved from364

E if its weight is greater than the OTSU69 threshold on W. Finally, vertexes M were365

clustered based on their connectivity. All sis in one cluster are regarded as one seed in the366

watershed segmentation stage. In the seeding procedure, a seed could possibly locate in a367

hollow gap between cells, giving rise to fake cell regions. Thus, nucleus stack was used368

to modify these errors. Owing to the impressive performance of DMapNet and automatic369

seeding, only intensity normalization was needed for nucleus image. Regions were set as370
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background when the cumulated intensity in the region is smaller than a threshold.371
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Supplementary

A B C

Figure S1: Comparison of CShaper and naive binary segmentations. (A) Raw image. (B)
and (C) are segmentations of naive binary and CShaper, respectively.
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Figure S2: Spatio-temporal reference of wild-type C. elegans embryonic morphogenesis.
Take the 8-cell stage for example and illustration. x, y, z axes represent anterior-posterior
(A-P), left-right (L-R), dorsal-ventral (D-V) axes respectively. Each color represents one
specific cell identity, noted in legend. (A) 3D structure, y projection and x projection
of cell morphology in 4 wild-type embryo samples. (B) Distribution of nucleus position
in 17 wild-type embryo samples. Each point represents a cell’s nucleus position in one
embryo sample. (C) Spatial deviation and cell-cell contact mapping. Radius of sphere
represents spatial deviation ∆rSTD defined by ∆rSTD = [(

∑N
i=1 |ri − r̄|2)/N ]

1
2 ; gray lines

represent reproducible and effective contact between cells, under arbitrary filter criteria
(Scontact/Ssurface > 1/36; Tcontact ≥ 3min; Nreplicate = Nembryo).
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Figure S3: 4-dimensional morphological evolution during C. elegans embryogenesis. Take
ABp and its daughters ABpl, ABpr as example and illustration. x, y, z axes represent
anterior-posterior (A-P), left-right (L-R), dorsal-ventral (D-V) axes respectively. Green,
ABa ; red, ABpl ; blue, ABpr. Evolution dynamics is shown in rows which represent
different developmental timing noted on left (Tabel. S2). The first column is nucleus-
position distribution from 17 wild-type embryo samples. The second to fifth columns are
reconstructed cell morphology from the 4 wild-type embryo samples.

43

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted October 8, 2019. ; https://doi.org/10.1101/797688doi: bioRxiv preprint 

https://doi.org/10.1101/797688
http://creativecommons.org/licenses/by-nc-nd/4.0/


A B

H J

E

I

F G

K

C D

Figure S4: The application of CShaper on plant tissue. (A, H) are segmentations of
MARS and CShaper shown in 3D. (B-D, (E-G) and (I-K) are three orthogonal sections of
MARS’s segmentation, raw image and CShaper’s segmentation, respectively.
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Figure S5: Network structure of DMapNet. Multiple neighboring slices are processed by
three residual blocks at three different levels consecutively. Feature maps at high levels are
resized into the same size as the input image with linear interpolation. In order to remedy
the lost information, raw images are downsampled and concatenated into the feature maps.
The complete distance map of one volume is achieved by combining multiple predictions.
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Table S1: Datasets (with membrane marker) description
Dataset Name of Wild-Type Embryo With Annotation Usage

Training 170704plc1p2{27}, 181215plc1p1{27} Yes Training DMapNet

Testing 170704plc1p2 {7}, 181210plc1p3{7},
190314plc1p3 {7} Yes Comparing methods

Reference construction 170704plc1p2 {200}, 181210plc1p1 {200},
181210plc1p2 {200}, 181210plc1p3 {200} No Extensive evaluation and

spatio-temporal reconstruction
Note: Number in the bracket {*} represents the frames in the wide type.
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Table S2: Time segmentation on developmental process from 4- to 350-cell stage.

Division Event First Moment
(min)

Last Moment
(min) Division Event First Moment

(min)
Last Moment

(min)
AB2 / 0.00±0.00 {01} E1 4.88±0.86 {04} 22.29±1.82 {10}
AB4 1.53±0.26 {02} 15.45±1.49 {07} E2 23.74±1.87 {12} 62.21±4.53 {25}
AB8 17.67±1.30 {08} 32.25±2.83 {15} E4 65.69±5.01 {26} 106.92±5.34 {39}
AB16 35.21±3.22 {18} 56.47±3.80 {23} E8 113.14±5.66 {41} 175.11±6.86 {52}
AB32 60.92±4.11 {24} 84.84±5.15 {32} E16 191.30±6.79 {54} /
AB64 92.25±5.15 {34} 118.51±5.60 {44} C1 8.85±1.21 {06} 25.92±2.60 {13}
AB128 134.41±6.13 {46} 159.97±4.64 {50} C2 27.37±2.61 {14} 49.85±3.47 {21}
AB256 190.98±4.70 {53} / C4 51.91±3.65 {22} 81.15±4.85 {31}
EMS / 3.43±0.82 {03} C8 88.20±5.55 {33} 115.85±6.12 {43}
P2 / 7.40±1.22 {05} C16 143.16±7.27 {47} /
MS1 4.88±0.86 {04} 21.18±1.71 {09} D1 34.38±2.90 {16} 68.21±5.97 {28}
MS2 22.63±1.76 {11} 42.00±3.12 {19} D2 69.66±5.98 {29} 112.53±6.83 {40}
MS4 43.96±3.43 {20} 67.75±4.55 {76} D4 115.77±7.34 {42} 155.45±7.15 {49}
MS8 72.20±4.91 {30} 97.58±5.76 {35} D8 163.81±7.13 {51} /
MS16 104.74±6.14 {38} 130.54±6.05 {45} P3 8.85±1.21 {06} 32.93±2.88 {16}
MS32 153.27±6.10 {48} / P4 34.38±2.90 {17} 99.90±6.89 {36}

