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Abstract

The contribution of gene-environment (GxE) interactions for many human traits and diseases is

poorly characterised. We propose a Bayesian whole genome regression model, LEMMA, for joint

modeling of main genetic effects and gene-environment interactions in large scale datasets such as

the UK Biobank, where many environmental variables have been measured. The method estimates

a linear combination of environmental variables, called an environmental score (ES), that interacts

with genetic markers throughout the genome, and provides a readily interpretable way to examine

the combined effect of many environmental variables. The ES can be used both to estimate the

proportion of phenotypic variance attributable to GxE effects, and also to test for GxE effects at

genetic variants across the genome. GxE effects can induce heteroscedasticity in quantitative traits

and LEMMA accounts for this using robust standard error estimates when testing for GxE effects.

When applied to body mass index, systolic, diastolic and pulse pressure in the UK Biobank we es-

timate that 9.3%, 3.9%, 1.6% and 12.5% of phenotypic variance is explained by GxE interactions,
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and that low frequency variants explain most of this variance. We also identify 3 loci that interact

with the estimated environmental scores (− log10 p > 7.3).

Introduction

Despite long standing interest in gene-by-environment (GxE) interactions1, this facet of genetic

architecture remains poorly characterized in humans. Detection of GxE interactions is inherently

more difficult than finding additive genetics in genome wide association studies (GWAS). One dif-

ficulty is that of sample size; a commonly cited rule of thumb suggests that detection of interaction

effects requires a sample size at least four times larger than that required to detect a main effect

of comparable effect size 2. Another is that an individual’s environment, which evolves through

time, is very hard to measure in a comprehensive way, and is inherently high dimensional. Also,

there are many environmental variables that could plausibly interact with the genome and many

ways to combine them, and typically these factors are not all present in the same dataset. The

recently released UK Biobank dataset, a large population cohort study with deep genotyping and

sequencing, and extensive phenotyping3, offers a unique opportunity to explore GxE effects 4–10.

Models that consider environmental variables jointly can be advantageous, particularly if sev-

eral environmental variables drive interactions at individual loci, or if an unobserved environment

driving interactions is better reflected by a combination of observed environments. StructLMM7

models the environmental similarity between individuals (over multiple environments) as a ran-

dom effect, and then tests each SNP independently for GxE interactions. However, StructLMM is
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not a whole genome regression model, so does not account for the genome wide contribution of all

other variants, which is often a major component of phenotypic variance.

Advances in methods applied to detect genetic main effects in standard GWAS have shown

that linear mixed models (LMMs) can reduce false positive associations due to population struc-

ture, and improve power by implicitly conditioning on other loci across the genome 11–13. Often

these methods model the unobserved polygenic contribution as a multivariate Gaussian with co-

variance structure proportional to a genetic relationship matrix (GRM) 14–16. This approach is

mathematically equivalent to a whole genome regression (WGR) model with a Gaussian prior over

SNP effect sizes 11. More flexible approaches have been proposed in both the animal breeding 17, 18

and human literature 19–21 to allow different prior distributions that better capture SNPs of small

and large effects. The BOLT-LMM method13 uses a mixture of Gaussians (MoG) prior and shows

this can increase power to detect associated loci in some (but not all) complex traits.

Here we present a new method called Linear Environment Mixed Model Analysis (LEMMA)

which aims to combine the advantages of WGR and modeling GxE with multiple environments,

and is applicable to large datasets with hundreds of thousands of individuals, such as the UK

Biobank. Instead of assuming that the GxE effect over multiple environments is independent at

each variant, as StructLMM does, we learn a single linear combination of environmental variables

(that we call an environmental score (ES)), that has a common role in interaction effects genome

wide. The ES is estimated within a Bayesian WGR model that uses two separate MoG priors

on main genetic effects and GxE effects. We use variational inference to fit the model that is
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tractable for GxE analyses of biobank scale datasets with tens of environmental variables (see

Online Methods).

Estimating the ES satisfies one of the primary motivations of this work, by providing a read-

ily interpretable way to examine the combined effect of many environmental variables and how

they might interact with genotype. A motivating example is the investigation of how modern

obesogenic environments might accentuate the genetic risk of obesity. Tyrell et al.22 studied envi-

ronments one at a time for their interaction with a body mass index (BMI) genetic risk score (GRS)

and found several significant interactions. Our new method allows joint analysis of environments

that might plausibly better represent an obesogenic environment, negating the need to model each

environment one at a time. Our other motivations when developing LEMMA were to develop a

powerful method to detect GxE interactions, and to estimate the proportion of variance that could

be attributable to GxE interactions.

A LEMMA analysis has several distinct steps. First, the model is fitted using a large set of

SNPs genome-wide, for example all the SNPs that have been directly assayed on a genotyping

chip. The estimated ES is then used to estimate the proportion of phenotypic variability that is ex-

plained by interactions with this ES (GxE heritability), using randomized Haseman-Elston (RHE)

regression23, 24. This heritability analysis can be run on genotyped or imputed SNPs, and can be

stratified by minor allele frequency (MAF) and linkage disequilirium (LD) to better interrogate

the genetic architecture of GxE interactions. The ES is also used to test for GxE interactions one

variant at a time, typically at a larger set of imputed SNPs in the dataset. We use “robust” standard
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errors when testing each variant for a GxE interaction, which helps to control for the conditional

heteroskedasticity caused by GxE interactions. We also suggest checks and solutions for the situ-

ation where environmental variables are themselves heritable and have a non-linear relationship to

the trait of interest (see Online Methods).

We compared LEMMA to existing approaches such as StructLMM and F-tests using sim-

ulated data, and applied the approach to UK Biobank data for body mass index (BMI), systolic

blood pressure (SBP), diastolic blood pressure (DBP) and pulse pressure (PP).

Results

Performance on simulated data Figure 1 compares the ability of different methods to detect

GxE interactions at SNPs in simulations where a single true ES interacts with SNPs across the

genome. Figure S1 shows the false positive rate (FPR) to detect main effects. We compared our

default version of LEMMA, which uses robust standard errors, StructLMM, a simple F-test of

interaction and an F-test that uses robust standard errors (see Online Methods). The simulations

vary GxE heritability, the total number of environmental variables and sample size. When sample

size is large (N=100k), all the methods have reasonable control of FPR and LEMMA controls

FPR at least as well as other methods across the range of simulations. When sample size is smaller

(N=25k) the robust F-test performs less well as the number of environments grows (Figure 1a) and

the F-test and StructLMM perform less well as the amount of GxE variance increases (Figure 1b).

When we increase the sample size to N=200k we still find that LEMMA has a slighty inflated Type
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I error rate (see Figure S2).

It is interesting that all the methods we tested have slightly inflated Type I error, and this is

likely due to a number of different reasons. StructLMM and the F-test fit a model at each variant

and ignore GxE effects at other loci, which can induce heteroscedasticity that can inflate Type I

error49, 61. We used robust standard errors for the robust F-test but it seems that this approximation

works best when the number of environmental traits is small. LEMMA does account for GxE

effects at other loci and also uses robust standard errors, but still has slightly inflated Type I error

that gets worse as the number of environments increases (Figure 1a and Figure S2). In parallel

simulations (see Figure S3) we find that our model slightly over-estimates GxE heritability as

number of environments increases. Since our simulations test for GxE effects at SNPs used to

estimate the ES we suspect that the Type I error inflation is due to this two stage approach.

When there is a single true ES involved in GxE interactions we found that LEMMA provided

a substantial power increase (Figure 1, Figure S4). StructLMM and F-tests have very similar

power in these simulations, although previous work suggests that StructLMM may outperform the

F-test in small samples 7.

When estimating the GxE heritability of the LEMMA ES using randomized HE regression

(RHE) with a single SNP component (RHE-SC) we observed some upward bias as the number

of environments increases. This effect is ameliorated by increasing sample size (see Figure S3),

suggesting that the influence of over-fitting in our Biobank analyses is mild. In twenty simulations

with L = 30 environmental variables, N = 100k samples and true GxE heritability of 5% we
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Figure 1: Type I error and Power of tests to detect GxE effects in simulation. (a-c) Com-

parison of false positive rate as the number of environments increases (a), as phenotype variance

explained by GxE effects increases (b) or as the number samples increases (c). (d-f) Analogous

comparison of the power to detect GxE interactions. Simulations used genotypes subsampled from

the UK Biobank and by default contained N = 25K samples, M = 100K SNPs, 6 environmental

variables that contributed to the ES and 24 that did not (default parameters denoted by stars). We

assess power (at Family Wise Error Rate; FWER < 0.01) to detect 60 causal SNPs whose GxE

effect each explained 0.00016% of trait variance. See Online methods for full details of phenotype

construction.

observed mean GxE heritability of 5.2%. Figure S5 further illustrates the ES estimation accuracy

of LEMMA.

Finally, we ran LEMMA on two sets of simulated datasets (N=25k) with causal SNPs cho-

sen either randomly, or chosen to be low frequency (MAF<0.1). We used the ES estimated from
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each simulated dataset to estimate h2G and h2GxE using RHE, with SNPs stratified by MAF and

LD (RHE-LDMS), and then without any stratification (RHE-SC). Previous studies have estab-

lished that estimating heritability using a single SNP component makes assumptions about the

relationship between MAF, LD and trait architecture that may not hold up in practice27, 28, whereas

stratifying SNPs into bins according to MAF and LDscore (the LDMS approach) is relatively

unbiased28–30. Figure S6 confirms that stratifying by MAF and LD results in accurate heritability

estimates irrespective of the MAF distribution of causal SNPs, and suggests that this method can

be used to interrogate the MAF distribution of GxE component of a trait using LEMMA. However

when causal SNPs are low frequency, not stratifying by MAF and LD results in underestimation

of h2G.

Controlling for heritable environmental variables Previous work by Tchetgen et al.25 has shown

that misspecifying the functional form of an environmental variable can induce heteroskedasticity

into tests for GxE interactions. The authors further show that use of robust standard errors will

control for this heteroskedasticity, but only if the environment is independent of the variant being

tested. Independence between genotypes and the misspecified environment is important because it

means that the (least squares) mean estimator is still unbiased.

However, environmental variables themselves often have a genetic basis. We therefore per-

formed simulations where the phenotype depended on the non-linear (squared) effect of a heritable

environmental variable. In simulation (Figure 2a,c) we observed that misspecification of the en-

vironmental variable can cause substantial inflation in GxE test statistics at heritable sites of the
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Figure 2: Bias from model mis-specification of a heritable environmental variable. (a) Com-

parison of GxE association test statistics from a single simulation where non-linear dependence

on the confounder explains 5% of trait variance. FPR at heritable sites of the misspecified en-

vironment only. (b) Comparison of GxE association test statistics from an analysis of logBMI in

281, 149 participants from the UK Biobank. (c) False Positive Rate at heritable sites of the misspec-

ified environment whilst the strength of squared dependence varies. 20 repeats per scenario. Ab-

breviations are as follows: LEMMA-S, LEMMA with non-robust variances used to compute test

statistics; (+SQE), significant squared environmental variables (Bonferroni correction) included as

additional covariates.

confounding environment. Relatively smooth non-linearities, such as squared effects, are easily

detected by regression modeling before using LEMMA (see Online Methods) and can then be

included as covariates (indicated in Figure 2 by +SQE). This procedure produced well calibrated

test statistics for all methods in simulation (Figure 2c).
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In Figure 2b we compare the GxE association test statistics from our analysis of logBMI in

the UK Biobank, with and without adjusting for detected squared effects. Although we detected

squared effects for 30 of the 42 environmental variables (significance level 0.01; Bonferroni cor-

rection for multiple testing), the ES obtained from the two analyses was almost identical (Pearson

r2 > 0.999). As the additional variance explained collectively by the squared effects was negligible

(incremental R2 < 0.00001) it would be surprising if this was not the case. Negative log10(P )-

values from the two analyses were also highly correlated (Pearson r2 = 0.961), although there

were small changes in the p-values at the FOXO3 locus (which remained genome-wide significant

in both analyses) and at the SNAP25 locus (which was genome wide significant in the (-SQE) anal-

ysis only). We therefore conclude that the influence from this form of confounding in our analysis

of logBMI was minor. However as the cost to this procedure is small, LEMMA uses the (+SQE)

strategy by default for all analyses of UK Biobank traits.

GxE interaction analysis in the UK Biobank We applied LEMMA to characterize GxE inter-

actions in Body Mass Index (logBMI), Systolic Blood Pressure (SBP), Diastolic Blood Pressue

(DBP) and Pulse Pressure (PP) using a set of 42 environmental variables similar to those used

in previous analyses 7, 8, 26, including data on smoking, hours of TV watched, Townsend Index,

physical exercise and alcohol consumption (see Online methods and Table S1).

We analyzed GxE heritability due to multiplicative effects with the ES using both M =

639, 005 genotyped SNPs and M = 10, 270, 052 common imputed SNPs (MAF ≥ 0.01 in the full

UK Biobank cohort), stratified by MAF and LDscore into 20 components. Using imputed SNPs
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Figure 3: Partitioned heritability estimates for four quantitative traits in the UK Biobank.

