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Abstract

Genotype imputation is the process of predicting unobserved genotypes in a sample of
individuals using a reference panel of haplotypes. In the last 10 years reference panels
have increased in size by more than 100 fold. Increasing reference panel size improves
accuracy of markers with low minor allele frequencies but poses ever increasing
computational challenges for imputation methods.

Here we present IMPUTE5, a genotype imputation method that can scale to
reference panels with millions of samples. This method continues to refine the
observation made in the IMPUTE2 method, that accuracy is optimized via use of a
custom subset of haplotypes when imputing each individual. It achieves fast, accurate,
and memory-efficient imputation by selecting haplotypes using the Positional Burrows
Wheeler Transform (PBWT). By using the PBWT data structure at genotyped markers,
IMPUTE5 identifies locally best matching haplotypes and long identical by state
segments. The method then uses the selected haplotypes as conditioning states within
the IMPUTE model.

Using the HRC reference panel, which has ∼65,000 haplotypes, we show that
IMPUTE5 is up to 30x faster than MINIMAC4 and up to 3x faster than BEAGLE5.1,
and uses less memory than both these methods. Using simulated reference panels we
show that IMPUTE5 scales sub-linearly with reference panel size. For example, keeping
the number of imputed markers constant, increasing the reference panel size from 10,000
to 1 million haplotypes requires less than twice the computation time. As the reference
panel increases in size IMPUTE5 is able to utilize a smaller number of reference
haplotypes, thus reducing computational cost.

Author summary

Genome-wide association studies (GWAS) typically use microarray technology to
measure genotypes at several hundred thousand positions in the genome. However
reference panels of genetic variation consist of haplotype data at >100 fold more
positions in the genome. Genotype imputation makes genotype predictions at all the
reference panel sites using the GWAS data. Reference panels are continuing to grow in
size and this improves accuracy of the predictions, however methods need to be able to
scale to increased size. We have developed a new version of the popular IMPUTE
software than can handle referenece panels with millions of haplotypes, and has better
performance than other published approaches. A notable property of the new method is
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that it scales sub-linearly with reference panel size. Keeping the number of imputed
markers constant, a 100 fold increase in reference panel size requires less than twice the
computation time.

Introduction

Genotype imputation is a widely used method in human genetic studies that infers
unobserved genotypes in a sample of individuals. In a typical scenario, the study
samples are genotyped on a SNP microarray with between 300,000 to 5 million markers.
This data is then combined with a reference panel of haplotypes with many tens of
millions of markers, and a statistical model is used to predict the genotypes at these
markers in the study samples [1].

One of the main applications of genotype imputation is to increase the resolution of
genome-wide association studies (GWAS). Imputed datasets increase the number of
markers that can be tested for association. For example, in the UK Biobank dataset [2]
imputation increased the number of testable markers from 825,927 to over 96 million.
This increased number of SNPs can boost the power of the study. Genotype imputation
also facilitates meta-analysis across cohorts that are often genotyped using different
SNP microarrays. Imputatation on from the same reference panel standardizes the set
of testable markers, allows simple integratation of data and/or results across studies [3].
Imputation can also be used to predict markers necessary to calculate polygenic risks
scores (PRSs), which typically involve a weighted sum of genotypes across the genome.

Many different methods have been proposed over the years [4], however the most
widely used and accurate methods are based on Hidden Markov Models (HMM).
Typically the study samples will have been phased in advance using accurate
methods [5–7], and this has become known as ‘pre-phasing’ [8]. The imputation HMM
is then used to model the sharing of sequence between the haplotypes in the study
sample (which we refer to as the target haplotypes) and the haplotypes in the reference
panel. The HMM models each study haplotype as an imperfect mosaic of haplotypes in
the reference panel [1]. The output of the HMM at each position in the genome is a
vector of copying probabilities for each haplotype in the reference panel. For each of the
markers in the reference panel these are used to make a weighted prediction of the
unobserved allele at the markers.

One of the most important factors that determines imputation quality is the number
of haplotypes in the reference panel. As the number of haplotypes increases, each study
sample haplotype is able to find fewer longer stretches of matching sequence in the
reference panel, which increases the accuracy. Table 1 shows how reference panel size has
increased over the years due to projects such as the International HapMap Project [9],
the 1000 Genomes Project (1000G) [10], the UK10K Project [11], and the Haplotype
Reference Consortium (HRC) [12]. Soon larger reference panels will become available
from the Trans-Omics for Precision Medicine (TOPMed) program [13] and the 100,000
Genomes Project [14], both of which will exceed 100,000 high-coverage whole genome
sequenced samples. Further ahead, as sequencing data on all 500,000 participants of the
UK Biobank [2] becomes available, this will be used as an even larger reference panel.

In this paper we present IMPUTE5, a genotype imputation method designed to
handle the new generation of reference panels. To achieve this, the method builds on
three main components: (i) the use of a new reference panel file format, allowing fast
access to data in specific chromosome regions (ii) the use of the PBWT [15] to select a
subset of reference panel haplotypes and reduce the state space in the IMPUTE
model [16] (iii) imputation during output directly into the BGEN [17] file format that is
specifically designed for imputation data.

To demonstrate the superior performance of IMPUTE5, we benchmark our
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imputation method against IMPUTE4 [2], MINIMAC4 [18] and BEAGLE5.1 [19], using
simulated reference panels up to 1,000,000 haplotypes in size, and real reference panels
such as the 1000 Genomes project reference panel [10] and the Haplotype Reference
Consortium [12].

Table 1. Evolution of commonly used imputation reference panels over
time.

