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28 Running Title: Multi-species occupancy models for metabarcoding

29 Abstract

30 Environmental DNA (eDNA) metabarcoding is an increasingly popular method for rapid 

31 biodiversity assessment. As with any ecological survey, false negatives can arise during 

32 sampling and, if unaccounted for, lead to biased results and potentially misdiagnosed 

33 environmental assessments. We developed a multi-scale, multi-species occupancy model for the 

34 analysis of community biodiversity data resulting from eDNA metabarcoding; this model 

35 accounts for imperfect detection and additional sources of environmental and experimental 

36 variation. We present methods for model assessment and model comparison and demonstrate 

37 how these tools improve the inferential power of eDNA metabarcoding data using a case study in 

38 a coastal, marine environment. Using occupancy models to account for factors often overlooked 

39 in the analysis of eDNA metabarcoding data will dramatically improve ecological inference, 

40 sampling design, and methodologies, empowering practitioners with an approach to wield the 

41 high-resolution biodiversity data of next-generation sequencing platforms. 

42 Keywords: environmental DNA, occupancy modelling, DNA metabarcoding, model selection, 

43 marine biomonitoring

44 Introduction

45 Environmental DNA (eDNA) as a signal for diversity detection is rapidly advancing. In 

46 freshwater systems, in particular, eDNA is now used as a bioassessment tool in both single-

47 species qPCR-based studies and in sequencing-based metabarcoding community assessments [1–

48 3]. Approaches based on eDNA are also gaining traction in the marine environment [4,5]. 

49 Oceans are complex, highly diverse, and difficult to sample; therefore, identifying organisms 

50 from all trophic levels and taxonomic groups from a single survey method will greatly facilitate 
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51 rapid, consistent biodiversity surveys [6]. eDNA metabarcoding provides a streamlined method 

52 of biodiversity assessment, generating high-resolution biodiversity data with time and effort 

53 savings during sample collection and analysis [7,8]. 

54 However, there are several levels of uncertainty associated with eDNA sampling for 

55 community assessments. The potential for false negatives during sampling, where a species 

56 present in the environment is not detected in surveys, can bias results [9]. False negatives can 

57 occur during field sampling and during lab processing. If imperfect detection is not accounted 

58 for, this could lead to biased estimates of species richness and individual species occupancy 

59 [10,11]. Accounting for false negatives will improve community-wide species occurrence 

60 estimates based on eDNA surveys and yield more robust ecological conclusions for making 

61 management decisions and informing sampling designs. Optimal sampling designs for eDNA 

62 metabarcoding studies are not well-established and differ from traditional ecological sampling 

63 methods in the cost and effort required for sample collection [12]. Additionally, there are several 

64 added variables that need to be accounted for in metabarcoding studies compared to traditional 

65 sampling approaches, such as sequencing depth and marker selection, which vary between 

66 studies and can affect metabarcoding results [5,13,14]. Sampling designs should be 

67 experimentally informed and optimized specifically for eDNA metabarcoding methods [15], yet 

68 this is seldom practiced, and these added sources of variation during sample processing are 

69 seldom considered in the same analysis as sampling design. 

70 Occupancy modelling is a powerful tool to account for the additional sources of variation 

71 associated with next-generation biomonitoring approaches, and it has been used to assess 

72 imperfect detection in terrestrial bioassessment [16–18]. These models include 2-levels: the 

73 probability that a species occurs at a site (occupancy; ψ) and the probability of detecting a 
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74 species at a site (probability of detection; p). Recently, occupancy models have been adapted for 

75 single-species eDNA studies, where occupancy refers to the probability of a species’ DNA 

76 occurring at a site, probability of detection refers to the probability of detecting a species in a 

77 PCR replicate, and an additional stochastic level is added to assess the probability of capturing a 

78 species’ eDNA in a field sample (probability of capture, ϴ; [19,20]) The use of occupancy 

79 models in single-species eDNA studies is not ubiquitous, but it is increasing [21].