Heritability estimates partitioned into additive genetic and multiplicative GxE interaction effects

for four quantitative traits in the UK Biobank, using approximately 280, 000 unrelated white British

individuals (see Table S1) and M = 10, 270, 052 common imputed SNPs (MAF > 0.01 in the

full UK Biobank cohort). Multiplicative GxE interactions were computed using the ES from

each model fit. Heritability estimation was performed using a multi-component implementation

of randomized HE-regression23, 24 with SNPs stratified into 20 components (5 MAF bins and 4 LD

score quantiles).

we estimated GxE heritability of 9.3%, 12.5%, 3.9% and 1.6% for logBMI, PP, SBP and DBP

respectively (see Table 1). On genotyped SNPs the GxE heritability estimates were slightly lower

for logBMI and PP (h2GxE = 8.6% and h2GxE = 11.1% respectively) and almost identical for SBP

11

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted April 17, 2020. ; https://doi.org/10.1101/797829doi: bioRxiv preprint 

https://doi.org/10.1101/797829
http://creativecommons.org/licenses/by/4.0/


and DBP (see Table S2). For all traits the heritability of additive SNP effects were slightly higher

on imputed data, consistent with previous results 29.

When working with quantitative traits it can be hard to choose an optimal transformation or

scale for each trait. Tyrell et al. 22 analyzed BMI using the raw scale and then also by transforming

to a standard normal distribution. They observed larger interaction effects on the raw scale and

suggested that this was due to larger variance in BMI in individuals in the high-risk environment

groups, which causes heteroscedasticity, and inflates effect estimates. In addition to our main

analysis, which used log BMI, we re-ran LEMMA using the raw BMI measurement, and then also

by transforming to a standard normal distribution in females and males separately. These results

are presented in Table 1 and agree with the results of Tyrell et al. 22, with estimates of GxE

heritability on the raw, log and inverse normal scale of 13.7%, 9.3% and 5.9% respectively.

Previous work on models of natural selection has suggested that the variance explained by

additive SNP effects should be uniformly distributed as a function of MAF in a neutral evolution-

ary setting31, and that enrichment of the variance explained by low frequency SNPs is evidence

for negative selection. For all four traits we found that variance explained by the additive ge-

netic effects of low frequency SNPs (MAF < 0.1) was slightly elevated, consistent with previous

observations of negative selection32 (Figure 3). Additionally the distribution of additive genetic ef-

fects by MAF for logBMI was qualitatively similar to that found by GREML-LDMS is a previous

study29. In contrast we found that variance explained by GxE effects was overwhelming attributed

to low frequency SNPs (MAF < 0.01), especially those with low LD. However we are not aware
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of any evolutionary theory that has been extended to model the MAF distribution of GxE effects.

For logBMI we estimated an ES that put high weight on alcohol intake frequency, Townsend

Index and physical activity measures (Figure 4c). Almost all of the non-dietary environmental

exposures had a higher effect in women than in men, with smoking status being the one exception.

This is reflected in the facts that (a) the ES having much higher variance in women and (b) those

with a negative ES were almost all female (97%) (see Figure 4b). When comparing the charac-

teristics of those in the bottom 5% of the ES to the whole cohort (using the mean for continuous

variables and the mode for categorical), we found that those in the bottom 5% were predominantly

female (100% vs 53%), younger (51 vs 56), had higher Townsend deprivation index (0.91 vs -1.74),

drank less often (‘Special occasions‘ vs ‘Once or twice a week‘) and watched more TV (3.28 vs

2.69 daily hours of TV) (Table S3). We note that positive values of the Townsend index indicate

material deprivation, whereas negative values indicate relative affluence.

Previous cross-sectional studies have reported GxE interactions between a linear predictor

formed from BMI-associated SNPs and alcohol intake frequency 33, Townsend Index 22, 33, physi-

cal activity measures 5, 22, 33, 34 and time watching TV 22, 33, 34, all of which had high relative weight

in the logBMI ES. An alternative approach from Robinson et al.6 binned samples according to

their environmental exposure (eg. age) and tested for significant differences in SNP heritability us-

ing a likelihood ratio test. They reported strong interaction effects with age in a cohort of 43, 407

individuals whose ages spanned 18 − 80, but only reported significant interactions with smoking

in the UK Biobank interim release. This suggests that we might expect age to play a more dom-
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Trait h2G (s.e) h2GxE (s.e)

logBMI 0.274 (0.056) 0.093 (0.028)

INT(BMI) 0.278 (0.056) 0.059 (0.024)

BMI 0.268 (0.055) 0.137 (0.031)

PP 0.228 (0.051) 0.125 (0.028)

SBP 0.251 (0.05) 0.039 (0.023)

DBP 0.254 (0.05) 0.016 (0.02)

Table 1: Partitioned heritability estimates for four quantitative traits in the UK Biobank.

Heritability estimates obtained using common imputed SNPs (MAF> 0.01 in the full UK Biobank

cohort) with RHE-LDMS. GxE heritability estimates were were obtained using the ES from each

model fit. All analyses controlled for the same covariates used in the WGR analysis (including

the top 20 principal components). Abbreviations; s.e, standard error estimated using the block

jackknife (see Online Methods); h2G, heritability due to additive genetic effects; h2GxE, heritability

due to multiplicative GxE effects; RHE, randomized HE-regression23, 24; LDMS, SNPs stratified

by minor allele frequency and LDscore (20 components); INT, Inverse normal transform applied

to males and females separately.

inant role in the logBMI ES in a cohort that included younger individuals. Finally, one category

that is notably down weighted is the contribution from dietary variables. Although significant

interactions with fried food consumption 35 and sugar sweetened drinks 36 have previously been

reported in a cohort of US health professionals, these dietary variables were not included in the
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Figure 4: GxE analysis of logBMI in the UK Biobank. (a) LEMMA association statistics testing

for multiplicative GxE interactions at each SNP. The horizontal grey line denotes (p = 5× 10−8),

p-values are shown on the− log10 scale. (b) Distribution of the environmental score (ES), stratified

by gender and age quantile. (c) Weights used to construct the ES. Dietary variables have a single

weight shown on the per standard deviation (s.d) scale. ‘Gender’ has two weights; a gender specific

intercept for women (first) and men (second). Remaining non-dietary variables have three weights;

(first) a per s.d effect for women only, (second) a per s.d effect for men only, (third) a per s.d per

decade effect which is the same for both genders. s.d for the male and female specific weights is

computed for each gender separately. Age is computed as the number of decades aged from 40.

See Online Methods for details.
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diet questionnaire used by the UK Biobank.

The ES for PP was dominated by the effects of age and gender (age, age2, age-x-gender,

gender together explained 94.9% of variance in the ES). The magnitude of the ES was strongly

associated with increased age37 whilst the sign of the ES was strongly associated with gender,

implying that GxE effects were stronger in the elderly but acted in the opposite direction in men

and women (Figure S7).

Similarly we observed that variance of the ES increased with age in both SBP and DBP, but

instead of age itself being highly weighted we found that age interactions with other environmental

variables were most important for explaining variation in the ES. Specifically for SBP we found

that age interactions with smoking, Townsend index and alcohol frequency explained 86% of vari-

ance in the ES (Figure S8) When compared to the cohort average, we found that participants in the

top 5% of the SBP ES were older (63 vs 58), had higher Townsend deprivation index (1.2 vs -1.74)

and were more likely to smoke (59% vs 9%) whereas those in the bottom 5% were also older (65

vs 58), predominantly female (91.5%), rarely drank alcohol (43.9% drank “Never”) and had low

Townsend deprivation index (-2.9 vs -1.74) (Table S4).

Finally we observed notably higher variance in the ES for DBP among men, most of which

appeared to be driven by high gender-specific weights for smoking status and alcohol frequency

(Figure S9). We further observed that alcohol frequency and smoking status became increasingly

influential with age. The total SNP-GxE heritability for this ES however was quite low.
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When testing for significant GxE interactions between the estimated ESs and imputed mark-

ers across the genome we observed that use of the robust standard errors made a noticeable dif-

ference to the calibration of LEMMA (Figure S10; Table S5). We identified two loci for logBMI

(Figure 4a), one locus for DBP (Figure S9a) and zero loci for SBP and PP, using a threshold of

5× 10−8 for genome wide significance (Table 2). This table also includes results from a standard

linear regression GWAS test at the 3 loci (see also Table S6).

For logBMI, LEMMA identified GxE interactions at rs2153960 (p = 6.5×10−9; Figure S11)

and at rs539515 (p = 6.5 × 10−12; Figure S12). The SNP rs2153960 is an intron in the FOXO3

gene and has been previously associated with Insulin-like growth factor 1 (IGF-I) concentration

in a cohort of 10, 000 middle aged Europeans 38. IGF-I is known to be a a central mediator of

metabolic, endocrine and anabolic effects of growth hormone and is also involved in carbohydrate

homeostasis 38. The patterns of main effect association and GxE association show considerable

overlap (Figure S11a). This SNP did not reach genome-wide levels of significance using the

standard linear regression GWAS test (Table 2).

The SNP rs539515 is located 6kb downstream of SEC16B. The patterns of main effect asso-

ciation and GxE association are very similar Figure S12a. Multiplicative GxE interactions have

been reported at SEC16B with multiple environmental variables in a similar analysis in the UK

Biobank7, and with physical activity separately in Europeans 5 (p = 0.025) and in Hispanics 39

(p = 8.1 × 10−5). Highly significant variance effects (p = 3.88 × 10−17), which can be indica-

tive of GxE, have also been reported at the SEC16B locus using N = 456, 422 Europeans in the
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UK Biobank40. GxE interactions have been reported at SEC16B with multiple environmental vari-

ables in a similar analysis in the UK Biobank7 and with physical activity separately in Europeans 5

(p = 0.025) and in Hispanics 39 (p = 8.1× 10−5). SEC16B transcribes one of the two mammalian

homologues of the SEC16 protein, which has a key role in organizing endoplasmic reticulum exit

sites by interacting with COPII components 41. Although several GWASs have identified associa-

tions between SEC16B 42, 43, the relevance of SEC16B to BMI is not well characterized 44. Some

evidence exists to suggest that SEC16B has role in the transport of peroxisome biogenesis factors;

peroxisomes being an organelle involved in the catabolism of long chain fatty acids found ubiqui-

tously in eukaryotic cells. Previous authors43 have also speculated that the SEC16B might play a

role in the transport of appetite regulatory peptides, however we are not aware of any evidence for

this theory.

The DBP associated SNP is rs8090962, but only just passes our threshold for significance

and we are least confident that this is a true GxE association for a few reasons. The SNP is located

within an enhancer, approximately 100KB downstream of the SEC11C gene and 50KB upstream

of ZNF532. Neither gene has previously been associated with blood pressure traits. There is some

evidence of a main effect close by (Figure S13a) but the pattern of main effect association does not

coincide well with the pattern of GxE associations. In addition the pattern of GxE association by

genotype (Figure S13b) shows a striking cross over by genotype between extremes of the ES. We

have observed above that our test statistics is very slightly inflated so this could be a false positive

association.
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Relationship of genetics PCs and environmental scores We regressed the estimated ESs against

the PCs for each of the 4 UKB traits and the results are included in Table S7. We found some

significant associations, mostly with PC5, which seems to correlate with North-South geography

in the UK45. To explore further we also re-ran the heritability analysis by including interaction

terms of the ES with the genetic PCs as control variables, but the results were almost unchanged

(see Table S8).

Comparison of the LEMMA ES with a marginal ES For each trait, we used least squares re-

gression to compute a linear model fit using all of the non genetic covariates used in the LEMMA

analysis. We then constructed an environmental score (referred to as ESmarginal) using the marginal

environmental effects from this model fit. The correlation between the LEMMA ES and ESmarginal

was −0.062,−0.019,−0.297 and −0.088 for logBMI, PP, SBP and DBP respectively, suggesting

that these vectors are quite dissimilar. Figure S14 shows a comparison of the interaction weights

used to construct the LEMMA ES and ESmarginal for each of the four traits. Visually the weights

learnt through each approach look quite distinct. In particular, age, age2 and age×gender have

much higher relative weight in ESmarginal than in the LEMMA ES.

Comparison of methods on UK Biobank data To compare LEMMA with existing single SNP

methods we also ran StructLMM, the F-test and the robust F-test on logBMI using the same set

of environmental variables as used by LEMMA (but not including the significant squared environ-

ments as covariates). Manhattan plots are displayed in Figure S15. Test statistics from both the

F-test (λGC = 1.37) and StructLMM (λGC = 1.235) were substantially inflated when compared to
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the robust F-test and LEMMA (λGC = 1.03 and λGC = 1.062 respectively; see Table S5), suggest-

ing that StructLMM does not properly control for heteroskedasticity. There are clear differences

between the 4 methods, especially among SNPs with suggestive evidence of GxE Interaction re-

sults (Figure S16a). LEMMA did not find the FTO locus, StructLMM and F-test did not find the

SEC16B locus, and the robust F-test only found the FTO locus.