Reference panel Released Number of Number of
Year Samples Markers (Millions)

HapMap Project phase 3 2009 1,011 1.4

1000 Genomes phase 1 2012 1,092 29.0

1000 Genomes phase 3 2014 2,504 81.7

UK10K Project 2015 3,781 42.0

HRC 2016 32,470 40.4

Materials and Methods

PBWT

The main methodological advance in this paper is the incorporation of the PBWT [15]
into the IMPUTE model. This section provides some brief background on the PBWT
needed to describe the IMPUTE5 method. The PBWT is a generic way to encode
binary matrices, especially useful in the case of haplotypes at a set of binary markers,
each with two alleles arbitrarily coded as 0 and 1. Let H = {h0, h1, . . . , hN−1} be a set
of N haplotypes genotyped at M markers, hn = {hn,0, hn,1, . . . , hn,M−1}, where
hn,m ∈ {0, 1}, represents the nth haplotype. H can be thought as a N ×M binary
matrix: each entry of the matrix is defined by the reference haplotype (row) and marker
(column). For this reason, we refer to H using the usual matrix notation.

The PBWT of H, indicated as Y , is another N ×M binary matrix, where the m-th
column of Y is an invertible transformation of the m-th column of H. In its basic form,
Y is complemented by another N × (M + 1) matrix A, where every column A:,m, called
the positional prefix array, is a permutation of {0, . . . , N − 1} which defines the reverse
prefix order of the haplotypes in H up to marker m− 1.

Using a similar notation as in [20], we define the binary string hrn,1:m as the reverse
prefix of the n-th haplotype ending at marker m:

hrn,0:m = hn,mhn,m−1, . . . , hn,0 (1)

and let be {hrn,1:m}n be the set of all the N reverse prefixes at marker m. We then
define An,m to be the index of the n-th lexicographically sorted reverse prefix along the
set {hrn,1:m}n. A:,m represents a bijection on {0, . . . , N − 1} and thus is invertible. As a
special case, we define An,−1 = n, representing the order of empty reverse prefixes.

The PBWT of H is directly derivable from H and the prefix array A:

Yn,m = HAn,m−1,m (2)

in other words, the PBWT at marker m is the vector of values of the haplotypes in H
at marker m, (H:,m), in the order defined by the reverse prefix array at marker m− 1,
A:,m−1.
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One use of Y:,m is to update A:,m−1 to A:,m. Suppose b is a symbol, b ∈ {0, 1}. We
can define a mapping between positional prefix array at markers m− 1 and m:

φm(n) = cm(Yn,m) + rankm(Yn,m, n) (3)

where cm(b) gives the number of symbols in Y:,m that are lexicographically smaller
than b and rankm(b, n) the number of b symbols in Y:,m before position n. The n-th
haplotype in the positional prefix order at column m− 1 is ranked φm(n) in column m.
Thus

Aφm(n),m = An,m−1 (4)

Eqs (2 and 4) give a procedural algorithm to compute A:,m and Y:,m from H:,m and
A:,m−1. Since there is strong correlation between adjacent markers in H due to linkage
disequilibrium, there are long runs of the same symbol in the columns of Y . This makes
columns of Y much more compressible than the columns of H.

Y and A represent only the basic form of the PBWT. It is possible to complement
them by storing additional information such as the rank indices U, V (usually called FM
index [21]). Each column m of these two matrices store information about the
rankm(b, n) for symbol b = 0 and b = 1 respectively. It is also important to notice that
there is no need to store both these matrices because it is possible to derive one from the
other: rankm(1− b, n) = n+ 1− rankm(b, n) since rankm(0, n) + rankm(1, n) = n+ 1.

Another important information that can be added is the divergence matrix D.
Columns of D contain the position of the last (reverse prefix) mismatch between
adjacent haplotypes in the order A. The value of Dn,m is defined to be the smallest
value m′ such that hrAn,m,0:m−1 matches hrAn−1,m,0:m−1. In the case of a mismatch, the
value of Dn,m is set to m. An important property is that the start of any maximal
match ending at m between any {hri,1:m, hrj,1:m}, (i < j) is given by:

maxi<n≤jDn,m (5)

The cost of building a PBWT Y from H is O(NM), including all the
complementary matrices described above. Using the PBWT indices, it is possible to
find maximal matchings within H in linear time and find maximal matchings of a new
sequence z in H in O(M), independently from the number of haplotypes in H.

IMPUTE model

IMPUTE5 is a haploid imputation method, assumes that both the reference and study
samples are phased and contain no missing alleles at any site. In what follows we will
refer to the phased study samples as the target panel of haplotypes. IMPUTE5 uses the
same HMM used in previous versions of the IMPUTE software [16] that is based on the
Li and Stephens model [22]. Each reference haplotype represents a hidden state of the
HMM. The model assumes that each target haplotype is an imperfect mosaic of
haplotypes emitted from the sequence of hidden states representing the reference panel
haplotypes. The changes from one state to another are modelled as recombination
events and the observed target allele may differ from the alleles on the underlying true
haplotypes to allow for mutation and genotype error.

HMM definition

Let H be the set of N haplotypes genotyped at M markers, that have been selected as
a subset from a reference panel of haplotypes. The way in which the N haplotypes are
chosen in each window is described in a later section. We also have a set of K study
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sample (target) haplotypes, defined only at a subset of the M markers. We refer to the
set of T markers that are genotyped in both the panels as target markers (T ), and the
others, present only in the reference panel, as reference markers (R). Consecutive pairs
of haplotypes represent the diplotype of each study individual. We define the HMM
model only at target markers. Therefore, we use the symbol HT to indicate the
restriction of the reference panel H to target markers and we use the symbol m to
indicate a marker in T .

Given a target haplotype t the probability of observing t from HT can be then
written as:

Pr(t|HT , ρ) =
∑
Z

Pr(t|Z)Pr(Z|HT , ρ) (6)

where Z is a sequence of unobserved copying labels, one for each target marker,
Zm ∈ {0, 1, . . . , N − 1} and the term Pr(Z|HT , ρ) models sequence of transitions of the
HMM and is defined by

Pr(Z|HT , ρ) = Pr(Z1)
T∏

m=1

P (Zm+1|Zm) (7)

Pr(Z1 = n) =
1

N
; (8)

Pr(Zm+1 = i|Zm = j) =

{
(1− ρm) + ρm

N if i = j,
ρm
N otherwise.

