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Abstract

Decision making relies on adequately evaluating the consequences of actions on the basis
of past experience and the current physiological state. A key role in this process is
played by the basal ganglia, where neural activity and plasticity are modulated by
dopaminergic input from the midbrain. Internal physiological factors, such as hunger,
scale signals encoded by dopaminergic neurons and thus they alter the motivation for
taking actions and learning. However, to our knowledge, no formal mathematical
formulation exists for how a physiological state affects learning and action selection in
the basal ganglia. We developed a framework for modelling the effect of motivation on
choice and learning. The framework defines the motivation to obtain a particular
resource as the difference between the desired and the current level of this resource, and
proposes how the utility of reinforcements depends on the motivation. To account for
dopaminergic activity previously recorded at different physiological states, the paper
argues that the prediction error encoded in the dopaminergic activity needs to be
redefined as the difference between utility and expected utility, which depends on both
the objective reinforcement and the motivation. We also demonstrate a possible
mechanism by which the evaluation and learning of utility of actions can be
implemented in the basal ganglia network. The presented theory brings together models
of learning in the basal ganglia with the incentive salience theory in a single simple
framework, and it provides a mechanistic insight into how decision processes and
learning in the basal ganglia are modulated by the motivation. Moreover, this theory is
also consistent with data on neural underpinnings of overeating and obesity, and makes
further experimental predictions.

Author summary

Behaviour is made of decisions that are based on the evaluation of costs and benefits of
potential actions in a given situation. Actions are usually generated in response to
reinforcement cues which are potent triggers of desires that can range from normal
appetites to compulsive addictions. However, learned cues are not constant in their
motivating power. Food cues are more potent when you are hungry than when you have
just finished a meal. These changes in cue-triggered desire produced by a change in
biological state present a challenge to many current computational models of motivation
and learning. Here, we demonstrate concrete examples of how motivation can instantly
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modulate reinforcement values and actions; we propose an overarching framework of
learning and action selection based on maintaining the physiological balance to better
capture the dynamic interaction between learning and physiology that controls the
incentive salience mechanism of motivation for reinforcements. These models provide a
unified account of state-dependent learning of the incentive value of actions and
selecting actions according to the learned positive and negative consequences of those
actions and with respect to the physiological state. We propose a biological
implementation of how these processes are controlled by an area in the brain called the
basal ganglia, which is associated with error-driven learning.

Introduction 1

Successful interactions with the environment rely on using previous experience to 2

predict the value of outcomes or consequences of available actions. Human and animal 3

studies have strongly implicated the neurotransmitter dopamine in these learning 4

processes [1–8], in addition to its roles in shaping behaviour, including motivation [9], 5

vigour [10] and behavioural activation [11,12]. 6

Dopamine seems to have two distinct effects on the networks it modulates. First, it 7

facilitates learning by triggering synaptic plasticity [13]. Such dopaminergic teaching 8

signal is thought to encode a reward prediction error (RPE), which is defined as a 9

difference between a reinforcement and the expected reinforcement [1]. The overall 10

value of a reinforcement that is available at a given moment depends on the potential 11

positive and negative consequences associated with obtaining it. These consequences 12

can be influenced by internal and external factors, such as the physiology of the subject 13

and the reinforcement’s availability, respectively. Information about the external factors 14

is indeed encoded in the dopaminergic responses which are shown to scale with the 15

magnitude and the probability of a received reinforcement [14,15], but also with the 16

delay and effort related costs associated with a reinforcement [16,17]. Second, the level 17

of dopamine controls the activation of the basal ganglia network by modulating 18

excitability of neurons [18,19]. Although dopamine is a critical modulator of both 19

learning and activation, it is unclear how it is able to do both given that these processes 20

are conceptually, computationally and behaviourally distinct. For a long time, our 21

understanding was that tonic (sustained) levels of dopamine encode an activation signal 22

and phasic (transient) responses convey a teaching signal (i.e. prediction error) [10]. 23

However, recent studies have shown that this distinction is not as clear as we 24

thought [20,21] and that other mechanisms may exist, which allow striatal neurons to 25

correctly decode the two signals from dopaminergic activity [22]. In this paper, we do 26

not investigate mechanisms by which these different signals can be accessed, but we 27

assume that striatal neurons can read out both activation and teaching signals encoded 28

by dopaminergic neurons. 29

In addition to external factors explained above, internal physiological factors, such 30

as hunger, can also alter the reinforcement value of an action and drive decision making 31

based on the usefulness of that action and the outcome at that given time. For example, 32

searching for food when hungry is more valuable than when sated and actions have to 33

be evaluated accordingly. In other words, the current physiological state affects the 34

motivation to obtain a particular resource. The physiological state has indeed been 35

observed to modulate dopamine levels and dopamine responses encoding reward 36

prediction error [23–25], thus it is likely that the physiological state influences both the 37

activation and teaching signals carried by dopamine. Strikingly, the physiological state 38

can sometimes even reverse the value of a reinforcement (e.g. salt) from being rewarding 39

in a depleted state to aversive in a sated state [26]. Moreover, the physiological state 40

during learning may affect subsequent choices, for example, animals may still have a 41
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preference for actions that were associated with hunger even when they are sated [27]. 42

Recently, it has been proposed how physiological state can be introduced into 43

reinforcement learning theory to refine the definition of a reinforcement [28]. However, 44

despite the importance of the physiological state for describing behaviour and 45

dopaminergic activity, we are not aware of theoretical work that integrates the 46

physiological state into a theory of dopaminergic responses. 47

Another important line of work describing subjective preferences is the utility theory. 48

It is based on the assumption that people can consistently rank their choices depending 49

upon their preferences. The utility theory has been used extensively in economics [29], 50

and it has been shown that dopaminergic responses depend on the subjective utility of 51

the obtained reward magnitude, rather than its objective magnitude [30]. As described 52

above, there is a need to extend the general utility function with a motivational 53

component that describes the bias in the evaluation of positive and negative 54

consequences of decisions as a result of changes in the physiological state of a subject. 55

Evidence for this bias comes from devaluation studies in which reinforcements are 56

specifically devalued by pre-feeding or taste aversion. The concept of state-dependent 57

valuation has been studied in various contexts [24,31,32] and in different species, 58

including starlings [33,34], locusts [35] and fish [27]. These studies suggest that the 59

utility of outcomes depends on both the (learned) reinforcement value and the 60

physiological state. One of the earliest attempts to capture this relationship between 61

incentive value and internal motivational state is the incentive salience theory [12]. 62

In this paper we aim to provide an explanation for the above effects of physiological 63

state on behaviour and dopaminergic activity with a simple framework that combines 64

incentive learning theory [36,37] with models of learning in the basal ganglia. By 65

integrating key concepts from these theories we define a utility function for actions that 66

can be modulated by internal and external factors. In our framework, the utility is 67

defined as the change in the desirability of physiological state resulting from taking an 68

action and obtaining a reinforcement. Following previous theoretic work [28], the 69

motivation for a particular resource is defined as the difference between the desired and 70

the current level of this resource. 71

In the proposed framework, motivation affects both teaching and activation signals 72

encoded by dopaminergic neurons. Relying on experimental data, we argue that the 73

dopaminergic teaching signal encodes the difference between utility and expected utility, 74

which depends on motivation. Moreover, we propose how motivation can influence the 75

dopaminergic activation signal to appropriately drive action selection behaviour. We 76

also highlight that the resulting consequences of an action can be positive or negative 77

depending on how far the current and new physiological state are from the desired state. 78

