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Abstract 13 

Due to the overlapping emission spectra of fluorophores, fluorescence microscopy images often have 14 

bleed-through problems, leading to a false positive detection. This problem is almost unavoidable when the 15 

samples are labeled with three or more fluorophores, and the situation is complicated even further when imaged 16 

under a multiphoton microscope. Several methods have been developed and commonly used by biologists for 17 

fluorescence microscopy spectral unmixing, such as linear unmixing, non-negative matrix factorization, 18 

deconvolution, and principal component analysis. However, they either require pre-knowledge of emission 19 

spectra or restrict the number of fluorophores to be the same as detection channels, which highly limits the real-20 

world applications of those spectral unmixing methods. In this paper, we developed a robust and flexible spectral 21 

unmixing method: Learning Unsupervised Means of Spectra (LUMoS), which uses an unsupervised machine 22 

learning clustering method to learn individual fluorophores’ spectral signatures from mixed images, and blindly 23 

separate channels without restrictions on the number of fluorophores that can be imaged. This method highly 24 

expands the hardware capability of two-photon microscopy to simultaneously image more fluorophores than is 25 

possible with instrumentation alone. Experimental and simulated results demonstrated the robustness of LUMoS 26 

in multi-channel separations of two-photon microscopy images. We also extended the application of this method 27 

to background/autofluorescence removal and colocalization analysis. Lastly, we integrated this tool into ImageJ to 28 

offer an easy to use spectral unmixing tool for fluorescence imaging. LUMoS allows us to gain a higher spectral 29 

resolution and obtain a cleaner image without the need to upgrade the imaging hardware capabilities.  30 

Introduction 31 

Two-photon laser scanning microscopy (2PLSM) offers many advantages for imaging cell dynamics in 32 

live animals with deeper tissue penetrations, 3D contrast and resolution, and reduced phototoxicity [1,2]. The 33 

majority of in-vivo 2PLSM studies so far have relied on single or dual color imaging which highly limits the cell 34 

populations and physiological components that can be studied at one time [3-5]. To identify and characterize 35 
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complex biological mechanisms, multiple cell types or intracellular processes need to be visualized 36 

simultaneously. Adapting 2PLSM for simultaneous multi-fluorophore detection has presented a challenge due to 37 

the widely overlapping two-photon absorption spectra of commonly used fluorescent markers [6-8] as well as the 38 

high expense of incorporating multiple two-photon laser lines. Imaging specimens with a greater number of 39 

fluorescent labels is usually confronted with the bleed-through or cross-talk of fluorescence emissions. These 40 

spectral mixing artifacts often complicate the interpretation of experimental results with ambiguous 41 

discriminations, particularly if colocalization of fluorophores is under investigation or quantitative measurements 42 

are necessary. Therefore, a reliable and clean separation of different fluorescence labels is required for analysis 43 

and quantifications, and a flexible approach to overcome the hardware limitations on the number of fluorophores 44 

that can be simultaneously imaged is desired.  45 

There are a wide variety of computational approaches commonly used by biologists for spectral unmixing 46 

with their own advantages and limitations.  Fluorescence signals were first modeled as a linear combination of 47 

measured reference spectra of all involved fluorochromes, and linear unmixing was introduced for spectral 48 

unmixing in the fluorescence microscopy domain [9,10]. This algorithm extracts the weight of each individual 49 

spectrum with the weight proportional to the fluorophore’s concentration [11,12]. Linear unmixing is 50 

advantageous in the way that it is well suited for resolving spectra from pixels that have a mixed contribution 51 

from different fluorophores, as it calculates the best linear fit of any combination of fluorescent spectra in an 52 

individual pixel. The method has been widely applied in different imaging modalities since then [12-16]. 53 

However, the spectra of the contributing fluorophores may change nonuniformly due to the distortion by the 54 

complex tissue environment [17], and the assumption of superposition may be inappropriate in the presence of 55 

non-linear effects such as quenching, photobleaching, and two-photon absorption. To be solvable, linear unmixing 56 

also assumes that the number of detection channels be at least equal to the number of fluorophores which requires 57 

more advanced hardware settings such as tunable filters to detect more dyes [10,18], highly limiting the number 58 

of different labels that can be unambiguously identified in an image. In addition, the method also requires prior 59 

knowledge of the reference spectrum for a given dye, which is instrument specific and hard to measure. Following 60 

linear unmixing theory, many other methods have been introduced.  Non-negative matrix factorization (NMF) 61 
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considers the non-negative characteristics of the fluorophore contributions [19-21], which has the advantage that 62 

prior knowledge of emission spectra is not needed, and has also been used for autofluorescence and background 63 

removal [22-24]. It is limited, however, in that it cannot be applied to situations when fluorophores outnumber 64 

detection channels. The other main problem of this approach is that there can be multiple equally valid, yet 65 

significantly different solutions. Sometimes prior knowledge about spectra is still needed to reduce the ambiguity 66 

[19]. Another unmixing method, spectral deconvolution [25], requires the acquisition of the spectral signature of 67 

each fluorophore by manually selecting the region of interest which is laborious, and requires unambiguous and 68 

exclusive expression of fluorescent labels. The method will not work when, in addition to bleed-through, there is 69 

significant cross-talk between fluorophores. Another recently developed method used for two-photon imaging, 70 

similarity unmixing [26], can work for any number of fluorophores but still requires detailed knowledge of 71 

fluorophore emission spectra and can fail when actual emissions deviate from their theoretical ideals or there are 72 

colocalized fluorophores.  73 

Therefore, to improve the flexibility and applicability of multi-channel fluorescence imaging spectral 74 

unmixing, we looked for methods that do not need spectra information and are not restricted by the number of 75 

detection channels. Unsupervised learning is a class of machine learning techniques that find patterns directly 76 

from unlabeled data [27,28]. By taking advantage of the ability of unsupervised learning algorithms to 77 

automatically “learn” to identify features from raw images, we here investigated clustering based unsupervised 78 

learning in blindly unmixing channels of multi-color 2PLSM images: Learning Unsupervised Means of Spectra 79 

(LUMoS). Similar clustering methods have been applied for spectral unmixing in the remote sensing field [29-80 

31], but never to fluorescence microscopy. By assuming the discrete labeling of biological structures, our model 81 

uses k-means clustering to “learn” the relationships between pixels from the raw image, and search for their 82 

intensity patterns to re-classify each pixel into a unique fluorophore group [32]. We emphasize that LUMoS 83 

requires neither the knowledge of emission spectra nor a greater or equal number of detection channels than 84 

fluorophores, which highly expands the capability of two-photon imaging. We have successfully demonstrated the 85 

ability of LUMoS to cleanly separate out up to 6 fluorophores in biological samples imaged by a 2PLSM system 86 

with only 4 detectors. Synthetic results demonstrated the accuracy and power of LUMoS in separating more 87 
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fluorophores under the challenging conditions of unbalanced structure size and low signal-to-noise ratio (SNR). 88 

The method can be easily translated to images acquired by other fluorescence imaging modalities such as confocal 89 

to create a clean representation of the fluorophores in the sample for quantitative analysis.  90 