LEMMA relies on the assumption that all GxE interaction effects for a single trait share a

common ES, and we have shown in simulation that when this assumption holds LEMMA achieves

substantial increases in power. However we would expect LEMMA to have little power to de-

tect SNPS which interact with a combination of environments that is not well correlated with the

genome-wide ES estimated by LEMMA. The FTO seems to be one clear example of this. We

extracted an estimate of the SNP specific interaction profile at FTO using the robust F-test (Online

Methods), we found that it’s correlation with LEMMA’s ES was low (Pearson r2 = 0.3). In

comparison, a similar analysis at SEC16B and FOXO3 yielded much higher correlations (Pearson

r2 = 0.725 and r2 = 0.713 respectively).

Discussion

In this study we proposed a new whole genome regression method, LEMMA, that estimates a

single environmental score (ES) that interacts with SNPs across the genome. In simulation we

have demonstrated that the ES can be used to compute well calibrated p-values of the multiplicative

interaction effect at each SNP. LEMMA is also able to quantify the trait variance attributable to
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MAF and LD stratified interaction effects of the ES.

In analyses of four quantitative traits in the UK Biobank, we have demonstrated that GxE ef-

fects among common imputed SNPs make a non-trivial contribution to the heritability of logBMI

and PP (9.3% and 12.5% respectively). Our stratified heritability analysis has suggested that GxE

interactions for these traits are mostly driven by low frequency variants. Our analysis identi-

fied three loci with statistically significant GxE interaction effects. Two of these loci, rs539515

(FOXO3) and rs8090962, are novel and for the other, rs539515 (SEC16B), we show stronger evi-

dence for than in the previous study7.

Robinson et al.6 have previously attempted to quantify the contribution of GxE interactions

to the heritability of BMI in a study performed on imputed SNPs from the interim UK Biobank

release. Using the GCI-GREML model implemented in GCTA46 and eight environmental vari-

ables that included measures of smoking, hours of TV watched and alcohol frequency, Robinson

et al.6 reported that only smoking had significant GxE heritability (4.0%). In contrast, the ES esti-

mated for logBMI in our analysis had non-zero contributions from many environmental variables,

including hours of TV watched and smoking, suggesting that multiple environmental variables can

influence on the genetic predisposition to BMI. Modeling these environmental variables jointly

allowed LEMMA to capture a combination whose GxE interactions explained 9.3% of heritability.

We have also evaluated the performance of three existing single SNP methods (StructLMM,

the F-test and a robust F-test), both in simulation and on logBMI from this same dataset. In simu-

lation with large datasets we observed that StructLMM and the F-test had similar performance; an
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observation that also held in our analysis of logBMI. Both of these methods appeared vulnerable

to heteroskedasticity, which we showed is likely to occur in traits with non-trivial GxE heritability.

A simple adjustment, using ‘robust’ or Huber-White variance estimators, solved this problem. The

two F-test methods further benefit from a wealth of existing theory47 and, being theoretically sim-

pler than StructLMM, could be easily implemented as an R-plugin with PLINK48 (for example 49).

In our opinion, the robust F-test is therefore the most appropriate of the three single SNP methods

to model GxE effects with tens of environments in biobank scale datasets.

Although LEMMA represents a method with increased power to detect GxE interaction ef-

fects, our approach does have some caveats. First the gain in power is dependent on a strong

assumption on the underlying genetic architecture. Whilst our analysis suggests that this does hold

to some extent for PP and logBMI, this may not be the case for other traits.

In addition, LEMMA only estimates the proportion of phenotypic variance that is explained

by interactions with this ES, and we do not claim that this captures all the GxE heritability of a trait.

If relevant GxE environments are not included in the analysis, and these environments have low

correlation to the environments that are included, then LEMMA cannot account for them, and will

likely underestimate the true GxE heritability. Unobserved environments can cause trait variance

to depend on genotype8 (see Figure S19) and extending LEMMA in this direction is left for future

work.

LEMMA has the requirement that none of the environmental variables have any missing

values. This could lead to a reduction in samples size if many environmental variables are included.
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If the amount of missing data is small it should not pose a big problem, and missing data imputation

methods are also an option. If LEMMA is applied in situations where the missing data structure is

related to the phenotype of interest then this could cause bias in the results.

Despite much effort to provide an efficient implementation, the LEMMA algorithm is still a

computationally demanding. Using randomized HE-regression to estimate an improved initializa-

tion of the interactions weights may help to reduce run time, and is an avenue that we are currently

pursuing.

Finally, for simplicity LEMMA currently searches only for GxE interactions with a single

linear combination of environments. Generalizing the LEMMA approach to several orthogonal

linear combinations or using functional annotation to restrict the SNPs that each ES interacts with,

may yet yield more power to identify interactions in complex traits and explain more phenotypic

variation.

Online Methods

Linear Environment Mixed Model Analysis (LEMMA) The standard LMM used in genome

wide association studies is written as

y = Cα + u+ ε, (1)

where y is the centered and scaled N×1 vector of phenotypes, C is an N×L′ matrix of covariates

with L′ × 1 fixed effects vector α, and u and ε are N × 1 vectors of unobserved polygenic and
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residual effects vectors respectively. Typically u is modeled as Gaussian with mean zero and

covariance matrix σ2
gK. Specification of the N ×N kinship matrix K is an area of active research

50–53 but the simplest approach is to let K = XXT/M where X is the N×M genotype matrix and

columns of X (which usually correspond to SNPs) are normalized to have mean zero and variance

one. This can equivalently be written as a Bayesian whole genome regression (WGR) model

y = Cα +Xβ + ε, (2)

where

β ∼ N (0, σ2
g/M). (3)

Here β is a M × 1 vector modeling the random effect of each SNP. This form corresponds to

the so called infinitesimal model where every SNP is allowed to have a small but non-zero effect

on a given trait. To generalize the model to a non-infinitesimal genetic architecture, we model

SNP effects with a mixture of Gaussians prior. This approach has been applied previously in

human genetics 13, 21 and by the ’Bayesian alphabet‘ of genomic prediction methods in the animal

breeding literature 17, 18, 54.

We extend this setup to model GxE interactions genome-wide with a linear combination of

multiple environmental variables using

Y = Cα +Xβ + Zγ + ε (4)
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where

Z = η �X, (5)

η = Ew, (6)

w ∼ N (0, IL) (7)

where E is an N × L matrix of environmental variables that could potentially be involved in GxE

interactions and w is an L× 1 vector of weights. Nether they define the N × 1 vector η that is the

linear combination of environments that we refer to as the environmental score (ES). This ES is

learned in tandem with SNP effects. We note that all environmental variables contained in E must

also be contained in C, so L ≤ L′. We chose to model the interaction weights w with a Gaussian

prior, but in theory one could consider sparser priors such as a spike and slab. We set the variance

of the prior on w to the identity matrix IL. Setting the prior variance of w to a parameter would be

unidentifiable, as any change in scale would be absorbed by the prior variances on the interaction

effects γ (see σ2
γ,1 and σ2

γ,2 in equations 8-9).

The N ×M matrix Z contains all of the multiplicative interaction terms of the ES η with all

of the genetic variants. We use the notation η � X for the element-wise product of η with each

column of X . In other words, η � X = diag (η)X where diag (η) is an N × N diagonal matrix

with η as the diagonal. The vector of interaction effect sizes γ has dimension M × 1.

We chose to use MoG priors on both the main genetic effects (β) and the interaction effects

(γ) as this prior is very flexible and spans the range of genetic architectures from polygenic to a

25

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted April 17, 2020. ; https://doi.org/10.1101/797829doi: bioRxiv preprint 

https://doi.org/10.1101/797829
http://creativecommons.org/licenses/by/4.0/


very sparse model. The priors are

βj|σ2
e , λβ, σ

2
β,1, σ

2
β,2 ∼ λβN (0, σ2

eσ
2
β,1) + (1− λβ)N (0, σ2

eσ
2
β,2), (8)

γj|σ2
e , λγ, σ

2
γ,1, σ

2
γ,2 ∼ λγN (0, σ2

eσ
2
γ,1) + (1− λγ)N (0, σ2

eσ
2
γ,2) (9)

We use standard Gaussian priors on the covariate and error terms.

α|σ2
α ∼ N (0, σ2

α), (10)

ε|σ2
e ∼ N (0, σ2

e). (11)

Variational Inference For notational convenience we define θ = {α, β, γ, w} as the set of latent

variables, D := {X,E} the genetic and environmental data and φ as the set of hyper parameters

Then the posterior p(θ|y,D, φ) is given by

p(θ|y,D, φ) ∝ p(y|θ,D, φ)
∏
c

p(αc|φ)
∏
l

p(wl)
∏
j

p(βj, uj|φ)
∏
j

p(γj, vj|φ). (12)

To evaluate the posterior we use the variational inference framework; approximating the true pos-

terior p(θ|y,D, φ) with a tractable alternative distribution q(θ; ν) governed by (variational) param-

eters ν. To make inference tractable we use the standard Mean Field assumption so that q(θ; ν)

factorizes

q(θ; ν) =
∏
c

q(αc)
∏
l

q(wl)
∏
j

q(βj, uj)
∏
j

q(γj, vj). (13)

To make q(θ; ν) a close approximation of the true posterior we minimize the KL Divergence

between q(θ; ν) and p(θ|y,D, φ) with respect to variational parameters ν. In this manner, the prob-

lem has been transformed from one of computing posterior distributions into one of optimization.
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We can show that minimizing the KL Divergence is equivalent to maximizing a lower bound on

the marginal log likelihood by observing

KL(q‖p) = −Eq
[
log

p(θ|y,D, φ)

q(θ; ν)

]
, (14)

= −Eq
[
log

p(θ, y|D, φ)

q(θ; ν)

]
+ Eq [log p(y|D, φ)] , (15)

= −Eq
[
log

p(θ, y|D, φ)

q(θ; ν)

]
+ log p(y|D, φ), (16)

thus we can write

F(ν;φ) := Eq
[
log

p(θ, y|D, φ)

q(θ; ν)

]
≤ log p(y|D, φ). (17)

HereF(ν;φ) is commonly referred to as the Evidence Lower Bound (ELBO). Due to the factorized

form of Equation (13) we can cyclically update the approximate distribution for each latent variable

in turn until we reach convergence.

Our model depends on a set of eight hyper-parameters φ = {σ2
e , {σ2

β,i}2i=1, {σ2
γ,i}2i=1, λβ, λγ, σ

2
α}.

We set σ2
α to a large constant to create a flat prior on the covariates, leaving seven unknowns.

Similar methods have performed a grid search over hyper-parameter values (using either cross

validation13 or the in-sample ELBO to identify the optimum20). For LEMMA a grid search would

be computationally demanding, both because the set of hyper-parameters is larger and because we

cannot efficiently perform multiple runs in parallel as done by Loh et al.13. Instead we maximize

a lower bound on the approximate log likelihood (the so called Evidence Lower Bound or ELBO)

with respect to the hyper-parameters. In this manner our approach can be viewed as a variational

expectation maximization algorithm 55, 56.
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Similar to the EM algorithm, the hyper-parameter maximization step can lead to slow explo-

ration of the hyper-parameter space and thus to slow convergence of the LEMMA algorithm. We

use an accelerator, SQUAREM 57, to speed up convergence. Given two estimates of the hyper-

parameters φt−2 and φt−1 we can adjust the maximized estimate φt with

φ̃t(vt) = φt−2 − 2vt∆φt−1 + v2t∆
2φt, (18)

where ∆φt−1 = φt−1−φt−2 and ∆2φt = φt−2φt−1 +φt−2. Thus the new adjusted estimate φ̃t(vt)

is a continuous function of the step size vt, which yields the original estimate φt for vt = −1.

As recommended by Varadhan et al.57 we set vt = min(−1,−||∆φt−1||22/||∆2φt||22). Occasionally

this yields an estimate that is either outside of the domain of φ or leads to a state with worse ELBO

than the previous state. For the first issue we use a simple backtracking method of halving the

distance between vt and −1, and for the second we simply judge model convergence when the

absolute change in ELBO drops below a given threshold. We use the same convergence criterion

as the BOLT-LMM method 13; namely that a full pass through all latent variables yields an ab-

solute change of less than 0.01 in the approximate log-likelihood (ELBO). Figure S17 shows the

evolution of the ES parameter estimates for the four UK Biobank traits we analyzed, and illustrates

that at the point of convergence the parameters appear stable.