(9)

where ρm is a locus specific parameter modelling genetic recombination events, defined

as ρm = 1− e
−4Ne(rm+1−rm)

N , where Ne is the effective diploid population size and
rm+1 − rm is the average rate of crossover per unit physical distance per meiosis
between target markers m+ 1 and m multiplied by their physical distance. Eq (9) is
motivated by the fact that recombination events can be described as a Poisson process
having rate 4Ne(rm+1 − rm)/N .

We model the emission probability Pr(t|Z) in Eq (6) differently to the standard
IMPUTE model, and we adopt a simpler version as in the SHAPEIT4 model [6],
reducing the equation to:

Pr(t|Z) =
T∏

m=1

Pr(tm = a|Zm = n) (10)

Pr(tm = a|Zm = n) =

{
0.9999 if hn,m = a

0.0001 otherwise.
(11)

where a ∈ {0, 1} is a haplotype value. It has been shown that imputation is relatively
insensible to the mutation parameter [23], and we tested that the new emission
probability slightly increases accuracy, especially in the case of big reference panels.

Imputation

The posterior probability of the hidden states is computed using the forward-backward
algorithm [24]. IMPUTE5 calculates and stores these quantities at each target marker.
The imputation step is performed after the marginal posterior distribution of the
copying states has been computed. The state probabilities at reference markers R can
be linearly interpolated from the probability at the two bounding target markers. The
motivation of using linear interpolation is, that over short genetic distance, the change
in state probabilities can be approximated by a straight line [2, 23]. The imputed
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probability for a particular allele is then just the sum of all the state probabilities at
that marker in which the correspondent reference haplotypes carry the allele.

As performed by BEAGLE5 [19], we store state probabilities at consecutive markers
for a reference haplotype only if one of the state probabilities is greater than the inverse
of the number of states considered in the HMM. Since only a small subset of the state
probabilities at consecutive markers needs to be stored, imputation can be delayed
during output, saving the memory required to store imputed probabilities at reference
markers.

At the end of the forward-backward pass, a small subset of posterior probabilities
are stored at each target site. When performing imputation, IMPUTE5 exploits the fact
that, when imputing from large reference panels, a sizeable fraction of the imputed
variants will be imputed as monomorphic and therefore imputation could be avoided for
these markers. If the variant is rare, a simple test is performed to verify that at least
one of the thresholded states carries the alternative allele in the reference panel. If that
is the case, standard imputation is performed at the marker, otherwise a monomorphic
variant is printed in output and no additional computation is required. We refer to this
as delayed lazy imputation. This simple procedure has an impact in the case of big
reference panels containing a large number of rare variants.

In addition to this, IMPUTE5 does not store the reference panel at imputed variants
in memory, but they are streamed by reading the reference panel during imputation.
This, combined with delayed lazy imputation, allows quick imputation from extremely
large reference panels, consuming only a small amount of the memory.

State Selection Using the PBWT

IMPUTE5 uses the PBWT of the reference panel at target markers to identify a subset
of states that share long identity by state (IBS) sequences with target haplotypes.
Using just a subset of haplotypes saves computation time memory usage. The copying
state selection is performed upfront before the HMM calculations and determines the
set of N haplotypes in HT . This set will be different for each target haplotype.

The PBWT of the reference panel at the target markers is calculated sequentially
from left to right across the region being imputed and the state selection occurs at the
same time. So after one pass through the full dataset the state selection has been
performed for all the target haplotypes. This means that there is no need to store the
full PBWT of the reference panel in memory.

The selection procedure occurs in two steps. First, each target haplotpes is inserted
(or located) in the PBWT. Second, haplotypes ‘close’ to the target haplotype in the
PBWT are identified. This selection only occurs at a relatively sparse set of target
markers. Moving left to right through the PBWT the set of ‘close’ haplotypes are added
to a list and this list is then used as the copying set of states in the HMM. Fig 1
illustrates the method on a small example dataset.

Inserting each target haplotype into the PBWT involves searching the prefix array of
the reference panel using Eq (3) and the FM-index. For a target t at marker m, this
search finds the location of the reference haplotype in the PBWT that shares the
longest reverse prefix with t up to marker m.

The updated matched position f of the target t at marker m is given by:

f =

{
Uf,m, if tm = 0

cm + Vf,m, otherwise
(12)

where cm, U:,m and V:,m are respectively the number of 0s in each marker m and the
rank matrices for the reference panel at marker m. The search itself costs O(1) at each
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marker using the FM-index of the PBWT and it is therefore independent of the number
of haplotypes in the reference panel.

We keep the list of locations for each target haplotype. At each marker, we first
update the PBWT of the reference marker and then we update the list of target
locations. The selection is performed every interval of length I (0.02 cM by default).
We call selection markers the markers where the selection is performed. The cost of the
search is O ((N +K)M), where K is the number of target haplotypes.

Selection algorithms

IMPUTE5 has two algorithms that select the ‘closest’ L haplotypes to the target
haplotype within the PBWT. Both selection methods have O(LK) computational cost.
The first one, which we call divergence selection, and first proposed in the software
package SHAPEIT4 [6], selects the best L states in the neighbourhood of the current
match position f by using the divergence matrix, exploiting Eq (5).

By design the PBWT encapsulates a large amount of local linkage disequilibrium
information. The longest reverse prefixes are by definition in the neighbourhood of the
best matching haplotype found during the search. In order to take only the best
haplotypes, the divergence matrix is used.

Starting from an optimal position f at marker m, it checks the values of the
divergence array at i = f − 1 and j = f + 1. If Di,m <= Dj,m then i is decreased and
positional prefix Ai,m is added to the list of selected states, otherwise j is increased and
Aj,m is added to the list. The algorithm continues until L states are selected. A pseudo
algorithm of the copying state selection is shown in S1 Algorithm.

The second selection algorithm, which we call neighbour selection, does not use the
divergence matrix. At every selection marker, it simply takes the L neighbouring states
(L/2 in both the directions) of the current best match position. This algorithm only
guarantees to select the best L/2 reverse prefixes, but it requires less operations than
the divergence selection, because it does not need to compute and interrogate the
divergence array for that marker. The only checks needed are when the target
haplotype occurs close to a border (start or end of the positional prefix array), and to
avoid copying a mismatch position. In the case that the target haplotype is close to a
border, less than L states are selected for that marker. A pseudo algorithm of the
copying state selection is shown in S2 Algorithm.