Materials and methods 91 

Sample preparations 92 

For Nfluorophores = Ndetectors unmixing studies, FluoCells Prepared Slide #1 (F36924, Invitrogen, Carlsbad, 93 

CA) was used. Fixed bovine pulmonary artery endothelial (BPAE) cells were stained with a combination of 94 

fluorescent dyes. DAPI was used to label the nuclei, F-actin was stained using Alexa Fluor488 (AF488) 95 

phalloidin, and mitochondria were labeled with MitoTracker Red CMXRos.  96 

For Nfluorophores > Ndetectors beads unmixing studies, particles of different sizes and colors were mixed and 97 

prepared on a glass slide and covered with a #1 cover slip for imaging. The commercial beads were either surface 98 

conjugated with standard fluorophores or polymerized with an organic dye within. The emission (EM) peak was 99 

either determined by the online spectra-viewer for a standard fluorophore or provided by the nanoparticle 100 

company (Spherotech Inc., Lake Forest, IL) for an organic dye. A combination of 5 different beads was used: 101 

Light Yellow (LY, FP-2045-2, Spherotech Inc.): 1.97µm in diameter, 450nm peak EM; FITC (ECFP-F1, 102 

Spherotech Inc.): 3.27µm in diameter, 515nm peak EM; PE (ECFP-F2, Spherotech, Inc.): 3.4µm in diameter, 103 

575nm peak EM; Purple (FP-2062-2, Spherotech Inc.): 2.37µm in diameter, 620nm peak EM; APC (345036, BD 104 

Biosciences, San Jose, CA): 6µm in diameter, 660nm peak EM.  105 

For Nfluorophores > Ndetectors Colorful Cell unmixing studies, a plasmid encoding 6 independent transcription 106 

units driving expression of different fluorescent proteins to distinct intracellular compartments, Colorful Cell [33], 107 

was a gift from Pierre Neveu (RRID:Addgene_62449; http://n2t.net/addgene:62449; Addgene, Watertown, MA). 108 

The 6 fluorescent proteins were TagBFP trimer fused to a nuclear localization sequence, Cerulean trimer fused to 109 

a plasma membrane targeting sequence, AzamiGreen fused to a mitochondrial localization sequence, Citrine 110 
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fused to a Golgi targeting sequence, mCherry fused to an endoplasmic reticulum retention sequence, and iRFP670 111 

fused to a peroxisome localization sequence. Plasmid DNA was transiently transfected into HEK293T (Pheonix) 112 

cells by calcium phosphate precipitation and assayed 48-72 hours later. By flow cytometry 40-70% of cells were 113 

expressing the transfected plasmid. For imaging, wet mounts of single cell suspensions containing 100,000 live 114 

cells/10 µL were prepared and imaged immediately. 115 

For the colocalization experiments, CD28-deficient, DO11.10 T cells were retrovirally transduced with 116 

CD28 fused at the C terminus to YFP or to Cerulean either separately or together. T cells were then mixed with 117 

stably transfected antigen-presenting cells (APCs) expressing MHC class II, ICAM-1, and CD80 that were or 118 

were not preloaded with 2.0 µg/ml OVA peptide for 1 hour at 37°C, and pelleted at Rcf 2000 for 20 sec. The 119 

pellet was incubated at 37° C for 10 min, resuspended and plated on poly-L–lysine coated cover slips for imaging 120 

[34]. 121 

Two-photon imaging 122 

All images were collected by an Olympus FVMPE-RS system (Olympus, Center Valley, PA) using 123 

Olympus 25´ water objective (XLPLN25XWMP2, 1.05NA). The system was equipped with two two-photon 124 

lasers: Spectra-Physics InSightX3 (680nm-1300nm, Spectra-Physics, Santa Clara, CA) and Spectra-Physics 125 

MaiTai DeepSee Ti:Sapphire laser (690nm-1040nm). There were four Photon Multiplier Tubes (PMTs) and two 126 

filter cubes for multi-color imaging. Galvanometer scanners were used for scanning. PMT gains for all imaging 127 

were used between 500 and 650 a.u. in the Olympus Fluoview software. The system schematic is shown in S1 Fig 128 

(the Blue/Green, and Red/fRed filter cubes setup is shown).  129 

For Nfluorophores=Nchannels unmixing studies, FluoCells Prepared Slide #1 was imaged using MaiTai laser at 130 

780nm to excite DAPI, AF488, and MitoTracker Red in the BPAE cells. 3D 512x512 pixel images were collected 131 

with 0.5µm per z step. For Nfluorophores>Nchannels beads unmixing studies, multi-color beads slide was imaged using 132 

InSightX3 laser at 1000nm and MaiTai laser at 800nm simultaneously. 2D 512´512 pixel images were collected. 133 

For Nfluorophores>Nchannels Colorful Cell separation studies, Colorful Cell slide was imaged using InSightX3 laser at 134 
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1050nm and MaiTai laser at 840nm sequentially with 1024´1024 pixels in x-y and 0.5µm per z step. Blue/Green 135 

cube (420-460nm/495-540nm) and red/fRed cube (575-630nm/645-685nm) were used for the above imaging. For 136 

colocalization studies, Cerulean, YFP, or Cerulean + YFP labeled cell slides were imaged with 800´800 pixels in 137 

x-y and 0.5µm per z step using InSightX3 laser at 970nm and MaiTai laser at 860nm sequentially. CFP/YFP cube 138 

(420-500nm/519-549nm) was used for this colocalization experiment.  139 

Data pre-processing 140 

Depending on the content of the input image, it may be appropriate to group together pixels with different 141 

net intensities but similar ratios of intensities in different z-planes. This could be necessary in fluorescence 142 

microscopy, and especially 2PLSM, in which there usually are signal intensity differences across imaging depths. 143 

This can be accounted for by dividing the intensity of a pixel 𝑥 in each channel 𝑐 by the overall sum of that pixel 144 

intensities across all the channels: 145 

𝑥#$ =
&'

∑ &''∈𝐂
                                                                             (1) 146 

where 𝑥$is the raw intensity of pixel 𝑥 in channel 𝑐, 𝑥#$ is the scaled intensity of pixel 𝑥 in channel c and C is the 147 

set of all input channels. This step is not always desirable, as in some cases pixels with the same intensity ratios 148 

but different raw intensities may actually represent different structures.  149 

To prevent the clustering algorithm from being biased by signal intensity differences and variations 150 

between channels, the brightness and contrast of input data were normalized to be relatively spherical 151 

distributions before clustering. Normalization also makes k-means initialize with better centroid choices and run 152 

faster with fewer iterations to converge [32,35]. Therefore, clustering was performed on z-scores where the z-153 

score is the number of standard deviations away from the mean a signal. This can be expressed for a given pixel 𝑥 154 

as:  155 

𝑧&,$ =
&#'-.'
/'

                                                                            (2) 156 
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where 𝑧&,$ is the z-score for pixel x in channel c, and µ$ and 𝜎$ are the overall mean and standard deviation of all 157 

pixels in channel 𝑐. This can be done to pixels with either non-scaled intensities (𝑥$) or scaled intensities (𝑥#$) as 158 

in Eq1.  159 

LUMoS algorithm 160 

We here present an unsupervised machine learning clustering method (Learning Unsupervised Means of 161 

