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ABSTRACT 1 

Cancer metabolism adapts the metabolic network of its tissue-of-origin. However, breast 2 

cancer is not a disease of a singular origin. Multiple epithelial populations serve as the 3 

culprit cell-of-origin for specific breast cancer subtypes, yet knowledge surrounding the 4 

metabolic network of normal mammary epithelial cells is limited. Here, we show that 5 

mammary populations have cell type-specific metabolic programs. Primary human breast 6 

cell proteomes of basal, luminal progenitor, and mature luminal populations revealed their 7 

unique enrichment of metabolic proteins. Luminal progenitors had higher abundance of 8 

electron transport chain subunits and capacity for oxidative phosphorylation, whereas 9 

basal cells were more glycolytic. Targeting oxidative phosphorylation and glycolysis with 10 

inhibitors exposed distinct metabolic vulnerabilities of the mammary lineages. 11 

Computational analysis indicated that breast cancer subtypes retain metabolic features 12 

of their putative cell-of-origin. Lineage-restricted metabolic identities of normal mammary 13 

cells partly explain breast cancer metabolic heterogeneity and rationalize targeting 14 

subtype-specific metabolic vulnerabilities to advance breast cancer therapy. 15 

 16 
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INTRODUCTION 1 

Molecular classification of breast cancers using the PAM50 classifier has identified 5 main 2 

patient groups (Luminal A, Luminal B, HER2, Claudin-low, Basal-like) with distinct 3 

transcriptional programs, survival outcomes and susceptibilities to anti-cancer regimens1–4 
3. Metabolomics on primary tumors report distinct metabolic phenotypes for each of the 5 

breast cancer subtypes4–8. Investigation of subtype-specific metabolic features have 6 

focused on the effects of estrogen receptor9, HER2 amplification10 and/or driver mutations 7 

(Tp53, Pik3ca)11. However, several of these markers and mutations are shared amongst 8 

breast cancer subtypes and can only partly explain the metabolic heterogeneity12. Tissue-9 

of-origin has emerged as an important intrinsic determinant of cellular metabolism13. This 10 

is based on studies showing cancers use the metabolic network of their normal 11 

counterpart as a backbone for aberrant proliferation14–16. This poses a challenge in the 12 

context of breast cancer as there are multiple cell(s)-of-origin17–19, each postulated to give 13 

rise to a specific breast cancer subtype. Whether individual precursor cells from a single 14 

tissue have intrinsic differences in their metabolism remains unknown. 15 

The mammary gland is composed of two epithelial lineages, the basal and luminal 16 

lineages. Milk-producing luminal cells and contractile basal cells operate in unison to carry 17 

out the overall function of the breast20. The luminal lineage can be segregated into luminal 18 

progenitors and mature luminal (more differentiated) populations, whereas markers to 19 

segregate subpopulations within the basal lineage have not been conclusively defined 20 

(Figure 1A). Each of these three normal mammary epithelial cell (MEC) types serve as 21 

the putative cell-of-origin for distinct breast cancer subtypes. Expression analyses have 22 

projected that basal cells give rise to the Claudin-low subtype, mature luminal cells to 23 

Luminal A & B and luminal progenitors transform to the aggressive Basal-like subtype21. 24 

Mouse models with lineage-specific promoters also support the observation that the same 25 

mutational event results in different breast cancers depending upon the cell-of-origin22–24. 26 

Transcriptomic and epigenomic profiling of both human and mouse normal MECs have 27 

revealed lineage-specific regulatory networks25–27. With respect to metabolism, fetal 28 

mammary stem cells had high transcript levels of glycolysis enzymes28 and luminal 29 

progenitors were shown to have a greater capacity to handle reactive oxygen species 30 

(ROS) than basal cells29. Nevertheless, the metabolic networks of normal mammary cell 31 

types have yet to be resolved and whether breast cancer subtypes retain these metabolic 32 

features from their distinct cells-of-origin remains unknown.  33 

Here, we uncover the distinct metabolic identities of the three normal mammary 34 

epithelial cell types by using a combination of proteomics, characterization of the 35 

mitochondria and pharmacological inhibition. In addition, their distinct metabolic networks 36 

not only underlie the differential dependencies of mammary progenitors to metabolic 37 

inhibitors, but are also inherited by the specific breast cancer subtypes. 38 

 39 
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RESULTS 1 

Proteomes of Human Mammary Cells Expose Differential Metabolic Protein 2 

Abundance  3 

To discover protein distinctions of primary human MEC populations we generated their 4 

global proteomes. We performed mass spectrometry-based shotgun proteomics on 5 

equivalent numbers of FACS-purified basal (CD45–CD31–CD49fhiEpCAMlo-med; color-6 

coded as red in all figures), luminal progenitor (CD45–CD31–CD49floEpCAMmed; light 7 

blue), and mature luminal (CD45–CD31–CD49fhiEpCAMlo; dark blue) cells from 10 normal 8 

human breast samples obtained from reduction mammoplasties (Figure 1B, S1A). Our 9 

patient cohort represented diverse physiologies, covering a wide age range (28-67 years 10 

old) and sex hormone status (3 luteal, 3 follicular, 4 post-menopausal). We detected 6034 11 

unique proteins (Figure 1B). Expression of known markers for each mammary cell type 12 

was accurately captured by our proteomics data (Figure S1B); higher abundance of 13 

Vimentin and ITGA6 (Integrin α6, CD49f) was seen in basal cells, higher KIT and 14 

ALDH1A3 levels in luminal progenitors, and higher GATA3, FOXA1 and KRT8/18 15 

(Cytokeratin 8/18) in the mature luminal. Principal component analysis highlighted the 16 

distinct proteomes of mammary cells; the dominant clustering feature was mammary cell 17 

type with a minor segregation of post-menopausal samples within each cluster (Figure 18 

1C). Out of the 6034 proteins, 5881 were detected in all three cell types (Figure S1C). 19 

MEC-specific proteomes separated into deciles based on median intensity were enriched 20 

for specific functional classes of proteins (Figure S1D and S1E)30. For instance, the GO 21 

biological process in the first decile for basal cells and luminal progenitors was translation 22 

of membrane proteins, whereas mature luminal demonstrated abundance for proteins 23 

with pleotropic functions that were annotated as neutrophil terms (Figure S1D and S1E).  24 