Durbin et al. [15] proposed an algorithm to find the set of set maximal matches with
the target haplotypes. The set of set maximal matching is the set of states that share
the longest stretches with the target haplotype. We tested the use of the set maximal
matches as a selection algorithm and we found that these contain a lot, but not all of
the relevant information, and there is a small but evident loss in accuracy when we use
only those matches.

IMP5 File Format

We developed a new file format, called imp5 to read the reference panel quickly into
memory. Each marker is stored independently in one of two different ways: if the
alternative allele is rare (MAF < 1/256), the indices of the haplotypes that carry the
alternative allele are stored, otherwise the sequence of alleles is stored using one bit per
allele. Imp5 files are compact in memory and do not require other compression
algorithms like gzip. This makes reading from a file an efficient operation, similar to
bref3 [19].

The binary stored data structure coded in the imp5 file format is also used internally
within IMPUTE5 to store the reference panel in memory. When imputing each target
haplotype, at each target marker, the set of selected reference haplotypes that carry the
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alternate allele are needed. If the target site is stored as a bitset in the reference panel
then the lookup is straightforward. If the site is stored as a list of indices of alternate
alleles then either the list of reference panel indices is searched for the selected state
index, or vice versa, depending upon which search is likely to be quicker.

Another feature of the imp5 files is that they are indexed, so that regions can be
extracted efficiently. The indexing was developed along the same lines as bgenix [17],
using sqlite3. The indexing is an important feature for imputation, especially when
imputing different windows on the same chromosome independently. Other file formats
like bref3 [19] and m3vcf [18] do not provide an index so far and therefore cannot
directly interrogate arbitrary regions in constant time. In addition to this, IMPUTE5
can also read reference panels stored in VCF/BCF format.

IMPUTE5 requires that the reference and the target panel files are indexed, using
the native imp5 index or tabix in the case of VCF/BCF files. In this way, several
independent imputation jobs can be run at the same time, using a multi-process
parallelization approach. A comparison of the memory required to store m3vcf, bref3
and imp5 file formats is given in Table 2.

Table 2. Memory (GB) required by reference file formats.

Reference panel vcf.gz bcf m3vcf.gz bref v3 imp5
1000 Genomes chr 20 0.33 0.28 0.09 0.19 0.38

1000 Genomes chr 10 0.73 0.62 0.21 0.42 0.85

HRC chr 20 1.70 1.50 0.29 0.61 1.90

HRC chr 10 3.90 3.40 0.60 1.30 4.30

Sim10K 0.06 0.04 0.02 0.02 0.04

Sim100K 0.83 0.56 0.15 0.11 0.42

Sim1M 18 10 1.90 0.75 4.06

Memory usage in Gigabytes required to store the HRC and 1000 Genomes project
reference panels (chromosome 10 and 20) and 10 Mb of reference sample data for 10K,
100K, and 1M simulated UK European reference samples. The reported memory value
is the amount of space used to store the data in vcf.gz, bcf, m3vcf.gz, bref3 and imp5 file
formats. For the imp5 file format, the value reported is the sum of the memory required
by the imp5 file plus the index file. Imp5 has been optimised to provide random access
and fast reading time for a region of the chromosome and not for data compression.

.

Parallelization

A typical IMPUTE5 job runs on multiple 10-20cM regions in parallel. Each region is
completely independent from the others and can be run on different machines. The use
of the indexing of the IMP5 files allows each process to read the reference panel
efficiently.

Output is written in VCF, BCF or in BGEN v1.2 file format [17], the latter
explicitly designed to store imputed data. Concatenating VCF, BCF and BGEN files at
the end of imputation is an efficient process and allows to impute each window
independently (bcftools concat or cat-bgen commands are used to merge output files).

IMPUTE5 can also multi-thread each process. We developed multi-threading using a
shared memory approach. Each thread is responsible for a single target haplotype when
running the HMM, or an imputation region between two target markers. The data
sharing approach is crucial for reducing the memory required by each computational
thread.
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Real and simulated data experiments

We compared IMPUTE5 to other existing imputation methods using real reference
panels from the 1000 Genomes Project [10] and the Haplotype Reference
Consortium [12]. We used data from both chromosome 10 and chromosome 20. For
both panels we extracted a subset of samples, thinned down to a subset of sites, that
are uses as the target haplotype panel, and used the remaining samples as reference
panel. We also use a UK-European reference panel of simulated data for 10K, 100K,
and 1M samples generated using MSPRIME [25]. Details of the real and simulated
datasets are summarised in Table 3.

Number of Number of Number of
Reference Panel Length (Mb) Reference Reference Target Marker Description Target

Samples Markers Markers

1000 Genomes chr 20 62.9 2,452 1,569,377 Illumina Omni2.5 53,183
1000 Genomes chr 20 62.9 2,452 1,569,377 Infinium OmniExpress-24 17,806
1000 Genomes chr 10 135.5 2,452 3,431,035 Illumina Omni2.5 111,570
1000 Genomes chr 10 135.5 2,452 3,431,035 Infinium OmniExpress-24 37,798
HRC chr 20 62.9 31,470 884,983 Illumina Omni2.5 53,600
HRC chr 20 62.9 31,470 884,983 Infinium OmniExpress-24 18,002
HRC chr 10 135.5 31,470 1,927,503 Illumina Omni2.5 111,657
HRC chr 10 135.5 31,470 1,927,503 Infinium OmniExpress-24 38,206
Panel A Sim10K 10.0 10,000 223,116 > 5% MAF 3,333
Panel A Sim100K 10.0 100,000 747,162 > 5% MAF 3,333
Panel A Sim1M 10.0 1,000,000 2,274,530 > 5% MAF 3,333
Panel B Sim10K 10.0 10,000 223,116 > 0.05% MAF in Panel B Sim1M 33,333
Panel B Sim100K 10.0 100,000 223,116 > 0.05% MAF in Panel B Sim1M 33,333
Panel B Sim1M 10.0 1,000,000 223,116 > 0.05% MAF in Panel B Sim1M 33,333

Table 3. Summary of the real and simulated datasets used in comparing methods.