Spectra, LUMoS) to learn the spectral signatures of each fluorophore and assign each pixel to the cluster whose 162 

spectral signature is closest. The process is referred to as “unsupervised” because no human intervention is 163 

required to label any pixels as belonging to a particular fluorophore, and the algorithm can identify features from 164 

raw images simply by looking at the pixels’ intensity values across all the detection channels. Specifically, a hard 165 

clustering method, k-means clustering, was used to separate mixed fluorophores unambiguously.  166 

Pixels that are spatially close tend to belong to the same structure, and thus stained by the same 167 

fluorophore. To leverage this spatial information to improve the unmixing ability of LUMoS beyond the single-168 

pixel level, a median filter (3×3×3 or 5×5×5) is first applied to the image before clustering. In order to preserve 169 

potentially meaningful variations in intensity in the raw image, the median filter is only applied at the clustering 170 

stage and the intensity output for each pixel is still taken from the raw image. 171 

Given a set of observations X, containing n individual observations: 𝑥2, 𝑥3, …, 𝑥4, the objective of k-172 

means is to partition all observations into k different clusters, 𝐒 = {𝑆2, 𝑆3, … , 𝑆9}, in a way that minimizes within-173 

cluster variance. This can be expressed as 174 

min
𝐬
∑ min

?
‖𝑥 − 𝑠?‖3&∈𝑿                                               (3) 175 

where 𝑠? is the centroid of cluster 𝑆?. Unlike other applications where k is difficult to define and requires tuning to 176 

optimize, in our case, the number of clusters k is simply the total number of fluorophores plus 1 more cluster that 177 

represents the background. The cluster centroid resulting from this approach can be interpreted as the spectral 178 

signatures of each fluorophores. These are the spectral means alluded to in the name Learning Unsupervised 179 

Means of Spectra (LUMoS).  180 
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The algorithm partitions the data into k clusters using Eq3 as a loss function. K-means approximates the 181 

solution to minimize the loss function by assigning data points to the class to whose centroid they are closest, and 182 

iteratively updating the centroid. Fig 1 details the steps taken in LUMoS. There are several algorithms for 183 

initializing the cluster centroids and we implemented the k-means++ initialization algorithm for its speed and 184 

convergence properties [36]. Briefly, k-means++ chooses the first cluster centroid at random from the input data 185 

points, and each subsequent cluster centroid is selected from the remaining data points with the probability 186 

inversely related to the distance from the closest appointed centroid. The algorithm converges when clusters do 187 

not change following one iteration. The maximum number of iterations allowed per replicate, max_iter, was set to 188 

100 to limit run time. The iterative algorithm was applied num_replicates times and the replicate with the lowest 189 

cost was used in accordance with the loss function given in Eq3. All the unmixing performed in this paper used 10 190 

replicates. The values of num_replicates and max_iter can be tuned, with more replicates and iterations yielding 191 

higher quality results but longer runtime.  192 
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193 
Fig 1. LUMoS spectral unmixing algorithm. 194 

Once the algorithm converges, a new output image is created with k channels where each channel belongs 195 

to one cluster. In the output image, a pixel 𝑥 assigned to one channel 𝑐 is given the value of the highest intensity 196 

of that pixel among all the	𝐶 input channels, and any pixel not belonging to channel 𝑐 is assigned a value of 0:  197 

𝑦? = G
max
$∈J

𝑥$ 																	if	pixel	𝑦	belongs	to	cluster	𝑆?		
					0																							otherwise																																						

                                    (4) 198 

where 𝑦? is the intensity of output pixel y in output channel i. 199 

At its core, spectral unmixing is the task of decomposing mixed multichannel images into spectral 200 

signatures and abundances of each signature in each pixel [9,37,38]: 201 
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                                                  Z
𝑋2,2 ⋯ 𝑋2,4
⋮ ⋱ ⋮

𝑋J,2 ⋯ 𝑋	J,4
_ = Z

𝐴2,2 ⋯ 𝐴2,9
⋮ ⋱ ⋮

𝐴J,2 ⋯ 𝐴	J,9
_ Z
𝐵2,2 ⋯ 𝐵2,4
⋮ ⋱ ⋮

𝐵9,2 ⋯ 𝐵	9,4
_	                                  (5) 202 

which may be simplified as: 𝑋 = 𝐴𝐵. 203 

In Eq5, X is the observed fluorescence intensities of	𝑛 pixels in 𝐶 different spectral channels. The 204 

endmembers are the known fluorophores used to label the sample. A is a 𝐶 × 𝑘 matrix of the spectral signatures 205 

for each of the 𝑘 fluorophores, in which each column is the recorded intensity of a fluorophore across the 𝐶 206 

detection channels. B is a 𝑘 × 𝑛 matrix containing the abundances of each fluorophore in each pixel. In LUMoS 207 

unmixing, B is obtained by scaling each pixel’s class label to the original intensity of that pixel as described in 208 

Eq4, which is based on a binary assumption that each pixel is occupied by only one fluorophore. Unlike other 209 

linear unmixing algorithms, LUMoS unmixes based on clustering rather than directly solving Eq5 with linear 210 

methods; because of this, LUMoS is different in that 1) the prior knowledge of fluorophore spectra (A) is not 211 

required to do the inversion of the equation and calculate the abundances (B), 2) it is not required that the number 212 

of fluorophores or endmembers (k) must be less than the number of detection channels (C), and 3) the abundances 213 

(B) are not the fractions of all endmembers, but are binary results assuming one endmember per pixel (Eq4).    214 

Synthetic data 215 

In order to test the capabilities of LUMoS across a wide range of conditions, we generated synthetic data 216 

for unmixing. We assumed the hardware for the simulated imaging to be the same as our two-photon system with 217 

2 two-photon lasers and 4 detection channels (blue: 420-460nm, green: 495-540nm, red: 575-630nm and far-red 218 

645-685nm). For each simulated fluorophore, a theoretical emission spectrum was generated (Fig 2A). The 219 

intensity distribution was modeled as a Weibull distribution (Eq6) with 𝑎 = 1.7 and 𝑏 = 100 to reflect the 220 

tendency of a fluorochrome to have a long tail at the longer wavelength [37].  221 