Building on existing theories we illustrate how the neurons in the striatum could learn 79

these consequences through plasticity rules. Finally, we use the resulting models to 80

explain experimental data. Together, this paper discusses a modelling framework that 81

describes how the internal physiological state affects learning and action selection in the 82

basal ganglia and provides novel interpretations of existing experimental data. To 83

provide a rationale for our framework the remainder of the introduction reviews the 84

data on effects of physiological state on dopaminergic teaching signal. 85

Effects of motivation on dopaminergic responses 86

We first review a classical reinforcement learning theory and then discuss data which 87

challenges it. As postulated by reinforcement learning theories, expectations of 88

outcomes are updated on the basis of experiences. This updating process may be guided 89

by prediction errors, which are computed by subtracting the received reinforcement (r) 90

from the cached reinforcement expectation (Vt). In classical conditioning and after 91

extensive training, the dopamine response to the conditioned stimulus (CS) is observed 92
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to reflect the expected future reinforcement, whereas the response to the unconditioned 93

stimulus (US) represents the difference between the obtained reinforcement and the 94

expectation [1]. To account for these responses, the reward prediction error in a 95

temporal difference model (δTD) is classically defined as [1]: 96

δTD = rt + Vt+1 − Vt. (1)

The above equation defines the prediction error as the difference between total 97

reinforcement (including both reinforcement actually received rt and reinforcement 98

expected in the future Vt+1) and the expected reinforcement (Vt). 99

We now review how the above equation captures the dopamine responses at the time 100

of the CS and the US, which change over the course of learning. At the start of learning, 101

the animal has not formed any expectation yet, which means that at the time of the CS, 102

Vt is 0. Given that no reinforcement is provided at the time of CS presentation, rt is 103

also 0. Thus, the prediction error at the time of the CS is equal to the expected value of 104

the reinforcement (δTD = Vt+1). The response to the CS is zero in naive animals. By 105

contrast, the response to the CS in fully trained animals reflects the expected upcoming 106

reinforcement, as extensive training allowed animals to update their expectations to 107

predict upcoming reinforcements better. At the time of the US, no future 108

reinforcements are expected so Vt+1 is 0, thus the reward prediction error at the time of 109

US is equal to δTD = rt − Vt. Unpredicted rewards (i.e. positive reinforcements) evoke 110

positive prediction errors, while predicted reinforcements do not. Thus this definition of 111

prediction error captures observed patterns of dopaminergic responses; where naive 112

animals, which are unable to predict reinforcements, show large positive responses at 113

the time of the US, fully trained animals that can predict reinforcements perfectly, show 114

no response at all. 115

Recently, the above definition of reward prediction error has been experimentally 116

challenged by Cone et al. [25]. They show that the internal state of an animal 117

modulates the teaching signals encoded by dopamine neurons in the midbrain after 118

conditioning (Fig 1). In this study, animals were trained and tested in either a sodium 119

depleted or sodium balanced state. The dopaminergic responses predicted by the 120

classical reinforcement learning theory shown by Schultz et al. [1] were only observed in 121

animals which were both trained and tested in the depleted state. In all other 122

conditions the dopaminergic responses followed different patterns. When animals were 123

trained in the balanced state but tested in the depleted state, increased dopaminergic 124

responses to the US (i.e. salt infusion) rather than the CS were observed, which is 125

similar to dopaminergic responses observed in untrained animals in the study of Schultz 126

et al. [1], suggesting that learning did not occur in the balanced state. When animals 127

were trained and tested in the balanced state, there was no dopaminergic response to 128

either CS or US. Interestingly, the same pattern was observed in animals trained in the 129

depleted state and tested in the balanced state, suggesting that the learned values are 130

modulated. In the Results section below we will demonstrate how this pattern of 131

activity can be captured by appropriately modifying a definition of prediction error. 132

Results 133

In this section, we present our framework and its possible implementation in the basal 134

ganglia circuit, and illustrate how it can account for the effects of motivation on neural 135

activity and behaviour. 136
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Fig 1. Experimental data by Cone et al. [25]. The two graphs within the figure
correspond to dopaminergic responses in animals trained in a balanced and depleted
state, respectively, re-plotted from figures 2 and 4 in the paper by Cone et al., (2016).
Within each graph, the left and right halves show the responses of animals tested in
balanced and depleted states, respectively. The horizontal dashed lines indicate baseline
levels.

Normative theory of state-dependent utility 137

The utility and consequences of actions are dependent on the usefulness of the 138

reinforcement (r) with respect to the current state. To maintain a physiological balance 139

the distance between the current state S and the desired state S∗ has to be minimised. 140

We assume that the desirability function of a physiological state has a concave, 141

quadratic shape (Fig 2A), because it is more important to act when you are in a very 142

low physiological state, compared to when in a near optimal state. Thus, we define a 143

desirability of a state in the following way (a constant of 1/2 is added for mathematical 144

convenience, as it will cancel in subsequent derivations): 145

Y (S) = −1

2
(S − S∗)2. (2)

We define the utility U of an action as a change in desirability of the physiological 146

state resulting from taking that action. Fig. 2A illustrates that the utility of an action 147

depends on both the obtained reinforcement r for that action and the motivation m, 148

which is defined as the difference between the desired and the current physiological 149

state: 150

m = S∗ − S. (3)

According to the above definition, the same reinforcement could yield a positive or 151

negative utility of an action, depending on whether the difference between the current 152

physiological state and the desired state is positive or negative (Fig. 2A). This parallels 153

an observation that nutrients such as salt may be appetitive or aversive depending on 154

the level of an animal’s reserves [26]. Although not discussed in this paper, please note 155

that this definition of the utility also can be extended to the utility of an external state, 156

such as a particular location in space. The utility of such an external state can be 157

defined as a utility of the best available action in this state. 158

Before presenting an exact expression, it is useful to consider a simple approximate 159

expression for the utility. Such approximation can be obtained through a first order 160

Taylor expansion of Eq. (2): 161

U = Y (S2)− Y (S1) ≈ Y ′(S1)(S2− S1) (4)

= mr. (5)
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This approximation of the utility clearly shows that the utility of an action, defined 162

as the change in physiological state, depends on both the motivation m and the 163

reinforcement r, where r = S2− S1. 164

Fig 2. Dependence of utility of an action on the reinforcement and
physiological state. A) Same reinforcement may have positive or negative utility
depending on the physiological state. B) A large reinforcement may have no utility even
if the animal is initially in a depleted state. U = utility, m = motivation. S* = the
desired state and S1 = state before action, S2 = state after action. Arrow length
indicates the size of the reinforcement (r). Changes in state resulting in increase and
decrease of desirability are indicated with green and red arrows, respectively.

In order to select actions on the basis of their utility, animals needs to maintain an 165

estimate of the utility Û of an action. There are several ways such an estimate can be 166

learned. Here we discuss a particular learning algorithm, which results in prediction 167

errors that resemble those observed by Cone et al. [25]. This learning algorithm assumes 168

that animals minimise the absolute error in the prediction of the utility of the chosen 169

action. We can therefore define this prediction error as: 170

δ = U − Û . (6)

The above expression for the prediction error (Eq. (6)) provides a general definition 171

of the prediction error as the difference between the observed and expected utility. In 172

this paper we claim that this expression better describes the dopaminergic teaching 173

signal observed in experimental data, which we will demonstrate in more detail in the 174

next section. 175

Assuming that the animal’s estimate of expected reinforcement is encoded in a 176

parameter V , the animal’s estimate of the utility is Û = mV . Combining Eq. (5) with 177

Eq. (6), we obtain the following expression for the reward prediction error: 178

δ = mr −mV. (7)

To predict upcoming reinforcement better, the absolute prediction error has to be 179

minimised. We can define an objective function that will be maximised: 180

F = −1

2
δ2, (8)

In order to maximise this objective function, the estimate of the expected 181

reinforcement, V , is updated proportionally to the prediction error: 182

∆V = α
∂F

∂V
= αmδ. (9)
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Simulating state-dependent dopaminergic responses 183