 A metabolic network is defined as the core set of metabolic proteins essential for 25 

the structure and function of a cell13. We first filtered the total proteomes for metabolic 26 

proteins using a curated list of 2753 metabolic enzymes, transporters and subunits31. One 27 

sixth (1020/6034) of our global mammary proteomic dataset was classified with this 28 

annotation (Figure 1B). Unsupervised hierarchical clustering of the metabolic proteome 29 

clustered based on mammary lineages (Figure 1D). To determine the metabolic network 30 

functioning within each MEC, we sought proteins that were significantly abundant in one 31 

population versus the other two (One-way ANOVA in conjunction with a Tukey’s test, 32 

P<0.05). The resulting metabolic networks for basal, mature luminal and luminal 33 

progenitor were composed of 45, 123, 179 metabolic proteins, respectively (significant 34 

hits bar in Figure 1D). Pathway analysis using Enrichr32,33 revealed unique GO Biological 35 

Processes enriched in each metabolic network as found in Figure 1E. We also 36 

constructed a global map of MEC metabolism (Figure S2) using a published template34 37 

and one focused on glucose metabolism (Figure 1F), where we color-coded proteins to 38 

show their corresponding MEC-specificity.  39 
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Basal cells were enriched for GO terms relating to glycolysis (Figure 1E) and 1 

displayed an abundance of glycolytic enzymes (PFKM, ALDOC, GAPDH and PKM); 2 

PFKM and PKM perform two of three key irreversible phosphorylation events in glycolysis 3 

(Figure 1F). In the mature luminal metabolic network, we noted diverse pathways relating 4 

to neutrophil activity, glutamine and glutathione (Figure 1E). It was also enriched for 5 

enzymes in hexose and fructose metabolism such as FBP1, ALDOA and LDHB; LDHB 6 

diverts pyruvate from the TCA cycle by converting it to lactate (Figure 1F). It was striking 7 

that the top 10 pathways in luminal progenitors related to oxidative phosphorylation 8 

(OXPHOS; Figure 1E), demonstrating greater abundance of the majority of electron 9 

transport chain (ETC) subunits as well as nearly all enzymes in the TCA cycle (Figure 10 

1F). MECs had isozyme-specific expression of IDH (mitochondrial IDH3 in basal cells, 11 

IDH2 in luminal progenitors and IDH1 in mature luminal), possibly due to different levels 12 

of (NAD(P)H) and demand of that in particular cell type35. Pyruvate generated from the 13 

carbons of glucose is considered a major contributor to the TCA cycle, however luminal 14 

progenitors did not display any enrichment of glycolytic enzymes. Interrogation of our 15 

MEC metabolism map (Figure S2) revealed numerous non-glycolytic mechanisms to 16 

generate TCA cycle intermediates in luminal progenitors. This was the only population to 17 

exhibit enrichment for enzymes involved in branched-chain amino acid catabolism 18 

(modifying isoleucine, leucine and valine into acetyl-CoA) and was also strongly enriched 19 

for proteins involved in β-oxidation (fatty acids into acetyl-CoA) (Figure S2). Luminal 20 

progenitors also had high level of PHGDH, a key enzyme in serine biosynthesis, shown 21 

to contribute ~50% of the anaplerotic flux into the TCA cycle31 (Figure S2). This 22 

engagement of diverse metabolic pathways that break down nutrients to feed the TCA 23 

cycle underscores the strong preference of OXPHOS in this cell type. Altogether, 24 

proteomes revealed that each mammary cell type has a distinct metabolic network, which 25 

may represent the core set of metabolic proteins necessary for its structure and function.  26 

 27 

Mitochondria Structure and Function is Mammary Cell Type-Specific  28 

Next, we interrogated our published mouse mammary proteomic dataset25 derived from 29 

analogous MEC populations and found that metabolic proteomes clustered based on 30 

mammary cell types (Figure S3A and S3B), similar to human MECs (Figure 1D). Since 31 

human luminal progenitors were endowed with TCA cycle and ETC proteins, we utilized 32 

murine MECs cultured as a monolayer to examine their capacity to undergo OXPHOS as 33 

measured by the Seahorse bioanalyzer (Figure 2A and 2B). Specifically, we performed 34 

the standard mitochondrial stress test, which quantifies oxygen consumption rate (OCR), 35 

a readout for mitochondrial respiration, while exposing cells to inhibitors (Oligomycin, 36 

Antimycin A) or enhancers (FCCP) of this process. At baseline respiration, basal cells 37 

had the lowest level of OCR compared to either of the luminal populations (Figure 2B). 38 

Even with the addition of FCCP, which boosts OCR, basal cells had OCR levels 39 

comparable to or less than the baseline OCR of the two luminal cell types. Luminal 40 
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progenitors and mature luminal cells had similar OCR profiles, except for maximal 1 

respiration, which was significantly higher in luminal progenitors (Figure 2B). Thus, 2 

mammary cell types have distinct capacities for mitochondrial respiration, with luminal 3 

progenitors showing the highest OXPHOS capacity. 4 

We next examined mitochondrial morphologies by transmission electron 5 

microscopy (TEM) of pelleted FACS purified mouse MEC (Figure 2C and S3C). Basal 6 

cells tended to have several small circular mitochondria with glossy cristae. This is similar 7 

to the morphology of mitochondria in hematopoietic and embryonic stem cells36. In 8 

contrast, luminal progenitors had long, tubular mitochondria with elaborate cristae. The 9 

larger size of the mitochondria and higher cristae density are thought to be efficient in 10 

supporting OXPHOS37, consistent with our data on OCR (Figure 2B). Mature luminal cells 11 

surprisingly had indiscernible mitochondria, possibly due to the shearing stress 12 

experienced by these larger cells during FACS. We performed intracellular flow cytometry 13 

to further characterize the mitochondria (Figure 2D), using MitoTracker Green (MTG; total 14 

level of mitochondria) and MitoTracker Red (MTR; mitochondrial activity). Both dyes 15 

showed no significant differences among MECs (Figure 2D). CellROX and MitoSOX 16 

measure cellular and mitochondrial reactive oxygen species (mROS), respectively. 17 