Identifying GxE associated loci After convergence of the LEMMA variational inference algo-

rithm, we obtain posterior mean estimates of β̂, γ̂ and η̂ = Eŵ. From these we construct residual-

ized phenotypes following a Leave One Chromosome Out (LOCO) scheme;

yresid-LOCO = y − Cα̂−XLOCOβ̂LOCO − η̂ �XLOCOγ̂LOCO. (19)
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XLOCO denotes the genotype matrix excluding SNPs on the same chromosome of the test SNP, and

βLOCO and γLOCO are constructed similarly. Using a LOCO scheme has been shown to increase

power in LMMs as the effect of the test SNP is conditioned on the effects on a large proportion of

the rest of the genome 12, 15.

For each imputed SNP, we then perform hypothesis tests βtest 6= 0 and γtest 6= 0 using the

linear model

yresid-LOCO = xtestβtest + (η̂ � xtest)γtest + ε, (20)

= Hτ + ε. (21)

Here H is the N ×2 design matrix with columns containing xtest and η̂�xtest respectively, and τ is

the 2× 1 vector containing parameters βtest and γtest respectively, which are the main genetic effect

and interaction effect of the SNP being tested.

Assuming that ε has mean zero and covariance matrix Ω we can use the standard OLS esti-

mator

τ̂ = (HTH)−1HTy, (22)

which (under certain regularity conditions) is asymptotically normally distributed with mean τ and

variance Var (τ̂). By assuming the residual phenotype is homoskedastic, that is that Ω = σ̂2
eI , we

can obtain the usual variance estimator given by

Var (τ̂) = σ̂2
e(H

TH)−1. (23)

It has previously been observed that GxE interaction tests are likely to suffer from conditional
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heteroskedasticity49, and hence the homoskedastic variance estimator is likely to underestimate

the true variance 58. We explain this phenomenon in detail in the Supplementary Material.

To overcome this we use robust standard errors, alternatively called Huber-White, sand-

wich or “heteroskedastic consistent” errors 59, 60, that are standard tools in economics 47 and have

previously been proposed for use in GxE interaction studies 25, 49, 61. We further include a small

adjustment that reduces bias in small samples 62. This yields the variance estimator

Var (τ̂) = (HTH)−1HT Σ̂H(HTH)−1, (24)

where Σ̂ is a diagonal matrix with Σ̂ii =
ε̂2i

(1−hii)2 , where ε̂ = y − Hτ̂ and h = H(HTH)−1HT .

Hence our GxE test statistic is given by

γ̂2test

Var (γ̂test)
(25)

and under the null hypothesis is asymptotically distributed as χ2
1. As main effects tests are not

sensitive to assumptions of heteroskedasticity in the same way that GxE tests are 49, we use a

simple t-test to test the hypothesis βtest 6= 0.

Heritability estimation Previous genome wide regression methods 20, 32, 63 have shown that it is

possible to rearrange the model hyper-parameters to gain an estimate of trait heritability. We find

that in our variational framework this approach underestimates trait heritability, due to the ten-

dency of mean field variational inference to underestimate the posterior variance of each parame-

ter. Instead we treat the posterior mean η̂LEMMA as a fixed effect, and use randomized HE (RHE)

regression23, 24, 64 to estimate heritability with a single SNP component23 (RHE-SC) and multiple
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SNP components24 (RHE-LDMS). When using the multi-component model, SNPs are stratified

into a total of 20 bins; using 5 MAF bins (≤ 0.1, 0.1 < MAF ≤ 0.2, 0.2 < MAF ≤ 0.3, 0.3 <

MAF ≤ 0.4, 0.4 < MAF ≤ 0.5) and 4 LD score quantiles.

The single component model is given by

y ∼ N
(
Eα, σ2

βK + σ2
γV̂ + σ2

eI
)
, (26)

where K = XXT/M , V̂ = Z(η̂)Z(η̂)T/M and Z(η̂) = diag(η̂)X . Haseman-Elston (HE) regres-

sion is a method of moments estimator that fits the variance components (σ2
β, σ

2
γ, σ

2
e) to minimize

the difference between the empirical and expected covariances. This is mathematically equivalent

to solving the following linear system
tr (K2) tr (KV ) tr (K)

tr (KV ) tr (V 2) tr (K)

tr (K) tr (V ) N




σ2
β

σ2
γ

σ2
e

 =


yTKy

yTV y

yTy

 (27)

Wu et al.23 showed that this system can be solved in O(NMB) time (for small B) without ever

forming the kinship matrices K and V using Hutchinson’s estimator, and that covariates can be

efficiently projected out of the phenotype, genotypes and interaction matrix Z with minimal ad-

ditional cost. Pazokitoroudi et al.24 give an extension to multiple components and showed that

variance estimates can be obtained with the block jackknife.

Speed et al.27 show that the usual form for h2G, the proportion of trait variance explained by

additive genetic effects, given by

ĥ2G =
σ̂2
β

σ̂2
β + σ̂2

γ + σ̂2
e

, (28)
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holds only when genotype matrix X is standardized to have column mean zero and column vari-

ance one. Whilst this is true in expectation for Ẑ (assuming that Cov(η̂, Xj) = 0, ∀j ∈ {1,M}),

this is not guaranteed. To obtain column mean zero we include an intercept of ones among the co-

variates that are projected out of the phenotype, genotypes and interaction matrix. To account for

columns having variance not equal to one, we use a more general form of the heritability estimator

(see Speed et al.27 for details)

ĥ2GxE =
σ̂2
γtr
(
V̂
)
/N

σ2
β + σ̂2

γtr
(
V̂
)
/N + σ̂2

e

. (29)

Implementation and computational efficiency We provide software implementing the LEMMA

algorithm in C++ from https://jmarchini.org/lemma/. We implement a number of

steps to improve computational and memory efficiency including vectorization using SIMD ex-

tensions, compressed data formats, pre-computing quantities, parallel computing with OpenMPI,

use of the well optimized Intel Math Kernel Library. Full details are given in the Supplementary

Material.

Detecting squared environmental dependence By default, each of the L environmental vari-

ables is tested against the phenotype for significant squared effects. To do this LEMMA tests the

hypothesis βl 6= 0 using the following linear model

y = 1α0 + Cα + E2
l βl + ε. (30)

The squared effect of any environmental variables with a p-value less than 0.01 (Bonferroni cor-

rection for L multiple tests) are added to the matrix of covariates C.
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Controlling for covariates Unlike in BOLT-LMM 13, it is not possible to efficiently project co-

variates out of the model (y,X, Z), because the multiplicative interaction matrix Z changes after

each pass through the data. Instead the LEMMA software package can either regress covariates

out of the phenotype or model the covariates as random effects in the variational framework. For

our analyses of the UK Biobank we included all covariates within the variational model.

Comparison to existing GxE methods We compare LEMMA to three other single SNP meth-

ods that jointly model interactions with multiple environments. The first comparison method,

StructLMM 7, is a method that uses a random effects term u to model environmental similarity

instead of genetic similarity. Specifically, StructLMM uses the model

y ∼ N (Cα + xtestβ, σ
2
GxEdiag (xtest) Σdiag (xtest) + σ2

eΣ + σ2
nI), (31)

to test the hypothesis σ2
GxE 6= 0. Here C is the matrix of covariates with fixed effects α, xtest is the

focal variant and Σ = EET is the environmental similarity matrix (where E is an N ×L matrix of

environmental variables). Although StructLMM provides both an interaction test and a joint test

that looks for non-zero main and interaction effects at each SNP, we use only the interaction test

in our comparisons. Finally we note that StructLMM recommends ‘gaussianizing’ the phenotype

as a pre-processing step; however we just center and scale the phenotype for consistency with our

other methods.

Our second and third comparison methods use equivalent information to StructLMM in a
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fixed effects framework. Consider the linear model

y = Cα + Eα′ + xtestβtest + xtest � Eγ + ε (32)

= Hτ + ε. (33)

where H is formed from column-wise concatenation of [C,E, xtest, diag(xtest)E] and τ is the cor-

responding vector of fixed effects. Let R be the indicator matrix such that Rτ = γ. We wish

to test the null hypothesis H0 : γ = 0. Assuming that ε has mean zero and covariance ma-

trix Ω we can use the standard OLS estimator τ̂ = (HTH)−1HTy which (under certain reg-

ularity conditions) is asymptotically distributed as normal with mean τ and variance given by

Var (τ̂) = (HTH)−1HTΩH(HTH)−1. Assuming homoskedasticity yields the standard F test

statistic

Ftest =
(Rτ̂)T (R(HTH)−1RT )−1(Rτ̂)/L

σ̂2
e

, (34)

which follows an Fd1−d0,N−d1 distribution under the null hypothesis, where d1 is the column rank

of H and d0 is the column rank of H under the null hypothesis. Alternatively we can use the same

robust standard error used in the LEMMA test statistic

Frobust = (Rτ̂)T (R(HTH)−1HT Ω̂H(HTH)−1RT )−1(Rτ̂), (35)

where Ω̂ is a diagonal matrix with Ω̂ii =
ε̂2i

(1−hii)2 , ε̂ = y−Hτ̂ and h = H(HTH)−1H . Then Frobust

is asymptotically distributed as χ2
d3

where d3 is the rank of HRT . In our simulations we refer to

this as the robust F-test.
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SNP specific interaction profile The SNP specific interaction profile is defined as ηLS = EwLS

where wLS is the least squares parameter estimate of w in the single SNP model

y = Cα + xtestβtest + xtest � Ew + ε (36)

and y, C and E are the data matrices defined in Online Methods. The correlation between ηLS for

a given SNP and the ES estimated by LEMMA can be viewed as a proxy for how well LEMMA

captures the GxE interactions at that locus.

UK Biobank analysis We used real genotype and phenotype data from the UK Biobank, which

is a large prospective cohort study of approximately 500, 000 individuals living in the UK 3. To

account for potential confounding effects of population structure, we first subset down to the white

British subset of 344,068 individuals used by Bycroft et al.3 in a GWAS on human height. This

represents unrelated individuals who self-report white British ethnicity and whose genetic data

projected onto principal components lies within the white British cluster3. After sub-setting down

to individuals who had complete data across the phenotype, covariates and environmental factors

(see below) we were left with approximately 280, 000 samples per trait (Table S1). Finally we

filtered genetic data based on minor allele frequency (≥ 0.01) and IMPUTE info score (≥ 0.3),

leaving approximately 642, 000 genotyped variants (Table S1) and 10, 295, 038 imputed variants

per trait. For each trait we included age3, age2× gender, age3× gender, a binary indicator for the

genotype chip and the top 20 genetic principal components as additional covariates.

BMI was derived from height and weight measurements made during the first assessment

visit (instance ‘0‘ of field 21001), and readings more than six standard deviations from the popu-
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lation mean to missing. logBMI and INT(BMI) refer to BMI after applying a log transformation

and an inverse normal transformation (applied separately to males and females) respectively.

After calculating the mean SBP and DBP using automated blood pressure readings from the

first assessment visit (fields 4080 and 4079), we adjusted for medication usage by adding 15mmHg

and 10mmHg to SBP and DBP respectively 65. Data from manual measurements (fields 93 and 94)

was used in the rare instance that no automated reading was available. Blood pressure readings

more than four standard deviations from the mean were set to missing. PP was then calculated as

SBP minus DBP.

For our GxE analyses, we made use of 42 environmental variables from the UK Biobank,

similar to those used in previous GxE analyses of BMI in the UK Biobank 7, 26. From the data pro-

vided by the UK Biobank we included 7 continuous environmental variables (“Age when attended

assessment centre”, “Sleep duration”, “Time spent watching television”, “Number of days/week

walked 10+ minutes”, “Number of days/week of moderate physical activity 10+ minutes”, “Num-

ber of days/week of vigorous physical activity 10+ minutes”, “Townsend deprivation index at re-

cruitment”), 1 ordinal environmental variable (“Alcohol intake frequency”), 9 dietary ordinal vari-

ables (“Salt added to food”, “Oily fish intake”, “Non-oily fish intake”, “Processed meat intake”,

“Poultry intake”, “Beef intake”, “Lamb intake”, “Pork intake”, “Cheese intake”) and 2 dietary

continuous variables (“Tea intake”, “Cooked vegetable intake”). We further derived 1 categorical

variable (“Is Current Smoker” from the responses given in the UK Biobank field “Smoking status”)

and 1 continuous variable (“Sleep sd”; the number of standard deviations from the population mean
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sleep duration). For analyses of blood pressure, we additionally included one further continuous

variable “Waist circumference”. This left 11 dietary variables and 10 non-dietary variables (11

for blood pressure traits). In addition we included multiplicative interactions between participants

age and gender with all non-dietary variables, and included the main effect of gender, giving the

data matrix E a total of 42 columns (45 for blood pressure traits). Before running LEMMA each

column was standardized as

Eij =
Eij −mean(E:,j)

sd(E:,j)
. (37)

In all cases, where participants responded with “Prefer not to answer”, “Do not know” or “None

of the above” we set the value to missing. For 3 continuous variables (“Time spent watching

television”, “Tea intake”, “Cooked vegetable intake”) we removed the 99’th percentile and for

“Sleep duration” we removed both the 1st and 99th percentiles.