80 Occupancy modelling can also be applied to whole communities through multi-species 

81 occupancy models, which are commonly applied to traditional surveys in terrestrial systems 

82 [22,23], yet seldom used in the context of DNA metabarcoding (Supporting Information 1). In 

83 the same way that single-species models were adapted for eDNA studies through the inclusion of 

84 an additional stochastic level, multi-species models can be adapted for metabarcoding by 

85 including this additional level. Modeling communities together in a single multi-species model 

86 can improve the accuracy and predictive ability of occupancy models compared to single-species 

87 models [24]. Application of multi-species, multi-scale occupancy models to metabarcoding data 

88 are rare, focusing on small-scale lab manipulations [25], and no studies have implemented this 

89 modelling approach to improve sampling designs in natural systems (but see [26] for a single 

90 species example). Incorporating these models routinely in metabarcoding analysis will improve 

91 ecological inferences and species richness estimates, as well as facilitate the development of 

92 robust sampling designs for a relatively new technique where little thought has been dedicated to 

93 developing de novo sampling methods distinct from traditional sampling methods. The inclusion 

94 of covariates in occupancy models at each process level extends the application of the model, 

95 enabling discrimination between sources of variation in sampling effort and environmental 
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96 factors. However, making conclusions based on models with covariates requires methods of 

97 model assessment and selection for multi-species, multi-scale models.

98 Here, we demonstrate how multi-species occupancy modelling can be used for the 

99 analysis of community biodiversity data resulting from eDNA metabarcoding and highlight the 

100 potential of these models for both improving methodologies and sound ecological inference. We 

101 present methods for model assessment and model comparison adapted for multi-scale, multi-

102 species occupancy models. Finally, we demonstrate how these tools can improve inferential 

103 power from eDNA metabarcoding results using a case study in a coastal, marine environment. 

104 Material & Methods

105 Model Formulation

106 The multi-species, multi-scale occupancy model

107 We used a Bayesian modeling framework to develop a multi-species, hierarchical 

108 occupancy model with three stochastic levels: occupancy (ψ), probability of capture (ϴ), and 

109 probability of detection (p) (Figure 1). The occupancy process describes whether sampling sites 

110 are occupied or not by a given species’ DNA. For eDNA sampling, there are often two levels of 

111 sampling replication within each site (e.g. [20,27]): biological replicates are samples collected 

112 from a single site in the field and technical replicates are repeated samples taken from a single 

113 biological replicate in the lab. The probability of capture refers to the probability that a species’ 

114 DNA is collected in a sample, given that the species was present at the site. The probability of 

115 detection refers to the probability that a species was detected in a technical replicate, given that 

116 the species’ DNA was collected in the sample. This model assumes no false positives occur in 

117 the data. While false positives may be a possibility in metabarcoding data [15], we used strict 
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118 bioinformatic filtering to reduce this possibility (see Bioinformatics below). Further comments 

119 on false positives can be found in the Discussion.

120 Figure 1 - Schematic illustration of the three stochastic levels included in the multi-scale, multi-
121 species occupancy model.

122

123 This model can be fit to a dataset, yijrk, which is a binary indicator of whether a species k 

124 (k = 1,2,…K) was detected (1) or not detected (0) in a technical replicate r (r = 1,2,…R) from a 

125 given sample j (j = 1,2,…J) at a given site i (i = 1,2,…I). The model consists of three coupled 

126 Bernoulli trials to describe a four-dimensional array of data yijrk. 

127 zik ~ Bernoulli(ψk)

128 wijk|zik  ~ Bernoulli(ϴijkzik)

129 yijrk|wijk ~ Bernoulli(pijrkwijk)

130 The first random variable zik describes the detection (zik = 1) or non-detection (zik = 0) of 

131 species k at site i as a function of the occupancy probability ψk . The second random variable wijk 

132 describes the detection (wijk = 1) or non-detection (wijk = 0) of species k in sample j at site i as a 

133 function of the probability of capture (ϴijk) and the occupancy state (zik).

