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Abstract1

Exponential growth is a mathematically convenient model for the early stages of an2

outbreak of an infectious disease. However, for many pathogens (such as Ebola virus)3

the initial rate of transmission may be sub-exponential, even before transmission is4

affected by depletion of susceptible individuals.5

We present a stochastic multi-scale model capable of representing sub-exponential6

transmission: an in-homogeneous branching process extending the generalised growth7

model. To validate the model, we fit it to data from the Ebola epidemic in West Africa8

(2014–2016). We demonstrate how a branching process can be fit to both time series9

of confirmed cases and chains of infection derived from contact tracing. Our estimates10

of the parameters suggest transmission of Ebola virus was sub-exponential during this11

epidemic. Both the time series data and the chains of infections lead to consistent12

parameter estimates. Differences in the data sets meant consistent estimates were not a13

foregone conclusion. Finally, we use a simulation study to investigate the properties of14

our methodology. In particular, we examine the extent to which the estimates obtained15

from time series data and those obtained from chains of infection data agree.16

Our method, based on a simple branching process, is well suited to real-time analy-17

sis of data collected during contact tracing. Identifying the characteristic early growth18

dynamics (exponential or sub-exponential), including an estimate of uncertainty, dur-19

ing the first phase of an epidemic should prove a useful tool for preliminary outbreak20

investigations.21
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2 Alexander E. Zarebski et al

Author Summary22

Epidemic forecasts have the potential to support public health decision making in out-23

break scenarios for diseases such as Ebola and influenza. In particular, reliable pre-24

dictions of future incidence data may guide surveillance and intervention responses.25

Existing methods for producing forecasts, based upon mechanistic transmission models,26

often make an implicit assumption that growth is exponential, at least while susceptible27

depletion remains negligible. However, empirical studies suggest that many infectious28

disease outbreaks display sub-exponential growth early in the epidemic. Here we in-29

troduce a mechanistic model of early epidemic growth that allows for sub-exponential30

growth in incidence. We demonstrate how the model can be applied to the types of data31

that are typically available in (near) real-time, including time series data on incidence as32

well as individual-level case series and chains of transmission data. We apply our meth-33

ods to publically available data from the 2014–2016 West Africa Ebola epidemic and34

demonstrate that early epidemic growth was sub-exponential. We also investigate the35

statistical properties of our model through a simulation re-estimation study to identify36

it performance characteristics and avenues for further methodological research.37

Keywords: Branching processes, Epidemic dynamics, Ebola virus disease, Bayesian38

statistics39

1. Introduction40

Physical systems can rarely support exponential growth for extended periods; during41

an epidemic, depletion of susceptible individuals leads to reduced transmission and, if42

intervention measures have not already done so, cause incidence to decline. Despite re-43

cent work showing the initial transmission of many diseases is sub-exponential, it is still44

common to see epidemics represented by models in which transmission grows exponen-45

tially Viboud et al. (2016). This is concerning because exponential growth is extremely46

sensitive to its growth rate parameter, which can inflate the variance of forecasts. During47

an outbreak of a novel pathogen, uncertainty in the growth rate is almost guaranteed.48

Furthermore, the likely impact of an intervention, such as social-distancing or deploy-49

ment of a vaccine, is likely to be highly sensitive to the estimate for the growth rate50

parameter.51

The quantitative models used in epidemiology vary, from simple phenomenological52

models Lega and Brown (2016); Nouvellet et al. (2018) to complex agent-based simula-53

tions Ajelli et al. (2016); Merler et al. (2015).54

Typically, the simpler phenomenological models — while able to produce exponen-55

tial or sub-exponential growth — lack the mechanistic underpinning to answer relevant56

question (e.g., what will be the effect of vaccinating 20% of the population?) and so57

have arguably limited application in outbreak investigations. At the other end of the58

complexity spectrum, agent-based models, with their high biological fidelity, allow for59

conceptually simple explorations of the impact of interventions. However, there is a60

cost: their complexity makes them difficult to reason about mathematically. They are61

also computationally intensive, making statistical analysis and so assessment of the early62

growth characteristics and potential impact of interventions, challenging.63
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A sub-exponential branching process to study early epidemic dynamics with application to Ebola 3

Here, in the context of early outbreak investigation, we demonstrate how an in-64

homogeneous branching process formulation can overcome some of the challenges de-65

scribed above: the mismatch between exponential growth of transmission and obser-66

vations, and the difficulty of finding a model with a mechanistic basis which is still67

mathematically tractable. A temporal in-homogeneity in the branching process ensures68

the generation sizes grow algebraically (in expectation), instead of the typical geomet-69

ric/exponential growth. Branching processes can be viewed as either a tree, where it70

describes who-infected-whom, or as a time series to describe the total number of cases71

through time. As such, they are a good example of a multi-scale model. Unlike many72

of the complex mechanistic models, the simplicity of the branching process means it is73

possible to reason about them quantitatively and work with them computationally.74

We explore the use and properties of this model from three perspectives. First, we75

use the branching process in a hierarchical model of transmission of Ebola virus in West76