𝑅𝑒𝑙𝑎𝑡𝑖𝑣𝑒	𝐼𝑛𝑡𝑒𝑛𝑠𝑖𝑡𝑦 = 	q
r
sl-$
r
t
q-2

𝑒−((l−𝑐) 𝑏⁄ )𝑎           (6) 222 

where l is emission wavelength and c is a constant to shift the peak of the emission spectra for different synthetic 223 

fluorophores. 224 
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 225 

Fig 2. Synthetic data.  226 

(A) Synthetic emission spectra of 8 fluorophores. Bandwidth of the 4 detection channels were marked in shaded 227 

areas. For simplicity, the emission spectra of synthetic fluorophores were assumed to be the same Weibull 228 

distribution with the peaks of all fluorophores evenly distributed between 420nm and 685nm. (B) Spectral 229 

signatures of the 8 synthetic fluorophores in A. The intensity of each fluorophore was measured as the integrated 230 

area under the spectral curves in A. (C) Synthetic 2PLSM images based on the emission spectra in A. The ground 231 

truth image shows the 8 synthetic fluorophore expressing structures. Ch1-Ch4 images were the raw images from 232 

the 4 detection channels with an SNR of 10. Each fluorophore was synthetized to be expressed in a narrow band 233 

either vertically or horizontally. 7 of the 8 bands had the same area, while 1 small band (furthest red fluorophore) 234 

has an area 1/5th (cluster size ratio 0.2) of the rest. 235 

The emission peaks were evenly spaced between 420nm and 685nm so that all fluorophore peaks fell 236 

within the detection range of the microscope. We assumed all fluorophores were excited effectively, and their 237 

emission spectra peak at the same magnitude. Consistent spectral shapes and spacing represented an ideal case for 238 

easy simulations, but in reality, fluorophores usually have different shapes of spectra or even multiple peaks. To 239 
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facilitate the generation of a synthetic image for an arbitrary number of fluorophores, a grid pattern was created 240 

where each successive fluorophore occupies an alternating vertical or horizontal strip (Fig 2C). For this synthetic 241 

data, the ideal situation where each pixel is occupied by only one fluorophore is assumed, to mimic the general 242 

biological staining assumptions without considering the nano-scale colocalizations caused by spatial resolution 243 

limitations. This pattern is overlaid onto a background with no fluorophores present. All synthetic images were 244 

512´512 pixels. The length and width of the strip of the furthest red fluorophore was set variable while the rest of 245 

fluorophore expressing strips were fixed to be 512 pixels long and 3xy	z?&{|}
#	��	�|����z���{}

 wide. This allowed us to 246 

measure the performance of LUMoS with unbalanced structure sizes. Cluster size ratio was the area of the minor 247 

fluorophore strip (furthest red) divided by the area of the major fluorophore strip.  248 

Within each strip, all pixels belong to the same fluorophore but they all have slightly different emission 249 

spectra from the ideal value expressed in Eq6. Each pixel’s adjusted spectrum was shifted by a randomly selected 250 

wavelength with a standard deviation of 10nm to represent the variance present in real imaging. A four-channel 251 

representation of the pixel was then generated by integrating the emission spectrum within the bandpass of the 252 

detection channels (Fig 2B). For pixels with no fluorophore, a small background noise was added from a Gaussian 253 

distribution with a mean of 2 and standard deviation of 1. Additional Poisson noise was then applied to each 254 

channel to mimic the shot noise. At the end, the image was convolved with a Gaussian filter with a standard 255 

deviation of 0.5 and a 3´3 median filter to represent real-world diffusion effects.  256 

Synthetic data unmixing performance was evaluated with the F1 score between the LUMoS output and 257 

the ground truth image (Fig 2C):  258 

F1 = 2 × z�{$?}?�4	∗	�{$q||
z�{$?}?�4	�	�{$q||

                    (7) 259 

where 𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 = 	 ���{	z�}?�?�{}
���{	z�}?�?�{}	�	�q|}{	z�}?�?�{}

, and 𝑟𝑒𝑐𝑎𝑙𝑙 = 	 ���{	z�}?�?�{}
���{	z�}?�?�{}	�	�q|}{	4{�q�?�{}

 .     260 
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Results 261 

Nfluorophores = Ndetectors 262 

First, we started with a simple case in which there was same number of fluorophores as imaging channels. 263 

BPAE cells with nuclei stained with DAPI, F-actin labeled with AlexaFluor488 (AF488), and mitochondria 264 

labeled with MitoTracker Red were imaged using 780nm laser [39,40] to excite all three fluorophores (Fig 3A). 265 

Due to the long tail of the DAPI emission spectrum (Fig 3C), F-actin signals in the green channel were 266 

contaminated by the nuclei signals (Fig 3A). DAPI had strong signals in both blue and green channels, while 267 

AF488 and MitoTracker Red were distinct in green and red channels respectively. Therefore, each fluorophore 268 

had a unique distribution of intensity across channels—"spectral signature”, calculated as the intensity of the 269 

pixels in one LUMoS cluster detected by each channel in the raw image (Fig 3D).  LUMoS was able to group 270 

pixels with similar spectral signatures into the same cluster and re-assign each pixel into the correct fluorophore 271 

cluster. As only the blue and green channels had bleed-through issues, we applied LUMoS unmixing only on 272 

these two channel images, and produced 3 output channels (DAPI, AF488, and background). After the unmixing 273 

procedure, the spectral overlap of the DAPI and AF488 was corrected, and the unmixed images now represent the 274 

abundance of each of the fluorophores (Fig 3B, the 3D unmixing results were shown in S2 Movie).  275 
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276 
Fig 3. LUMoS unmixing of BPAE cells with channels bleed-through.  277 

(A) BPAE cell stained with DAPI in nuclei, AF488 in actin, and MitoTracker Red in mitochondria, and imaged 278 

with 2PLSM. Images shown were 2D maximum intensity projections of 3D z-stacks. The green channel (Ch2) 279 

had a mix of actin and nuclei with the DAPI signals bleeding into the AF488. (B) LUMoS unmixing results of the 280 

mixed images in A. Only Ch1 and Ch2 images were used for separation. Note the clear separation of the nuclei 281 

from the green channel after unmixing. Background pixels were removed. (C) The theoretical emission spectra of 282 

DAPI, AF488 and MitoTracker Red. The filter bandwidths were plotted as shaded areas. Note the long tail of the 283 

DAPI spectrum blending into the green channel. (D) The relative intensities of the LUMoS unmixed DAPI and 284 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted October 9, 2019. ; https://doi.org/10.1101/797993doi: bioRxiv preprint 

https://doi.org/10.1101/797993
http://creativecommons.org/licenses/by-nc-nd/4.0/


 16 

AF488 pixel clusters detected by the green and blue channels. Background was separated as an additional cluster 285 

with relatively low intensity in both channels.  286 

Nfluorophores > Ndetectors 287 

The two-photon excitation spectrum of a fluorophore is usually broader than the one-photon spectra and 288 

may have multiple peaks [7,41], making it possible to just use one or two two-photon laser lines to excite multiple 289 

fluorophores simultaneously, which is both time and cost efficient. On the other hand, simultaneous excitation 290 

also leads to the issue of channel cross-talk which limits the number of detection channels to usually less than 4 291 

for two-photon microscopy. This makes the ability to image more fluorophores than detectors crucial for many 292 

applications. As the LUMoS method has no intrinsic requirement that the number of channels be at least equal to 293 

number of fluorophores, we next ascertained the limit of our method by imaging more colors simultaneously 294 

without modifying the imaging hardware.  295 

To test the performance of LUMoS on a sample with more fluorophores than detectors, we first imaged 296 

mixed beads with 5 different fluorophores: LY (Light Yellow dye from Spherotech Inc.), FITC, PE, Purple 297 

(Purple dye from Spherotech Inc.), and APC (Fig 4A). The theoretical emission spectra are shown in Fig 4C. 298 