134 Covariates can be included in the model at each stochastic level (e.g., α1, α2, α3). 

135 Continuous covariates were z-score standardized to have a mean of zero and a standard deviation 

136 of one to help with model convergence. Categorical covariates can also be included at any level, 

137 which is demonstrated below at the probability of detection level (i.e., α4). Covariates are 

138 included in the model as follows:

139 logit(ψik) = lpsik + β1k * α1i + …

140 logit(ϴijk) = lthetak + β2k * α2ij + …
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141 logit(pijrk) = lpkα4(ijr)  + β3k * α3ijr + …

142 For multi-species occupancy models, species coefficients arise from additional 

143 community-level parameters:

144 lpsik ~ N(µlpsi,σlpsi)

145 lthetak ~ N(µltheta,σltheta)

146 lpk ~ N(µlp,σlp)

147 β1k ~ N(µβ1,σβ1)

148 β2k ~ N(µβ2,σβ2)

149 β3k ~ N(µβ3,σβ3)

150 Community-level parameters are described by weakly informative hyperpriors [28]. All 

151 mean values for the above prior distributions were selected from a normal distribution and all 

152 standard deviations were selected from a uniform distribution. 

153 µ ~ N(0,10)

154 σ ~ Uniform(0,5)

155 Prior sensitivity was assessed by running the model with various prior parameterizations. 

156 Posterior distributions were similar across all priors. 

157 Model Assessment and Comparison

158 To assess model fit, we looked at diagnostic plots to examine model fit and highlight 

159 areas of lack of fit. We plotted the deviance residuals for each species and site, and plotted 

160 deviance residuals against covariates. We calculated Bayesian p-values following [29], adapted 
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161 for a multi-scale model (Supporting Information 2) to assess goodness-of-fit, where values close 

162 to 0.5 indicate a good fit and values >0.95 or <0.05 indicate a poor fit. 

163 We also adapted model selection and cross-validation calculations from [29] for multi-

164 scale, multi-species occupancy models to determine the best model.  We calculated the 

165 Watanabe-Akaike information criterion (WAIC; [30]) and the conditional predictive ordinate 

166 criterion (CPO; [31]), and then evaluated the results of k-fold cross validation using the Brier 

167 score and the logarithmic score. The complete calculations for all model assessment and 

168 comparison methods can be found in Supporting Information 2.

169 Unknown Species Richness

170 In addition to the model described above, we implemented a model using data 

171 augmentation for communities with unknown species richness [10]. This model can be used to 

172 estimate species richness for the sampling area through the inclusion of another Bernoulli 

173 variable:

174 wk ~ Bernoulli(Ω)

175 Ω ~ Uniform(0,1)

176  For species k (k = 1,2,…M), M is the total number of species in the augmented model and wk = 1 

177 if species k was ever detected during the study. An upper limit to species richness (M) is 

178 specified a priori and considered large enough when the estimate of true species richness is 

179 sufficiently lower than M (i.e., the value of M is in the right tail of the posterior distribution of 

180 species richness; [28]). 

181 Case Study: Conception Bay, Newfoundland
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182 Sample Collection, Processing and Sequencing

183 Triplicate 250 mL water samples were collected from coastal surface water at eight sites 

184 along two transects in Conception Bay, Newfoundland and Labrador, Canada, on October 13–14, 

185 2017. Water samples were filtered using 0.22 μm PVDF Sterivex filters (MilliporeSigma) and 

186 DNA was extracted from filter membranes using the DNeasy PowerWater Kit (Qiagen). Five 

187 target markers in the cytochrome c oxidase I (COI) region were amplified by PCR from each 

188 sample. Table 1 details the primer sets used to target these markers. Three PCR replicates were 

189 performed for each amplicon from each sample and then pooled for a single PCR cleanup with 

190 the QIAquick 96 PCR purification kit (Qiagen). Amplicons were then indexed using unique dual 

191 Nextera indexes (IDT). All amplicons were pooled into one library to normalize DNA 

192 concentration and the library was sequenced with a 300-cycle S4 kit on the NovaSeq 6000 

193 following the NovaSeq XP workflow. Raw sequence reads are available in NCBI’s sequence 

194 read archive under accession number PRJNA574050.  Primers were trimmed from sequences 

195 and then DADA2 v1.8.015 [32] was used for quality filtering, joining paired end reads and 

196 denoising to produce exact sequence variants (ESVs). Taxonomy was assigned using NCBI’s 

197 blastn tool v2.6.026 [33] to compare ESV sequences against the nt database. See [5] for detailed 

198 sampling, sequencing, and bioinformatic methodology.