Africa. Using publicly available data made from the World Health Organisation we77

demonstrate how the branching process can faithfully describe observed epidemics. Sec-78

ond, we fit the branching process to two different types of data: chains of infection and79

time series of cases of Ebola virus disease (EVD) from the West African Ebola epidemic80

(2014–2016). Our analysis demonstrates the model provides broadly consistent parame-81

ter estimates using either data type, despite differences between the data sets. While the82

sub-exponential transmission of Ebola virus has been previously noted, Chowell et al.83

(2015), the branching process allows us to go further, supporting this claim through the84

interrogation of a new data set: a fully resolved infection tree inferred by Faye et al Faye85

et al. (2015). Third, to investigate the extent to which one might expect the previous86

result (i.e., obtaining similar estimates from each data type) to generalise, we performed87

a simulation study. The goal of this simulation study was not to investigate the utility88

of each data type for estimating the parameters per se, but to ask whether or not both89

data types, when derived from the same epidemic, produce concordant estimates.90

2. Methods —— Model and analysis91

We derive the branching process in terms of a generic cumulative incidence function,92

i.e., a function describing the total number of cases that have occurred by a given time.93

We then consider the special case of a cumulative incidence function previously used to94

analyse time series of Ebola in West Africa Viboud et al. (2016). Finally, we construct95

a likelihood function for this model, both in terms of a time series of cases and for96

observations of the number of secondary cases generated by individuals.97

2.1. Construction of the in-homogeneous branching process model98

Let Xi
g denote the number of secondary infections due to individual i in generation g99

and Zg the total number of infectious individuals in that generation, i.e., the sum of the100

Xi
g−1. We derive an in-homogeneous branching process where the expected generation101

sizes are fg = EZg.102

Usually, the expected number of infectious individuals in a branching process grows103

exponentially/geometrically in the number of generations of transmission. For example,104

if EX = µ then EZg = µg. The branching process derived below has expected generation105
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4 Alexander E. Zarebski et al

Table 1. Notation used for the branching process.
Variable Symbol Variable type
Generation index g Constant
Generation times ∆g Constant
Expected cumulative size C Constant
Expected generation size fg Constant
Expected secondary infections µg Constant
Secondary infections Xg Random
Generation size Zg Random
Growth rate r Parameter
Deceleration parameter p Parameter
Dispersion parameter k Parameter
Extinction Eg Random event

sizes (i.e., the EZg) which can follow any given monotonically increasing function. The106

notation used in this construction is summarised in Table 1.107

Let C(t) be the expected cumulative incidence by time t, i.e., the number of infections108

we would expect to occur by time t. Evaluated at multiples of the serial interval, C yields109

the generation sizes, fg for g = 1, 2, . . .110

fg = C(∆g)− C(∆g−1),

where ∆g is the time of the gth generation. The first value of this sequence is f0 = Z0,111

the number of infectious individuals in the first generation. Then, assuming the Xi
g are112

independent with mean µg = fg+1/fg we observe113

EZg = E

E
Zg−1∑

i

Xi
g−1|Zg−1


= E [Zg−1]µg−1.

The solution to this recurrence is114

EZg = Z0

g−1∏
i=0

µi.

So EZg = fg from the definition of µg.115

In summary, by fixing the expected value of the offspring distribution (in terms of the116

generation) we obtain a branching process which, on average, has an expected cumulative117

incidence C. This construction enables us to capture the behaviour of a phenomenologi-118

cal model which is known to fit observations better than exponential/geometric growth,119

while maintaining a mechanistic foundation because it explicitly represents the individ-120

uals in the population.121

2.2. The cumulative incidence function122

The construction above assumes a cumulative incidence function, C. We use the gener-123

alized growth model Viboud et al. (2016) defined by124
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A sub-exponential branching process to study early epidemic dynamics with application to Ebola 5

dC

dt
= rCp which has the solution C(t) =

( r
m
t+A

)m
where m = 1/(1 − p) and A = Z

1/m
0 , with initial condition C(0) = Z0. The growth125

rate, r, is as for standard exponential growth. The generalisation enters through the126

inclusion of the exponent p.127

The parameter p is referred to as the deceleration parameter ; it influences the dy-128

namics of transmission. For 0 < p < 1 the incidence interpolates through polynomials129

limiting to exponential growth as p → 1. For p < 1 there is a diminishing increase in130

the force of infection with each additional infection. When p = 0 the force of infection131

is constant, for p = 1/2 (when m = 2) the incidence grows linearly (since the incidence132

is the derivative of the cumulative incidence by definition), p = 2/3 provides quadratic133

growth and with p = 1 we recover exponential growth in incidence.134

Previous analyses suggest that the spread of diseases, such as Measles, HIV/AIDS,135

and FMD, are well explained by values of p < 1; 0.51 (0.47, 0.55), 0.5 (0.47, 0.54), and136