After running LEMMA, we found it convenient to interpret weights corresponding to a re-

scaled data matrix E1. Assuming the column space of E and E1 is the same, weights w1 that

correspond to E1 can be extracted from the ES using least squares

w1 = (ET
1 E1)

−1ET
1 η̂LEMMA, (38)

where η̂LEMMA represents the ES. We note that although multivariate linear regression is invariant to

a re-scaling of the design matrix, ridge regression is not due to the penalization place on the mag-

nitude of the learned parameters. However, as the magnitude of the weights from our UK Biobank

analysis is typically small (less than 0.2) compared to the standard deviation of our Gaussian prior

(1) in this case the re-scaling makes minimal difference.
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Re-coded data matrix E1 was formed with one column for each of the 11 dietary variables

(normalized to have mean zero and variance one), and three columns for each of the 10 (11 for

blood pressure traits) non-dietary variables; the first augmented by a binary male indicator vector,

the second by a binary female indicator vector and the third by a continuous vector of participant

age. Columns augmented by male and female binary indicator vectors were normalized to have

mean zero and variance one (not including zeros due to augmentation), apart from age (scaled to

represent the number of decades aged past 40). Columns augmented by age were normalized first

and then multiplied by age on the per decade scale. We further included indicator columns for men

and women, which can be interpreted as gender specific intercepts and is equivalent to including

an intercept and a binary column for only one gender (men or women). We note this leaves 43 (46)

columns where the extra column comes from including an intercept within the column space of E1

and is necessary because some columns have mean not equal to zero. Thus the column space of

E1 is equivalent to E under the constraint that the ES has mean zero.

Simulation studies Genetic data was sub-sampled from the UK Biobank, by default using N =

25K unrelated individuals of mixed ancestry and M = 100K genotyped SNPs. Environmental

variables were simulated from a standard gaussian distribution. By default we constructed pheno-

types with 2500 causal main effects and 1250 causal interaction effects explaining 20% and 5% of

trait variance respectively. For each phenotype we constructed a weighted average of the environ-

mental variables which we used to simulate multiplicative interaction effects. Environments with

a non-zero weight are referred to as active. All non-zero effects were drawn from SNPs in the first

half of each chromosome, allowing us to test the calibration of each method on ‘null’ SNPs from
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the second half of each chromosome. To allow direct power comparisons across different scenarios

we included an additional 60 SNPs with standardized effect sizes, that together accounted for 1%

of trait variance with their main effects and 1% of trait variance with their interaction effects. Fi-

nally, a further 1% of trait variance was modeled using the first genetic principal component (PC).

For all methods we included the first genetic PC as a covariate. For each method we calculated

power as the proportion of the SNPs of standardized effect identified at a threshold of p < 0.01.

In simulations used to test randomized HE-regression, phenotypes were constructed with

10, 000 causal main effects explaining 20% of trait variance and, in simulations with non-zero

GxE heritability, 10, 000 causal SNPs with interaction effects.

Model misspecification We simulated a scenario where a disease trait Y depends non-linearly

on a heritable environmental factor S. More explicitly suppose that X is the centered and scaled

genotype matrix so that columns have mean zero and variance one, that S is modeled as

S = Xτ + εs, (39)

where εs ∼ N (0, (1− h2τ )I), τ models random SNP effects for S and trait Y is given by

Y |a = aS2 +Xβ + ε. (40)

Here a is a constant that we use to control the strength of the contribution of S2 to Y , ε ∼ N (0, (1−

h2β)) and β is the random SNP effects for Y . For simulation we suppose that τ and β have spike

and slab priors
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τj|vj ∼ vjN
(

0, h2τ
Pλτ

)
+ (1− vj)δ0(τj) (41)

βj|uj ∼ ujN
(

0,
h2β
Pλβ

)
+ (1− uj)δ0(βj), (42)

vj ∼ Ber(λτ ). (43)

uj ∼ Ber(λβ). (44)

Data availability

The genetic and phenotype datasets generated by UK Biobank analyzed during the current study

are available via the UK Biobank data access process. The Resource is available to all bona fide

researchers, from academic, charity, public, and commercial sectors, for all types of health-related

research that is in the public interest, without preferential or exclusive access for any person. More

details are available here http://www.ukbiobank.ac.uk/register-apply/

—————————————————————————–

URLs

UK Biobank: http://www.ukbiobank.ac.uk

LEMMA: https://jmarchini.org/lemma/

StructLMM as implemented in LIMIX 2.0.0: https://github.com/limix/limix
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Trait log(BMI) log(BMI) DBP

SNP rs539515 rs2153960 rs8090962

Chr 1 6 18

BP 177889025 108988184 56694404

A0 A G A

A1 C A G

AF 0.21 0.71 0.44

Nearest gene SEC16B FOXO3 OACYLP / SEC11C

Standard GWAS tests

βG (se) 0.0043 (0.0003) 0.0014 (0.0003) -0.00001 (0.0192)

p-valueG 5.7× 10−51 1.1× 10−6 1.0× 10+0

LEMMA association tests

βG (se) 0.0254 (0.0016) 0.0087 (0.0015) 0.0011 (0.0015)

βGxE -0.0117 (0.0017) -0.0098 (0.0017) 0.0087 (0.0016)

p-valueG 1.6× 10−60 1.6× 10−8 4.5× 10−1

p-valueGxE 6.5× 10−12 6.5× 10−9 3.6× 10−8

Table 2: Loci with genome-wide significant GxE interaction effects with the ES. Independent

loci with genome-wide significant (P < 5× 10−8) GxE interaction effects with the environmental

score (ES). Loci at least 0.5cM apart were judged to be independent. SNP effect sizes reported on

a per s.d scale. SNP locations follow the GrCh37 human genome assembly. All loci had IMPUTE

INFO score > 0.99. Abbreviations are as follows; A0, reference allele; A1, alternative allele; AF,

reference allele frequency; s.d, standard deviation.
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Supplementary Material

Derivation of Variational Bayes updates We use Coordinate Ascent Variational Inference (CAVI)

to optimize the ELBO66. CAVI is a cyclic optimization strategy that iteratively maximizes the

ELBO with respect to each latent variable whilst holding the others fixed. We now provide a brief

justification of the CAVI update step and then derive the update for each of the latent variables in

the LEMMA model.

Using the fact that the variational distributions factorizes, we can write the ELBO as

F(ν;φ) = Eq [log p(θ, y|D, φ)− log q(θ)] ,

= log p(y|D, φ) + Eq [log p(θ|y,D, φ)]−
∑
j

Eq [log q(θj)] .

Hence it is relatively simple to extract out dependance of F(ν;φ) on θj

Fj = Eq [log p(θj|y, θ−j,D, φ)]− Eq [log q(θj)] + const,

=

∫
q(θj)

(∫ ∏
i6=j

q(θi) log p(θj|y, θ−j,D, φ)dθ−j

)
dθj −

∫
q(θj) log q(θj)dθj + const,

=

∫
q(θj)

(
E−θj [log p(θj|y, θ−j,D, φ)]

)
dθj −

∫
q(θj) log q(θj)dθj + const.

The last line is proportional to the KL divergence between log q(θj) and E−θj [log p(θ|y, φ)], where

E−θj denotes the expectation with respect to the q distributions over all variables {θi : θi 6= θj}.

Therefore to maximize the ELBO with respect to q(θj) we must minimize the KL divergence

between log q(θj) and E−θj [log p(θ|y, φ)], which occurs when

q∗(θj) ∝ E−θj [log p(θj|y, θ−j,D, φ)] .
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After applying Bayes theorem, the above CAVI step can be equivalently expressed as

q∗(θj) ∝ expE−θj [log p(y|θj, θ−j,D, φ) + log p(θj|φ)] . (45)

Updates for SNP main effect sizes q(βj)

The prior and conditional log-likelihood for βj are given by

p(βj|φ) = λβN
(
βj|0, σ2

eσ
2
β,1

)
+ (1− λβ)N

(
βj|0, σ2

eσ
2
β,2

)
, (46)

log p(y|βj, θ−βj ,D, φ) = − 1

2σ2
e

(
β2
j ||Xj||22 − 2βjX

T
j yresid,−βj

)
+ const, (47)

where const is a constant independent of βj and yresid,−βj = y−Cα−X−jβ−j−η�Xγ. Substituting

eq. (47) and eq. (46) into eq. (45) yields

q∗(θj) ∝ exp

(
−||Xj||22

2σ2
e

β2
j +

1

σ2
e

XT
j E−βj

[
yresid,−βj

]
βj

)
p(βj|φ) (48)

as the prior is independent of θ−βj . We now note the result

exp

(
−||Xj||22

2σ2
e

β2
j +

1

σ2
e

XT
j E−βj [yresid, -j] βj

)
N (βj|0, σ2

eσ
2
β,i) = exp

(
µ2
j,i

2sβj,i

)√
sβj,i
σ2
eσ

2
β,i

N (βj|µβj,i, s
β
j,i),

(49)

where

sβj,i =
σ2
e

||Xj||22 + 1/σ2
β,i

, for i = 1, 2

µβj,i =
sβj,i
σ2
e

XT
j E−βj

[
yresid,−βj

]
, for i = 1, 2.
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Substituting eq. (49) into eq. (48) yields

q∗(βj) ∝ λβ exp

(
(µβj,1)

2

2sβj,1

)√
sβj,1
σ2
eσ

2
β,1

N (βj|µβj,1, s
β
j,1)+ (50)

(1− λβ) exp

(
(µβj,2)

2

2sβj,2

)√
sβj,2
σ2
eσ

2
β,2

N (βj|µβj,2, s
β
j,2). (51)

It is now clear that q∗(βj) is the probability density function of a mixture of gaussians

q∗(βj) = ψβjN (βj|µβj,1, s
β
j,1) + (1− ψβj )N (βj|µβj,2, s

β
j,2),

where the mixture components ψβj and (1− ψβj ) must sum to one. Therefore

ψβj =

λβ exp

(
(µβj,1)

2

2sβj,1

)√
sβj,1

σ2
eσ

2
β,1

λβ exp

(
(µβj,1)

2

2sj,1

)√
sβj,1

σ2
eσ

2
β,1

+ (1− λβ) exp

(
(µβj,2)

2

2sβj,2

)√
sβj,2

σ2
eσ

2
β,2

or equivalently

ψβj = sigmoid

(
logit (λβ)− 1

2
log

(
σ2
β,1s

β
j,2

sβj,1σ
2
β,2

)
+

(µβj,1)
2

2sβj,1
−

(µβj,2)
2

2sβj,2

)
.

Therefore, the update equations for q(βj) can be summarised as

sβj,i =
σ2
e

||Xj||22 + 1/σ2
β,i

, for i = 1, 2

µβj,i =
sβj,i
σ2
e

XT
j E−βj

[
yresid,−βj

]
, for i = 1, 2

ψβj = sigmoid

(
logit (λβ)− 1

2
log

(
σ2
β,1s

β
j,2

sβj,1σ
2
β,2

)
+

(µβj,1)
2

2sβj,1
−

(µβj,2)
2

2sβj,2

)

where

E−βj
[
yresid,−βj

]
= y − CEq [α]−X−jEq [β−j]− diag (Eq [η])XEq [γ] .
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Updates for SNP interaction effect sizes q(γj)

The derivation of the variational update for q(γj) is extremely similar to that of q(βj). The prior

and conditional log-likelihood for γj are given by

p(γj|φ) = λγN
(
γj|0, σ2

eσ
2
γ,1

)
+ (1− λγ)N

(
γj|0, σ2

eσ
2
γ,2

)
, (52)

log p(y|γj, θ−γj ,D, φ) = − 1

2σ2
e

(
γ2j ||Zj||22 − 2γjZ

T
j yresid,−γj

)
+ const, (53)

where const is a constant independent of γj and yresid,−γj = y−Cα−Xβ−η�X−jγ−j . Substituting

eq. (53) and eq. (52) into eq. (45) yields

q∗(γj) ∝ exp

(
−
γ2j
2σ2

e

E−γj
[
||Zj||22

]
+

1

σ2
e

γjX
T
j E−γj

[
η � yresid,−γj

])
p(γj|φ) (54)

as the prior is independent of θ−j . Following the same steps as used in the derivation of q∗(βj), is

it clear that q∗(γj) is also the probability density function of a mixture of gaussians

q∗(γj) = ψγjN (γj|µγj,1, s
γ
j,1) + (1− ψγj )N (γj|µγj,2, s

γ
j,2),

whose optimal CAVI updates are given by

sγj,i =
σ2
e

E−γj [||Zj||22] + 1/σ2
γ,i

, for i = 1, 2

µγj,i =
sγj,i
σ2
e

XT
j E−γj

[
η � yresid,−γj

]
, for i = 1, 2

ψγj = sigmoid
(

logit (λγ)−
1

2
log

(
σ2
γ,1s

γ
j,2

sγj,1σ
2
γ,2

)
+

(µγj,1)
2

2sγj,1
−

(µγj,2)
2

2sγj,2

)
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where

E−γj
[
yresid,−γj

]
= y − CEq [α]−XEq [β]− diag (Eq [η])X−jEq [γ−j] ,

E−γj
[
||Zj||22

]
= XT

.jdiag
(
Eq
[
η2
])
X.j,

=
∑
l,m

Eq [wm]Eq [wl]
∑
i

X2
ijEilEim︸ ︷︷ ︸

precomputed

+
∑
l

Varq(wl)
∑
i

X2
ijE

2
il︸ ︷︷ ︸

precomputed

.