This section serves to illustrate that the pattern of dopaminergic activity seen in the 184

study by Cone et al. [25] is not consistent with the classical theory and can be better 185

explained with a state-dependent utility as described above. We first simulated the 186

classical model in which reward prediction error is described in Eq. (1). In the 187

simulation, the CS was presented at time step 1, while the US was presented at time 188

step 2. The model was learning a single parameter V estimating the expected 189

reinforcement on the time step following the CS. Thus, on each trial the prediction error 190

to the CS was equal to δTD = V , while the prediction error to the US was equal to 191

δTD = r − V . The value estimate was updated proportionally to the prediction error, 192

i.e. ∆V = α(r − V ), where α is a learning rate parameter. On every trial, the model 193

received a reinforcement r = 0.5. Once training was completed, expected values were 194

fixed to the values they converged to during training, and testing occurred without 195

allowing the model to update the beliefs. 196

Since the classical reward prediction error does not depend on the physiological 197

state, each experimental condition was simulated in exactly the same way, and 198

dopaminergic teaching signals, predicted by the classical theory, are identical in all 199

conditions (Fig 3A). An estimate of the expected value of the reinforcement is reflected 200

by a response to the CS and the response to the US is close to zero as the reinforcement 201

received is fully predicted. 202

Fig 3. Simulated data by Cone et al. [25] with different reward prediction
errors. A) Simulation with typical reward prediction error using Eq. (1). B)
Simulation with scaled utility and scaled expectation using Eq. (7). Within each graph,
the left and right halves show the reward prediction error (RPE) of simulated animals
tested in balanced and depleted states, respectively. CS = conditioned stimulus, US =
unconditioned stimulus. Each simulation consisted of 50 trials and was repeated 5 times,
similar to the number of animals in each group in the study by Cone et al. (2016). The
learning rate for this experiment was set to α = 0.1. Error bars are equal to zero as
there is no noise added to the simulation.
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The simulations employing the state-dependent prediction error (Eq. (7)) as defined 203

in the previous section followed the same protocol as in the classical case. During 204

training, at the time of US the reinforcement estimate was updated proportionally to 205

the prediction error, ∆V = αδ. This update is similar to that in Eq. (9), but for 206

simplicity was not scaled by m. Adding this scaling factor does not qualitatively change 207

the resulting pattern of the prediction error as m was a positive constant in all the 208

simulations. 209

During testing, the values were no longer modified, and the dopaminergic teaching 210

signal at the time of the US was computed from Eq. (7), while the value at the time of 211

the CS was taken as mV . The parameter describing motivation was set to m = 0.2 for a 212

state close to balanced and m = 2 for a depleted state. 213

In simulated animals that are trained in the near-balanced state little learning is 214

triggered and the response to the CS is close to zero (Fig 3B). However, when these 215

simulated animals are then tested in the depleted state, the scaled utility is greater than 216

zero and consequently evokes a positive reward prediction error. In contrast, simulated 217

animals trained in the depleted state learn the estimate of the expected value of the 218

reinforcement. There is an increase in the dopaminergic teaching signal in these 219

simulated animals at the time of the CS since the expected value is transferred to the 220

CS. When these simulated animals are tested in the near-balanced state, with a 221

motivation close to zero, a very small reward prediction error is evoked, because both 222

the reinforcement and expected value are scaled by a number close to zero. 223

In line with the theory in the previous section in which we formally defined both the 224

utility and motivation, the above simulations shows that in order to account for the 225

experimental data by Cone et al., (2016), the prediction error needs to be redefined as a 226

difference between the utility of a reinforcement and the expected utility of that 227

reinforcement, which depends on both the objective reinforcement magnitude and the 228

motivation. 229

Accounting for positive and negative consequences of actions 230

Let us now reconsider how the dependence of utility on motivation may be expressed 231

more accurately. Since Eq. (4) comes from Taylor expansion, it only provides a close 232

approximation if r is small. This approximation may fail when the reinforcement is 233

greater than the distance to the optimum. In the example in Fig 2B, if we use a linear 234

approximation with a positive motivation, the utility is approximated as greater than 235

zero, even though the actual utility is not as this action will exceed the desired state. 236

Eq. (4) also suggests that any action with r > 0 will have positive utility if m > 0, 237

regardless of possible negative consequences (i.e. reaching a new state further away from 238

the desired state). Moreover, if the distance of the current state to the desired state is 239

equal to the distance of the new state to the desired state, the utility of an action would 240

be zero (Fig. 2B). Using Eq. (4) it is impossible to capture these effects and account for 241

both positive and negative consequences of this action. 242

One classical example in which the utility of an action switches sign depending on 243

the proximity to the desired physiological state is salt appetite. When animals are 244

depleted of sodium, salt consumption is rewarding. However, when animals are 245

physiologically balanced, salt consumption is extremely aversive [26]. To avoid using 246

multiple equations to explain the switch from positive to negative utilities and vice 247

versa [37], we need to formulate an equation that can account for negative consequences 248

of actions when the m ≈ 0 or m < 0 and is able to account for positive consequences 249

when the motivation changes, i.e. m > 0. 250

Therefore we use a second order Taylor expansion which gives an exact expression 251

for the utility: 252

U = mr − r2/2. (10)
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In the above equation mr could be seen as the positive and r2/2 as the negative 253

consequences of the action, respectively. The first term plays a greater role when 254

deprived and promotes taking actions, whereas the second term plays a greater role 255

when balanced and discouraged taking actions. 256

During action selection it is imperative to choose actions to maximise future utility. 257

For competing actions, the utility of all available actions needs to be computed. The 258

action with the highest utility is most beneficial to select, but this action should only 259

chosen when its utility is positive. If the utility of all actions is negative, no actions 260

should be taken. From a fitness point of view, not making an action is more 261

advantageous than incurring a high cost. 262

In the next section we will elaborate on how Eq. (10) can be evaluated in the basal 263

ganglia and provide an example of a biologically plausible implementation. For 264

simplicity we will only consider a single physiological dimension (e.g. nutrient reserve), 265

but we recognise that the theory needs to be extended in the future to multiple 266

dimensions (e.g. water reserve, fatigue) which an animal needs to optimise. 267

Furthermore, taking an action aimed to restore one dimension (e.g. nutrient reserve) 268

may also include negative consequences that are independent of the considered 269

dimension (e.g. fatigue). We will elaborate on these issues in the Discussion. 270

Neural implementation 271

In the previous sections we discussed how the utility of actions or stimuli change in a 272

state-dependent manner. In this section we will focus on the neural implementation of 273

these concepts. More specifically, we will address how the utility of previously chosen 274

actions can be computed in the basal ganglia and how this circuit could learn the utility 275

of actions. 276

Evaluation of utility in the basal ganglia circuit 277

The basal ganglia is a group of subcortical nuclei that play a key role in action selection 278

and reinforcement learning. It is organised into two main pathways shown schematically 279

in Fig 4. The Go or direct pathway is associated with the initiation of movements, while 280

the Nogo or indirect pathway is associated with the inhibition of movements [38]. These 281

two pathways include two separate populations of striatal neurons expressing different 282

dopaminergic receptors [39]. The striatal Go neurons mainly express D1 receptors which 283

are excited by dopamine, while the striatal Nogo neurons mainly express D2 receptors 284

which are inhibited by dopamine [40]. Thus, dopaminergic activation signal controls the 285

competition between these two pathways during action selection and promotes action 286

initiation over inhibition. 287

Given the architecture of the basal ganglia, we hypothesise that this circuitry is well 288

suited for the computation of the utility of actions in decision making. This utility 289

could be encoded at the final processing stage of this network, i.e. the thalamus. In 290

particular, we suggest that the Go neurons will mostly determine thalamic activity 291

when the utility is positive, while, the Nogo neurons when the utility is negative, and 292

the dopaminergic activation signal can appropriately control the relative influence of Go 293

and Nogo neurons, because it encodes motivation. There are various ways to describe 294

how the utility is represented in the basal ganglia and how the basal ganglia output can 295

drive action selection. In this paper, we show one possibility that should only be treated 296

as a proof of principle. 297

In line with earlier studies, we assume that synaptic strengths of Go and Nogo 298

neurons encode positive and negative consequences of actions, respectively [41–43]. 299