199 Table 1 - Primer pairs used to amplify five target amplicons in the COI region of the 
200 mitochondrial genome from water samples collected in Conception Bay, Newfoundland, Canada.

Marker Target 
Length (bp) Forward Primer Reverse Primer Reference

Fishe 
(Mini_SH-E) 226

5'-
CACGACGTTGTAAAACGACAC
YAAICAYAAAGAYATIGGCAC-3'

5'-
GGATAACAATTTCACACAGGCTT
ATRTTRTTTATICGIGGRAAIGC-3'

[61]

Fishc 
(Mini_SH-C) 127

5'-
CACGACGTTGTAAAACGACAC
YAAICAYAAAGAYATIGGCAC-3'

5'-
GGATAACAATTTCACACAGGGAA
RATCATAATGAAGGCATGIGC-3'

[61]
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201

202

203 Occupancy Model Implementation

204 Under the occupancy modelling framework described above, each collection site along 

205 each transect in Conception Bay was considered a different site in the occupancy model. 

206 Replicate bottles collected at a site were considered samples. Each amplicon sequenced from 

207 each bottle was considered a technical replicate. While we conducted replicate PCRs of each 

208 amplicon, the products were pooled prior to sequencing so we did not include PCR replicates 

209 separately in our models. However, PCR replicates can easily be accommodated in multi-scale, 

210 multi-species occupancy models, such as the model described here.

211 We included sequencing depth (number of reads per sample per amplicon) as a 

212 continuous covariate at the level of probability of detection. Additionally, we included amplicon 

213 identity as a categorical covariate at the level of probability of detection. We included water 

214 depth (m) as a continuous covariate at the level of occupancy. We compared a null model with 

215 no covariates with four models with different combinations of covariates (Table 2). 

216 All statistical analyses were conducted in R v3.5.1 [34]. MCMC sampling was achieved 

217 with JAGS [35], implemented using ‘jagsUI’ v1.5.0 [36]. The model was written for JAGS in 

218 the BUGS language (see Supporting Information 3 for BUGS model structure of the most 

219 complex model). We fit models using known species richness to conduct our model 

F230 235
5'-
GGTCAACAAATCATAAAGATAT
TGG-3'

5'-
CTTATRTTRTTTATNCGNGGRAA
NGC-3'

[62]

Leray 330
5'-
GGWACWGGWTGAACWGTWT
AYCCYCC-3'

5'-
TAAACTTCAGGGTGACCAAAAAA
TCA-3'

[63]

BR5 310 5'-CCIGAYATRGCITTYCCICG-3' 5'-GTRATIGCICCIGCIARIACIGG-3' [64]
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220 comparisons, and assessed models and model fit to determine the best model. MCMC sampling 

221 was run in three chains, each with 50,000 iterations, a burn in of 10,000, and a thinning rate of 

222 10. Convergence was verified using the Gelman-Rubin diagnostic [37] and by evaluating trace 

223 plots. For all models, we report parameter estimates as the mean of the posterior distribution with 

224 the 95% highest posterior density interval (HDI; [38]) calculated using ‘HDInterval’ v0.2.0 [39]. 

225 Significance of continuous covariates was assessed by determining if the 95% confidence 

226 intervals of parameter estimates overlapped with zero [28]. For the categorical covariate 

227 amplicon, we used a generalized linear model with a beta distribution implemented using 

228 ‘betareg’ [40] to compare the estimated species-specific probabilities of detection between 

229 markers and phyla. Likelihood ratio tests were used to determine the significance of predictors at 

230 α = 0.05. We conducted a data augmented model with unknown species richness for the best 

231 model at varying levels of augmentation to determine the minimal level of augmentation 

232 required, as described above in the Unknown Species Richness section. 