Note that computation of E−γj [||Zj||22] is an O(L2 + N) operation due to the precomputation

of
∑

iX
2
ijEilEim (and without this precomputation the compute cost of this update would be

O(NL2)).

Updates for interaction weights q(wl)

Rewriting the conditional log-likelihood makes its dependence on w clear

log p(y|w, θ−w,D, φ) = − 1

2σ2
e

||y − Cα−Xβ − η �Xγ||22 + const,

= − 1

2σ2
e

||y − Cα−Xβ −Bw||22 + const

where B = diag (Xγ)E and const is a constant independent of w. For convenience we denote the

l’th column of B as Bl. Therefore the prior and conditional log-likelihood of wl are given by

p(wl) = N (wl|0, 1) , (55)

log p(y|wl, θ−wl ,D, φ) = − 1

2σ2
e

(
w2
l ||Bl||22 − 2wlB

T
l yresid,−wl

)
+ const, (56)
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where yresid,−wl = y−Cα−Xβ −B−lw−l and const is now a constant independent of wl. Substi-

tuting eq. (56) and eq. (55) into eq. (45) yields

q∗(wl) ∝ exp

(
−w

2
l

2
E−wl

[
||Bl||22

]
+ wlE−wl

[
BT
l yresid,−wl

])
p(wl),

∝ N (wl|µwl , swl ),

where

swl =
σ2
e

σ2
e + E−wl [||Bl||22]

,

µwl =
swl
σ2
e

E−wl
[
BT
l yresid,−wl

]
.

As q∗(wl) must be a valid distribution, it is clear that q∗(wl) = N (wl|µwl , swl ). The quantities

E−wl [||Bl||22] and E−wl
[
BT
l yresid,−wl

]
can be computed as follows

E−wl
[
||Bl||22

]
= E

∑
i

E2
il

(∑
j

X2
ijγj

)2
 ,

=
∑
i

E2
il

(∑
j

X2
ijE [γj]

)2

+
∑
i

E2
il

∑
j

X2
ijVar (γj) ,

= yTXdiag
(
E2
l

)
yX +

∑
j

Var (γj)
∑
i

E2
ilX

2
ij︸ ︷︷ ︸

precomputed

.

E−wl
[
BT
l yresid,−wl

]
= (y − ŷM)Tdiag (E∗l ) ŷX − E∗l diag

(
ŷ2X
)
E [η−l]

−
∑
j

Var (γj)
∑
m6=l

E [wm]
∑
i

X2
ijEilEim︸ ︷︷ ︸

precomputed

.

Note that computation of E−wl
[
BT
l yresid,−wl

]
is an O(NL) operation due to the precomputation

of
∑

iX
2
ijEilEim (and without this precomputation the compute cost of this update would be

O(NML)).
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Updates for covariate main effect sizes q(αc)

The derivation of the variational update for q(αc) is extremely similar to that of q(wl). The prior

and conditional log-likelihood for αc are given by

p(αc|φ) = N
(
αc|0, σ2

eσ
2
α

)
, (57)

log p(y|αc, θ−αc ,D, φ) = − 1

2σ2
e

(
α2
c ||Cc||22 − 2αcC

T
c yresid,−αc

)
+ const, (58)

where const is a constant independent of αc and yresid,−αc = y−C−cα−c−Xβ− η�Xγ. By sim-

ilarity with the derivation of q∗(wl) it is clear that q∗(αc) is a gassian distribution, with variational

updates

sαc =
σ2
e

1/σ2
α + (N − 1)

,

µαc =
sαc
σ2
e

CT
c E−αc [yresid,−αc ]

where E−αc [yresid,−αc ] = y − C−cEq [α−c]−XEq [β]− Eq [η]�XEq [γ].

Evidence lower bound Variational inference involves maximising the evidence lower bound (ELBO)

F(φ; ν) on the model log-likelihood log p(y|D, φ). The ELBO can be separated into the expected

conditional log-likelihood and the KL divergence between the variational distribution and the re-
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spective priors. This is given by

F(φ; ν) = Eq [log p(y|θ,D, φ)]−
∑
j

KL(q(θj; νj)||p(θj|φ)),

= −N
2

log(2πσ2
e)

− 1

2σ2
e

(
||y − CEq [α]−XEq [β]− Eq [η]�XEq [γ] ||22

)
− 1

2σ2
e

(
Eq [γ]T XTdiag

(
Eq
[
η2
])
XEq [γ]− ||Eq [η]�XEq [γ] ||22

)
− N − 1

2σ2
e

∑
l

Varq (αl)−
N − 1

2σ2
e

∑
k

Varq (βk)

−
L′∑
c

KL(q(αc)‖p(αc))−
L∑
l

KL(q(wl)‖p(wl))

−
M∑
j

KL(q(βj)‖p(βj))−
M∑
j

KL(q(γj)‖p(γj))

While the KL Divergence between two univariate gaussian distributions is a standard result, the KL

Divergence between two mixtures of gaussians is not analytically tractable. However the matched

bound approximation 67 can be used to provide an upper bound when both have the same number

of components. Thus for two mixtures of gaussians given by

u ∼ λN (0, σ2
1) + (1− λ)N (0, σ2

2),

v ∼ ψN (µ1, s1) + (1− ψ)N (µ2, s2),

the matched bound on the KL divergence is given by

KL(v‖u) ≤ψ log
ψ

λ
+ (1− ψ) log

1− ψ
1− λ

− 1

2
+
ψ

2

(
s1 + µ2

1

2σ2
1

− log

(
s1
σ2
1

))
+

(1− ψ)

2

(
s2 + µ2

2

2σ2
2

− log

(
s2
σ2
2

))
.
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Use of the matched bound approximation retains a valid variational algorithm, because it maintains

the lower bound on the marginal log-likelihood68.

KL(q(αc)‖p(αc)) =− 1

2
+

1

2

(
sαm + (µαm)2

σ2
eσ

2
α

− log

(
sαm
σ2
eσ

2
α

))
KL(q(wl)‖p(wl)) =− 1

2
+

1

2

(
(swl + (µwl )2)− log(swl )

)
KL(q(βj)‖p(βj)) =ψβj log

ψβj
λβ

+ (1− ψβj ) log
1− ψβj
1− λβ

− 1

2

+
ψβj
2

(
sβj,1 + (µβj,1)

2

σ2
eσ

2
β,1

− log
sβj,1
σ2
eσ

2
β,1

)
+

1− ψβj
2

(
sβj,2 + (µβj,2)

2

σ2
eσ

2
β,2

− log

(
sβj,2
σ2
eσ

2
β,2

))

KL(q(γj)‖p(γj)) =ψγj log
ψγj
λγ

+ (1− ψγj ) log
1− ψγj
1− λγ

− 1

2

+
ψγj
2

(
sγj,1 + (µγj,1)

2

σ2
eσ

2
γ,1

− log

(
sγj,1
σ2
eσ

2
γ,1

))
+

1− ψγj
2

(
sγj,2 + (µγj,2)

2

σ2
eσ

2
γ,2

− log

(
sγj,2
σ2
eσ

2
γ,2

))

Derivation of hyperparameter maximization For the maximization step we set φ = φ̂ where

∇φF (φ; ν) = 0. For ease of notation we perform the following change of variables

σ̃2
β,1 = σ2

eσ
2
β,1 →

∂

∂σ̃2
β,1

=
1

σ2
e

∂

∂σ2
β,1

,

σ̃2
β,2 = σ2

eσ
2
β,2 →

∂

∂σ̃2
β,2

=
1

σ2
e

∂

∂σ2
β,2

,

σ̃2
γ,1 = σ2

eσ
2
γ,1 →

∂

∂σ̃2
γ,1

=
1

σ2
e

∂

∂σ2
γ,1

,

σ̃2
γ,2 = σ2

eσ
2
γ,2 →

∂

∂σ̃2
γ,2

=
1

σ2
e

∂

∂σ2
γ,2

.
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This makes the derivation easier as all the partial derivatives become decoupled. Partial derivatives

with respect to each hyper-parameter are given by

∂F

∂λβ
=
∑
j

(
ψβj
λβ
−

(1− ψβj )

1− λβ

)
,

∂F

∂λγ
=
∑
j

(
ψγj
λγ
−

(1− ψγj )

1− λγ

)
,

∂F

∂σ̃2
β,1

=
∑
j

ψβj
2

(
− 1

σ̃2
β,1

+
sβj,1 + (µβj,1)

2

(σ̃2
β,1)

2

)
,

∂F

∂σ̃2
β,2

=
∑
j

1− ψβj
2

(
− 1

σ̃2
β,2

+
sβj,2 + (µβj,2)

2

(σ̃2
β,2)

2

)
,

∂F

∂σ̃2
γ,1

=
∑
j

ψγj
2

(
− 1

σ̃2
γ,1

+
sγj,1 + (µγj,1)

2

(σ̃2
γ,1)

2

)
,

∂F

∂σ̃2
γ,2

=
∑
j

1− ψγj
2

(
− 1

σ̃2
γ,2

+
sγj,2 + (µγj,2)

2

(σ̃2
γ,2)

2

)
,

∂F

∂σ2
e

= − N

2σ2
e

+
1

2(σ2
e)

2
Eq
[
||y − Cα−Xβ − diag(η)Xγ||22

]
− M

2σ2
e

+
1

2(σ2
e)

2σ2
α

∑
c

(
sαc + (µαc )2

)
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Hence the maximization steps are

λ̂β =
1

P

∑
j

ψβj , (59)

λ̂γ =
1

P

∑
j

ψγj , (60)

(61)

σ̂2
β,1 =

∑
j ψ

β
j (sβj,1 + (µβj,1)

2)

σ̂2
e

∑
j ψ

β
j

, (62)

σ̂2
β,2 =

∑
j(1− ψ

β
j )(sβj,2 + (µβj,2)

2)

σ̂2
e

∑
j(1− ψ

β
j )

, (63)

(64)

σ̂2
γ,1 =

∑
j ψ

γ
j (sγj,1 + (µγj,1)

2)

σ̂2
e

∑
j ψ

γ
j

, (65)

σ̂2
γ,2 =

∑
j(1− ψ

γ
j )(sγj,2 + (µγj,2)

2)

σ̂2
e

∑
j(1− ψ

γ
j )

, (66)

(67)

σ̂2 =
Eq [||y − Cα−Xβ − diag (η)Xγ||22] + 1

σ2
α

∑
c (sαc + (µαc )2)

N +M
. (68)

As an aside we note that one could use the maximized hyper-parameters (after convergence) to

obtain a point estimate of Var (β). However, by substituting in Equations (59) to (66) we can see

that this is equivalent to
∑

j Eq
[
β2
j

]
/M .

Var (β) = λβσ
2
β,1 + (1− λβ)σ2

β,2,

≈ λ̂βσ̂
2
β,1 + (1− λ̂β)σ̂2

β,2,

=
1

M

∑
j

(
ψβj (sβj,1 + (µβj,1)

2) + (1− ψβj )(sβj,2 + (µβj,2)
2)
)
,

=
1

M

∑
j

Eq
[
β2
j

]
.
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As the mean field assumption tends to cause variational inference algorithms to underestimate the

variance of latent variables 69, this is likely to produce an underestimate of Var (β). We can observe

the same result for Var (γ) with an analogous argument.

Compressed genotype data To reduce RAM usage, LEMMA stores a compressed version of the

genotype matrix using NM bytes. To do this LEMMA splits the interval [0, 2] into 28 segments

and stores the index of the segment that each dosage falls into, as well as the mean and variance for

each SNP. Then when operating on a SNP, LEMMA reconstructs the centered and scaled dosages

for that SNP. This approach is similar to that used by the BGEN data format 70 and results in a

small loss of accuracy, but is more flexible that assuming dosages are hardcoded to {0, 1, 2}.

Computational efficiency Using mean field variational inference, estimation of the posterior

means of the latent variables β, γ, w can be reduced to an iterative algorithm that cycles through

the variables sequentially, updating each conditional on the values of the others. Taking the main

effect of the j’th SNP as an example, the update scheme for βj can be written heuristically as

β̃j = XT
j yresid, (69)

β̂tj = regularise(β̃j;φ
t), (70)

yresid = yresid − (β̂tj − β̂t−1j )XT
j . (71)

In Equation (69) we compute the correlation between the j SNP and the residual phenotype vector.

In Equation (70) we compute the posterior mean of βj which depends on the correlation with the

residual phenotype, the prior on βj and the current hyper-parameters Finally in Equation (71) we

update the residual phenotype vector.