1000 Genomes Project

The 1000 Genomes Project phase 3 dataset contains phased sequenced data of 2,504
individuals sampled from 26 different populations. As performed in the BEAGLE5
paper [19], we selected two random individuals from each population for the imputation
target and used the remaining data as a reference panel. We restricted the 1000
Genomes reference data to markers having at least one copy of the minor allele in the
reference panel, getting 3,431,035 markers on chromosome 10 and 1,569,377 markers on
chromosome 20. In the 52 target samples, we masked markers that were not on the
Illumina Omni2.5 array and the less dense Infinium OmniExpress-24 v1.2, resulting in
111,570 (Omni 2.5) or 37,798 (Infinium OmniExpress-24) target markers on
chromosome 10 and 53,183 (Omni 2.5) or 17,806 (Infinium OmniExpress-24) target
markers on chromosome 20. The list of markers has been obtained from
https://www.well.ox.ac.uk/~wrayner/strand/.

The Haplotype Reference Consortium

Haplotype Reference Consortium (HRC) [12] reference panel combines sequence data
across 32,470 individuals from 20 sequencing studies. We randomly selected 1,000 target
individuals from the HRC panel and used the other 31,470 as a reference panel.

We removed monomorphic markers in the reference samples. In the target samples,
we masked markers that were not on the Omni2.5 array and Infinium OmniExpress-24

April 13, 2020 9/19

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted April 16, 2020. ; https://doi.org/10.1101/797944doi: bioRxiv preprint 

https://www.well.ox.ac.uk/~wrayner/strand/
https://doi.org/10.1101/797944
http://creativecommons.org/licenses/by-nc-nd/4.0/


v1.2, resulting in 111,657 (Omni2.5) or 38,206 (Infinium OmniExpress-24) target
markers on chromosome 10 and 53,600 (Omni 2.5) or 18,002 (Infinium OmniExpress-24)
target markers on chromosome 20.

In order to verify the sub-linear properties of IMPUTE5, we also randomly
downsampled the HRC dataset to a subsets containing 30,000, 20,000, 10,000, 5,000,
3,000, 2,000 and 1,000 samples.

Simulated Reference Panels

We used MSPRIME [25] to simulate a 10Mb region of sequence data of UK-European
samples. We simulated 11,000, 101,000 and 1,001,000 samples and extracted 1,000
samples from each of the three dataset, in order to have three reference panels of size
10K, 100K and 1M samples. We split each of the 1,000 target samples into three
different target panels of size 10, 100 and 1,000.

In the target panels, we masked all but 3,333 markers, randomly selected between
the markers having MAF > 5%, to simulate chip sites. The reference panels have
223,116, 747,162 and 2,271,530 markers respectively. We refer to this setting (reference
panel + target panels) as Panel A.

We created 3 other simulated datasets (called Panel B), with 1 million, 100,000 and
10,000 samples, and each with the same number of 223,116 markers. We created 3
target panels of size 10, 100 and 1,000 samples at a subset of 33,333 markers by
randomly selecting markers having MAF > 0, 05% in the 1M reference panel. Panel B is
used to benchmark imputation on the same set of markers, varying the size of the
reference panels.

Results

Comparison of Methods

We compared IMPUTE5 to IMPUTE4, MINIMAC4 (v.1.0.0) [18] and BEAGLE5.1
(version 25Nov19.28d) [19]. For simulated datasets, we used default parameters for each
program. For real datasets used different imputation window size, depending on the
imputation program. For IMPUTE4 we used imputation regions of 5Mb and 500kb of
buffer, as perfomed for the UK Biobank imputation [2]. For MINIMAC4 we used the
default settings (20Mb region). We run IMPUTE5 and BEAGLE5.1 on the same
regions of 20 cM. In this case we used a 1Mb buffer region for IMPUTE5 and 2cM
buffer region for BEAGLE5.1.

We used the HapMap2 [9] genetic map for BEAGLE5.1 and IMPUTE5 for real data
imputation and the true genetic map for analyses with simulated data. MINIMAC does
not require a genetic map, as recombination parameters are estimated and stored when
producing the m3vcf format input file for the reference data.

BEAGLE5.1, MINIMAC4 and IMPUTE5 use their specialized formats for reference
panel data: bref3 for BEAGLE5.1, m3vcf 4 for MINIMAC4 and imp5 for IMPUTE5.
IMPUTE5 has two different haplotype selection algorithms that we call divergence
selection and neighbour selection (see Methods), both of which have a parameter L that
controls the number of selected haplotypes. We tested both selection algorithms using
L = 4 and L = 8. IMPUTE4 was run with all reference panels except on the simulated
reference panels, beceause IMPUTE4 is limited to 65,536 reference haplotypes and does
not run on the two largest reference panels (100K and 1M samples).

As in previous papers [10,12,19], we measured performance by comparing the
imputed allele probabilities to the true (masked) alleles. Markers were binned into bins
according to the minor allele frequency of the marker in the reference panel. In each bin
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we report the squared correlation (r2) between the vector of all the true (masked) alleles
and the vector of all posterior imputed allele probabilities.

All imputation analyses were run on a 16-core computer with Intel Xeon CPU
E5-2667 3.20GHz processors and 512 GB of memory.

Imputation accuracy

Fig 2 shows the performance of all the methods on the Panel A simulated reference
panels of size 10K, 100K, and 1M samples using L = 4 and I = 0.002cM for IMPUTE5.
Results using L = 8 are shown in Figure S1. These results illustrate the very close
agreement between the methods. All the methods compared use the same Li and
Stephens probabilistic model [22] so this is not surprising. The imputation performance
increases as expected with the reference panel size. For example, the imputation
accuracy of the 10K reference panel at the 10−4 MAF bin reaches a r2 ≈ 0.4, while
reaches a r2 ≈ 0.9 and r2 ≈ 0.98 for the 100K and 1M reference panel, respectively.