Accordingly, in the presented model the Go and Nogo neurons represent the estimates 300
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Fig 4. Schematic of utility computation in the basal ganglia network.
Dopaminergic activation signal encodes the motivation. The thalamic activity represents
the utility of actions. Arrows and lines with circles denote excitatory and inhibitory
connections, respectively. DA = dopamine, D1 = Dopamine receptor 1 medium spiny
neurons, D2 = Dopamine receptor 2 medium spiny neurons, SNr = Substantia Nigra
Pars Reticulata, STN = Subthalamic Nucleus, GPe = Globus pallidus external segment.

for the two terms in Eq. (10), namely, Go neurons produce activity proportional to mr 301

while Nogo neurons produce activity proportional to r2/2. 302

We refer to the output of the basal ganglia as the thalamic activity, denoted by T . T 303

depends on the cortico-striatal weights of Go neurons (G) and Nogo neurons (N), and 304

the dopaminergic activation signal denoted by D. The striatal weights of Go neurons 305

have an overall positive effect on the thalamic activity as the projection from the Go 306

neurons to the thalamus involves a double inhibitory connection. In contrast, the 307

inhibitory effect of Nogo neurons on the thalamic activity result in a negative 308

contribution to the thalamic activity. We assume that the dopaminergic activation 309

signal increases the gain of Go neurons, based on the observation of an increased slope 310

of firing-input relationship of neurons expressing D1 receptors in the presence of 311

dopamine [18]. In contrast, we assume that the dopaminergic activation signal reduces 312

the gain of Nogo neurons, as their firing-input relationship has decreased slope in the 313

presence of dopamine [19]. 314

Although admittedly more complex, we can capture the signs of the influences of the 315

dopaminergic activation signal, Go and Nogo neurons in a linear approximation [43]: 316

T = DG− (1−D)N. (11)

In the above equation, the contribution of Go neurons to the thalamic activity is 317

described by the first term DG, reflecting facilitatory effect of dopamine on Go neurons. 318

The inhibitory connection of Nogo neurons to the thalamic activity results in a negative 319

contribution to the thalamic activity and is described by the second term −(1−D)N . 320

We assume that D ∈ [0, 1], meaning that a value of D = 0.5 corresponds to a baseline 321

level of dopaminergic activation signal for which both striatal populations equally 322

contribute to the thalamic activity. 323

We now show that the thalamic activity defined in Eq. (11) is proportional to the 324

utility of an action if G and N are fully learned and therefore provide correct estimates 325

of the positive and negative terms in utility equation (Eq. (10)), respectively (G = r 326

and N = r2/2). Then, we can rewrite Eq. (11) as: 327

T = (1−D)

(
D

(1−D)
r − r2/2

)
. (12)
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Comparing this to Eq. (10), we observe that the thalamic activity is proportional to 328

the utility (T = (1−D)U) when the motivation is encoded by dopaminergic activation 329

signal: 330

m =
D

1−D
. (13)

We can rewrite Eq. (13) in the following way to express the level of dopamine for a 331

given motivation: 332

D =
m

1 +m
. (14)

In summary, when the striatal weights encode the positive and negative 333

consequences and the dopaminergic activation signal is described by Eq. (14), then the 334

thalamic activity is proportional to the utility. 335

Let us now consider how this utility can be used to guide action selection. 336

Computational models of action selection typically assume that all basal ganglia nuclei 337

and thalamus include neurons selective for different actions [44]. Therefore, the activity 338

of thalamic neurons selective for specific actions can be determined on the basis of their 339

individual positive and negative consequences and the common dopaminergic activation 340

signal. Given that the proportionality coefficient (1−D) in Eq. (12) is the same for all 341

actions, the utilities of different actions represented by thalamic activity are scaled by 342

the same constant. This means that the most active thalamic neurons are the ones 343

selective for the action with the highest utility, and hence this action may be chosen 344

through competition. Furthermore, if we assume that actions are only selected when 345

thalamic activity is above a threshold, then no action will be selected if all actions have 346

insufficient utility. The utility of actions has to be sufficiently high to increase neural 347

firing in the thalamus above the threshold and trigger action initiation. 348

Models of learning 349

In the previous section, we showed that the basal ganglia network can estimate the 350

utility once the striatal weights have acquired the appropriate values. In this section we 351

address the question of how these values are learned. Earlier, we proposed a general 352

framework for describing learning process assuming that the brain minimises a 353

prediction error during this process and we redefined the prediction error as the 354

difference between utility and expected utility. In the previous section we described a 355

model in which the thalamic activity encodes a scaled version of the estimated utility 356

(Û = T/(1−D) (see Eq. 12 and 13). This estimate of the utility can be substituted 357

into Eq. (6) giving the following the state-dependent reward prediction error: 358

δ = U − T

(1−D)
. (15)

In this RPE, U is the utility of an action (Eq. (10)), and T/(1−D) is the expected 359

utility of an action. In line with the general definition of Eq. (6), the above equation 360

shows that the RPE depends on a reinforcement and the expected reinforcement in a 361

state-dependent manner, which is here instantiated in a specific model for estimating 362

utility. Please note that at baseline levels of the dopaminergic activation signal 363

(D = 0.5), the above expression for prediction error reduces to δ = U − (G−N) and 364

such prediction error has been used previously [42]. 365

We will now describe two models for learning the synaptic weights of G and N . The 366

first model is a normative model, developed for the purpose of this learning, while the 367

second model corresponds to a previously proposed model of striatal plasticity, and it 368

provides a more biologically realistic approximation of the first model. 369
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Gradient model. The first model we use to describe learning of synaptic weights 370

under changing conditions, directly minimises the error in prediction of the utility of 371

action. It changes the weights proportionally to the gradient of the objective function: 372

∆G = α∂F/∂G and ∆N = α∂F/∂N , respectively. For the prediction error
described in Eq. (15), this gives us the following learning rules for G and N :

∆G = αδ
D

1−D
, (16)

∆N = −αδ. (17)

Synaptic weights of Go and Nogo neurons are updated using the dopaminergic teaching 373

signal scaled by the learning rate constant α. The update rule for Go weights has an 374

additional term involving the dopaminergic activation signal encoding the motivation as 375

described in Eq. (13). Only the update rule for G, but not for N , includes scaling by 376

motivation, because in the definition of utility of Eq. (10), the motivational level only 377

scales the positive consequences of an action and not the negative. 378

Payoff-cost model. The second model has been previously proposed to describe 379

how Go and Nogo neurons learn about payoffs and costs of actions. It has been shown 380

to account for a variety of data ranging from properties of dopaminergic receptors on 381

different striatal neurons to changes in risk preference when dopamine levels are low or 382

high [42]. We expected this model to provide an approximation for the gradient model 383

because it has been shown to be able to extract positive and negative consequences of 384

actions. More specifically, if reinforcement takes positive value rp half of the times and 385

negative value −rn the other half of times, then the Go weights converge to G = rp and 386

Nogo weights to N = rn, for certain parameters [43]. Therefore, we expected this 387

learning model to be able to extract positive and negative terms of the utility in Eq. 388

(10) if motivation could vary between trials, so the positive term dominates utility on 389

some trials while the negative term on other trials. 390

In our simulations we used the same update rules as previously described [42,43], 391

but we use a state-dependent prediction error (Eq. (15)) to account for decision making 392

under different physiological states. 393

∆G = αfε(δ)− λG, (18)

∆N = αfε(−δ)− λN, (19)

where

fε(δ) =

{
δ, if δ > 0,

εδ, if δ ≤ 0.