Although total cellular ROS showed minimal differences, mROS levels varied significantly 18 

(Figure 2D). Basal and mature luminal cells had equivalent high levels of mROS, whereas 19 

luminal progenitors had the least amount despite having high mitochondrial respiration 20 

(Figure 2D). These observations can be explained by the multiple antioxidant 21 

mechanisms previously reported in luminal progenitors but not in basal cells29.  22 

The high mROS levels in basal cells were intriguing, as they did not have high 23 

OCR. This led us to ask whether the mitochondria had an alternative role in this population 24 

beyond bioenergetics. The non-ATP functions of the mitochondria are becoming more 25 

appreciated. For example, mitochondrial membrane potential has been linked to stem cell 26 

capacity38,39. We filtered our mouse and human MEC proteomes using MitoCarta, a 27 

curated list of mitochondrial proteins40, and observed cell type-based clusters by 28 

unsupervised hierarchical clustering (Figure 2E). Basal and luminal lineages are each 29 

enriched for their own progenitors. We segregated MECs based on high (MTGhiMTRhi) or 30 

low (MTGhiMTRlo) mitochondrial activity41, and enumerated luminal and basal progenitor 31 

capacity using the colony-forming cell (CFC) assay (Figure 2F). Cells with high 32 

mitochondrial activity had significantly greater CFC number than those with low 33 

mitochondrial activity in both mammary lineages (Figure 2E). Basal, but not luminal, cells 34 

with high mitochondrial activity also displayed enrichment of CFC capacity when 35 

compared to their total unfractionated control. The EpCAM-CD49fhi basal cell 36 

compartment contains mammary stem cells, basal progenitors and differentiated cells. 37 

There is avid interest in teasing out new markers for progenitor-enriched basal subsets 38 

and our data show that mitochondrial activity may serve such a role. Overall, our findings 39 

also show that mitochondrial morphology and function varies with mammary cell type. 40 
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 1 

Mammary Lineages Exhibit Differential Metabolic Vulnerabilities 2 

We determined if metabolic distinctions of mammary lineages manifested as differential 3 

sensitivity to various metabolic drugs using the CFC assay (Figure 3A). To inhibit 4 

OXPHOS, we used complex-specific (RotenoneComplex I; Atpenin A5Complex II; 5 

Antimycin AComplex III; OligomycinComplex V) and non-ETC inhibitors 6 

(Tigecyclinemitochondrial ribosomes; UK5099Mitochondrial pyruvate carrier). 7 

Furthermore, inhibition of glycolysis was achieved at multiple levels (BAY-876Glucose 8 

transporter 1; 2-Deoxy-D-glucoseHexokinase; GalloflavinLactate dehydrogenase; 9 

DichloroacetatePyruvate dehydrogenase kinase). Most metabolic inhibitors resulted in 10 

a potent dose-dependent reduction in progenitor capacity of both lineages, as 11 

enumerated by absolute CFCs (Figure S4A & S4B). Relative CFC counts allow 12 

comparison of the selective vulnerability of luminal and basal progenitors to metabolic 13 

inhibitors (Figure 3B and 3C). Analyses of the dependencies show that the two mammary 14 

lineages require specific ETC complexes for their progenitor capacity. We observed that 15 

inhibition of Complex I preferentially decreased luminal CFCs (Figure 3B) whereas basal 16 

CFCs were significantly more sensitive to Complex II or III inhibition. Complex V inhibition 17 

showed no selective effect (Figure 3B). Tigecycline treatment abrogated the progenitor 18 

capacity of basal over luminal CFCs (Figure 3B), supporting our earlier data that 19 

mitochondria strongly influence basal progenitor activity (Figure 2F). UK5099 prevents 20 

entry of pyruvate into mitochondria, but had a minimal effect on CFC capacity (Figure 21 

3B), in line with our observation that luminal progenitors may not rely on cytosolic pyruvate 22 

(Figure 1E and S2). Pathway analyses of the basal metabolic network had highlighted 23 

glycolysis as the most significant term (Figure 1E). Our series of glycolytic drugs 24 

demonstrated that basal CFCs were far more sensitive than luminal CFCs to all 4 25 

compounds (Figure 3C). Collectively, this set of experiments demonstrates the lineage-26 

specific metabolic vulnerabilities of mammary cells.  27 

Breast Cancer Subtypes Retain Metabolic Features of their Putative Cell-of-Origin   28 

To interrogated whether any of the PAM50 breast cancer subtypes had significant 29 

enrichment of our MEC-specific metabolic network (Figure 4A) we performed single 30 

sample gene set enrichment analysis (ssGSEA)42 on breast cancer patients from the 31 

METABRIC database43. We observed striking relationships between the metabolic 32 

preferences of normal MEC and breast cancer subtypes (Figure 4A). Specifically, the 33 

highly mesenchymal Claudin-low subtype was most enriched for the basal cell metabolic 34 

network. The aggressive basal-like breast cancer was most significantly correlated to the 35 

luminal progenitor metabolic network (Figure 4A). Luminal A and B subtypes showed 36 

significant enrichment for the mature luminal metabolic network (Figure 4A). Thus, breast 37 

cancer subtypes displayed strong activity for metabolic cluster of their proposed cell-of-38 
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origin, suggesting that breast cancers co-opt the metabolic network of their precursor 1 

cells.  2 

Recent studies have reported the successful  targeting of metabolic vulnerabilities 3 

which are specific to the tissue-of-origin16,44 or stem from chromosomal abnormalities45,46. 4 

We therefore used cBioportal47,48 to determine copy number amplifications in metabolic 5 

genes within our MEC-specific networks in order to identify novel subtype-specific 6 

metabolic targets. Interrogation of our luminal progenitor metabolic network revealed 7 

PHGDH,  a known amplified gene and selective vulnerability in ER- basal-like breast 8 

cancers31,49, the subtype thought to originate from luminal progenitors. We identified 5 9 

other highly abundant proteins in our mature luminal metabolic network, namely EPHX1, 10 