Fig 3 shows the results using the real reference panels and shows a very slightly
increase in accuracy when MINIMAC4 is used for small reference panels. The likely
explanation is that MINIMAC4 performs an HMM parameter estimation step when
m3vcf files are created, and this adds some adaption to genotyping errors and
recombination rate variation. This explains also why we do not see differences between
methods in Fig 2, because in that case the real recombination map in known and no
genotyping errors are present for the MSPRIME simulations. We also note that
IMPUTE4 reaches the same imputation accuracy as other methods, even if run on
smaller imputation windows. Results using L = 8 are shown in Figure S2.

Figure S3 and Figure S4 show the performance of IMPUTE5 for a range of values of
L ∈ {1, 2, 4, 8, 16}) for both the selection algorithms proposed on simulated and real
reference panels. As expected, increasing the value of L also accuracy increases,
however, for values of L >= 4 imputation accuracy is almost indistinguishable. Both
the selection algorithms perform well for values of L ≥ 4, however neighbour selection
algorithm seems to perform better for values of L < 4. This is probably explained by
the fact that neighbour selection algorithm tends to select more states than divergence
selection algorithm, making it more robust even with smaller values of L.

We also verified the imputation accuracy in the case the target panel presents
phasing errors. For this purpose we used our simulated datasets of Panel A., containing
perfectly phased data. We added ≈ 2% switch error rate to each of the target datasets
containing 1,000 samples. Overall, we note that a modest amount of phasing errors
result in a drop in the imputation accuracy, especially in the rare frequency spectrum
(Figure S5).

Finally, we used chromosome 10 data from the 1000 Genomes Project and HRC
reference panel to explore the distribution of the selected states in our imputation
experiments. We extracted 52 target samples from 1000 Genomes Project and 1000
target samples from the HRC, and phased them against the remaining haplotypes in the
reference panels. We then recorded which haplotypes were selected as states across the
ten 20cM chunks on chromosome 10. Figure S6 top shows the number of times each
reference haplotypes was selected. The uneven pattern across reference haplotypes is a
consequence of the spectrum of ancestry and different cohorts included in the 1000
Genomes and HRC reference panels respectively. Figure S6 bottom shows the
distribution of the number of times a state was selected.

Computational efficiency

Table 4 shows single core memory usage and time of running MINIMAC4, BEAGLE5.1
and IMPUTE5 to impute the whole chromosome 20 and 10 for 1000 Genomes and HRC
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reference panels. In order to compare the methods, we run MINIMAC4 using its default
chunk size (20 Mb chunk size and 2 Mb buffer size). IMPUTE5 and BEAGLE5 were
run using 20 cM imputation regions and 1Mb and 2cM buffer respectively. IMPUTE5
was run with the parameter L = 4 and using BGEN as output file format (zstd
compression). We used default settings otherwise. For both the 1000 Genomes and
HRC reference panel IMPUTE5 is faster than BEAGLE5 and on the HRC reference
panel it is over 20 times faster than MINIMAC4. IMPUTE5 is also several times more
memory efficient than other methods. Results using L = 8 are shown in Table S1.

Fig 4 and Table 5 show the per-sample computation times for IMPUTE5,
BEAGLE5.1 and MINIMAC4 for 10K, 100K and 1M simulated reference panels when
imputing a set of 1,000 target samples on a 10Mb region. All methods were run using a
single core on the same machine and in this case we reduced the value of the IMPUTE5
I parameter to 0.002 cM to take into account the fact that no proper map is available
for the simulated region. The results are plotted on log-log scale, which illustrates that
both BEAGLE5.1 and IMPUTE5 exhibit sub-linear scaling as reference panel size
increases. For Panel A results, moving from 10K to 1M reference samples increases the
number of reference samples by a factor of 100 and the number of reference markers by
a factor of 10, but IMPUTE5’s imputation time increases by only a factor of 2.5.
Overall the results show that IMPUTE5 is consistently faster than all the alternative
methods. Results using L = 8 are shown in Figure S7 and Table S2.

Fig 4B and Table 5 show the imputation time for Panel B dataset. All the reference
panels in Panel B have the same number of markers. In this case we have a very dense
set target markers (33,333) and so more time is spent for the Li and Stephens
calculations compared to Panel A scenario. The time spent by IMPUTE5 for the Li and
Stephens HMM and imputation actually decreases when the number of reference
haplotypes is increased. The increase in time shown in Fig 4B from 10K reference panel
to 1M reference panel is only due to increased time to read the input and run the
selection algorithm, the only linear components of IMPUTE5.

Fig 5A shows that the imputation time per sample decreases when the number of
target haplotypes increases This is mainly explained by the fact that typically, for a
small number of target haplotypes, the pbwt construction is the main part of the
selection algorithm and the copying states selection is a small fraction of the time.
Results using L = 8 are shown in Figure S8A.

Fig 5B and C show that the mean number of copying states selected by IMPUTE5
decreases as the number of reference haplotypes increases for both simulated and real
reference panels. For real reference panels, we used a downsampled version of the HRC
containing an increasing amount of samples from 1,000 to 30,000. This property is
predicted from the Li and Stephens model Eq 9, that is itself an approximation to the
coalescent model, whereby the probability of switching between copying states decreases
as the number of reference haplotypes increases. Results using L = 8 are shown in
Figure S8B.

IMPUTE5 takes advantage of the BGEN file format. This is especially useful for
very dense reference panels, containing millions of markers in a single chunk. In this
case, we observe a 20 to 50% additional increase of speed, compared to using VCF/BCF
file formats.