0.42 (0.27, 0.58) respectively Viboud et al. (2016).137

2.3. The offspring distribution138

Since epidemiological count data is frequently over-dispersed (with respect to the Pois-139

son distribution) we use the negative binomial distribution for the offspring distribu-140

tion. Over-dispersion in count data can occur for many reasons Lindén and Mäntyniemi141

(2011), for case counts in an epidemic, superspreaders can play an important role Lloyd-142

Smith et al. (2005). We parameterise the negative binomial in terms of its mean, µ, and143

a shape parameter, k, (a.k.a. the “dispersion parameter”). Under this parameterisation144

the variance, σ2, grows quadratically in µ145

σ2 = µ+ µ2/k, (1)

so as k → ∞ we recover the Poisson distribution. Since the mean value is determined146

by the cumulative incidence function (µ = C) this choice of offspring distribution only147

introduces a single additional parameter, k.148

2.4. Likelihood function for time series and chains of infection149

Early work by Wald in the 1940’s demonstrated the importance of survivorship bias.150

The importance of subtleties in the provenance of data, and how to account for this via151

conditioning is well understood in phylogenetics Stadler (2013) yet does not appear to152

have permeated to the same degree into the epidemiology literature (notable exceptions153

being the work of Mercer Mercer et al. (2011) and Rida Rida (1991)).154

Popular estimators of the basic reproduction number, R0, are biased towards over-155

estimation in the early stages of an epidemic, Mercer et al. (2011). We condition the156

process against extinction in the likelihood during fitting to mitigate this bias. In short157

— by virtue of being observed — the outbreak must have avoided stochastic extinction158

Rida (1991).159

Realisations from the branching process are naturally viewed as a tree, with the edges160

indicating who infected whom. However, as the notation suggests, this process can also161
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6 Alexander E. Zarebski et al

be viewed as a sequence of generation sizes, Z0:g. We refer to this representation of the162

process as the population view. As we will see, the ability to represent a process as both163

a tree and a time series is very useful when making use of multiple data types.164

First we consider the likelihood function for the time series data, conditioned against165

extinction over the observed generations. We extend the notation introduced in sec-166

tion 2.1 to specify the (geographic) location (denoted by j): Xi
g,j denotes the number of167

infections caused by the ith member of the gth generation in location j, and Zg,j denotes168

the number of cases in generation g in location j. For ease of notation, we will often169

drop the indices where they are clear by context.170

By definition Xg has a negative binomial distribution with mean µg and shape pa-171

rameter k, so the moment-generating function (MGF) is172

MXg
(t) =

(
k

k + µg(1− et)

)k
. (2)

Since Zg|Zg−1 is the sum of Zg−1 independent Xg−1, the MGF is given by the product173

MZg|Zg−1
(t) = MXg−1

(t)Zg−1 =

(
kZg−1

kZg−1 + µg−1Zg−1(1− et)

)kZg−1

(3)

and hence Zg|Zg−1 is also negative binomial with mean µg−1Zg−1 and shape parame-174

ter kZg−1. Since the generation sizes form a Markov chain and each location is assumed175

to have an independent epidemic, the likelihood of all of the time series data is176

∏
j

Nj−1∏
l=1

(
Zl + kjZl−1 − 1

Zl

)(
µl−1,j

µl−1,j + kj

)Zl
(

kj
µl−1,j + kj

)kjZl−1

(4)

where Nj denotes the number of generations that were observed in location j.177

In order to condition the process against extinction during the observed generations178

we use the probability that the process is extinct by the time of the last observation179

at that location. To compute this probability, we consider the probability-generating180

function (PGF) of the generation sizes, GZg
(t). Since we are working with the PGF181

(rather than the MGF) the sum of Zg−1 independent Xg−1 leads to the composition182

GZg
(t) = GZg−1

(GXg−1
(t)). (5)

Iterating this g times, and noting that GZ0
(t) = tZ0 leads to183

GZg
(t) = GX0

(GX1
(. . . GXg−1

(t) . . . ))Z0 , (6)

where GXg
(t) = (k/(k + µ(1 − t)))k. The composition produces a complicated ex-184

pression, but for moderate g this is not an issue computationally. The probability of185

extinction is the zero-th order coefficient of the PGF, hence the probability of extinction186

by generation g is GZg
(0).187

Putting the previous results together, we obtain the conditional likelihood for the188

observed times series:189
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L =
∏
j

∏Nj−1
l=1

(Zl,j+kjZl−1,j−1
Zl,j

) ( µl−1,j

µl−1,j+kj

)Zl,j
(

kj
µl−1,j+kj

)kjZl−1,j

1−GZNj−1,j
(0)

. (7)

For secondary infections data, the probability of extinction conditional upon partial190

observations is prohibitively expensive to evaluate since it requires integrating over all the191

possible hidden infection trees. Subsequently, when working with secondary infections192

data we do not condition the process against extinction. Instead we treat each count193

of secondary infections as an independent sample from the offspring distribution. The194

likelihood is195

L =
∏
j,l,i

(
Xi
l,j + kj − 1

Xi
l,j

)(
µl,j

µl,j + kj

)Xi
l,j
(

kj
µl,j + kj

)kj
(8)