Z2/Z3 101.35±6.90 {37} /
Note: Number in the bracket{*} represents the order of the 54 division events (frames).
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Table S3: Cells with missing information during 4- to 350-cell stage in the 4 embryos expressing membrane marker
(30.7%).

AB Lineage
(81 / 254, 31.9 %)

‘ABalp’ ‘ABalpp’ ‘ABaraa’ ‘ABplap’ ‘ABplpp’ ‘ABalpap’ ‘ABpraaa’
‘ABpraap’ ‘ABprpap’ ‘ABalapap’ ‘ABaraaaa’ ‘ABarappa’ ‘ABarpaaa’ ‘ABarpaap’

‘ABarppaa’ ‘ABarpppa’ ‘ABplapaa’ ‘ABprapaa’ ‘ABprappp’ ‘ABalaaaal’ ‘ABalaaaar’
‘ABalaaapp’ ‘ABalaapaa’ ‘ABalaapap’ ‘ABalaappa’ ‘ABalapaaa’ ‘ABalapaap’ ‘ABalapapa’
‘ABalappaa’ ‘ABalappap’ ‘ABalapppa’ ‘ABalpaaaa’ ‘ABalppaap’ ‘ABarapaaa’ ‘ABarapapa’
‘ABarappaa’ ‘ABarappap’ ‘ABarpaaaa’ ‘ABarpaaap’ ‘ABarpaapa’ ‘ABarpaapp’ ‘ABarpapaa’
‘ABarpapap’ ‘ABarpappa’ ‘ABarppaaa’ ‘ABarppaap’ ‘ABarppapa’ ‘ABarppapp’ ‘ABarpppaa’
‘ABarppppa’ ‘ABarppppp’ ‘ABplaaaaa’ ‘ABplaaaap’ ‘ABplaaapa’ ‘ABplaapaa’ ‘ABplaapap’
‘ABplapaaa’ ‘ABplapaap’ ‘ABplapapa’ ‘ABplapppa’ ‘ABplapppp’ ‘ABplpaaap’ ‘ABplpappp’
‘ABplppapp’ ‘ABplpppaa’ ‘ABplpppap’ ‘ABplppppp’ ‘ABpraaaaa’ ‘ABpraaaap’ ‘ABpraapaa’
‘ABpraapap’ ‘ABprapaaa’ ‘ABprapaap’ ‘ABprapapa’ ‘ABprapapp’ ‘ABprapppa’ ‘ABprapppp’
‘ABprpaaap’ ‘ABprpappp’ ‘ABprppaaa’ ‘ABprppppp’ / / /

MS Lineage
(6 / 31, 19.4 %) ‘MSap’ ‘MSaap’ ‘MSaaap’ ‘MSaapp’ ‘MSappa’ ‘MSppap’ /

E Lineage
(5 / 15, 33.3 %) ‘Ealp’ ‘Eara’ ‘Earp’ ‘Epla’ ‘Epra’ / /

C Lineage
(6 / 15, 40 %) ‘Ca’ ‘Cp’ ‘Cap’ ‘Caap’ ‘Capa’ ‘Cpap’ /

D Lineage
(2 / 7, 28.6 %) ‘D’ ‘Dap’ / / / / /

Others
(‘EMS’, ‘P2’, ‘P3’, ‘P4’)

(0 / 4, 0 %)
/ / / / / / /

Note: For AB2, EMS, P2 with incomplete lifespan recorded, only duration between 4-cell stage and 8-cell stage was considered
; for AB4-AB128, MS1-MS16, E1-E8, C1-C8, D1-D4, P3, P4 which have complete cell cycle in all the 17 wild-type embryos, all
the time points in their lives were taken into account ; for each cell, if the membrane signal is too dim at any time point and cause
failure in precise cell segmentation, the cell would be regarded invalid with missing information.
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Note 1: In CShaper, there are three discriminative situations where nucleus derived from

AceTree cannot be found:

1. The boundary between two cells (not sisters) is too week to be extracted by DMap-

Net, therefore, two cells are segmented as one cell during the watershed transforma-

tion;

2. Membrane signal is lost at boundary of the embryo, which leads to the leakage of

the background into the embryo;

3. In CShaper, we determine the accomplishment of division stage by checking the

signal intensity on the line between sister cells’ nuclei. However, when the intensity

drops at the middle of lifespan, the sister cells may be combined as their mother cell,

leading to missing cells.

We exclude these mistakes by combining the nucleus lineage from AceTree and segmen-

tations from CShaper.
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