Discussion

In this work we have developed a new genotype imputation method called IMPUTE5
that has the same accuracy and faster computation time and memory requirements
compared to other currently available imputation methods. IMPUTE5 has the lowest
computation time for all reference panel sizes and target sample sizes considered, both
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Dataset
Memory usage (MB) - Omni 2.5 chip

MINIMAC4 BEAGLE5.1 IMPUTE5 neigh IMPUTE5 div
1000 Genomes chr 20 1,792 6,706 428 435
1000 Genomes chr 10 2,472 12,089 480 489
HRC chr 20 4,842 13,087 4,361 4,368
HRC chr 10 4,896 14,480 4,842 4,850

Memory usage (MB) - OmniExpress-24 chip
MINIMAC4 BEAGLE5.1 IMPUTE5 neigh IMPUTE5 div

1000 Genomes chr 20 1,696 6,232 197 200
1000 Genomes chr 10 2,316 11,572 215 221
HRC chr 20 4,405 13,381 1,965 1,969
HRC chr 10 4,417 13,351 1,779 1,788

Time ([hh:]mm:ss) - Omni 2.5 chip
MINIMAC4 BEAGLE5.1 IMPUTE5 neigh IMPUTE5 div

1000 Genomes chr 20 02:33 00:55 00:48 00:49
1000 Genomes chr 10 05:16 01:44 01:42 01:42
HRC chr 20 04:07:39 15:47 08:15 8:29
HRC chr 10 08:07:42 30:47 17:27 17:52

Time ([hh:]mm:ss) - OmniExpress-24 chip
MINIMAC4 BEAGLE5.1 IMPUTE5 neigh IMPUTE5 div

1000 Genomes chr 20 01:37 00:46 00:28 00:28
1000 Genomes chr 10 01:56 01:33 00:59 01:00
HRC chr 20 02:02:29 11:03 03:38 03:43
HRC chr 10 04:04:04 20:28 07:52 08:02

Table 4. Memory usage and time to impute 1000 Genomes and HRC datasets using 20Mb or 20cM
imputation regions. Memory usage and total time to impute a whole chromosome (chr 10 and chr 20) for 52 target
samples when using the 1000 Genomes reference panel and 1000 target samples when using the HRC reference panel.
MINIMAC4 was run on chunks of size 20 Mb (default settings). IMPUTE5 and BEAGLE5.1 were run on chunks of size 20cM.
Time is shown using the format mm:ss. Bold font is used to indicate the method with the lowest memory and time.

Dataset
Memory usage (MB)

Panel A Panel B
MINIMAC4 BEAGLE5.1 IMPUTE5 MINIMAC4 BEAGLE5.1 IMPUTE5

10K reference panel 1,048 9,058 1,210 1,253 7,278 12,241
100K reference panel 5,858 10,452 1,283 5,122 7,994 11,842
1M reference panel - 8.805 2,217 43,246 25,868 15,659

Dataset
Time ([hh:]mm:ss)

Panel A Panel B
MINIMAC4 BEAGLE5.1 IMPUTE5 MINIMAC4 BEAGLE5.1 IMPUTE5

10K reference panel 05:30 01:11 00:32 29:54 01:58 02:39
100K reference panel 32:20 02:23 00:36 03:02:21 03:23 03:20
1M reference panel - 05:39 01:17 28:10:50 17:15 05:51

Table 5. Memory usage and time to impute Panel A and Panel B datasets. Memory usage and total time to
impute 1, 000 target samples in a 10 Mb window using simulation data in Panel A and Panel B dataset. Time is shown using
the format [hh:]mm:ss. Bold font is used to indicate the method with the lowest memory and time. MINIMAC4 was not able
to run using the Panel A 1M samples reference panel due to time constraints in the construction of the m3vcf file.

for small regions and for chromosome wide imputation.
IMPUTE5 shares the same model as IMPUTE4, but has several improvements,

making IMPUTE5 suitable for new generation reference panels. A new reference file
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format (imp5) and the ability to read indexed input files allows quick imputation on a
small region of the genome. IMPUTE5’s new copy states selection makes imputation
more efficient when increasing the reference panel or target panel size. IMPUTE5
exhibits sub-linear scaling with reference panel sample size and provides highly accurate
imputation for large scale data sets.

The ability to impute quickly specific regions of the genome makes IMPUTE5 very
suitable to be used as a part of an imputation server [18]. In addition, IMPUTE5 could
be optimized to be used after the pre-phasing step. For example, using SHAPEIT4 [6]
to pre-phase target haplotypes using a reference panel of haplotypes, it internally
computes the PBWT of the reference panel at target markers to provide an accurate
phase. Since the same data structure is used in a similar way by the two programs,
IMPUTE5’s selection algorithm could run as a last step of phasing.

We also believe that there is space for further improvements. For example, imp5 file
format only provide a basic representation of the haplotypes and additional information
can be added (i.e. PBWT divergence arrays). The ideas presented in this paper could
be applied in other research areas, such as imputation for low coverage sequences, since
the use of PBWT-based methods can improve speed and accuracy of imputation when
imputing from a reference panel.

It seems likely that genotype imputation will continue to be an important part of
most genome-wide association studies, since genotyping microarrays are relatively
cheaper than whole-genome sequencing and as reference panels continue to grow.
Researchers will increasingly be able to impute (and re-impute) a larger number of rare
variants and they will be imputed to a higher quality.

The increased length of haplotype matching that occurs as reference panels grow in
size (see Fig 5B and C) suggests that it could be interesting to investigate whether
genotyping microarrays could reduce the number of variants they assay without losing
accuracy.

Software

The IMPUTE5 software is available at https://jmarchini.org/impute5/
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Fig 1. IMPUTE5 copying state selection
Small example to illustrate IMPUTE5 copying state selection. (A) A reference panel of
haplotypes H = {h0, . . . , h9} is restricted to the set of target markers and is shown
together with a target panel of two haplotypes T = {t0, t1}. The copying state selection
is only performed at a subsetof target markers. In this example, these are the 4th and
8th markers, and are shaded green.
(B) The target haplotypes are inserted into the PBWT, using the rank operations
(FM-index). In (B1) target haplotypes {t0, t1} are searched in the positional prefix
array of the reference panel up to marker 4 and L = 2 reference haplotypes are selected
for each target haplotype. In (B2) t0 and t1 are searched in the positional prefix array
of the reference panel up to marker 8 and again L reference haplotypes are selected.
(B3) The selected haplotypes are then merged to form a list of copying states for each
target haploype. The list may not necessarily be the same length. These states will be
used in the HMM to perform imputation.