We conclude this section with a few remarks on computation. When computing196

with the expressions above for the likelihoods, the log-likelihood is used to avoid under-197

flow/overflow issues. Moreover, the use of a probabilistic programming language (such198

as Stan as used here) will handle this expression and its gradient in a numerically stable199

way. Therefore in practice, beyond specifying the process as a graphical model, the only200

requirement is to implement the computation of the extinction probability.201

2.5. Epidemiological data from the West African Ebola epidemic 2014–2016202

Data of cases of EVD in Guinea, Liberia and Sierra Leone from 2014–2016 were obtained203

from the WHO World Health Organization (2018). We extracted confirmed cases from204

the patient data and then selected the longest stretch of consecutive weeks (the temporal205

resolution of the data) in which there was at least one confirmed case for each country.206

This process was repeated to generate a time series for each of the countries considered.207

The longest stretches occurred at the beginning of the epidemic for both Guinea and208

Sierra Leone, while several isolated cases were removed from the start of the Liberian209

time series. These time series were aggregated by fortnight as a proxy for generations of210

transmission since the Ebola virus has an approximate 14 day generation time Chowell211

and Nishiura (2014). The first 20% of cases were used in the analysis (as the Z0:G) to212

represent transmission during the initial stage of the epidemic.213

The WHO data also includes approximate locations for each case. Using this infor-214

mation, we extracted another time series specific to Conakry, the capital city of Guinea.215

Faye et al Faye et al. (2015) resolved an infection tree for cases from Conakry and216

the towns of Boffa and Telimele resulting in the data shown in Figure 1. Of the 193217

confirmed and probable cases reported from these locations, 152 were placed in the tree218

with 106 of these from Conakry. To avoid the effects of re-importation we only used219

cases from Conakry that were not re-introductions from Boffa or Telimele, leaving 98220

cases in the tree.221

In the case of Conakry, it is important to note that there are important differences222

between the data sets. The time series is specific to confirmed cases while the tree223

contains both confirmed and probable cases. And the number of cases in the time series224

is far greater than the number in the infection tree.225
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8 Alexander E. Zarebski et al

Fig. 1. The infection tree from Faye et al Faye et al. (2015). The colour of the nodes indi-
cates whether the data were included in the analysis and the labels indicate where the infection
occurred.
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A sub-exponential branching process to study early epidemic dynamics with application to Ebola 9

Table 2. Prior distributions used for the model parame-
ters in the hierarchical model described in Section 2.6.

Type Parameter Prior
Hyperparameter αp Uniform(1, 5)

βp Uniform(1, 5)
µr Normal(0, 1)
µk Normal(0, 1)

Parameter p Beta(αp, βp)
r Lognormal(µr, σ

2)
k Lognormal(µk, σ

2)
Constant σ2 1/6

2.6. Inference method for the time series model226

The confirmed cases of EVD in the three West African countries were modelled as time227

series of generation sizes using the population-level formulation of the branching process.228

We considered a hierarchical model in which the model parameters for each country are229

drawn from a common prior distribution which is also estimated. The prior distributions230

used for the parameters in this model are shown in Table 2. We computed the marginal231

prior distributions of the model parameters numerically to visually inspect the difference232

between the prior and posterior distributions.233

The model was implemented in Stan Carpenter et al. (2017) and Hamiltonian Monte234

Carlo (HMC) was used to sample from the posterior distribution. Four HMC chains were235

run; the first 1000 samples of each chain were discarded as burn-in before a further 5000236

samples were taken. Of the 5000, this was thinned by a factor of 5 to obtain the final237

1000 samples for each chain. The chains appeared to have converged and mixed well:238

this was established via visual inspection and the R̂-statistic (< 1.01 for all variables).239

The effective sample size was appropriate given the dimensionality of the problem: for240

all variables in excess of 80% of the full number of iterations. Subsequently, the posterior241

samples where taken to provide a good representation of the posterior distribution.242

2.7. Comparison of time series and chain of infection data from Conakry (Guinea)243

As shown in Section 2.4, the branching process can be viewed at the individual or244

population scale. This prompts the question of whether data collected at each of these245

scales is equally informative about the parameters of the process, i.e., whether there246

is any advantage one over the other. We consider two data sets collected in Conakry247

(the capital city of Guinea) from the Ebola epidemic of 2014–2016: a time series of248

the number of confirmed cases each week (population scale data), and an infection tree249

describing who infected whom in a subset of cases (individual scale data). We fit the250

branching process to both data sets in order to determine whether they would lead to251

concordant parameter estimates. Note, similarity of the estimates was not guaranteed a252

priori, since while they are both observations of the same epidemic, the data sets consist253

of different cases. The time series has all the confirmed cases from Conakry, while the254

infection tree contains only a subset of the confirmed cases but it also contains suspected255

cases which were excluded from the time series Faye et al. (2015).256

We used the population view of the branching process to model the time series of con-257
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10 Alexander E. Zarebski et al

Table 3. Prior distributions used for the model
parameters in the comparison of the two data
types from Conakry.