The update rules in the above equations consist of two terms. The first term is the 394

change depending on the dopaminergic teaching signal scaled by a learning rate 395

constant α. It increases the weights of Go neurons when δ > 0, and slightly decreases 396

when δ < 0, so that changes in the Go weights mostly depend on positive prediction 397

errors. The constant ε controls the magnitude by which the weights are decreased. Nogo 398

weights will be updated in a analogous way, but these changes mostly depend on 399

negative prediction errors. The second term in the update rules is a decay term, scaled 400

by a decay rate constant λ. This term is necessary to ensure that the synaptic weights 401

stop growing when they are sufficiently high and allows weights to adapt more rapidly 402

when conditions change. In case an updated weight becomes negative, it is set to zero. 403
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Simulations of learning 404

In this section, we investigate under what conditions the learning rules described above 405

can yield synaptic weights of Go and Nogo neurons that allow for the estimation of 406

utility. Recall that the network will correctly estimate the utility, if G = r and 407

N = r2/2. 408

In the simulations we make the following assumptions: 1) The simulated animal 409

knows its motivational level m, which influences both dopaminergic signals accordingly 410

(Eqs. (14) and (15)). 2) The simulated animal computes the utility of obtained 411

reinforcement as a change in the desirability of the physiological state. As described 412

above, the desirability depends on the objective value of the reinforcement r and the 413

current motivational state m according to Eq. (10), which was used to compute the 414

reward prediction error according to Eq. (15). 415

We simulated scenarios in which the simulated animal repeatedly chooses a single 416

action and experiences a particular reinforcement r under different levels of motivation 417

m ∈ {mlow,mbaseline,mhigh}. Note that the mlow = 0 correspond to a dopaminergic 418

activation signal of D = 0, mbaseline = 1 gives a dopaminergic activation signal of 419

D = 0.5, which means that Go and Nogo neurons are equally weighted, and mhigh = 2 420

corresponds to a dopaminergic activation signal above baseline levels. 421

We first simulated a condition in which the motivation changed on each trial, and 422

took a randomly chosen value from a set {mlow,mbaseline,mhigh} (Fig 5A). The gradient 423

model was able to learn the desired values of Go and Nogo weights. In particular, Go 424

weights converged to r, while Nogo weights converged to r2/2, which allowed the 425

network to correctly estimate the utility. Although the subjective reinforcing value 426

changed as a function of physiological state, the model was able to learn the actual 427

reinforcement of an action. Encoding of such objective estimates allows the agent to 428

dynamically modulate behaviour based on metabolic reserves. 429

In contrast, the payoff-cost model converged to lower weights than desired. Although 430

it learned the synaptic weights based on the state-dependent prediction error, the 431

weight decay present in the model resulted in a lower asymptotic value. 432

To test robustness of the learning rules and because the motivational state is fixed 433

during the experimental paradigms simulated in this paper, we also simulated 434

conditions in which the motivation was kept constant (Fig 5B-D). In these cases both 435

leaning rules converged to very similar values of synaptic weights: low levels of 436

motivation emphasised negative consequences and therefore facilitated Nogo learning 437

(Fig 5B), while high levels of motivation emphasised positive consequences and therefore 438

facilitated Go learning (Fig 5D). 439

In summary, the simulations indicate that for the models to learn appropriate values 440

of synaptic weights, the reinforcements need to be experienced under varying levels of 441

motivation. In this case, the gradient model provides a precise estimation, while the 442

payoff-cost model provides an approximation of the utility. In cases when the 443

motivational state is fixed during training, both models learn very similar values of the 444

weights. 445

The basal ganglia architecture allows for efficient learning 446

In the previous sections we presented and analysed models of how utilities can be 447

computed and learned in the basal ganglia network. One could ask, why would the 448

brain employ such complicated mechanisms if a simple model could give you the same 449

results? In particular, one could consider a standard Q-learning model, in which the 450

state is augmented by motivation. Such model would also be able to learn to estimate 451

the utility. However, such a model does not incorporate any prior knowledge about the 452

form of the utility function and its dependence on motivation. By contrast, the model 453
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Fig 5. Learning Go and Nogo weights for different reinforcements and
different levels of motivation. Performance of models under variable (A), low (B),
baseline (C), high (D) levels motivation. Simulations were performed using the
state-dependent prediction error (Eq. (15)). Solid lines show simulations of the gradient
model using the plasticity rules described in Eq. (16) and (17). Dashed lines show
simulations of the payoff-cost model using the plasticity rules described in Eq. (18) and
(19). Black lines correspond to Nogo neurons and grey lines to Go neurons. Each
simulation had 150 trials and was repeated 100 times. All synaptic weights were
initialised at zero. The parameters used in the simulations were α = 0.1, ε = 0.8 and
λ = 0.01. These parameters allow the model to converge to positive and negative
consequences at baseline motivational state [43].

grounded in basal ganglia architecture, assumes a particular form of the utility function 454

to be learned. In machine learning, such prior assumptions are known as ‘inductive 455

bias’, and they facilitate learning [45]. 456

We now illustrate that thanks to the correct inductive bias, the gradient model 457

learns to estimate the utility faster than standard Q-learning, which does not make any 458

prior assumptions about the form of the utility function. In our implementation of 459

Q-learning, the range of values the motivation can take was divided into a number of 460

bins, and the model estimated the utility for each bin. In the simulations on each trial 461

reinforcement r = 1 was received and its utility was computed using Eq. (10), which 462

relied on the current motivation. The Q-value for the current motivation bin was 463

updated by: ∆Qm = α(U −Qm). In Fig. 6 we compare a Q-learning approach in which 464

the motivational state was discretised with the gradient model in our framework which 465

does not require discretisation of the motivational state. As can be seen in in Fig. 6, 466

both models are able to approximate the utility well. However, Q-learning takes 467

significantly more trials to do so. Moreover, the more bins are used for the 468

discretisation, the slower the learning occurs. 469

Relationship to experimental data 470

We already demonstrated how a model employing an approximation of utility can 471

explain data on the effect of physiological state on dopaminergic responses. In this 472

section, we demonstrate how we can use models grounded in basal ganglia architecture 473
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Fig 6. Reward prediction error as a function of learning iteration. A)
gradient model using the state-dependent prediction error (Eq. (15)) and the plasticity
rules described in Eq. (16) and (17). B) Discretised Q-learning model. Motivational
values were randomly chosen on each trial from a uniform distribution between 0 and 2.
For Q learning, motivational values were binned in either 4 or 10 bins. The y-axis
corresponds to reward prediction error equal to the difference between the estimated
and expected utility.

to describe these dopaminergic responses and goal directed action selection in different 474

experimental paradigms. 475

We first show that the new, more complex and biological relevant learning rules can 476

also be used to explain the data by Cone et al. [25]. In these simulations, the 477

dopaminergic teaching signal at the time of the CS took on the value of the expected 478

utility (T/(1−D)) and at the time of the US represented the reward prediction error 479

described by (Eq. (15)). Simulated values of the dopaminergic teaching signal (Fig 7) 480

show similar behaviour to the experimental data by Cone et al. [25]. Both the gradient 481

and the payoff-cost model produce a similar dopaminergic teaching signal. This could 482

be expected from simulations in the previous sections, which showed that both models 483

converge to similar weights if the motivation is kept constant during training. 484

Influence of physiological state on action selection 485

In the presented framework natural appetites, such as hunger or thirst can drive action 486

selection into the direction of the relevant reinforcement. Generally speaking, most 487

foods are considered appetitive even when an animal is in the near-optimal state. 488

Nevertheless, overconsumption could have negative consequence as you can experience 489

discomfort after eating too much. Therefore some of these negative consequences might 490

have to be accounted for as well. As discussed above, a good example of a natural 491

appetite that can be both appetitive and aversive dependent on the physiological state 492

of the animal is salt appetite. Salt is considered very aversive or appetitive when the 493

sodium physiology is balanced or depleted, respectively. Accordingly, rats reduce their 494

intake of sodium or salt-associated instrumental responding when balanced and vice 495

versa when depleted [26, 46]. This even occurs when animals have never experienced the 496

deprived state before and have not had the chance to relearn the incentive value of a 497

salt reinforcement under a high motivational state [46]. This example fits very well with 498

the incentive salience theory which states that the learned association can be 499

dynamically modulated by the physiological state of the animal. Modulation of 500

incentive salience adaptively guides motivated behaviour to appropriate reinforcements. 501