233 Results

234 We ran five multi-species, multi-scale occupancy models with different combinations of 

235 covariates (i.e., water depth at the level of occupancy, sequencing depth and amplicon at the 

236 level of detection probability) and assessed these models using model comparison and cross-

237 validation methods adapted for this multi-scale approach (Table 2). Three of the model 

238 comparison methods (CPO and two cross-validation scores) were in agreement that Model 5 

239 (ψ(water depth) ϴ(.) p(.)) was the best model, while the WAIC suggested Model 3 (ψ(.) ϴ(.) 

240 p(sequencing depth)) was the best model. We considered Model 5 our best model moving 

241 forward, given that most selection methods indicated this was the best model.

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted October 8, 2019. ; https://doi.org/10.1101/797852doi: bioRxiv preprint 

https://doi.org/10.1101/797852
http://creativecommons.org/licenses/by/4.0/


12

242 Table 2 – Model comparison between multi-scale, multi-species occupancy models using four 
243 methods (WAIC, CPO, Brier Score and Log Score). The covariates (water depth at the sampling 
244 site, sequencing depth for each technical replicate, and amplicon sequenced for each technical 
245 replicate) included at each level of the model (occupancy: ψ, capture: ϴ, detection: p) are listed 
246 on the left. Bolded values indicate the best model for each method of model comparison.

MODELS WAIC CPO Brier Score Log Score
Model 1

ψ(.) ϴ(.) p(.) 16633 2904627 293 2291

Model 2
ψ(water depth) ϴ(.) p(sequencing depth, 

amplicon)
62255 8069266 334 3715

Model 3
ψ(.) ϴ(.) p(sequencing depth) 16184 2395664 291 2279

Model 4
ψ(.) ϴ(.) p(amplicon) 61864 9310577 333 3842

Model 5
ψ(water depth) ϴ(.) p(.) 16348 2027311 283 2188

247

248 We assessed model fit using Bayesian p-values and diagnostic plots for all models but 

249 present the results for the best model only. We obtained a Bayesian p-value of 0.51, suggesting 

250 that Model 5 (ψ(water depth) ϴ(.) p(.)) provided a good fit to our data overall; diagnostic plots, 

251 however, revealed higher deviance at sites with lower water depth, suggesting a poorer model fit 

252 at shallower sites (Supporting Information 4). The community-wide estimate for occupancy was 

253 0.27 (HDI: 0.22-0.33). Water depth had a significant effect on the community mean occupancy 

254 (Figure 2), and we detected considerably more species at the shallowest sites compared to the 

255 other sites (274 species at two shallow water sites combined compared to 109 species across all 

256 six deep water sites). The community-wide probability of capture was 0.98 (HDI: 0.96-0.99) and 

257 the community-wide probability of detection was 0.15 (HDI: 0.14-0.17). Species-specific 

258 estimates of occupancy, capture probability, and detection probability were also obtained from 

259 the model (Supporting Information 5).

260 Figure 2 - (A) Community mean occupancy by water depth (m) predicted using a multi-species, 
261 multi-scale community occupancy model. The gray area represents the 95% confidence interval. 
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262 (B) Parameter estimate for each species for the effect of water depth on occupancy in a multi-
263 species, multi-scale community occupancy model. Solid red line indicates the community mean 
264 and dashed red lines indicate the upper and lower limits of the 95% confidence intervals of the 
265 community mean parameter estimate. Blue lines indicate 95% confidence intervals of individual 
266 species parameter estimates that do not overlap with 0. Grey lines indicate 95% confidence 
267 intervals of individual species parameter estimates that do overlap with 0.

268

269 While it was not selected as our best model, we present the results from Model 4 (ψ(.) 

270 ϴ(.) p(amplicon)) to demonstrate how categorical covariates can be incorporated into the 

271 occupancy modelling framework. Amplicons displayed significantly different probabilities of 

272 detection (X2 = 34.43, p-value < 0.001; Figure 3). When considering species-specific 

273 probabilities of detection and including phylum-level identifications, there was a significant 

274 interaction between amplicon and phylum (X2 = 85.18, p-value < 0.001), and some amplicons 

275 clearly failed to detect certain taxonomic groups (Figure 4).