Simultaneous two-photon excitations at 800nm (MaiTai laser) and 1100nm (InsightX3 laser) were used to excite 299 

all fluorophores [39]. Because of the significant emission spectra overlaps of LY and FITC in the green channel, 300 

PE and Purple in the red channel, and PE, Purple and APC in the far-red channel, the raw images collected by the 301 

4 detectors (Fig 4A) showed many beads appearing in more than one channel (examples are indicated by white 302 

arrows in Fig 4A). The spectral signatures of those fluorophores (Fig 4D) were consistent with the emission 303 

spectra information in each channel, which demonstrated the uniqueness of each fluorophore’s intensity 304 

distribution across the 4 detectors. We therefore applied LUMoS with 6 clusters to the raw 5-color beads images. 305 

The algorithm generated 6 new images in which 1 image included all background pixels and the other 5 images 306 

each represented one single fluorophore. We removed the background to get the clean unmixed outputs (Fig 4B). 307 
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The algorithm performed well to fully separate out the 5-color beads with individual beads belonging only to a 308 

single output channel.  309 

310 
Fig 4. LUMoS unmixing of 5-color beads mixed in 4 detection channels.  311 
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(A) Mixed beads stained with Light Yellow (LY), FITC, PE, Purple, and APC imaged with 2PLSM. LY and 312 

Purple are special dyes by Spherotech. It was unable to resolve 5 colors with 4 detectors, and there were also 313 

beads shown in more than one channels. Two examples are pointed out by white arrows. (B) The images shown in 314 

A after processing through LUMoS. The first five images show the fluorescence of the five different beads 315 

separated from the 4 detection channels by the LUMoS and the last image is the composite showing all five beads 316 

as clearly separated objects. (C) Theoretical emission spectra of the 5 fluorophores. LY and Purple spectra were 317 

obtained from Spherotech, and FITC, PE and APC were obtained from online spectra-viewer. There were 318 

significant overlaps of all the 5 fluorophores. (D) The relative intensity of the pixels of each separated fluorophore 319 

in the 4 channels. Each fluorophore was represented with a unique spectral signature. Background pixels formed 320 

one additional cluster with low pixel intensities in all the channels.  321 

Commonly used dyes differ not only in their emission spectra but also their excitation spectra. The 322 

differences in excitation efficiency offers additional features for LUMoS to better separate out more fluorophores. 323 

In the next example, we used sequential scan by alternating two-photon excitations at 840nm (MaiTai laser) and 324 

1050nm (InsightX3 laser) to visualize 6 compartments with distinct labels in one single cell (Colorful Cell). 325 

Human embryonic kidney cells (HEK293) were transiently transfected with a plasmid that encodes differentially 326 

localized fluorescent proteins. The cells express tagBFP in nucleus, Cerulean in cell membrane, AzamiGreen in 327 

mitochondria, Citrine in Golgi body, mCherry in endoplasmic reticulum (ER), and iRFP670 in peroxisome (Fig 328 

5A). Cerulean, AzamiGreen and Citrine all have significant emissions in the green channel (Fig 5B), but they are 329 

excited at different efficiencies under 840nm and 1050nm [7,39], making it possible to distinguish them with the 330 

spectral signatures by collecting the green channel twice with the two excitations (Fig 5E). The 2PLSM 331 

excitation/emission setup is shown in Fig 5B. All the organelles were ambiguously mixed in the raw images 332 

especially in the green, red and far-red channels (Fig 5C). We assigned 7 clusters to the LUMoS algorithm to 333 

separate out the 6 fluorophores and background from the original 5-channel images. The algorithm reliably 334 

separated the raw data into 6 components that corresponded to the 6 organelles (Fig 5D) based on their shapes and 335 

locations inside the cell by comparing to the cell structure schematic (Fig 5A). The 3D unmixing results were 336 

shown in S3 Movie.   337 
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338 
Fig 5. LUMoS unmixing of the Colorful Cell expressing 6 colors.  339 
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(A) Schematic of the Colorful Cell expressing BFP in nucleus, Cerulean in cell membrane, AzamiGreen in 340 

mitochondria, Citrine in Golgi bodies, mCherry in endoplasmic reticulum, and iRFP 670 in peroxisomes. (B) The 341 

2PLSM system excitation and emission setups for imaging the Colorful Cell. 840nm and 1050nm sequential scan 342 

was conducted for the green channel (Ch2). Cerulean, AzamiGreen, and Citrine all emit significantly in the green 343 

channel. Cerulean can be excited well at both 840nm and 1050nm. AzamiGreen had more excitation at 1050nm, 344 

while Citrine excited better at 840nm. (C) The raw 2PLSM images of the Colorful Cell in the 4 channels with 2 345 

excitation wavelengths for the green channel (Ch2). All the fluorophores were mixed in the detection channels 346 

which made it difficult to reveal individual organelles. Images were maximum intensity projections of 3D z-347 

stacks. (D) LUMoS separation results of the images in C. 6 distinct organelles were separated into individual 348 

images and a composite image of all 6 colors is shown on the bottom. Signals from background pixels were 349 

removed. (E) The relative intensities of each separated fluorophore by LUMoS in the detection channels.  350 

Colocalization analysis 351 

Unlike linear unmixing [10,18], one of the major assumptions of the LUMoS algorithm is that one pixel is 352 

uniquely labeled with one fluorophore, which is advantageous in the way that it provides unambiguous results 353 

especially in biological imaging (examples in Figs 3-5). However, in biology, one structure is often labeled with 354 

more than one fluorophores for colocalization studies. The structures with colocalized labeling will exhibit a 355 

distinct spectral signature, which is usually the combination of, but is different from, the individual fluorophore’s 356 

spectrum. By leveraging this, LUMoS is able to treat the colocalized fluorophores as an additional cluster, and 357 

separate out the pixels with colocalization.  358 

To demonstrate the flexibility of LUMoS to unmix and analyze images with colocalized labels, CD28 359 

virus labeled with Cerulean or YFP was used to transduce T cells either separately or together. The T cells were 360 

then mixed with non-labeled antigen-presenting cells (APCs) to form conjugations [34]. Cerulean or YFP was 361 

recruited and concentrated at the T-cell and APC contact sites. When T cells were transduced by Cerulean or YFP 362 

virus separately, the Cerulean and YFP were detected by the CFP and YFP channels respectively without bleed-363 
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through (S4 Fig). When T cells were transduced by the mix of Cerulean and YFP viruses, some T cells expressed 364 

both Cerulean and YFP, while some only expressed one of them (Fig 6A). LUMoS was able to separate the raw 365 

images into Cerulean-only, YFP-only, and Cerulean+YFP colocalized channels (Fig 6B), by identifying distinct 366 

spectral signatures (Fig 6C). The calculated Mander’s colocalization coefficients were 44.2% (MCerulean) and 367 

38.2% (MYFP) [42]. In addition, although APCs were not labeled, they showed some autofluorescence in the raw 368 

images (Fig 6A indicated by white arrows, and S4 Fig). Similar as background noise (S6 FigD), autofluorescence 369 

was also identified and separated out by LUMoS (Fig 6B). The 3D unmixing results were shown in S5 Movie.  370 