To demonstrate that the simple utility function (Eq. (10)) proposed in this paper 502

can account for the transition of aversive to appetitive reinforcements, and vice versa, in 503
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Fig 7. Simulated dopaminergic teaching signal in the paradigm of Cone et
al. [25] according to models grounded in basal ganglia architecture.
State-dependent prediction error (Eq. (15)) was used. The gradient model in grey uses
the plasticity rules described in Eq. (16) and (17). payoff-cost model is depicted in
black and uses the plasticity rules described in Eq. (18) and (19). Left and right panels
show the data tested in the balanced state or depleted state, respectively. CS =
conditioned stimulus, US = unconditioned stimulus, RPE = reward prediction error.
Each simulation consisted of 50 trials and was repeated 5 times, similar to the number
of animals in each group. The parameters used in the simulations were α = 0.1, ε = 0.8
and λ = 0.01.

action selection, we use the study by Berridge and Schulkin [26]. In this study, animals 504

learned the value of two different conditioned stimuli, one associated with salt intake 505

(CS+) and one with fructose intake (CS-). The animals were trained when they were in 506

a balanced state of sodium. Once the appropriate associations had been learned, the 507

animals were tested in a sodium balanced and sodium depleted state. As can be seen in 508

Fig 8A the intake of the CS+ was significantly increased in the sodium depleted state in 509

comparison to the balanced state and in comparison to the CS- intake. If we assume 510

that positive and negative consequences are encoded by the Go or Nogo pathway, 511

respectively, the synaptic weights of these pathways will acquire positive or negative 512

values depending on the situation. Again, the dopaminergic activation signal can 513

control to what extent these positive and negative consequences affect the basal ganglia 514

output as Go and Nogo neurons are modulated in an opposing manner. 515

Once the appropriate associations between the conditioned stimuli and the outcomes 516

are acquired, the outcomes can be dynamically modulated by the relevant state only 517

(i.e. the level of sodium depletion). The fact that the responses to the CS- are 518

unaffected by the physiological state of sodium suggests that salt and fructose are 519

modulated by separate appetitive systems and that the physiological state of the animal 520

modulates the intake proportional to the deprivational level of the animal. The 521

phenomenon that different reward types act on different appetitive system has been also 522

observed by other experimental studies [24]. 523

In our simulation, we assumed that the synaptic weights for Go and Nogo neurons 524

were learned in a near-balanced state of sodium since the animals had never experienced 525

a sodium depleted state before. During training, the motivation was low (m = 0.2), 526

resulting in low level of dopaminergic activation signal following Eq. (14). During the 527

testing phase, the motivation for the CS+ was low (m = 0.2) for sodium in the 528

near-balanced state and high (m = 2) for the sodium depleted state. Given that 529

experimental data suggests that multiple appetitive systems may be involved we used 530
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Fig 8. Salt appetite: experimental data by Berridge and Schulkin [26]. A)
Intake of fructose (CS-) or Sodium (CS+). B) Simulated data of number of actions
made using the state-dependent prediction error (Eq. 15). The gradient model in grey
uses the plasticity rules described in Eq. (16) and (17). The payoff-cost model is
depicted in black and uses the plasticity rules described in Eq. (18) and (19). Within
each graph, the left and right halves show the responses of animals tested in depleted
and balanced states, respectively. CS+ = relevant conditioned stimulus for sodium, CS-
= irrelevant conditioned stimulus for fructose. Within the graph, the left and right
halves show the responses of animals tested in depleted and balanced states,
respectively. CS+ = relevant conditioned stimulus for sodium, CS- = irrelevant
conditioned stimulus for fructose.

separate motivational signals for the CS+ and CS-. Therefore, the motivation for the 531

CS- were kept low (m = 0.1), but were non-negative, for both sodium near-balanced 532

and sodium depleted states since fructose has no effect on the physiological state of 533

sodium and we assumed that the animals were not deprived of other nutrients. The 534

thalamic activity was computed using Eq. (11), and additional Gaussian noise was 535

added to allow exploration. Actions were made when the thalamic activity was positive, 536

otherwise no action was made. The model received a reinforcement of r = 0.5 for each 537

action made and the utility was computed using Eq. (10). During training, Go and 538

Nogo weights were updated using the update equations presented above for the different 539

models. For the testing phase, the Go and Nogo values were kept constant based on the 540

learned values and were not allowed to be (re-)learned. Again, the thalamic activity was 541

computed and actions were taken when this was positive. Please note that the main 542

difference between near-balanced and depleted states, is the level of dopaminergic 543

activation signal. As can be seen in Fig 8B both models show dynamic scaling of the 544

CS+ dependent on the relevant motivational state similar to the experimental data in 545

Fig 8A. 546

State-dependent valuation 547

There is a number of experimental studies that have investigated the influence of 548

physiological state at the time of learning on the preference during subsequent 549

encounters (e.g. [27, 34, 35,47]). In the study by Aw et al. [27], animals were trained in 550

both a near-balanced and deprived state. One action was associated with food in the 551

near-balanced state and another action was associated with food in the deprived state. 552

Animals were tested in both states. In both cases, animals preferred the action 553
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associated with the deprived state during learning and the proportions of trials with 554

these actions are above chance level (Fig 9A). These results resemble the data on 555

dopaminergic responses (Fig 1), which also demonstrated higher response to 556

reward-predicting stimuli (CS) that had been experienced in a depleted state. In this 557

section we show that such preferences can be produced by the proposed models. 558

Fig 9. Simulation of a study by Aw et al. [27]. A) Experimental data by Aw et
al. [27]. B) Simulated data using the state-dependent prediction error (Eq. 15).
gradient model in grey uses the plasticty rules described in Eq. (16) and (17).
payoff-cost model is depicted in black and uses the plasticity rules described in Eq. (18)
and (19). Hungry and Prefed refer to the physiological state at testing. The parameters
used in the simulations were α = 0.1, ε = 0.8 and λ = 0.01. Additionally a Gaussian
noise with mean 0 and standard deviation 0.1 was added to the above thalamic activity.

We simulated learning of the synaptic weights of Go and Nogo neurons when the 559

motivation was high (i.e. hungry) and when the motivation was low (i.e. prefed). In the 560

experiment by Aw and colleagues, the training phase consisted of forced choice trials in 561

which the reinforcement was only available in one arm of a Y-maze while the other arm 562

is blocked. For example, the left arm was associated with a food reinforcement during 563

hunger and the right arm was associated with a food reinforcement during the prefed 564

condition. In the experiment, 11 animals were used, which were trained for 65 trials on 565

average to reach the required performance. In line with this, our simulations were 566

repeated 11 times, and in each iteration we trained the model for varying trial numbers 567

with a mean of 65. Motivation was set to m = 2 for hungry and m = 0.2 for prefed. The 568

dopaminergic activation signal was fixed to values that correspond to the motivation 569

described by Eq. (14). For each correct action, the model received a reinforcement of 570

r = 0.2 and the utility was calculated using the utility in Eq. (10). At the start of each 571

simulated forced trial, the model computed the thalamic activity (using Eq. (11)) of the 572

available action and some independent noise was added. The thalamic activity for the 573

unavailable action was zero. The action with the highest positive thalamic activity was 574

chosen. If the thalamic activity of all action was negative, no actions was made and the 575

reinforcement was zero. Each time an action was made the synaptic weights of Go and 576