276 Figure 3 -  Mean detection probability estimated from occupancy model 3 (ψ(.) ϴ(.) 
277 p(amplicon)) for each species plotted by amplicon. The band in the middle of the box represents 
278 the median and the upper and lower edges of the box represent the upper and lower quartiles. 
279 The whiskers represent 1.5 times the inter-quartile range. Beta regression indicated a significant 
280 effect of amplicon on probability of detection (X2 = 34.43, p-value < 0.001). Significant different 
281 (α = 0.05) between amplicon are denoted by different letters above each amplicon. 

282 Figure 4 - Mean detection probability for each species plotted by amplicon and phylum for 
283 metazoan phyla only. The band in the middle of the box represents the median and the upper and 
284 lower edges of the box represent the upper and lower quartiles. The whiskers represent 1.5 times 
285 the inter-quartile range.

286

287 Sequencing depth was not included as a covariate in the best model; in the best model 

288 that did include sequencing depth, Model 3 (ψ(.) ϴ(.) p(sequencing depth)), we observed no 

289 significant effect of sequencing depth in this case study (Supporting Information 6).

290 We estimated species richness for the survey area by running the best model with data 

291 augmentation. This model used the probabilities of capture and detection to estimate the number 
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292 of species missed in sampling efforts. We detected 231 species overall, and the estimated species 

293 richness for the survey area was 284 (HDI: 262-307), indicating that 53 (HDI: 31-76) species 

294 were undetected during our surveys. In other words, our survey detected ~81% of the estimated 

295 species in our study area.

296 Discussion

297 We applied a multi-species, multi-scale occupancy model to a DNA metabarcoding 

298 dataset generated from marine water samples and explored how the inclusion of categorial and 

299 continuous covariates at different levels improved model performance. The best model included 

300 water depth as a covariate at the level of occupancy, where we observed a higher species 

301 richness at shallower sites. One of the shallow water collection sites was within 1 km of a 

302 sewage outflow, which may have contributed to this result, although a high species richness was 

303 also observed at the second, shallow water site located >10 km from the sewage outflow. The 

304 probability of capture estimate of 0.98 suggests a high probability of collecting a species’ DNA 

305 in a given sample. However, the detection probability was relatively low at 0.15, likely because 

306 many species were not detected consistently by multiple amplicons, and a low probability of 

307 detection can lead to overestimates for higher level parameters [41].

308 We observed a significant effect of amplicon and phylum on the species-specific 

309 probabilities of detection. Since the performance of each amplicon varies by taxonomic group 

310 (this study; [13]), including a variety of target regions is important to detect species across the 

311 tree of life, and increasing the number of technical replicates using a target region will not 

312 necessarily improve the community-wide probability of detection. We observed no significant 

313 effect of sequencing depth in this study. However, the samples were all sequenced on a NovaSeq 
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314 instrument, which generates an unprecedented number of reads, yielding very high sequencing 

315 depths (mean number of filtered sequences per sample ± standard deviation: 8,519,055 ± 

316 2,514,998) compared to many other barcoding studies (e.g. [42,43]). In studies where the mean 

317 sequencing depth is lower, differences in sequencing depth are likely to have greater effects 

318 [5,44].

319 We used the occupancy modeling framework to estimate the species richness for the 

320 survey area and determined that 53 species or approximately 19% of the estimated number of 

321 species present were undetected during our surveys. Similar to many ecological studies, the case 

322 study presented here included a relatively low spatial coverage (n = 8 sites), but our occupancy 

323 modelling approach allowed us to assess false absences in our study, which is a significant 

324 improvement from most metabarcoding surveys [11]. The proportion of species detected could 

325 be improved by (1) increasing sampling effort in the field by sampling more sites, (2) collecting 

326 more replicate biological samples at each site, and (3) including additional target regions during 

327 laboratory processing. Given the limited extent and breadth of our sampling effort, the 

328 conclusions regarding the effect of covariates and the estimates of occupancy, capture, and 

329 detection probabilities for individual species should not be extrapolated to other systems. Further 

330 research should investigate the impacts of variation in sequencing depth and target regions on 

331 detection probability in metabarcoding studies, particularly in other ecosystems and across 

332 greater spatial scales.