NIT1, CYB5R1, GALNT2 and KMO, whose genes were amplified in ER+, PR+ as well as 11 

most consistently in Luminal A and B breast cancers (Figure 4B). These 5 proteins do not 12 

participate in the same metabolic pathway but are all found on chromosome 1q. Whole-13 

arm amplification of 1q together with 16q loss (+/-) is a hallmark chromosomal event in 14 

ER+ breast cancers43,50,51. The fact that we find metabolic network specific proteins being 15 

amplified at the chromosome level in the respective breast cancer subtypes points to 16 

these targets as possible cell-of-origin-specific metabolic vulnerabilities, which require 17 

further investigation.  18 

DISCUSSION 19 

Using a combination of proteomics, characterization of the mitochondria and 20 

pharmacological inhibition, we uncovered distinct metabolic identities of the three normal 21 

mammary epithelial cell types (Figure 4C). This highlights a previously underappreciated 22 

metabolic heterogeneity present in the epithelial compartment of the normal human and 23 

mouse mammary gland. The observed lineage-drive metabolic programs may be intrinsic 24 

to cell identity or a reflection of cellular adaptations to distinct mammary 25 

microenvironments. Basal cells are in contact with the basement membrane which 26 

separates the epithelial layers from a complex mammary stroma composed of immune 27 

cells52, adipocytes53 and fibroblasts54. Coversely, luminal cells are exposed apically to the 28 

lumen of the mammary ductal tree. Since all our analyses were performed ex vivo on 29 

purified mammary cells, we reason that metabolic distinctions are hardwired and likely 30 

necessary to facilitate unique form and function of each mammary cell type. Our MEC-31 

specific metabolic networks will enable further study into the influence of normal cells on 32 

the metabolic phenotype of known breast cancer subtypes. In addition, global proteomes 33 

of primary FACS-purified human and analogous mouse mammary cell types provide a 34 

valuable resource to further understand the regulatory networks that define these different 35 

epithelial lineages. 36 

The metabolic phenotype of a cancer cell is dependent upon integrating multiple 37 

intrinsic and extrinsic cues55. The importance of the tissue-of-origin in tumor metabolism 38 

has now been established13. It has also been postulated that tumors located in the same 39 

tissue but derived from different cell(s)-of-origin would display different metabolic 40 
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properties, however this has never been experimentally shown56. Our work demonstrates 1 

that part of the metabolic heterogeneity observed in breast cancers is instructed by the 2 

diverse cellular origins of these cancers (Figure 4C). For instance, Claudin-low, Basal-3 

like, Luminal A & B appear to inherit metabolic features of basal cell, luminal progenitor 4 

and mature luminal populations, respectively. Arguably, cell lineage could be one of the 5 

most important determinants of cellular metabolism, as all perturbations (mutational or 6 

microenvironmental) will hijack the pre-existing metabolic network of the cell-of-origin as 7 

a backbone. Thus, in addition to mutational events, other characteristics of the tumor such 8 

as the cell-of-origin need to be considered in order to maximize the success of 9 

personalized cancer medicine.  Our study lays the foundation for rationalized targeting of 10 

subtype-specific metabolic vulnerabilities, as informed by the metabolic networks of 11 

mammary epithelial cells. 12 

 13 

 14 

 15 
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METHODS 1 

Human patient samples: All human tissue was acquired with patient consent and approval by 2 

the Institutional Research Ethics Board of the University of British Columbia (UBC; Vancouver, 3 

BC) and University Health Network (Toronto, ON). Hormonal status (premenopausal, follicular 4 

and luteal) was determined by a pathologist examining breast specimens at UBC (Ramakrishnan 5 

et al., 2002). Reduction mammoplasty specimens were minced and enzymatically dissociated in 6 

DMEM:F12 1:1 media with 15 mM HEPES plus 2% BSA, 1% penicillin-streptomycin, 5 g/ml 7 

insulin, 300 U/ml collagenase (Sigma, C9891) and 100 U/ml hyaluronidase (Sigma, H3506) 8 

shaking gently at 37°C, overnight or for 16-18 hours. Epithelial organoids were harvested by 9 

centrifugation at 80g for 30 seconds and viably cryopreserved, as described previously (Labarge 10 

et al., 2013).  11 

Human breast single cell suspensions: Human breast tissue organoids were thawed and 12 

dissociated into single cell suspensions as reported previously (Eirew et al., 2010) . Briefly, 13 

organoids were triturated in 0.25% trypsin-EDTA (Stem Cell Technologies, 07901) followed by 5 14 

U/ml dispase (Stem Cell Technologies, 07913) and 50 g/ml DNase I (Sigma, D4513) as 15 

described above for mouse samples, but for 5 minutes each. Cells were then washed in between 16 

steps with HBBS + 2% FBS and filtered using a 40 m cell strainer. 17 

Human breast FACS staining: For FACS staining, antibodies against CD45 (PECy7), CD31 18 

(PECy7), EpCAM (APCCy7) and CD49f (FITC) were used. Lineage (Lin) positive cells were 19 

defined as CD31+CD45+. Human mammary cell subpopulations were defined as: basal (Lin-20 

EpCAMlo-medCD49fhi); luminal progenitor (Lin-EpCAMhiCD49fmed); mature luminal (Lin-21 

EpCAMhiCD49flo). Dead cells were excluded following doublet exclusion using DAPI. 22 

Mice: All experiments were performed using 8-12 weeks old virgin female FVB wild-type mice 23 

(The Jackson Laboratory or Charles River). Mice were ovariectomized bilaterally, then allowed 24 

one week to recover. A slow-release 0.14 mg 17-β estradiol plus 14 mg progesterone pellet 25 

(Innovative Research of America) was then placed subcutaneously near the thoracic mammary 26 

gland for 2 weeks. This was done to obtain large quantities of viable mammary stem/progenitor 27 

cells for subsequent analysis, as previously reported (Casey et al., 2018; Shiah et al., 2015). All 28 

mice were cared for according to guidelines established by the Canadian Council for Animal Care 29 

under protocols approved by the Animal Care Committee of the Ontario Cancer Institute. 30 

Mouse mammary single cell suspensions: Harvested mammary glands were manually minced 31 

with scissors for 2 minutes, and then enzymatically dissociated using 750 U/ml collagenase and 32 