Type Parameter Prior
Parameter p Beta(1.5, 1.5)

r Lognormal(1, σ2)
k Lognormal(1, σ2)

Constant σ2 1/6

firmed cases from Conakry. For the secondary infections tree from Conakry (described258

in Section 2.5), we modelled the number of secondary infections from each individual259

as an independent sample from the offspring distribution. This takes the form of pairs,260

(g,Xi
g), one for each individual, where g is their infection generation (the node’s depth261

in the tree) and Xi
g is their number of secondary infections (the out-degree of the node).262

The prior distribution used is shown in Table 3. Fitting the model to each data set263

allows us to investigate whether these views of the same epidemic are consistent.264

The models were implemented in Stan and Hamiltonian Monte Carlo (HMC) was265

used to sample from the posterior distribution. Four HMC chains were run; the first266

10000 samples of each chain were discarded as burn-in before a further 10000 samples267

were taken. Of the 10000, this was thinned by a factor of 10 to obtain the final 1000268

samples for each chain. The chains appeared to have converged and mixed well: this269

was established via visual inspection and the R̂-statistic (< 1.01 for all variables, with270

most < 1.001). The effective sample size was sufficiently large, in excess of 90% of the271

true sample size for all variables. Subsequently, the posterior samples where taken to272

provide a good representation of the posterior distribution.273

2.8. Simulation re-estimation study274

We carried out a simulation study to investigate whether estimates derived from time275

series and secondary infections data are concordant and how this depends on the number276

of secondary infections observed. The goal of this study was to determine the regularity277

with which the estimates agree, rather than the accuracy with which they capture the278

dynamics of the epidemic. We simulated a Reed-Frost (RF) epidemic model 1000 times,279

recording who-infected-whom in each generation Brauer et al. (2008), as described in280

Supporting Materials. Note that the RF-model assumes a finite population while the281

branching process implicitly assumes an infinite population. Subsequently, in the RF-282

model the susceptible pool can be depleted during the epidemic – retarding transmission283

– eventually causing incidence to decline to zero. In addition to allowing us to investigate284

agreement between the estimates, fitting the branching process to realisations of the RF-285

model demonstrates how the model handles deviations from the assumptions used in its286

construction.287

The models were implemented in Stan and L-BFGS was used to approximate the288

maximum a posteriori probability (MAP) for each of the simulations. Due to the large289

number of replications considered it was not feasible to check the output of each optimi-290

sation manually, instead it was left to the implementation of the optimisation algorithm291

to determine whether the computation had converged or whether a numerical issue had292
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been encountered (in which case the simulation and optimisation were repeated).293
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3. Results294

3.1. Hierarchical model fit of the in-homogeneous branching-process model to the295

EVD data296

Figure 2 shows the fit of the hierarchical model to time series of confirmed cases of EVD297

from Guinea, Liberia and Sierra Leone. The credible intervals on the figures show the298

uncertainty in the expected incidence, i.e., the 50% and 95% credible intervals for EZg.299

Fig. 2. The branching process fit to time series of confirmed cases of EVD from Guinea, Liberia
and Sierra Leone. The expected generation sizes (the model fit) are shown as a solid line with
the 50% and 95% credible interval on this estimate shown as a grey ribbon. The observed case
counts are shown as red points.

Figure 3 shows the marginal posterior distributions of the logarithm of the growth300

rate, the deceleration parameter and the logarithm of the dispersion parameter respec-301

tively. Figure 3b shows the posterior mass for p has accumulated around 0.5 for all three302

countries; in the model, this corresponds to approximately linear growth in the incidence.303

Another way to view this would be that the cumulative incidence had quadratic growth.304

Recall from Equation (1) that the variance scales with the inverse of the dispersion pa-305

rameter. For each of the countries the dispersion parameter, k, has converged to small306

values indicating that the variance scales quickly with the mean incidence. This suggests307

stochasticity played an important role in the initial transmission in these countries.308
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(a) Growth rate, r, on a log-scale

(b) Deceleration parameter, p

(c) Dispersion parameter, k, on a log-scale

Fig. 3. Histograms of posterior samples under the hierarchical model for a.) Guinea, b.) Liberia
and c.) Sierra Leone. The marginal prior distribution is included as a solid line to assess
convergence.