333 Through the inclusion of environmental and experimental covariates, the multi-species 

334 occupancy framework can be applied for direct ecological assessment and to improve the 

335 methodology for next-generation biodiversity assessment. From an ecological perspective, 

336 environmental variables (e.g. temperature, salinity, turbidity) can be included at the level of 
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337 occupancy to determine their effects on community diversity and the presence of individual 

338 species. From a methodological perspective, environmental and experimental variables (e.g. 

339 sample volume, sequencing depth) can be included at the level of field sampling and technical 

340 replication to understand how these factors affect metabarcoding results. Understanding the 

341 effects of these covariates facilitates the development of more robust experimental and survey 

342 designs. Furthermore, simulations using occupancy models can be used to optimize sampling 

343 effort, enabling practitioners to fine-tune the trade-off between field sampling and lab work [21]. 

344 The number of sites, biological samples, and technical replicates can all be optimized to 

345 maximize the species richness recovered from eDNA samples. PCR level stochasticity, which is 

346 known to affect sequencing results [44,45], was not considered in our case study (i.e., PCR 

347 replicates were pooled before sequencing) but PCR replicates can easily be included as technical 

348 replicates in the model described here. PCR replicates are commonly included separately in 

349 single-species occupancy models for eDNA data [19,20,27]. By including PCR replicates as 

350 technical replicates, additional stochasticity in the sampling process can be accounted for, further 

351 improving inferences.

352 A key advantage of the occupancy modeling framework demonstrated here is its 

353 flexibility. Modifications to the model can allow several additional factors to be included, and a 

354 priori information can be used to guide model development. For example, multiple sampling 

355 periods have been included in dynamic, multi-season occupancy models to quantify temporal 

356 changes in community structure (e.g. [22]). Repeated eDNA sampling for metabarcoding could 

357 be modelled similarly to account for local extinction and colonization events between sampling 

358 periods. In addition to accounting for false negatives, several studies have developed methods for 

359 including false positives in occupancy models [46–48]. False positives may potentially arise 
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360 from metabarcoding data through sequencing errors, PCR errors, and poor reference database 

361 coverage or quality [15,49,50]. Strict bioinformatic filtering helps to minimize the inclusion of 

362 these errors in resulting data sets; however, the possibility of false positives cannot be 

363 eliminated. Our model did not consider false positives, and, to our knowledge, these have yet to 

364 be incorporated into multi-species occupancy models. The occupancy modeling framework can 

365 also be adapted to include or estimate taxa abundances [28]. Following current protocols, 

366 abundance estimates from metabarcoding data are not reliable [51,52], but these models may 

367 provide tools to improve abundance estimates from metabarcoding data.

368 We demonstrate for the first time how a multi-scale, multi-species occupancy modelling 

369 framework can be used in a natural system to account for imperfect detection and allow for 

370 critical assessment of experimental and environmental factors influencing biodiversity data from 

371 eDNA metabarcoding. Despite the utility of these models for improving detection and targeting 

372 areas of variation in the pipeline from sample collection to sample processing, this approach has 

373 been underutilized in DNA metabarcoding studies (Supplementary Information 1; but see [25]). 

374 This multi-species occupancy modelling framework will be particularly useful for bioassessment 

375 studies using DNA metabarcoding because it will improve estimates of occupancy and species 

376 richness, aid in optimizing sampling efforts in the field and lab, and, using the model assessment 

377 methods described here, identify ecological and environmental factors affecting occupancy, 

378 capture, and detection probabilities. Given the high stakes for documenting and understanding 

379 biodiversity that is under increasing anthropogenic threat [53] and decline [54] globally, new 

380 tools are imperative for rapid bioassessment [7,55,56]; yet, like any emergent technology, there 

381 is the potential to misuse these tools [57], which can have unforeseen consequences (e.g. [58]). 

382 In the case of DNA metabarcoding, neglecting to assess imperfect detection at key points along 
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383 the sample collection and processing pipeline could lead to failure to detect species of interest, 

384 biased estimates of species richness, and miscalculations of species distributions, all of which 

385 have consequences for conservation and management [24,59,60]. We recommend incorporating 

386 multi-scale, multi-species occupancy modeling into the design and analysis of future 

387 metabarcoding studies.

388

389

390
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