250 U/ml hyaluronidase (Stem Cell Technologies, 07912) and diluted in DMEM:F12 for 1.5 hours. 33 

Samples were vortexed at the 1- and 1.5-hour mark. Red blood cells were lysed using ammonium 34 

chloride (Stem Cell Technologies, 07850). Cells were then mixed in trypsin-EDTA (0.25%, Stem 35 

Cell Technologies, 07901) that had been pre-warmed to 37°C using a 1mL pipette for 2 minutes. 36 

Next, they were washed in Hanks Balanced Salt Solution (HBSS) without calcium or magnesium 37 

plus 2% FBS and centrifuged at 350g. Finally, cells were mixed in dispase 5 U/ml (Stem Cell 38 

Technologies, 07913) plus 50 g/ml DNase I (Sigma, D4513) for 2 minutes, washed in HBBS + 39 

2% FBS and filtered using a 40 m cell strainer to obtain single cells. 40 
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Mouse mammary FACS staining: Dead cells were excluded following doublet exclusion using 1 

DAPI or Zombie UV Fixable Viability Kit (BioLegend) according to manufacturer’s instructions. 2 

For FACS staining, antibodies against TER119 (PECy7 or eFluor450), CD31 (PECy7 or 3 

eFluor450), CD45 (PECy7 or eFluor450), EpCAM (APCCy7), CD49f (FITC or PECy7), CD49b 4 

(PE) and Sca-1 (APC or Brilliant Violet 711) were used. Lineage (Lin) positive cells were defined 5 

as Ter119+CD31+CD45+. Mouse mammary cell subpopulations were defined as: total basal (Lin-6 

EpCAMlo-medCD49fhi); total luminal (Lin-EpCAMhiCD49flo); luminal progenitor (Lin-7 

EpCAMhiCD49floCD49b+Sca-1-); mature luminal (Lin-EpCAMhiCD49floCD49b-/+Sca-1-/+). High and 8 

low mitochondrial activity populations were defined as MitoTracker RedHiMitoTracker Greenhi and 9 

MitoTracker RedloMitoTracker Greenhi, respectively, and applied after gating for total luminal and 10 

basal populations. Fluorophores are specifically mentioned in individual figures. Cell sorting was 11 

performed on a BD FACSAria™ II.  12 

Mouse CFC assay: 350 cells of the specified FACS-purified population were seeded together 13 

with 20,000 irradiated NIH 3T3 cells in a 6-well plate. Cells were cultured for 7 days at 5% oxygen 14 

in EpiCult-B mouse medium (Stem Cell Technologies, 05610) supplemented with 5% FBS, 10 15 

ng/ml EGF, 20 ng/ml basic FGF, 4 μg/ml heparin, and 5 μM ROCK inhibitor (Millipore). Cells were 16 

allowed to adhere for 24 hours, and then either vehicle control (0.1% DMSO) or the indicated 17 

concentrations of inhibitors were added for the remaining six days. 18 

Mammary cell intracellular flow cytometry: All intracellular dyes were used to stain cells prior 19 

to cell surface marker staining protocol. Staining for total mitochondria (50 nM MitoTracker Green 20 

FM, Thermo Fisher, M7514), mitochondrial activity (250 nM MitoTracker Red CMXRos, Thermo 21 

Fisher, M7513), mitochondrial ROS (5 μM MitoSOX, Thermo Fisher, M36008), and cytosolic ROS 22 

(5 μM CellROX Green, Thermo Fisher, C10492) was performed by incubating cells at 37°C for 23 

20-30 minutes following the manufacturer’s protocols and directly analysed without fixing. Cell 24 

analysis was performed in BD Biosciences Fortessa. Median fluorescent intensity (MFI) refers to 25 

the fluorescence intensity of each event (on average) of the selected cell population, in the chosen 26 

fluorescence channel (PE Texas Red or FITC) and was determined by using the flow cytometry 27 

analysis software FlowJo. 28 

Metabolic inhibitors used in vitro: Vehicle and drugs were added such that the final 29 

concentration of DMSO did not exceed 0.1% (vol/vol). The following drugs were used in this study: 30 

2-Deoxy-D-glucose (Sigma; D8375), dichloroacetate (Sigma; 347795), BAY-876 (Structural 31 

Genomics Consortium), rotenone (Sigma; R8875), tigecycline (CarboSynth, 220620-09-7), 32 

antimycin A (Sigma, A8674), oligomycin (Sigma, 75351), atpenin A5 (Cayman Chemicals, 33 

11898), UK-5099 (Sigma, PZ0160), galloflavin (Sigma; SML0776). 34 

Transmission electron microscopy: Mammary epithelial cells were FACS-purified from 3 EP-35 

treated ovariectomized 8-12 week old mice. Cells were pooled together to increase yield and then 36 

pelleted for 5 mins at 4°C at max speed. Supernatant was removed and then fixed with 2% 37 

glutaraldehyde in 0.1 M sodium cacodylate buffer pH 7.3, without disturbing the pellet. Samples 38 

were processed by the Nanoscale Biomedical Imaging Facility (SickKids, Toronto, ON). Images 39 

were acquired using the FEI Technai 20 transmission electron microscope. Scale bars are specific 40 

to images.  41 
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Seahorse: MEC subpopulations (Luminal progenitor, mature luminal and basal cell) were FACS-1 

purified from unstaged mice and 10,000 cells were plated into each well of collagen pre-coated 2 

Seahorse plates. The cells were culutred in the 5% O2 incubator for 6 days to reach at least 80-3 

90% confluence. On the 7th days, cells were switched to DMEM:HAM’s F12 with no bicarbonate 4 

containing 5% FBS, insulin (Thermo Fisher, 12585014), EGF (STEMCELL Technologies; 5 

78006.1), bFGF (STEMCELL Technologies), hydrocortisone (STEMCELL Technologies, 6 

78003.1), Rock inhibitor (Millipore, SCM075) in 5% oxygen conditions. Then the plate was allowed 7 

to equilibrate for 1 hour in the Seahorse incubator. Inhibitors used for the assay include oligomycin 8 

(2 μM), FCCP (1 μM, Sigma, C2920) and antimycin A (1 μM). After the assay, cell viability was 9 

determined using the CyQUANT nuclear dye (Thermo Fisher, C35007). Data was analyzed on 10 

the WAVE platform and normalized to the number of live cells determined after the viability assay. 11 