Nogo neurons were updated using the state-dependent reward prediction error and the 577
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update rules described in section Models of learning. The learning rate for all of these 578

models was set to α = 0.1. Once learning was completed, the synaptic weights were 579

fixed and were not allowed to be updated anymore. 580

During the testing phase, both arms were available and the animals could freely 581

choose an arm to obtain a reinforcement in. All 11 animals were tested for 24 trials. 582

Our simulations were tested for 24 trials for both conditions and repeated 11 times 583

using the individual learned Go and Nogo weights for the prefed and hungry condition. 584

Again, the model computed the thalamic activity for both options simultaneously (in 585

parallel) plus some independent noise. The action with the highest thalamic activity 586

was chosen. The proportion of actions associated with the hungry option are depicted in 587

Fig 9B. This experiment was simulated for both physiological states during testing 588

phase. The proportion of actions for the arm associated with hunger were calculated for 589

both states. Both the experimental and simulated data show that the animals chose the 590

action associated with the hungry state more often, regardless of the current state. 591

To gain some intuition for why the models preferred the option that was associated 592

with hungry state during training, let us look back at the simulations presented in Fig 593

5B-D. They show that when the models were trained with a fixed motivation, Go 594

weights took higher values when the motivation was high during training, and Nogo 595

weights were larger when motivation was low. Analogously, in the simulations of the 596

study of Aw and colleagues, the Go weights took larger values for the option associated 597

with hunger during training (Fig 10), and this option was therefore preferred during 598

testing. These biases arise in the models when they are unable to experience multiple 599

levels of motivation during training. Only after training in multiple physiological states 600

the utility can be flexibly estimated in different physiological states. 601

Fig 10. Learning Go weights as function of physiological state. Learning at
high motivation is depicted in black and learning at low motivation is depicted in grey.
Number of trials used for the simulation was 1000. Go weights were initialised at zero.
The parameters used in the simulations were α = 0.1, ε = 0.8 and λ = 0.01.
Additionally a Gaussian noise with mean 0 and standard deviation 0.1 was added to the
above thalamic activity.
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Discussion 602

In this paper, we have presented a novel framework for action selection under 603

motivational control of internal physiological factors. The framework is biologically 604

grounded and brings together models of direct and indirect pathways of the basal 605

ganglia with the incentive learning theory. We proposed two models that learn about 606

positive and negative aspects of actions utilising a prediction error that is influenced by 607

the current physiological state. In this section, we will discuss the experimental 608

predictions, the relationship to experimental data and other computational models and 609

other implications. 610

Experimental predictions 611

In this section, we outline the predictions the models make. The neural implementation 612

of the framework assumes that Nogo neurons prevent selecting actions with large 613

reinforcements when the motivation is low. Thus it predicts that pharmacological 614

manipulations of striatal Nogo neurons through D2 agonist (or antagonist) should 615

increase (or decrease) the animal’s tendency to consume large portions of food or other 616

reinforcers to a larger extent when it is close to satiation, than when it is deprived. 617

The neural implementation of the framework also assumes that the activity in Go 618

and Nogo pathways is modulated by the dopaminergic activation signal, which depends 619

on motivation. This assumption could be tested by recording activity of Go and Nogo 620

neurons, for example using photometry, while an animal decides whether to consume a 621

reinforcement. The framework predicts that deprivation should scale up responses of Go 622

neurons, and scale down the response of Nogo neurons. 623

As showed in Fig. 5A, the framework predicts that the synaptic weights of Go and 624

Nogo neurons converge to different values depending on the reinforcement magnitude. 625

These predictions can be tested in an experiment equivalent to the simulation in Fig. 626

5A in which mice learn that different cues predict different reinforcement sizes, and 627

experience each cue in variety of motivational states. The weights of the Go and Nogo 628

neurons are likely to be reflected by their neural activity (e.g. measured with 629

photometry) while an animal evaluates a cue at baseline motivation level. We expect 630

both populations to have higher activity for cues predicting higher reinforcements, and 631

additionally, the gradient model predicts that the Go and NoGo neurons should scale 632

their activity with reinforcement magnitude linearly and quadratically, respectively. 633

Relationship to experimental data and implications 634

The proposed framework can account for decision making and learning as a function of 635

physiological state, as shown by the simulations of the data by Cone et al., Berridge and 636

Schulkin and Aw et al. More specifically, we proposed that learning occurs based on the 637

difference between the utility and expected utility of an action. This is in line with 638

results from a study in monkeys that also suggested that dopaminergic responses 639

reflects a difference in utility of obtained reward and expected utility [30]. That study 640

focused on a complementary aspect of subjective valuation of reward, namely that the 641

utility of different volumes of reward is not equal to the objective volume, but rather to 642

its nonlinear function. In this paper we additionally point out that the utility of 643

rewards depends on the physiological state in which they are received. 644

Furthermore, we know from literature that low levels of dopamine, as seen in 645

Parkinson’s disease patients, drive learning from errors, whereas normal/high levels 646

dopamine emphasise positive consequences [3, 5, 48]. In our simulations, we observe this 647

as well: a low dopaminergic activation signal emphasises the negative consequences of 648

actions encoded in the synaptic weights of Nogo neurons, whereas a high dopaminergic 649
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activation signal emphasises the positive consequences of actions encoded in the 650

synaptic weights of Go neurons. However, there are a couple considerations that have to 651

be made with respect to the dopaminergic signal in our simulations. First, we assume 652

that striatal neurons can read out both motivational and teaching signals encoded by 653

dopaminergic neurons [21]. In our theory, we describe two roles of dopamine neurons, 654

namely activation and teaching signal, however, we do not provide a solution to how 655

these different signals are accessed. The function of dopamine neurons has been under a 656

current debate and its complexity is not well understood [22]. We will leave the details 657

of the mechanisms by which they can be distinguished to future work. We assume that 658

the models, particularly the gradient model, has access to multiple dopaminergic signals 659

simultaneously. Although we recognise that this is a simplified concept of what might 660

be happening in the brain, it still provides us with new insights in how these different 661

functions affect aspects of decision making. Further research is necessary to describe the 662

complexity of dopamine neurons in decision making. 663

Secondly, in this paper we have focused primarily on one dimension, namely nutrient 664

deprivation. However, experimental data suggests that reinforcements are scaled 665

selectively by their physiological needs [24]. A nutrient specific deprivation alters 666

goal-directed behaviour towards the relevant reinforcement, but not the irrelevant one. 667

In contrast, other physiological factors, such as fatigue, may scale only the negative, but 668

not the positive consequences. This hypothesis is supported by data showing that 669

muscular fatigue alters dopamine levels [49]. Together this suggests that the utility of 670

an action is most likely the sum of all the positive and negative consequences with 671

respect to their physiological needs or other external factors. Therefore, extending the 672

current theory to multiple dimensions is an important direction of future work. In such 673

an extended model, an action which changes the state of multiple physiological 674

dimensions, e.g. hunger, thirst and fatigue, would need to be represented by multiple 675

populations of Go and Nogo neurons. In this example, the value of food and drink 676

reinforcement rf and rd would need to be represented by separate populations of Go 677

and Nogo neurons modulated by different populations of dopaminergic neurons 678

encoding information about hunger and thirst, while the effort would need to be 679

encoded by a population of Nogo neurons modulated by a fatigue signal. It would be 680

interesting to investigate if the required number of neurons could be somehow reduced 681

by grouping terms in the utility function scaled in a similar way (e.g. −r2f/2− r2d/2, 682

which are not scaled by any factor in this example). Future experimental work on the 683

diversity of how individual dopaminergic neurons are modulated by different 684

physiological states would be very valuable in constraining such an extended model. 685

Although the current study does not focus on risk preference, there is some evidence 686

for the existence of a link between risk preference and physiological state [32,50]. 687