63

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted April 17, 2020. ; https://doi.org/10.1101/797829doi: bioRxiv preprint 

https://doi.org/10.1101/797829
http://creativecommons.org/licenses/by/4.0/


The majority of computational time is spent on the dot product in Equation (69) and updating

the residual phenotype in Equation (71). Both are BLAS Level 1 operations, which implies that

memory access is often the principle bottleneck rather than the number of cores available. It is

possible to step up to BLAS Level 2 by updating a block of SNPs in parallel 13, however this is still

a memory bound operation. Instead we use a parallel computing strategy suggested by 71 for use

in genome wide regression, and subsequently used by 32, to compute the dot product and perform

the residual update in parallel using OpenMPI. Briefly, we partition the samples such that blocks

of rows of the phenotype y, genotypes X and environmental variables E are assigned to each core.

For a given update step, each core calculates the dot product for the locally held block of samples

and then shares the local dot product with the rest of the network. From this the dot product for

the entire cohort can be reconstructed cheaply. After computing the posterior mean, each core

then updates the residual phenotype for the block of samples stored locally. We observed that

a distributed algorithm using OpenMPI was faster than the same algorithm using multi-threaded

matrix-vector operations with the Intel MKL Library even on a single node with multiple cores.

However using OpenMPI has the additional advantage of allowing users to utilize cores from

across a cluster rather than being restricted to a single node. Figure S18 shows LEMMA scales

with increasing sample size.

Pre-computed quantities To aid computational efficiency we pre-compute aM×L(L+1) matrix

W where

Wj,m×L+l =
∑
i

X2
ijEilEim, for 1 ≤ l < m ≤ L and 1 ≤ j ≤M,
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and is used in the updates of q(wl) and q(γj). LEMMA can compute this internally, incurring a one

off cost of O(NML2), or is able to read from a text file at run time. As this is easily computed in

parallel over batches of variants and/or environment, we recommend that for biobank scale datasets

users should pre-compute this quantity beforehand using a separate tool that we have provided.

Parameter Initialization We start the variational mean estimates of q(β) and q(γ) at zero. To

initialize mean estimates of the interaction weights q(w) we have two options; the first of which

is simply to use a uniform weighting over all environments. For the second we apply an F-Test

independently at each SNP and use the learned coefficients from the test with the lowest p-value

as the initial values of the interaction weights. We find that we often obtain similar results from

both options, so for simplicity we use a uniform start point for our Biobank analyses. To initialize

mean estimates of q(α) we use the least squares fit of C on y.

Inintial values of the hyperparameters are drawn randomly from the following distributions

h2β ∼ U(0, 0.5),

h2γ ∼ U(0, 0.1),

− log10(λβ) ∼ U([2, ..., 1− log10(M)])

− log10(λγ) ∼ U([2, ..., 1− log10(M)]).
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We then set

σ2
e = 1− h2β − h2γ,

σ2
β,1 =

1

λβM

h2β
1− h2β − h2γ

,

σ2
γ,1 =

1

λγM

h2γ
1− h2β − h2γ

,

and initialize the spike variances at

σ2
β,2 = σ2

β,1/1000,

σ2
γ,2 = σ2

γ,1/1000.

Setting the sparsity hyperparameters λβ, λγ in this manner allows LEMMA to start from a state

where only a small number (somewhere between ten and one in one hundred) SNPs are expected

to be part of the slab prior. The sparsity hyperparameters can then be updated in the variational

maximization step to better reflect trait genetic architecture.

Missing data Samples with missing data in the phenotype, environmental variables or covariates

are excluded. By default LEMMA imputes missing genetic data with the mean dosage of each

SNP, however as LEMMA does not assume dosages are hard called with {0, 1, 2} we recommend

that users first impute genetic data with standard imputation pipelines.

Robust standard errors in GxE Studies In Figure S19 we illustrate how a multiplicative GxE

interaction effect on a quantitative trait can cause the conditional trait variance given an interacting

SNP Var(Y |g0) to differ according to the interacting SNPs genotype. This is known as conditional

heteroskedasticity and is the key insight behind several recent methods to detect SNPs with non-
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zero GxE effects in the UK Biobank 8, 40.

In the same figure, we can observe that the conditional trait variance given the environmental

exposure Var(y|E) also displays signs of conditional heteroskedasticity. Previous studies 49 have

observed that methods that assume heteroskedasticity can display substantial inflation when testing

for GxE effects at SNPs where there is no true GxE effect. In our simulations we observed that

inflation of GxE tests statistics from LEMMA-S and the F-test, both of which assume homoskedas-

ticity, increased with SNP-GxE heritability. Below we give an explanation for this phenomenon.

Consider a polygenic quantitative trait Y that has multiplicative GxE interactions with the

same environmental exposure E at multiple SNPs

yi = αEi +
M∑
j=1

βjGij +
M∑
j=1

γjEiGij + εi, (72)

where M is the number of SNPs and the coefficients represent true effects. For simplicity we

assume that E and SNPs Gj are normalized to have mean zero and variance one, that the set of E

with all causal SNPs {E} ∪ {Gj : βj 6= 0} is pairwise independent and that the influence from

population structure is negligible.

Suppose we have identified E as an environmental variable that may plausible have GxE

interactions with our phenotype and we then conduct a GWAS for GxE effects. Then at the k’th

SNP we wish to test the hypothesis γk 6= 0 in the following linear model

y = αE +Gkβk + E ·Gkγk + u,

= Xτ + u,
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where in the second line τ = (α, βk, γk)
T , X is the corresponding design matrix encapsulating

all fixed effects and u in an unobserved random effects capturing residual noise. Assuming that

E [u|X] = 0, the usual least squares estimate of τ , τ̂ = (XTX)−1XTy, has asymptotic distribution

τ̂ → N (τ,Var (τ̂)),

where

Var (τ̂) = EX [Var (τ̂ |X)] + VarX (E [τ̂ |X]) ,

= EX [Var (τ̂ |X)] + VarX (τ) ,

= EX [Var (τ̂ |X)] ,

and

Var (τ̂ |X) = Var
(
τ + (XTX)−1XTu|X

)
,

= (XTX)−1Var
(
XTu|X

)
(XTX)−T ,

= (XTX)−1XTVar (u|X)X(XTX)−T .

The usual approach is to assume that Var (u|X) = σ2I (ie homoskedasticity), which yields the

standard variance estimator Var (τ̂ |X) = σ2(XTX)−1. However, given the true generative model

for y given in Equation (72), we can write u as

u =
∑
j 6=k

(Gjβj + EGjγj) + ε. (73)
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Therefore the conditional variance of u given X is given by

Var (u|X) = Var (u|E = e,Gk = gk) ,

= Var

(∑
j 6=k

(Gjβj + eGjγj) + ε

)
,

=
∑
j 6=k

Var (βjGj) +
∑
j 6=k

Var (γjeGj) + 2
∑
j 6=k

Cov (βjGj, γjeGj) + 1

+
∑

j 6=k,m6=k

Cov (βjGj, βmGm) +
∑

j 6=k,m6=k

Cov (γjeGj, γmeGm)

=
∑
j 6=k

(βj + eγj)
2 + 1,

where the covariances in the second line are all zero due to pairwise independence of the set

{E} ∪ {Gj : βj 6= 0}. Thus the conditional trait variance will vary depending on the strength of

environmental exposure either if there are a few SNPs with GxE interactions of large effect or if

there are many SNPs with small yet non-zero interaction effects, and in either case homoskedas-

ticity is unlikely to be an appropriate assumption.

Robust standard errors, alternatively called Huber-White, sandwich or “heteroskedastic-consistent”

errors 59, 60, are standard tools used in economics 47 to overcome this issue and have previously been

proposed for use in GxE interaction studies 25, 49, 61. We further include a small adjustment that re-

duces bias in small samples 62. This yields the variance estimator

Var (τ̂) = (HTH)−1HT Σ̂H(HTH)−1,

where Σ̂ is a diagonal matrix with Σ̂ii =
ε̂2i

(1−hii)2 , where ε̂ = y −Hτ̂ and h = H(HTH)−1HT .
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Figure S1: False positive rates on simulated datasets. False positive rate (FPR) for SNP main

effects tests (bottom) and SNP GxE interaction tests (top) at null SNPs in the second half of each

chromosome, whilst varying (a) the number of environmental variables, (b) proportion of trait

variance explained by background GxE effects and (c) sample size. The grey line denotes expected

FPR. Simulations used genotypes sub-sampled from the UK Biobank and by default contained

N = 25K samples, M = 100K SNPs, 6 environmental variables that contributed to the ES and

24 that did not (default parameters denoted by stars). We performed 20 repeats for each scenario.

See Online methods for full details of phenotype construction.
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Figure S2: LEMMA false positive rate in large simulations. False positive rate (FPR) for SNP

main effects tests (right) and SNP GxE interaction tests (left) at null SNPs in the second half of

each chromosome, whilst varying the number of environmental variables. The simulation was con-

ducted with N = 200K samples and M = 400K SNPs. The simulated trait was constructed with

10, 000 causal SNPs main effects that explained 20% of variance, and zero causal SNP GxE ef-

fects. We performed 20 repeats in each scenario. See Online methods for full details of phenotype

construction.
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Figure S3: Estimation of GxE heritability. Estimates of SNP-GxE heritability whilst varying the

number of environmental variables (b, d) and sample size (a, c). The red dotted line denotes the true

SNP-GxE heritability used whilst constructing the simulation. We observed some upwards bias as

the number of environmental variables increases (b, d), which is ameliorated with increased sample

size (d). Phenotypes were constructed using M = 100, 000 SNPs with Mcausal, main-effects = 80, 000

causal main effects and Mcausal, GxE-effects = 40, 000 causal interaction effects. See Online methods

for full details of phenotype construction.
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Figure S4: Power to detect causal SNPs in simulation. Power to detect SNP GxE interaction

effects (top) and SNP main effects (bottom), whilst varying (a) the number of environmental vari-

ables, (b) proportion of trait variance explained by background GxE effects and (c) sample size.

Power was assessed as the proportion of 60 causal SNPs detected at p < 0.01 (Family Wise Er-

ror Rate; FWER < 0.01), where causal SNPs main and GxE interaction effects each explained

0.00016% of trait variance. Simulations used genotypes sub-sampled from the UK Biobank and

by default contained N = 25K samples, M = 100K SNPs, 6 environmental variables that con-

tributed to the ES and 24 that did not (default parameters denoted by stars). We performed 20

repeats for each scenario. See Online methods for full details of phenotype construction.
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Figure S5: Estimation of ES weights in simulation. Boxplots of the environmental score (ES)

weights estimated by LEMMA (left) over 20 simulations. Red lines denote true weights used

to construct the simulated ES. Simulations performed with N = 25k samples, M = 100k

SNPs and L = 30 environments (of which 6 were active). Phenotypes were constructed with

Mcausal, main-effects = 5000 SNPs explaining 20% of trait variance and Mcausal, GxE-effects = 2500 SNPs

explaining 5% of trait variance. LEMMA is invariant to a sign change in both the interaction

weights and interaction SNP effects, so ES weights are automatically re-scaled such that the largest

weight is positive before plotting.
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Figure S6: Heritability estimates stratified by LD and MAF in simulation. Comparison of

heritability estimates using RHE-SC and RHE-LDMS when causal SNPs were drawn (a) at random

or (c) only from low frequency (MAF < 0.1) SNPs. Heritability estimates (using RHE-LDMS)

stratified by MAF when causal SNPs were drawn (b) at random or (d) only from low frequency

(MAF < 0.1) SNPs. Simulations performed with N = 25K samples, M = 100K SNPs and the

default simulation parameters described in Online Methods. Abbreviations; MAF, minor allele

frequency; RHE-SC, randomized HE-regression with a single SNP component23; RHE-LDMS,

multi-component randomized HE-regression24.
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Figure S7: GxE analysis of PP in the UK Biobank. (a) LEMMA association statistics testing

for multiplicative GxE interactions at each SNP. The horizontal grey line denotes (p = 5× 10−8),

p-values are shown on the− log10 scale. (b) Distribution of the environmental score (ES), stratified

by gender and age quantile. (c) Weights used to construct the ES. Dietary variables have a single

weight shown on the per standard deviation (s.d) scale. ‘Gender’ has two weights; a gender specific

intercept for women (first) and men (second). Remaining non-dietary variables have three weights;

(first) a per s.d effect for women only, (second) a per s.d effect for men only, (third) a per s.d per

decade effect which is the same for both genders. s.d for the male and female specific weights is

computed for each gender separately. Age is computed as the number of decades aged from 40.