Proteomics on FACS-purified human mammary subpopulations: For Liquid 12 

Chromatography-Mass Spectrometry (LC-MS) of human mammary subpopulations, 100,000 cells 13 

from each population were isolated from each patient, as described (Casey et al., 2018). After 14 

FACS purification, cells were washed in ice-cold PBS and pelleted. Pellets were then 15 

resuspended in 50% (vol/vol) 2, 2, 2-trifluoroethanol in PBS and disrupted into cellular lysates 16 

sequentially by repeated probe sonication, followed by six freeze-thaw cycles. Proteins in cellular 17 

lysates were denatured by incubation at 60°C for 2 h, oxidized cysteines reduced using 5 mM 18 

dithiothreitol for 30 min at 60°C and alkylated through reaction with 25 mM iodoacetamide for 30 19 

min at room temperature in the dark. Each sample was diluted five times using 100 mM 20 

ammonium bicarbonate, pH 8.0. Proteins were digested into peptides through addition of 5 µg of 21 

MS-grade trypsin (Promega). The digestion was performed overnight at 37°C and subsequently 22 

desalted using OMIX C18 pipette tips (Agilent). Peptides were semidried through vacuum 23 

centrifugation and resuspended in water with 0.1% formic acid. Subsequently, all samples were 24 

analyzed using an Easy-LC1000 (Thermo Fisher Scientific) coupled to the Orbitrap Fusion 25 

tandem mass spectrometer (Thermo Fisher Scientific). Peptides were separated on an ES803 26 

(Thermo Fisher Scientific) nano-flow column heated to 50°C using a 4-h reverse-phase gradient. 27 

 28 

Bioinformatics Analysis of human mammary subpopulation proteomes 29 

Proteomics Processing: Mass spectrometric data was analyzed using the MaxQuant 30 

quantitative proteomics software (version 1.5.8.3) and a Human UniProt sequences FASTA 31 

database (complete human proteome; release 2015-01, 42,041 sequences). 32 

Carbamidomethylation of cysteine was specified as a fixed modification and oxidation of 33 

methionine was specified as a variable modification. Proteins were identified with a minimum of 34 

two razor+unique peptides, the maximum false peptide discovery rate was specified as 1%, and 35 

“match between runs” was enabled. The distribution of intensity-based absolute quantification 36 

(iBAQ) values was adjusted to the distribution of label-free quantification (LFQ) values based on 37 

the median for each sample. This allowed for imputation of missing LFQ values with iBAQ 38 

values(Wojtowicz et al., 2016). Non-zero values were log2-transformed. The final list consisted of 39 

6034 unique protein groups detected in at least one of the samples. Further data processing was 40 

performed using the R statistical environment (version 3.5.2) (Bunn and Korpela). For protein 41 

groups in which both LFQ and iBAQ values were missing, the 0 values were imputed with a 42 
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random value between 1 and 1.5. Imputation was performed as a precautionary measure for 1 

further statistical analysis. As four samples were run on a separate day, intensity values were 2 

then adjusted for sample batch effects using the ComBat method in the surrogate variable 3 

analysis “sva” R package (version 3.30.1) (Johnson et al., 2007; Leek et al.).  4 

 5 

Total Proteome Bioinformatics: Non-imputed ComBat-modified iBAQ-adjusted LFQ values 6 

were used to discover uniquely expressed proteins in each cell type. Averages across samples 7 

in each cell type were taken, resulting in one mean expression value for each protein in each cell 8 

type (nBC = 9, nLP = 10, nML = 10). Next, the values of zero for each cell type and associated 9 

proteins were excluded from the analysis. Number of proteins expressed in each cell type were 10 

summarized in a Venn diagram, created using the “VennDiagram” R package (version 1.6.20) 11 

(Chen and Boutros, 2011). Gene set enrichment was conducted on the same values. Mean 12 

expression values for each protein in each of the cell types were ranked according to descending 13 

log2 median intensities and grouped into deciles. The protein with the highest intensity received 14 

a rank of 1 and thus, was placed in the first decile. Meanwhile, the protein with the lowest mean 15 

intensity received a rank of y and was placed in the tenth decile, where y represents the total 16 

number of proteins detected in a particular cell type. Pathway analysis via the “enrichR” R 17 

package (version 1.0) was conducted on the proteins in each decile (Chen et al., 2013; Kuleshov 18 

et al., 2016). 19 

 20 

Principal component analysis (PCA) was performed by calculating Euclidean distances of scaled 21 

expression values. PCA scores were plotted in a plane defined by the first two components (that 22 

is, PC1 and PC2) using the “ggbiplot” R package (Vu, 2019). Ellipses were drawn around cell 23 

type clusters, where centroids were the barycentre of each cluster and the diameter represented 24 

the maximum variance. 25 

 26 

Heat maps depicted z-scores of protein expression values (x) computed using the formula: (x – 27 

mean(x))/standard_deviation(x). Divisive hierarchal clustering dendograms of Pearson distance 28 

matrices for samples and proteins were created using DIANA (DIvisive ANAlysis Clustering) 29 

method in the “cluster” R package (version 2.0.7-1) (Maechler et al.). Heat maps were plotted 30 

using the “pheatmap” (version 1.0.12) and “RColorBrewer” (version 1.1-2) R packages (Kolde, 31 

2019; Neuwirth, 2014). 32 

 33 

Metabolic Cluster Derivation and Pathway Analysis: A metabolic proteome was obtained by 34 

filtering the total proteome using a curated list of 2753 genes that encompasses all known human 35 

metabolic enzymes and transporters (Possemato et al., 2011). Based on matching by gene 36 

symbols, 1020 proteins related to metabolism were found in the total proteome of 6034 proteins, 37 

including “PKM” which was not identified in the curated list. As multiple protein groups in the 38 

proteome shared the same gene symbols, duplicates were included in the analysis. Metabolic 39 

signatures were acquired by looking at proteins in which mean expression met the fold-change 40 

and statistical change cut-offs in each cell type compared to the other two cell types (nBC = 9, nLP 41 