Particularly, in the payoff-cost model the dopaminergic activation signal controls the 688

tendency to take risky actions [42], thereby predicting that motivational states such as 689

hunger can increase risk seeking behaviour. The above mentioned studies show that 690

changes in metabolic state systematically alter economic decision making for water, 691

food and money and correlate with hormone levels that indicate the current nutrient 692

reserve. Individuals became more risk-averse when sated whereas people became more 693

risk-seeking when food deprived. 694

The current study also provides insights into the mechanistic underpinnings of 695

overeating and obesity. Imaging studies using positron emission tomography showed an 696

important involvement of dopamine in normal and pathological food intake in humans. 697

In comparison to healthy controls, pathologically obese subjects show reduced 698

availability of striatal D2 receptors that were inversely associated with the weight of the 699

subject [51–53]. Our theory suggests that the ability to restrain from taking actions and 700

learn from negative consequences of actions such as overeating may be diminished when 701
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D2 receptors are activated to a lesser extent. The involvement of the DA system in 702

reward and reinforcement suggests that low engagement of Nogo neurons in obese 703

subjects predisposes them to excessive use of food. 704

Relationship to other computational models 705

The proposed framework builds on or is related with several other theories. For 706

example, Keramati and Gutkin [28] developed a theory that also extended the 707

reinforcement learning theory to incorporate physiological state. They defined a 708

‘homeostatic space’ as a multidimensional metric space in which each dimension 709

represents physiologically-regulated variable. At each time point the physiological state 710

of an animal can be represented as a point in this space. They also define motivation 711

(to which they refer to as ‘drive’) as the distance between the current internal state and 712

the desired setpoint. We extended this theory to include how the brain computes the 713

modulation of learned values by physiology. 714

In the motivation for the existence of the desired physiological state, Keramati and 715

Gutkin [28] referred to active inference theory [54]. Our framework also shares a 716

conceptual similarity with this theory, in that both action selection and learning can be 717

viewed as the minimisation of surprise. To make this link clearer, let us provide a 718

probabilistic interpretation for action selection and learning processes in our framework. 719

This interpretation is inspired by a model of homeostatic control [55]. It assumes that 720

the animal has a prior expectation P (S) of what the physiological state S should be, 721

which is encoded by a normal distribution with mean equal to the desired state S∗. 722

That model assumes that animals have an estimate of their current bodily state S 723

(interoception). It proposes that animals avoid states S that are unlikely according to 724

the prior distribution with mean S∗ (thus they minimise their “interoceptive surprise”), 725

and they wish to find themselves in the states S with high prior probability P (S). 726

Following these assumptions, we can define the desirability of the state as 727

Y (S) = lnP (S). If we assume for simplicity that P (S) has unit variance and ignore an 728

additive constant, we obtain our definition of a desirability of a state in Eq. (2). In our 729

framework, actions are chosen to minimise the surprise of ending up in a new 730

physiological state. The closer this state is to the desired state the more likely it will be 731

and the smaller the surprise. Furthermore, motivation itself could be viewed as an error 732

in the prediction of the physiological state. 733

Similar to action selection, animals update the parameters of their internal model 734

(e.g. V , G, N) during learning in order to be less surprised by the outcome of the chosen 735

action. To describe this more formally, let us assume that the animal expects the utility 736

to be normally distributed with mean Û and variance 1 (for simplicity). Furthermore, 737

assume that during learning the animal minimises the surprise about the observed 738

utility of action U . Therefore, we can define the negative of this surprise as F = lnP (U). 739

This objective function is equal (ignoring a constants) to our objective function defined 740

in Eq. (8). Thus in summary, similar to the active inference framework, both action 741

selection and learning could be viewed as processes of minimising prediction errors. 742

The dopaminergic activation signal is often associated with an increase in the vigour 743

of actions [10]. In the study by Niv et al. [10] same assumption is held that the utility of 744

the reinforcement is dependent on the deprivational level, however, they do not provide 745

a mechanism for how these utilities are computed and are therefore set them arbitrarily. 746

Moreover, they rely on average reward reinforcement learning techniques which reveal 747

an optimal policy that leads to an average reward rate per time unit. Following this line 748

of thinking, actions with higher utility (i.e. actions taken in a deprived state) cause 749

higher response rates as the opportunity cost of time increases. Although our model 750

does not describe vigour or response times, it could be related to these output statistics 751

thanks to recent work investigating the relationship between activity of a basal ganglia 752
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model and the parameters of a diffusion model of response times in a two alternative 753

choice task [56]. This study showed that a drift parameter of a diffusion model is 754

related to the difference in the activation of Go neurons selective for the two options, 755

while the threshold is related to the total activity of Nogo neurons. In our framework 756

motivation scales linearly with Go neurons for both options; it enhances the difference 757

in their activity. Based on the data by Dunovan et al. [56] motivation is expected to 758

increase the drift rate and reduce the threshold leading to faster responding. 759

There are many computational models developed for action selection in either very 760

abstract or more biological relevant ways. One of the leading models in describing how 761

dopamine controls the competition between the Go and Nogo pathways during action 762

selection is the Opponent Actor Learning (OpAL) model. This model hypothesises that 763

the Go and Nogo neurons encode the positive and negative consequences of actions 764

respectively [41] and high dopamine levels excite Go neurons and low levels of dopamine 765

releases the inhibition of Nogo neurons. Moreover, existing neurocomputational theories 766

describe how experience modifies striatal plasticity and excitability of the Go and Nogo 767

neurons as a function of reward prediction errors [13,41,42,44]. In line with these 768

studies, we assumed that the Go neurons encode positive consequences and Nogo 769

neurons encode negative consequences and that dopaminergic activation signal controls 770

the balance between these neurons. We extended these concepts by combining it with 771

incentive salience theory. 772

Our framework considers for simplicity that all physiological dimensions (e.g. 773

hunger, salt level, body temperature) have unique values with a maximum desirability, 774

and the desirability is lower for both smaller and higher values along the physiological 775

dimension. Although this assumption is realistic for some dimensions, it may not be 776

realistic for the resources animals store outside their bodies. Indeed, according to the 777

classical economic utility theory, humans always wish to have more monetary resources. 778

Although our framework also assumes diminishing utility of larger reinforcements, it 779

differs from the classical theory in that the utility is a non-monotonic function of 780

reinforcement. We also assume that all the resources are directly consumed, which does 781

not allow for the scenario of storing resources. It would be interesting to extend 782

presented model to include dimensions without finite value maximising desirability. 783

Up to date, there is only a few neurocomputational studies on incentive salience 784

(e.g. [37, 57]). In these studies two mechanisms are proposed on how the physiological 785

state may influences reinforcement evaluation [37]. In the study by Zhang et al., [37], 786

two mechanisms are proposed through which a physiological state, κ, modulates 787

reinforcement, r: one mechanism is additive (r + log(κ)) and the other is multiplicative 788

(rκ). Appetitive reinforcements are considered positive and aversive reinforcements are 789

considered negative. The physiological state of the animals is always non-negative, 790

κ ∈ [0,∞). The multiplicative mechanism can perfectly account for either positive or 791

negative reinforcements, but struggles to explain a phenomenon such as salt appetite 792

where aversive reinfrocements can become appetitive depending on the physiological 793

state of the animal. This is where the additive mechanism comes in. This mechanism is 794

able to change the polarity of the reinforcement value without changing the sign of the 795

reinforcement. We build on this line of thinking and propose only one mechanism for 796

incentive salience that can account for positive and negative reinforcements without the 797

need to change the sign of the reinforcement. Our utility theory accounts for positive 798

and negative consequences of actions in a state-dependent manner. Moreover, even when 799

the model learns reinforcement values in a non-depleted state and has never experienced 800

a depleted state before, the model is able to behave appropriately. In conclusion, our 801

modelling framework maps learning of incentive salience onto the basal ganglia circuitry, 802

a circuitry proven to play an important role in action selection. We used key concepts 803

from both lines of theoretical work to develop a framework that is biologically relevant 804
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and describes action selection and learning in a state-dependent manner. 805
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