3.2. Comparison of time series and infection chain data from Conakry (Guinea)309

Figure 4 shows the marginal posterior distributions for the growth rate, deceleration and310

dispersion respectively, conditioning upon the time series and secondary infections data311

from Conakry. The posterior distributions differ from their prior, indicating information312

was extracted from the data. The parameter estimates inferred from each data set are313
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14 Alexander E. Zarebski et al

broadly consistent, suggesting, in this instance, that both data types provide a consistent314

representation of the dynamics. The time series data suggested a smaller growth rate315

(mean= 0.38, CI= 0.06 − 0.47) than the tree data (mean= 0.75, CI= 0.17 − 2.52).316

This trend is reversed for the deceleration parameter, which are 0.30, CI= 0.04 − 0.67317

for the time series and 0.13, CI= 0.01 − 0.36 for the tree data. Overall, the time series318

data suggests slower, but more rapidly accelerating growth than the secondary infections319

data. We consider potential causes for these differences in the Discussion.320
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Fig. 4. Histograms representing the posterior distribution of the model parameters conditional
upon the secondary infections data and the time series data from Conakry. The solid lines show
the prior distribution for each of the parameters (obtained via numerical integration). The growth
rate and dispersion parameters are shown on a log-scale.

3.3. Simulation re-estimation study321

Figure 5 shows the simulations of the number of infectious individuals in each generation322

of the RF-model (Section 2.8). For most of these simulations, the incidence is still323

increasing during the first 7 generations suggesting the epidemic peak has not yet been324

reached for the majority of these simulated epidemics.325

Figures 6, 7 and 8 shows the relationships between the maximum a posterior proba-326

bility (MAP) estimates of the growth rate and the deceleration parameter (respectively)327

obtained using either data type. In the case of secondary infections data the number328

of infectious people to “contact trace” is a tuning parameter: a property of the actual329

observation process. For this study we inspected the number of secondary infections330

for three different intensities of observations, i.e., we recorded the number of secondary331

infections from 2, 5 and 10 individuals in each generation.332

Considering the MAP conditional upon each data type, there is a strong correlation333

between the estimates obtained with each data type for both the growth rate and the334

deceleration parameter, and this correlation grows stronger as more secondary infections335

are observed. In the case of the deceleration parameter, once ten individuals have had336

their secondary infections observed both data types lead to essentially the same esti-337

mates. There is a clear bias and increased variability in the estimates derived from the338

secondary infections data for both the growth rate and the dispersion parameter. As339
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A sub-exponential branching process to study early epidemic dynamics with application to Ebola 15

Fig. 5. Simulated time series from the Reed-Frost epidemic model and the mean of these time
series. The blue portion of the time series was used in the simulation re-estimation study.

Fig. 6. A scatter plot of the maximum posterior probability estimate of the growth rate obtained
from the time series data and the secondary infections data. There is a single point for each
simulation, and the solid line shows a linear fit with a 95% confidence interval, the dashed line
shows the parity line. Each facet shows the estimate conditional upon a different number of
observations in each generation: 2, 5, or 10.
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with any Bayesian analysis, it is important to understand the impact of the prior distri-340

bution; in the absence of any data, the MAP would be the mode of the prior distribution.341

Fig. 7. A scatter plot of the maximum posterior probability estimate of the deceleration param-
eter obtained from the time series data and the secondary infections data. There is a single
point for each simulation, and the solid line shows a linear fit with a 95% confidence interval, the
dashed line shows the parity line. Each facet shows the estimate conditional upon a different
number of observations in each generation: 2, 5, or 10.

Fig. 8. A scatter plot of the maximum posterior probability estimate of the dispersion parameter
obtained from the time series data and the secondary infections data. There is a single point for
each simulation, and the solid line shows a linear fit with a 95% confidence interval, the dashed
line shows the parity line. Each facet shows the estimate conditional upon a different number of
observations in each generation: 2, 5, or 10.
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In each case, there is a consistent shift in the MAP estimate away from the mode of the342

prior (as shown in the figures.)343

4. Interpretation344

4.1. Sub-exponential growth of EVD in West Africa 2014–2016345

The analysis of the EVD time series from Guinea, Liberia and Sierra Leone demonstrates346

that the in-homogeneous branching process is capable of faithfully describing disease347

transmission at the population level. The posterior distribution of the deceleration348

parameter, which controls the scale of the growth, suggests that initially, the incidence349

grew approximately linearly (and the cumulative incidence quadratically). This differs350

from the results presented by Chowell et al Chowell et al. (2015), who observed that351

transmission at a sub-national level grew sub-exponential, but that at the national level352

it grew approximately exponentially. While it is tempting to attribute these differences353

to the differences in the modelling approach, the most likely explanation is the different354

pre-processing of the time series data. The previous analysis considered a portion of the355

time series from later in the epidemic, to mitigate the influence of stochastic effects. Since356

we have used a stochastic model in this analysis which can explain the initial fluctuations357

in incidence, we felt it was justified to use data from the start of the epidemic.358

4.2. Conakry: time series and chains of infection359

Using either time series data or secondary infections data from Conakry, Guinea leads360

to similar parameter estimates demonstrating that either data set could be used to361

characterise transmission. The time series estimates have a smaller growth rate and362

a larger deceleration parameter than those from the secondary infections data. The363

difference in the estimates could be partially attributed to the estimates trading off faster364

growth (i.e., higher growth rate) for less acceleration of growth (i.e., smaller deceleration365

parameter.) Since this trade-off should yield similar dynamics over short time spans it366

is unclear whether this difference would pose substantial issues to interpretation of the367

parameters.368

In the case of this Ebola epidemic, the time series data was available long before the369

infection tree. However, obtaining comprehensive time series of disease is challenging,370

and it is interesting to know that there are alternative data sets which may be useful and371

already part of the data collected during intervention measures such as contact tracing.372