= 10, nML = 10). The log2 fold-change (FC) cut-off was greater than 0 and the statistical 42 

significance cut-off was P < 0.05 in a one-way ANOVA and Tukey’s multiple comparisons test. 43 

Pathway analysis of metabolic clusters was conducted using Enrichr 44 
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(https://amp.pharm.mssm.edu/Enrichr/). Enrichr is a comprehensive gene set enrichment tool that 1 

is available both as a web interface (Chen et al., 2013) and an R package (Kuleshov et al., 2016). 2 

It queries a list of gene symbols and returns commonly annotated pathways by searching large 3 

gene set libraries. The gene set library selected for our analysis was Gene Ontology Biological 4 

Process (GOBP) 2018. For each cell-type signature, the top ten GOBP terms enriched by gene 5 

sets were sorted by lowest to highest combined score (ln(p-value) *z-score), a metric used by 6 

Enrichr to find the best ranking terms compared to other methods. 7 

 8 

Correlations to PAM50 Breast Cancer Subtypes: Gene expression for PAM50 breast cancer 9 

subtypes (Her2, Luminal A, Luminal B, Basal-like, and Claudin-Low) and clinical annotations was 10 

performed in the METABRIC cohort (Curtis et al., 2012) and was obtained from cBioPortal 11 

(Cerami et al., 2012; Gao et al., 2013). It provided gene expression profiles and classified breast 12 

cancer subtypes for 1980 patients. The gene expression profiles for the breast cancer subtypes 13 

(were correlated to our metabolic signatures via single-sample Gene Set Expression Analysis 14 

(ssGSEA) using the “GSVA” R package (version 1.30.0) (Hänzelmann et al., 2013). ssGSEA 15 

scores for each signature in the breast cancer subtypes were assessed for significance using a 16 

one-way ANOVA and student’s t-test. 17 

 18 

Statistical Analysis and Reproducibility: All details pertaining to biological “n” numbers or error 19 

bars can be found in the relevant figure legends. Details pertaining to the statistical analysis of 20 

global and metabolic proteome can be found in the relevant methods section detailing 21 

bioinformatics analyses. Statistically significant differences are indicated by asterisks, which 22 

denote size of significance levels (p-values: ns P > 0.05; * P ≤ 0.05; ** P ≤ 0.01; *** P ≤ 0.001; 23 

**** P ≤ 0.0001.) For intracellular flow cytometry analysis statistical significance was calculated 24 

using two-way ANOVA and Tukey’s multiple comparisons test. For in vitro clonogenic assays 25 

comparing high and low mitochondrial mammary cells, a two-way ANOVA and Bonferonni’s 26 

multiple comparison test was used. For in vitro clonogenic assays, statistical significance for all 27 

drug testing comparisons was calculated using two-way ANOVA and Sidak’s multiple 28 

comparisons test. 29 

Data Availability: The mass spectrometry data associated with this manuscript will be submitted 30 

to a public repository (the Mass spectrometry Interactive Virtual Environment; 31 

http://massive.ucsd.edu). These data are associated with the identifier __________ at FTP 32 

download site: ___________. The mouse mammary proteome data (used in Figure 2E, S3B) is 33 

published (Casey et al., 2018) and can be downloaded from the FTP download 34 

site: ftp://MSV000079330@massive.ucsd.edu with the identifier MSV000079330  35 

 36 

 37 

 38 

 39 

 40 

 41 

 42 
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FIGURE LEGENDS 1 

Figure 1: Proteomics illustrate distinct metabolic networks of human MECs.  2 

A. Mammary epithelial cell (MEC) hierarchy depicting the basal and luminal lineages 3 

and cell surface markers used to FACS-purify basal, luminal progenitor and mature 4 

luminal cells. 5 

B. Schematic depicting workflow on how human breast samples (n=10) were processed 6 

to single cells, the FACS gating strategy used to segregate mature luminal (ML), 7 

luminal progenitor (LP) and basal cells (BC) populations. Purified fractions were then 8 

prepared for liquid chromatography-mass spectrometry (LC-MS). Proteomics yielded 9 

6034 uniquely detected proteins, whose abundance was corrected for batch effects, 10 

and missing values were imputed prior to downstream analyses. Total proteomes 11 

were filtered down to 1020 metabolic proteins. 12 

C. Principal component analysis of total proteome from human BC, LP and ML. Dot 13 

colour represents a mammary cell type, dot-shape represents hormone status 14 

(follicular, luteal or postmenopause) and ellipses represents clusters of sample types. 15 

D. Heatmap showing unsupervised hierarchical clustering and enrichment of the 1020 16 

metabolic proteins in human MECs. Patient covariates (cell type, hormone status, 17 

age) are shown in the bars aligning the heatmap. Each line found in the “Significant 18 

Hits” bar is a metabolic protein whose expression was significantly enriched in only 19 

one cell type using a one-way ANOVA in conjunction with Tukey’s test (p<0.05) and 20 

colour-coded for that cell type.  21 
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E. Bar graphs summarize the top 10 most significant GO biological processes according 1 

to Enrichr for each cell type’s metabolic network. Enrichr calculates a combined 2 

score, a metric used to find the best terms.  3 

F. Metabolic proteins participating in glycolysis, TCA cycle and ETC found in our 4 

proteomes are illustrated. Proteins that were significantly enriched in MEC-specific 5 

metabolic network appear in bold and are colour-coded to signify cell type.  6 

Figure 2: Mitochondrial structure and function varies with mammary lineage.  7 

A. FACS gating strategy to purify analogous mouse MEC populations. 8 

B. Oxygen consumption rate, determined by Seahorse Bioanalyzer, of mouse MECs at 9 

baseline, after exposure to Oligomycin (2 μM), FCCP (1 μM) and Antimycin A (1 μM). 10 

The left panel depicts the kinetic view of the data, which is quantified in the right panel 11 

(n = 3 mice; 4 technical replicates per n). All data are mean ± SEM. * P≤0.05; ** 12 

P≤0.01; *** P≤0.001; ****P≤0.0001.   13 

C. Representative transmission electron micrographs of FACS-sorted mammary cell 14 

pellets. Arrows indicate mitochondria. Magnifications are specified in each image.  15 