 371 

Fig 6. LUMoS unmixing for colocalization analysis and autofluorescence removal.  372 
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(A) The raw 2-channel 2PLSM images of T cells expressing Cerulean, YFP, or colocalized Cerulean and YFP. 373 

APCs are larger cells (pointed out by white arrows) than T cells (pointed out by red arrows), and APCs are non-374 

labeled but autofluorescent. The fluorophores were concentrated at the conjugation sites between T cells and 375 

APCs. The images were z-projections of slices 6 to 17 of 3D z-stack images (S5 Movie). The left and right cells 376 

were imaged by two acquisitions and stitched, but with the same imaging conditions. (B) LUMoS separation 377 

results of the images in A. Autofluorescence and colocalization were split into separate channels while keeping 378 

pure Cerulean and YFP signals in their own channels. Signals from background pixels were separated and 379 

removed (S6 FigD). (C) The spectral signatures of each structures produced by LUMoS. Background and 380 

autofluorescence (AutoF) were identified as additional pixel groups with distinct signatures. Colocalization 381 

(Coloc) spots were separated out due to its different spectral signature from the Cerulean-only and YFP-only 382 

groups.  383 

Background and autofluorescence removal 384 

Most spectral unmixing tools [19,25,26,43] cannot distinguish background noise from real signals, while 385 

background removal is usually an essential prerequisite before unmixing to remove any signal not originating 386 

from the targeting signals [37]. Usually, if significant background noise exists, a simple math subtraction with a 387 

specific pixel threshold measured from non-structure background is performed, which can have the undesirable 388 

effect of removing real signals. The LUMoS method does not rely on a fixed numerical background subtraction, 389 

but rather the background is treated as a separate cluster with a spectral signature different from fluorophore 390 

expressing signals, so that background noise can be separated (S6 Fig) and removed from the sample signals (Figs 391 

3D, 4D, 5E, 6B). Therefore, the outputs of LUMoS are cleaned in the way that they are both spectral unmixed and 392 

background removed.  393 

Autofluorescence is another a common but usually undesired signal in fluorescence microscopy in which 394 

regions with no label are fluorescent, often with higher intensity and broader emission spectrum than individual 395 

fluorophores [43]. Autofluorescence can come from some extracellular components or some cell types [44]. Non-396 
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negative matrix factorization (NMF) is one spectral unmixing method that has been successfully applied for 397 

autofluorescence removal [22-24]. We here also demonstrated the unmixing performance of LUMoS when 398 

autofluorescence exists. In Fig 6A, the APCs in the sample were not stained but were autofluorescent. Similar to 399 

background, autofluorescence can be treated as an additional cluster if it exhibits a distinct spectral signature 400 

among all the fluorophores in the sample (Fig 6C). LUMoS was able to detect and remove autofluorescence in the 401 

image (Fig 6B). However, if the emission spectrum of autofluorescence is similar to other fluorophores in the 402 

image, the autofluorescence may be hard to separate out, so additional detection channels may be helpful to 403 

unmix the images in such cases.  404 

Synthetic data 405 

Lastly, we sought to test the limitations of LUMoS spectral unmixing by understanding the smallest 406 

structure size which can be detected, the maximum number of fluorophores the algorithm can separate, and the 407 

minimal quality of the input image that is required. As it is impractical to prepare a real-world biological sample 408 

with arbitrarily many fluorophores and precisely control both the size of a stained structure and the image SNR, 409 

we used synthetic images with those conditions computationally manipulated (Fig 2A-C). The synthetic data also 410 

provides us a ground truth to evaluate the performance of the algorithm.  411 

Cluster size 412 

As LUMoS is a k-means clustering based method, the algorithm assumes similar amount of data points in 413 

each cluster, and can disregard small but real clusters in order to minimize the total loss function [32]. This may 414 

be problematic when one fluorophore expressing structure is represented by significantly fewer pixels than the 415 

other structures, in which case the algorithm will misclassify the pixels belonging to a more abundant fluorophore 416 

to the minor structure, leading to an unmixing failure. Therefore, we first tested the robustness of the algorithm by 417 

changing the size of one fluorophore expressing structure while keeping the size of the rest of structures fixed. 418 

The number of fluorophores and SNR were fixed at 8 and 10 respectively. F1 score was used as the evaluation 419 
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metric as it can detect when the algorithm starts to erroneously combine fluorophores. The F1 score of the 420 

smallest cluster was used because the smallest cluster is inherently the most difficult for LUMoS to recognize and 421 

represents the worst-case scenario. Performance was monitored by setting the threshold for successfully unmixed 422 

samples at an F1 score of 0.9 or higher on the smallest cluster. The F1 score for the smallest cluster dropped off 423 

sharply when decreasing the cluster size ratio to below 0.01 (Fig 7, left), because at the tipping point, one part of a 424 

larger cluster was merged with the smallest cluster as the algorithm prioritized the improvements to other 425 

dominant clusters. This happened to all of the pixels in a small cluster at once so the drop off in accuracy was 426 

sudden. This can make LUMoS vulnerable when one fluorophore is expressed in much smaller structures than the 427 

rest.  428 

 429 

Fig 7. Simulation tests of the performance of LUMoS.  430 

Left, the performance of LUMoS with unbalanced structure size. The number of fluorophores was fixed at 8 and 431 

SNR at 10. Middle, the performance of LUMoS with increasing number of fluorophores. The cluster size ratio 432 

was fixed at 0.2 and SNR at 10. Right, the performance of LUMoS with SNR varying. The cluster size ratio was 433 

fixed at 0.2 and number of fluorophores at 8. Results of 10 simulations were averaged to obtain all the final 434 

results.  435 

Number of fluorophores 436 

The natural questions that follow from the analysis are: what is the maximum number of fluorophores that 437 

can be separated, and what is the extent of spectral overlap that can be successfully unmixed. To address these 438 
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questions, we challenged the algorithm by increasing the number of fluorophores until it failed (Fig 7, middle). 439 

The cluster size and SNR were held constant at 0.2 and 10 respectively, and F1 score of the smallest cluster was 440 

measured. All fluorophores were assumed: 1) to be effectively excited, 2) to have the same shape and intensity 441 

scale of emission spectra with a tail into the longer wavelength, 3) to have emission peaks evenly distributed 442 

between 420nm and 685nm (Fig 2A). To mimic the variations in real-world imaging, the spectra of pixels 443 

belonging to one fluorophore were randomly shifted with a standard deviation of 10nm (S7 FigA). The imaging 444 

hardware was assumed to be the same as our system. LUMoS’s performance was very stable until the number of 445 

fluorophores reached 12 (Fig 7, middle). At this point, the mean emission peaks were 37nm apart and there was 446 