See Online Methods for details.
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Figure S8: GxE analysis of SBP in the UK Biobank. (a) LEMMA association statistics testing

for multiplicative GxE interactions at each SNP. The horizontal grey line denotes (p = 5× 10−8),

p-values are shown on the− log10 scale. (b) Distribution of the environmental score (ES), stratified

by gender and age quantile. (c) Weights used to construct the ES. Dietary variables have a single

weight shown on the per standard deviation (s.d) scale. ‘Gender’ has two weights; a gender specific

intercept for women (first) and men (second). Remaining non-dietary variables have three weights;

(first) a per s.d effect for women only, (second) a per s.d effect for men only, (third) a per s.d per

decade effect which is the same for both genders. s.d for the male and female specific weights is

computed for each gender separately. Age is computed as the number of decades aged from 40.

See Online Methods for details.
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Figure S9: GxE analysis of DBP in the UK Biobank. (a) LEMMA association statistics testing

for multiplicative GxE interactions at each SNP. The horizontal grey line denotes (p = 5× 10−8),

p-values are shown on the− log10 scale. (b) Distribution of the environmental score (ES), stratified

by gender and age quantile. (c) Weights used to construct the ES. Dietary variables have a single

weight shown on the per standard deviation (s.d) scale. ‘Gender’ has two weights; a gender specific

intercept for women (first) and men (second). Remaining non-dietary variables have three weights;

(first) a per s.d effect for women only, (second) a per s.d effect for men only, (third) a per s.d per

decade effect which is the same for both genders. s.d for the male and female specific weights is

computed for each gender separately. Age is computed as the number of decades aged from 40.

See Online Methods for details.
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Figure S10: Effect of using robust standard errors for GxE interaction tests in the UK

Biobank. QQ plots of the observed LEMMA − log10(p) values for GxE interactions at im-

puted SNPs for four UK Biobank traits, with and without robust standard errors. The grey

dotted line denotes expected − log10(p)-values under a null model. Association tests using

‘Robust’ standard errors are well calibrated in both homoskedastic and heteroskedastic regimes

(see Online Methods) and are used in all follow up analysis. Genomic control statistics were

1.275, 1.271, 1.163, 1.111 for logBMI, PP, SBP and DBP respectively using homoskedastic stan-

dard errors and 1.062, 1.047, 1.037, 1.027 for logBMI, PP, SBP and DBP respectively using robust

standard errors.
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Figure S11: Estimated GxE effect rs2153960 on logBMI. (a) Regional plot of the main and

interaction effects of SNPs within 250KB of rs2153960, (b) the estimated effect of rs2153960 on

logBMI as a function of the environmental score (ES).
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Figure S12: Estimated GxE effect rs539515 on logBMI. (a) Regional plot of the main and inter-

action effects of SNPs within 250KB of rs539515, (b) the estimated effect of rs539515 on logBMI

as a function of the environmental score (ES).
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Figure S13: Estimated GxE effect rs8090962 on DBP. (a) Regional plot of the main and interac-

tion effects of SNPs within 250KB of rs8090962, (b) the estimated effect of rs8090962 on DBP as

a function of the environmental score (ES).
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Figure S14: Comparison of the LEMMA vs marginal environmental score. Interaction weights

of the marginal environmental score were estimated from multivariate linear regression, using all

the non-genetic covariates used by LEMMA. Interactions weights were all rescaled so that the

corresponding ES had variance one. The dashed grey line represents the y = x line.
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(a) LEMMA

(b) StructLMM

(c) F-test

(d) robust F-test

Figure S15: GxE association statistics for logBMI. Manhattan plots displaying the negative log10

p values from GxE interaction tests at 10, 295, 038 imputed SNPs applied to logBMI in the UK

Biobank. GxE interaction tests were computed using (a) LEMMA, (b) StructLMM, (c) the F-test

and (d) the robust F-test. The horizontal grey line denotes (p = 5× 10−8).
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(a) StructLMM vs the F-test (b) StructLMM vs robust F-test (c) LEMMA vs StructLMM

(d) LEMMA vs the F-test (e) LEMMA vs robust F-test (f) LEMMA (-SQE) vs LEMMA

Figure S16: Comparison of GxE association statistics for logBMI. Comparison of negative

log10 p values obtained from LEMMA, StructLMM, the F-test and the robust F-test in an analysis

of logBMI in the UK Biobank. Grey lines denote (p = 5 × 10−8) and the y = x axis. Pearson

correlation is shown in a label at the top left of each plot. Red points denote the sentinel SNP for

each locus.
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Figure S17: Inference of environmental score weights from GxE analyses of four quantitative

traits in the UK Biobank. Evolution of the environmental score weights as LEMMA performs

successive passes through the data.
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Figure S18: Log-log plots showing runtime of the variational bayes algorithm used to perform

whole genome regression by LEMMA, as a function of sample size (left) and the number of envi-

ronmental variables (right). Unless otherwise stated simulations were performed using N = 25k

samples, M = 100k SNPs and L = 30 environmental variables. Phenotypes were constructed

using 2500 non-zero main effects explaining 20% of variance, 1250 nonzero interaction effects ex-

plaining 5% of variance and 6 active environmental variables. See Online methods for full details

of phenotype construction.
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Figure S19: Visualization of differences in variance induced by a multiplicative Gene-x-

Environment effect. Differences in phenotypic variance by genotype group (top) and by strength

of the environmental exposure (bottom). The phenotype was simulated using 2000 individuals on

the basis of a multiplication interaction between a single genotype (minor allele frequency 0.3)

and an environment (uniformly distributed over [−2, 2]). From left to right; the GxE interaction

explained 0%, 20%, 40% of trait variance.
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Trait No. samples No. SNPs No. envs No.

envs-sq

No. other

covars

No. covars

total

Iterations for

WGR converge

Time for WGR to

converge*

log(BMI) 281149 642095 42 30 24 96 1631 78 hours 18 mins

PP 280749 642102 45 13 25 83 3821 183 hours 26 mins

SBP 280749 642102 45 15 25 85 967 46 hours 25 mins

DBP 280749 642102 45 15 25 85 646 31 hours 00 mins

Table S1: Quality control and time to convergence of the WGR analysesTime for the whole genome regression analysis to

converge is reported for four quantitative traits in the UK Biobank, as well as the number of SNPs and samples passing quality

control and the number of covariates controlled for. ‘Other covariates’ consisted of the top 20 genetic principal components as

reported by the UK Biobank, age3, age2× gender, age3× gender, a binary indicator for the genotype chip and (for blood pressure

traits only) BMI. Environmental variables used (including lower orders of age and gender) are described in (Online Methods). To

control for potential bias due to non-linear dependence between the phenotype and heritable environmental variables, we tested

each environmental variable and included any significant squared effects as additional covariates (Online Methods) *based on the

average per-iteration cost of 243 seconds, using 32 cores distributed across a cluster with Xeon E5-2667 v4 3.2Ghz processors.
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Trait Genotyped (SC) Genotyped (LDMS) Common Imputed (LDMS)

h2G (s.e) h2GxE (s.e) h2G (s.e) h2GxE (s.e) h2G (s.e) h2GxE (s.e)

log BMI 0.259 (0.069) 0.071 (0.009) 0.237 (0.126) 0.086 (0.024) 0.274 (0.056) 0.093 (0.028)

PP 0.233 (0.039) 0.075 (0.018) 0.203 (0.084) 0.111 (0.021) 0.228 (0.051) 0.125 (0.028)

SBP 0.24 (0.053) 0.033 (0.003) 0.223 (0.095) 0.038 (0.017) 0.251 (0.05) 0.039 (0.023)

DBP 0.277 (0.034) 0.014 (0.001) 0.231 (0.079) 0.016 (0.017) 0.254 (0.05) 0.016 (0.02)

Table S2: Partitioned heritability estimates for four quantitative traits in the UK Biobank.

Comparison of the heritability estimates obtained using genotyped SNPs with RHE-SC, geno-

typed SNPs with RHE-LDMS, and common imputed SNPs (MAF> 0.01 in the full UK Biobank

cohort) with RHE-LDMS. GxE heritability estimates were were obtained using the ES from each

model fit. All analyses controlled for the same covariates used in the WGR analysis (including the

top 20 principal components). Abbreviations; s.e, standard error estimated using the block jack-

knife (see Online Methods); h2G, heritability due to additive genetic effects; h2GxE, heritability due

to multiplicative GxE effects; RHE, randomized HE-regression23, 24; SC, single SNP component;

LDMS, SNPs stratified by minor allele frequency and LDscore (20 components).
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Method No. signals Genomic control (χ2) Genomic control (p-values)*

LEMMA 2 1.062 1.038

LEMMA-S 5 1.275 1.164

StructLMM (-SQE) 3 NA 1.236

F-test (-SQE) 4 NA 1.372

robust F-test (-SQE) 2 NA 1.034

LEMMA (-SQE) 3 1.065 1.04

LEMMA-S (-SQE) 6 1.288 1.171

Table S5: Comparison of the number of genome-wide significant GxE associations and ge-

nomics control statistics from a GxE analysis of logBMI in the UK Biobank The number of

independent loci (at least 0.5cM apart) with genome-wide significant GxE interaction effects and

genomic control statistics for seven different methods applied to logBMI in the UK Biobank. Ge-

nomic control is computed from GxE interaction tests statistics from 10, 295, 038 imputed SNPs.

Abbreviations; LEMMA-S, LEMMA with a homoskedastic test statistic (see Online Methods);

(-SQE), significant squared environmental variables (Bonferroni correction) not included as addi-

tional covariates.

*The test statistics from StructLMM, F-test and the robust F-test are not χ2
1 distributed. Hence for

these methods we use λGC = log10(m)/ log1 0(0.5), where m is the median p-value, to denote the

genomic control statistic as suggested by Moore et al.7.
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logBMI ES PP ES SBP ES DBP ES

PC1 2.182 0.023 0.467 0.403

PC2 0.254 0.153 0.197 0.088

PC3 0.022 0.382 0.405 0.295

PC4 0.657 0.465 0.091 0.095

PC5 15.075 2.652 68.293 71.439

PC6 0.703 0.780 0.020 0.480

PC7 0.469 0.095 0.933 0.998

PC8 0.778 1.898 2.784 1.848

PC9 0.675 0.878 14.130 27.305

PC10 0.814 0.081 0.647 0.276

PC11 2.759 0.255 6.547 7.970

PC12 0.319 0.974 0.486 0.511

PC13 0.659 0.508 0.475 2.003

PC14 3.301 5.779 2.575 4.454

PC15 0.186 0.418 0.300 0.531

PC16 3.554 3.141 2.830 6.560

PC17 0.695 1.590 1.208 0.061

PC18 3.965 0.215 0.681 0.884

PC19 0.350 0.375 0.099 0.409

PC20 2.463 1.208 1.228 0.720

Table S7: Association between genetic principle components and the environmental score for

four traits in the UK Biobank Associations computed using ordinary least squares to regress

the environmental score against the top 20 principle components (with an intercept included).

Association strength reported using negative log10(P )-values from a standard t-test. Abbreviations;

PC, genetic principle component; ES, environmental score.

92

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted April 17, 2020. ; https://doi.org/10.1101/797829doi: bioRxiv preprint 

https://doi.org/10.1101/797829
http://creativecommons.org/licenses/by/4.0/


Trait Genotyped (LDMS) Genotyped (LDMS), additionally controlling for ES-x-PCs

h2G (s.e) h2GxE (s.e) h2G (s.e) h2GxE (s.e)

log BMI 0.2366 (0.1259) 0.0862 (0.0237) 0.2368 (0.1259) 0.0862 (0.0236)

PP 0.2025 (0.0841) 0.1110 (0.0208) 0.2025 (0.0840) 0.1113 (0.0208)

SBP 0.2225 (0.0954) 0.0377 (0.0168) 0.2226 (0.0955) 0.0360 (0.0166)

DBP 0.2308 (0.0793) 0.0157 (0.0166) 0.2308 (0.0793) 0.0142 (0.0163)

Table S8: Sensitivity of partitioned heritability estimates to ES-x-PCs interaction in the UK

Biobank. Heritability estimates were computed using genotyped SNPs with RHE-LDMS and the

ES from each WGR analysis. Left; heritability estimates obtained whilst controlling for the same

covariates used in the WGR analysis (including the top 20 principal components), right; heritia-

bility estimates obtained whilst additionally controlling for multiplicative interactios between the

ES and genetic PCs. Abbreviations; s.e, standard error estimated using the block jackknife (see

Online Methods); h2G, heritability due to additive genetic effects; h2GxE, heritability due to mul-

tiplicative GxE effects; RHE, randomized HE-regression23, 24; LDMS, SNPs stratified by minor

allele frequency and LDscore (20 components).
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Table S9: Correlation between main SNP effects and interaction SNP effects

Trait cor(ES,ESmain) abs(cor(Xβ, Xγ)) abs(cor(β, γ))

log(BMI) -0.062 0.13680 0.05810

PP -0.019 0.05306 0.03324

SBP -0.297 0.01741 0.00816

DBP -0.088 0.02464 0.00732

Correlation between main SNP effects and interaction SNP effects learnt during the LEMMA

variational algorithm. Absolute correlation is used as γ is invariant to being multiplied by −1 (as

LEMMA would apply the same transform to the ES).
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