Fig 2. Imputation accuracy for the Panel A dataset
Imputation accuracy when imputing genotypes from a simulated reference panel of 10K,
100K and 1M UK-European reference samples (Panel A dataset). Imputed alleles are
binned according to their minor allele frequency in each reference panel. The horizontal
axis in each panel is on a log scale.

Fig 3. Imputation accuracy for the 1000 Genomes and the HRC datasets
Imputation accuracy when imputing genotypes using the 1000 Genomes Project
reference panel (n = 2452) and the Haplotype Reference Consortium reference panel
(n = 31470). Imputed alleles are binned according to their minor allele frequency in
each reference panel. The horizontal axis in each panel is on a log scale.

Fig 4. Per sample imputation time for Panel A and Panel B datasets.
Per-sample CPU time when imputing a 10 Mb region from 10K, 100K and 1M simulated
UK-European reference samples into 1,000 target samples using one computational
thread per job. (A) Imputation time when using Panel A dataset (3,333 target markers).
(B) Imputation time when using Panel B dataset (33,333 target markers).
Axes are on log scale. Hypothetical linear scaling of MINIMAC4, BEAGLE5 and
IMPUTE5 are shown as dotted lines, generated by projecting the time using the 10K
reference panel. Minimac4 was not able to run using the Panel A 1M reference panel
due to time constraints in the construction of the m3vcf file.

Fig 5. Sub-linear scaling of IMPUTE5.
(A) Time per sample spent to impute a marker in a 10Mb region for reference panel size
10K, 100K and 1M samples, when imputing 10, 100 and 1,000 target samples. The
vertical axis is on a log scale. (B) Mean number of copying states selected for the
simulated reference panels. (C) Mean number of copying states selected for the
downsampled HRC reference panels containing 1,000 to 30,000 thousands samples.
Time and number of conditioning states are obtained using IMPUTE5 neighbours select
and L = 4.
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S1 Algorithm. Divergence selection algorithm.

S2 Algorithm. Neighbour selection algorithm.

Table S1 Memory usage and time to impute 1000 Genomes and HRC
datasets using L = 8. Memory usage and total time to impute a whole chromosome
(chr 10 and chr 20) for 52 target samples when using the 1000 Genomes reference panel
and 1,000 target samples when using the HRC reference panel. MINIMAC4 was run on
chunks of size 20 Mb while BEAGLE5 and IMPUTE5 on chunks of size 20 cM. Time is
shown using the format mm:ss. Bold font is used to indicate the method with the lowest
time.

Table S2 Single core time to impute Panel A and Panel B datasets using
L = 8. Total time to impute 1, 000 target samples in a 10Mb window using simulation
data in Panel A and Panel B dataset. Time is shown using the format mm:ss. Bold font
is used to indicate the method with the lowest time. Minimac4 was not able to run
using the Panel A 1M reference panel due to time constraints in the construction of the
m3vcf file.

Figure S1 Imputation accuracy for the Panel A dataset and L = 8.
Imputation accuracy when imputing genotypes from a simulated reference panel of 10K,
100K and 1M UK-European reference samples (Panel A). The horizontal axis in each
panel is on a log scale.

Figure S2 Imputation accuracy for the 1000 Genomes and the HRC
datasets using L = 8. Genotype imputation accuracy when imputing genotypes using
the 1000 Genomes Project reference panel (n = 2452) and the Haplotype Reference
Consortium reference panel (n = 31470). The horizontal axis in each panel is on a log
scale.

Figure S3 Imputation accuracy varying parameter L and the selection
algorithm using Panel A dataset. Genotype imputation accuracy when imputing
genotypes using the 1000 Genomes Project reference panel (n = 2452) and the
Haplotype Reference Consortium reference panel (n = 31470) for diffent values of the
parameter L using the neighbour selection algorithm and the divergence selection
algorithm. The horizontal axis in each panel is on a log scale.

Figure S4 Imputation accuracy varying parameter L and the selection
algorithm using 1000 Genomes and HRC datasets. Imputation accuracy when
imputing genotypes using the 1000 Genomes Project reference panel (n = 2452) and the
Haplotype Reference Consortium reference panel (n = 31470) for different values of the
parameter L using the neighbour selection algorithm and the divergence selection
algorithm. The horizontal axis in each panel is on a log scale.

Figure S5 Imputation performance in the case of phasing errors.
Imputation accuracy when imputing 1000 target samples from a simulated reference
panel of 10K, 100K and 1M UK-European samples (Panel A) with no phasing errors
(blue) and with a ≈ 2% switch error rate (red). The horizontal axis in each panel is on a
log scale.
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Figure S6 Distribution of the selected states on real datasets. Count of the
number each reference haplotypes selected along the ten imputation chunks of
chromosome 10 for the 1000 Genomes Project and HRC reference panel (top).
Histogram of the selected counts for the two datasets (bottom).

Figure S7 Per sample imputation time for Panel A and Panel B datasets
and L = 8. Per-sample CPU time when imputing a 10 Mb region from 10K, 100K and
1M simulated UK-European reference samples into 1,000 target samples using one
computational thread. (A) Imputation time when using Panel A dataset (3,333 target
markers). (B) Imputation time when using Panel B dataset (33,333 target markers).
Axes are on log scale. Hypothetical linear scaling of MINIMAC4, BEAGLE5 and
IMPUTE5 are shown as dotted lines, generated by projecting the time using the 10K
reference panel. Minimac4 was not able to run using the Panel A 1M reference panel
due to time constraints in the construction of the m3vcf file.

Figure S8 Sub-linear scaling using L = 8. (A) Time per sample spent to impute
a marker in a 10Mb region for reference panel size 10K, 100K, 1000K, when imputing
10, 100 and 1000 target samples. The vertical axis is on a log scale. (B) Mean number
of copying states selected for the simulated reference panels. The number of selected
states decreases by increasing the size of the reference panel, showing sub-linear scaling.
Time and number of conditioning states are obtained with neighbours select and L = 8.
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