72% emission spectra overlap. We also tested the performance of LUMoS on synthetic images of two 447 

fluorophores with varying differences in emission peaks (S7 FigB). The peak of the lower wavelength 448 

fluorophore was fixed while the peak of the higher wavelength fluorophore was varied to evaluate performance at 449 

different peak distances. Depending on where in the range of detectors they fell, the peaks of two fluorophores 450 

could be 10-15nm apart and the fluorophores could still be separated by LUMoS. This 10-15nm peak distance 451 

represents an 88-92% overlap in ideal emission spectra, which is very close to the standard deviation of 10nm 452 

with which each pixel’s individual emission peak was sampled (S7 FigA). This variance in emission spectra from 453 

pixel to pixel is a key limiting factor in how similar the emission spectra of two fluorophores can be while 454 

maintaining separability with LUMoS. In real-world cases, the fluorochromes in a biology sample will not be as 455 

ideal as the simulated scenario. Careful selections of dyes with relatively separated emission spectra are always 456 

desired to gain the best unmixing results.  457 

Signal-to-noise ratio 458 

All spectral unmixing methods require a good image quality. LUMoS is a pixel-based method which 459 

makes it susceptible to any noise detected at the same time with real signals. Therefore, we tested the performance 460 

of LUMoS for unmixing images with different SNRs (Fig 7, right). The cluster size ratio and number of 461 

fluorophores were fixed at 0.2 and 8, while F1 score of the smallest cluster was evaluated at different SNRs. The 462 

simulated data showed that LUMoS was very robust when the SNR was above 2. For images with SNRs around 463 
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that level or lower, LUMoS will likely have low performance on the raw data. Even with ideal spectral signatures, 464 

any pixel-level unmixing techniques such as LUMoS will fail when the observed spectral signature is 465 

contaminated by high noise. In cases where the image to be unmixed is prohibitively noisy, denoising pre-466 

processing techniques or an unmixing method that can take spatial information into account may be desired.  467 

ImageJ PlugIn  468 

Although many spectral unmixing algorithms have been published, so far, easy-to-use open source tool 469 

options are still limited to biologists. Walter published an ImageJ/Fiji spectral unmixing plugin [45] based on 470 

linear unmixing, which requires either a reference image with well-separated structures or a separate preparation 471 

of reference samples for each fluorophore. Those requirements are usually hard to achieve, and the PlugIn also 472 

involves laborious and time-consuming manual ROI labeling. Another unmixing PlugIn available is based on 473 

spectral deconvolution [46], but also requires ROI selections of areas with only one type of fluorophore. We here 474 

developed an ImageJ/Fiji PlugIn [47,48] of the LUMoS algorithm to facilitate the easy implementation of this 475 

flexible method for spectral unmixing, background removal, and colocalization analysis. No ROI selections, 476 

spectra information, or single stain of samples are required. The only input parameter is the number of 477 

fluorophores in the sample. The PlugIn is available from the authors or through ImageJ PlugIn Repository. 478 

Detailed user guides are provided on our website (https://www.urmc.rochester.edu/research/multiphoton/image-479 

analysis/spectral-unmixing.aspx).  480 

Discussion 481 

Over the past decade, a wide variety of high-performance fluorophores have been developed [49,50]. 482 

These reagents exhibit a broad range of physical and spectral properties [51], are capable of targeting proteins or 483 

peptides in living or fixed cells [40], and can also be used as indicators of biological dynamics [52]. Combining 484 

two or more fluorescent probes offers significantly a higher level of information [25,53,54], but may also lead to 485 
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signal crossover [9]. Current spectral unmixing tools solve this problem to some extent, but their applicability is 486 

usually limited. In this paper, we suggested and experimentally examined an approach by using k-means 487 

clustering based unsupervised machine learning as a more flexible alternative to separating mixed images blindly.  488 

There are two major issues with current unmixing tools available to biologists which have highly 489 

restricted the spectral resolutions that can be achieved by fluorescence microscopy especially the 2PLSM. Firstly, 490 

unmixing methods based on linear inversion calculations, such as linear unmixing [9,11,12,37,55], spectral 491 

deconvolution [25,46] and similarity unmixing [26], rely heavily on the cumbersome pre-measurements of 492 

emission spectra either through separately recording the spectra of all fluorochromes [26] or  manually selecting 493 

ROIs with pure labels in the image [9]. Background and autofluorescence, if present, also need to be defined 494 

spectrally and treated as additional spectra [11,55], which are even harder to measure or estimate. LUMoS, as it 495 

does not directly calculate the abundances of fluorophores, is a completely “blind” unmixing process, and is 496 

therefore, much easier to implement and free from those restrictions of acquisition conditions. When background 497 

and autofluorescence are present in the sample, additional clusters could be added, and those undesired signals 498 

could be separated and removed (Fig 6).  Secondly, linear unmixing, Non-negative Matrix Factorization (NMF) 499 

[20,56], deconvolution, and Principle Component Analysis (PCA) [57] all require determined 500 

(Nfluorophores=Nchannels) or over-determined (Nfluorophores<Nchannels) image acquisition systems, greatly restricting the 501 

total number of fluorophores that can be imaged by the hardware design. Although Independent Component 502 

Analysis (ICA) does not intrinsically require less fluorophores than detectors, its success for spectral unmixing in 503 

fluorescence microscopy has been limited to relatively few independent sources which are usually same or fewer 504 

than the number of detectors [58-60]. As LUMoS can be set to create an arbitrary number of clusters for an image, 505 

it can be used in under-determined situations (Nfluorophores>Nchannels) for expanding the capabilities of an imaging 506 

system (Figs 4 and 5). Moreover, as the readout noise increases with the number of detection channels used 507 

[37,58], LUMoS can achieve the high quality unmixing results with as few channels as possible to minimize the 508 

readout noise.  509 

Similar but more complicated clustering based methods have been introduced and developed in the field 510 

of satellite imaging [29,61,62]. Remote sensing image unmixing is similar to fluorescence image unmixing in 511 
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many ways, and many unmixing ideas commonly used for microscopy imaging were initially introduced in 512 

remote sensing [37]. The ultimate goal of both imaging modalities’ unmixing is to decompose the spectral 513 

signature of mixed signals into a set of endmembers and corresponding abundances [38,63]. However, the 514 

uniqueness of fluorescence microscopy makes its spectral unmixing task different from remote sensing. First and 515 

foremost, the number and type of fluorophores (endmembers) are known in advance in microscopy, which offers 516 

a great advantage and simplicity of using clustering algorithms such as k-means for fluorescence image unmixing. 517 

Most of the time, the first step of remote sensing image unmixing is to determine endmember [38,64], and many 518 

of the advanced unmixing algorithms have been focused on how to better estimate the number and characteristics 519 

of endmembers, such as adaptive possibilistic clustering [62] and neural network autoencoder [65]. Second, due 520 

to the chemical mixtures of landscape objects, the abundance of one pixel from a satellite image normally 521 

comprises fractions of each endmembers, thus remote sensing image unmixing methods output abundances for 522 

each pixel as fractions of different chemical components [38,63]. However, in fluorescence microscopy, 523 

biologists usually assume a distinct labeling of a structure by one specific fluorophore, unless colocalized labeling 524 

was designed. The goal of fluorescence image unmixing is more towards unambiguously distinguishing each 525 

labeled structure rather than decomposing each pixel into many different chemical components. Therefore, using 526 

classification based hard clustering, such as LUMoS, by assuming one pixel per fluorophore is more appropriate 527 

in the field of fluorescence imaging and the results of which are more interpretable for biologists. Third, remote 528 

sensing images have hundreds of spectral bands which is usually much more than the number of endmembers, 529 

making linear algebra based unmixing methods, such as linear unmixing, NMF, and deconvolution, better suited 530 