Moreover, our observations do not guarantee that we can rely on the agreement between373

the inference methods in general which is, in part, why we also carried out the simulation374

study.375

4.3. Simulation re-estimation study376

The simulations from the Reed-Frost (RF) model (shown in Figure 5) emphasise the377

variability between realisations of stochastic epidemic models, and consequently, the378

substantial role stochasticity plays during outbreaks. The parameter estimates derived379

from the time series data and secondary infections data generated by these epidemics380
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have a strong correlation which increases with the number of secondary infections ob-381

served. However, for the growth rate there is a clear trend that the secondary infections382

data tends to yield lower point estimates for the growth rate. A difference of this kind383

should not be ignored, however, given there will also be a level of uncertainty on these384

estimates, they will still give broadly consistent characterisations of the epidemic. The385

simulations used where generated with an RF model so there is not an obvious ground386

truth to compare these values to in order to further investigate which of the estimators387

is biased.388

Together, this demonstrates that characterisations derived from each data type will389

be similar given a sufficient number of secondary observations, however (particularly in390

the case of the growth rate) there are systematic differences in the estimates that we391

were unable to explain. Conditioning the process against extinction in the case of the392

time series estimator, but not in the case of the secondary infections estimator, may be393

contributing to this systematic difference.394

5. Discussion395

We have presented an in-homogeneous branching process to model outbreaks of a trans-396

missible pathogen. The simplicity of the process means we can construct both a popu-397

lation and an individual scale view and subsequently assimilate data from either scale.398

Our model admits a closed form for the likelihood for the time series and we have399

supplied an approximation for the likelihood of the secondary infections data. These400

closed forms make it feasible to conduct a Bayesian analysis and handle subtleties of401

the fitting process (in the case of the time series data), such as conditioning the process402

against extinction to account for the implicit observation bias. While we do not address403

unobserved cases in the secondary infections data, nor do we have a sophisticated method404

for aggregating cases into generations, our analysis of the Ebola data suggests these405

limitations do not cause substantial problems with the inference.406

From that Ebola data, our analysis provides clear evidence for sub-exponential growth407

and a significant role for stochasticity in shaping the early epidemic dynamics. Our408

analysis extends work carried out during the 2014 Ebola epidemic by Chowell et al409

Chowell et al. (2015) and a comprehensive study of the dynamics of several pathogens’410

transmission Viboud et al. (2016). We used the same phenomenological model as the411

phenomenological backbone of the branching process. The resulting process has the412

same dynamics (on average) but with a mechanistic underpinning. This enables us to413

handle a wider range of data types, for example, the tree data from Faye et al Faye et al.414

(2015).415

Assimilating secondary infection and time series data types simultaneously was be-416

yond the scope of the current work. Since the conditional distribution of Poisson variables417

given their sum is multinomial, it would be feasible to perform simultaneous assimilation418

with a Poisson offspring distribution. However, the matter becomes more complicated419

when using a negative binomial distribution, as we use here due to the over-dispersion420

so common in epidemiological transmission data.421

From the simulation study, we have identified a systematic difference in the estimators422

for model paramters based on the two data types. We suspect this stems from the423
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differing treatment of extinction for the two analyses. A more in-depth study of this was424

beyond the scope of the current work.425

Lags in time series data cause substantial problems when forecasting incidence Moss426

et al. (2018). “First Few Hundred” (FF100) studies collect the same type of data as con-427

tact tracing and are heralded as a way to rapidly provide a characterisation of transmis-428

sion dynamics Black et al. (2017). While for the 2014 Ebola epidemic the time series was429

available before the secondary infections tree, there does not seem to be anything intrinsic430

to the data collection process that precludes this being reversed. In fact, it seems plausi-431

ble that in active surveillance programs and with increased use of sequencing, secondary432

infections data may become available before time series, and so the method we present433

here may have important application in future real-time outbreak analyses. Of course,434

there are ethical, procedural, and technical challenges that are introduced by collecting,435

analysing and storing data such as this since by its very nature it resolves more of the436

epidemic. The source code to carry out the analyses reported in this paper are publically437

available under an open-source licence at https://bitbucket.org/azarebski/subexp.438

Most pertinent to improving the value of our approach is establishing how to han-439

dle incomplete secondary infections data. We investigated the consequences of partial440

observation of the infectious population, but with perfect ascertainment of the number441

of infections due to each individual. A natural extension then is to consider partial442

observation of the population with imperfect resolution, i.e., observe a random subset of443

the infectious population and observe only a subset of their infections. This additional444

way in which data can be missing is particularly important in airborne disease, such as445

influenza, where the source of an infection may be harder to ascertain. If the goal is446

to characterise the transmission dynamics of a pathogen for which sub-clinical cases are447

rare, such as Ebola virus disease, then the assumption of complete observation among448

those observed does not seem unreasonable. As sequencing data becomes more readily449

available we will have improved capability to determine who-infected-whom and models450

such as the one presented in this work are poised to take advantage of this additional451

information.452
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Faye, O., P.-Y. Boëlle, E. Heleze, O. Faye, C. Loucoubar, N. Magassouba, B. Soropogui,478