[38,63,64]. Because fluorescence microscopes have much fewer detectors (usually ≤4), many unmixing methods 531 

applied for remote sensing are insufficient for fluorescence imaging with potentially more fluorophores than 532 

detectors. In considerations of those features of fluorescence imaging, we applied k-means clustering as a simple, 533 

easy-to-use, and flexible method for microscopy image unmixing.   534 

The implications of k-means clustering are usually limited by the difficulties in choosing an optimal 535 

number of clusters, “k” [32,66].  However, in the case of fluorescence microscopy, “k” is known and determined 536 

by the number of fluorochromes used, making k-means clustering a well-suited method for spectral unmixing. 537 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted October 9, 2019. ; https://doi.org/10.1101/797993doi: bioRxiv preprint 

https://doi.org/10.1101/797993
http://creativecommons.org/licenses/by-nc-nd/4.0/


 29 

Usually, the “k” is set to be the total number of fluorophores plus one (considering the background noise) 538 

(examples in Figs 3-5). When special circumstances happen, options are available to optimize the “k” to tailor 539 

LUMoS for different cases. For example, when there are known colocalization labeling or autofluorescence 540 

structures (Fig 6), additional clusters could be added by considering colocalization and autofluorescence as 541 

distinct “fluorophores”. When applying LUMoS, carefully examining the image data to better determine “k” in 542 

advance may improve the unmixing results.  543 

There are also limitations of our algorithm, especially when unique circumstances are associated with the 544 

imaging data. As demonstrated in the simulations, our approach may cease to be useful when it misclassifies a 545 

significant portion of the pixels belonging to a fluorophore of interest. This can occur when there are relatively 546 

unbalanced structure sizes, significantly overlapping emission spectra, and a low SNR. Additionally, although 547 

considering the information of nearby pixels by using a median filter, LUMoS still does not take any spatial 548 

information at biological structure level into account so its clustering ability is limited to classifying individual 549 

pixels rather than whole structures as some other methods attempt [67,68]. LUMoS specifically assumes the 550 

abundance of each fluorophores is binary at pixel level, which produces unambiguous classification of individual 551 

fluorophores. If there is colocalization at structure scale, for example one structure labeled with more than one 552 

fluorophore, the colocalization group can be treated as an additional cluster to be separated and analyzed (Fig 6). 553 

However, implicit in our unmixing algorithm is the assumption that a pixel represents an exclusive single label 554 

without considering nano-scale colocalization due to the imaging spatial resolution limitations. This assumption is 555 

valid for spatially well-dispersed fluorescent structures relative to the imaging resolution, but may not hold when 556 

two labeled structures are contacting or too close to each other. We expect future improvements by adding the 557 

options of fuzzy clustering [69,70] or overlapping k-means [71] to extend the flexibility of LUMoS when there 558 

are nano-scale colocalization considerations.  559 

In conclusion, we presented a blind and flexible tool for fluorescence image spectral unmixing —560 

LUMoS. Both experimental and synthetic results demonstrated its ability to robustly separate mixed fluorophores 561 

in terms of the quality of results and ability to converge in a variety of scenarios. The LUMoS method has also 562 

greatly expanded the fluorophore options beyond the number limit of detectors and excitation lasers. These 563 
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qualities make LUMoS a simple, general, and reliable spectral unmixing approach to quickly apply to any 564 

fluorescence images. Last but not least, an optimal strategy for spectral unmixing should always combine image 565 

processing algorithms with careful dye selections and rigorous image acquisitions. LUMoS can be coupled with 566 

spectral imaging or other hardware designs to yield excellent multi-color imaging results, and will offer new 567 

avenues for understanding the complex biological organizations.  568 
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Supporting information 769 

 770 

S1 Fig. Two-photon system schematic.  771 

The system (Olympus FVMPE-RS) was equipped with two two-photon lasers and four PMTs. 25´ water 772 

immersion objective was used. M: mirror, DM: dichroic mirror, Scanner: galvanometer scanner, PMT: 773 

photomultiplier tube. The Blue/Green (420-460nm/495-540nm), and Red/fRed (575-630nm/645-685nm) filter 774 

cubes setup is shown.  775 

 776 

S2 Movie. BPAE cells 3D image unmixing results. 777 

Z-stack of BPAE cells 2PLSM images shown in Fig 3. Left, raw image. Right, LUMoS unmixed image. 778 

 779 

S3 Movie. Colorful Cell 3D image unmixing results. 780 

Z-stack of Colorful Cell cells 2PLSM images shown in Fig 5. Left, raw image. Right, LUMoS unmixed image. 781 

 782 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted October 9, 2019. ; https://doi.org/10.1101/797993doi: bioRxiv preprint 

https://doi.org/10.1101/797993
http://creativecommons.org/licenses/by-nc-nd/4.0/


 38 

 783 

S4 Fig. Single stained cell preparations of the colocalization example. 784 

T cells only transduced with Cerulean or YFP virus mixed with APCs and imaged with the same conditions as in 785 

Fig 6. (A) Cells transduced with Cerulean expressing virus. Cerulean signals showed only in CFP channel (Ch1). 786 

(B) Cells transduced with YFP virus. YFP signals were only detected by the YFP channel (Ch2). There was no 787 

cross-talk between CFP and YFP channels. APCs showed weak autofluorescence.  788 

 789 

S5 Movie. Cerulean and YFP colocalization 3D image unmixing results.  790 

Z-stack of T cells transduced with Cerulean and YFP virus shown in Fig 6. Top, raw image. Bottom, LUMoS 791 

unmixed image. 792 
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 794 

S6 Fig. Separated background noise cluster images.   795 

(A) The separated background image by LUMoS of the BPAE cells image in Fig 3. (B) The separated background 796 

image by LUMoS of the multi-color beads image in Fig 4. (C) The separated background image by LUMoS of the 797 

colorful cell image in Fig 5. (D) The separated background image of the imaged cells in Fig 6. 798 

 799 

 800 

S7 Fig. Two-fluorophore peak distance limitations.  801 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted October 9, 2019. ; https://doi.org/10.1101/797993doi: bioRxiv preprint 

https://doi.org/10.1101/797993
http://creativecommons.org/licenses/by-nc-nd/4.0/


 40 

(A) Synthetic emission spectra of two fluorophores with peak emissions at 475 nm and 490 nm. 10 nm standard 802 

deviations for each spectra are shown in shaded area. (B) The performance of LUMoS for synthetic images of two 803 

fluorophores with variable distances between emission peaks. The cluster size ratio was fixed at 0.2, number of 804 

fluorophores at 2 and SNR at 10. For each color plotted, the peak of the lower wavelength fluorophore was fixed 805 

while the peak of the higher wavelength fluorophore was varied. Results of 10 simulations were averaged to 806 

obtain the final results.  807 
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