S. Keita, T. Gakou, E. H. I. Bah, L. Koivogui, A. A. Sall, and S. Cauchemez (2015,479

Mar). Chains of transmission and control of Ebola virus disease in Conakry, Guinea,480

in 2014: an observational study. The Lancet Infectious Diseases 15 (3), 320–326.481

Lega, J. and H. E. Brown (2016). Data-driven outbreak forecasting with a simple non-482

linear growth model. Epidemics 17, 19 – 26.483

Lindén, A. and S. Mäntyniemi (2011). Using the negative binomial distribution to model484

overdispersion in ecological count data. Ecology 92 (7), 1414–1421.485

Lloyd-Smith, J. O., S. J. Schreiber, P. E. Kopp, and W. M. Getz (2005). Superspreading486

and the effect of individual variation on disease emergence. Nature 438 (7066), 355.487

Mercer, G. N., K. Glass, and N. G. Becker (2011). Effective reproduction numbers are488

commonly overestimated early in a disease outbreak. Statistics in Medicine 30 (9),489

984–994.490

Merler, S., M. Ajelli, L. Fumanelli, M. F. Gomes, A. P. y Piontti, L. Rossi, D. L.491

Chao, I. M. Longini Jr, M. E. Halloran, and A. Vespignani (2015). Spatiotemporal492

spread of the 2014 outbreak of Ebola virus disease in Liberia and the effectiveness of493

non-pharmaceutical interventions: a computational modelling analysis. The Lancet494

Infectious Diseases 15 (2), 204–211.495

Moss, R., J. E. Fielding, L. J. Franklin, N. Stephens, J. McVernon, P. Dawson, and J. M.496

McCaw (2018). Epidemic forecasts as a tool for public health: interpretation and (re)497

calibration. Australian and New Zealand Journal of Public Health 42 (1), 69–76.498

Nouvellet, P., A. Cori, T. Garske, I. M. Blake, I. Dorigatti, W. Hinsley, T. Jombart,499

H. L. Mills, G. Nedjati-Gilani, M. D. V. Kerkhove, C. Fraser, C. A. Donnelly, N. M.500

Ferguson, and S. Riley (2018). A simple approach to measure transmissibility and501

forecast incidence. Epidemics 22, 29 – 35. The RAPIDD Ebola Forecasting Challenge.502

.CC-BY 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted October 8, 2019. ; https://doi.org/10.1101/797878doi: bioRxiv preprint 

https://doi.org/10.1101/797878
http://creativecommons.org/licenses/by/4.0/


A sub-exponential branching process to study early epidemic dynamics with application to Ebola 21

Rida, W. N. (1991). Asymptotic Properties of Some Estimators for the Infection Rate503

in the General Stochastic Epidemic Model. Journal of the Royal Statistical Society.504

Series B (Methodological) 53 (1), 269–283.505

Stadler, T. (2013). How Can We Improve Accuracy of Macroevolutionary Rate Esti-506

mates? Systematic Biology 62 (2), 321–329.507

Viboud, C., L. Simonsen, and G. Chowell (2016). A generalized-growth model to charac-508

terize the early ascending phase of infectious disease outbreaks. Epidemics 15, 27–37.509

World Health Organization (2018). Ebola data and statistics. http://apps.who.int/510

gho/data/node.ebola-sitrep.quick-downloads?lang=en. Accessed: 2018-01-15.511

.CC-BY 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted October 8, 2019. ; https://doi.org/10.1101/797878doi: bioRxiv preprint 

http://apps.who.int/gho/data/node.ebola-sitrep.quick-downloads?lang=en
http://apps.who.int/gho/data/node.ebola-sitrep.quick-downloads?lang=en
http://apps.who.int/gho/data/node.ebola-sitrep.quick-downloads?lang=en
https://doi.org/10.1101/797878
http://creativecommons.org/licenses/by/4.0/

	Introduction
	Methods || Model and analysis
	Construction of the in-homogeneous branching process model
	The cumulative incidence function
	The offspring distribution
	Likelihood function for time series and chains of infection
	Epidemiological data from the West African Ebola epidemic 2014–2016
	Inference method for the time series model
	Comparison of time series and chain of infection data from Conakry (Guinea)
	Simulation re-estimation study

	Results
	Hierarchical model fit of the in-homogeneous branching-process model to the EVD data
	Comparison of time series and infection chain data from Conakry (Guinea)
	Simulation re-estimation study

	Interpretation
	Sub-exponential growth of EVD in West Africa 2014–2016
	Conakry: time series and chains of infection
	Simulation re-estimation study

	Discussion
	Acknowledgements