D. Flow plots and quantification of median fluorescent intensity (MFI) for MitoTracker 16 

Red (mitochondrial activity), MitoTracker Green (total mitochondria), MitoSOX 17 

(mitochondrial ROS) and CellROX (total ROS). Each dot represents a biological 18 

replicate (n=3-4 mice). 19 

E. Heatmap showing unsupervised hierarchical clustering and z-scores of mitochondrial 20 

protein abundance in mouse and human mammary proteomes with defined sex 21 

hormone status and patient characteristics. MitoCarta40, a curated list of 22 
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mitochondrial proteins, was used to filter our total MEC-specific proteomes. The 1 

mouse proteome was obtained from a recent publication 25.  2 

F. Gating strategy used to sort basal and luminal cells with high and low mitochondrial 3 

activity (left) that were subsequently cultured in the colony forming cell (CFC) assay. 4 

Representative colony images and quantification of colonies formed from culturing 5 

luminal and basal cells with either high or low mitochondrial activity in CFC assay. 6 

Each dot represents a biological replicate (n=3 mice). 7 

Figure 3: Metabolic inhibitors expose lineage-restricted vulnerabilities of MECs.  8 

A. FACS gating strategy and pictorial summary of metabolic inhibitors and their 9 

respective targets used to measure effects on mammary progenitor activity using the 10 

CFC assay. 11 

B. Dose-dependent effects of oxidative phosphorylation (OXPHOS) inhibitors on mouse 12 

mammary CFCs. Colony counts were normalized to their respective basal or luminal 13 

vehicle control;. Number of biological replicates per drug is shown in brackets. 14 

Matched-pairwise analysis. Data are mean ± SEM. * P≤0.05; ** P≤0.01; *** P≤0.001; 15 

****P≤0.0001. 16 

C. CFC enumeration after treatment after treatment with glycolysis inhibitors 17 

D. Representative images of CFC plates after 6 days of culture, inhibitor concentration 18 

and colony type are indicated.  19 

Figure 4: Breast cancer subtypes retain metabolic features of specific primary 20 

MECs.  21 

A. Violin plots of single sample gene set enrichment analysis (ssGSEA) scores 22 

comparing the metabolic network of basal, mature luminal and luminal progenitor 23 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted October 8, 2019. ; https://doi.org/10.1101/798173doi: bioRxiv preprint 

https://doi.org/10.1101/798173
http://creativecommons.org/licenses/by-nc-nd/4.0/


cells to the PAM50 subtypes of breast cancer. Each dot represents a patient from 1 

the METABRIC study. One-way ANOVA in conjunction with a Tukey’s test was 2 

performed to determine the statistical significance of the differences in median 3 

ssGSEA scores for different breast cancer subtypes, all compared to the subtype 4 

with the highest median. *** P≤0.001; ****P≤0.0001. 5 

B. Copy-number amplification frequency of KMO, EPHX1, GALNT2, CYB5R1 and 6 

NIT in the breast cancer patients from the METABRIC cohort 43, grouped based 7 

on PAM50 classifier, Estrogen receptor (ER) and Progesterone receptor (PR) 8 

status. KMO, EPHX1, GALNT2, CYB5R1 and NIT were found all highly abundant 9 

in the mature luminal metabolic network. 10 

C. Graphical abstract of the key findings in this study. Mammary epithelial cell types 11 

have lineage-restricted metabolic identities, as found by metabolic protein 12 

abundance, characterization of the mitochondria and drug effects on progenitor 13 

capacity. This is visualized by the distinct coloured nodes in each normal MEC 14 

population. The large amount of heterogeneity in breast cancer metabolism is 15 

represented by the unique colours for the nodes in each subtype. Part of this 16 

heterogeneity can be explained by the diverse cellular origin of breast cancer 17 

subtypes, where they inherit metabolic features of their cell-of-origin, projected 18 

here by the overlapping nodes with the same node colours as their primary MECs. 19 

Figure S1: Characterization of proteomic datasets of primary FACS-purified human 20 

mammary epithelial cells. 21 

A. Gating strategy for FACS-purifying human mammary epithelial cells. Total cells 22 

from dissected human breast tissue are gated to exclude debris. Doublet, dead 23 
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cell and Lineage (Lin+) exclusion ensures sorting of single, live and non-immune 1 

cells.  2 

B. Heatmap shows unsupervised hierarchical clustering and abundance of a set of 3 

known marker proteins well established for distinguishing mammary epithelial cell 4 

types.  5 

C. Venn diagram summarizing the distribution of the 6040 detected proteins among 6 

mammary populations. The numbers in brackets are the total number of proteins 7 

detected in that cell type. 8 

D. Pathway analysis using Enrichr was performed on each decile for each MEC type. 9 

The top 2 GO Biological Processes per each decile are summarized with its 10 

associated adjusted p-value in brackets. 11 

Figure S2: Map of human mammary epithelial cell metabolism 12 

A. Metabolic map is adapted from a previously published template 34. Proteins are 13 

coloured-coded to denote which mammary cell-type specific metabolic network 14 

they demonstrated their highest expression level (Black = not significant or not 15 

detected, Light blue = luminal progenitors, Dark blue = mature luminal and red = 16 

basal). 17 

Figure S3: Characterization of the mouse mammary mitochondria.  18 

A. Gating strategy for FACS-purifying mouse mammary epithelial cells. Total cells 19 

from dissected mouse mammary gland are gated to exclude debris. Doublet, dead 20 

cell and Lineage (Lin+) exclusion ensures single, live and non-immune cells are 21 

analyzed.  22 
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B. Heatmap showing unsupervised hierarchical clustering and z-scores of only the 1 

metabolic proteins, determined by a curated list 31, from our previously published 2 

mouse mammary proteomic dataset 25.  3 

C. Representative transmission electron micrographs of FACS-sorted mammary cell 4 

pellets. Arrows indicate mitochondria. Magnifications are specified in each image.  5 

Figure S4: Absolute CFCs of mammary lineages following treatment with metabolic 6 

inhibitors. 7 

A. Quantification of absolute CFC counts at various concentrations of the specified 8 

OXPHOS inhibitor. Basal colonies are red and luminal colonies are blue. Each dot 9 

represents a mouse and number of biological replicates per drug is shown in 10 

brackets. Data are mean ± SEM. * P≤0.05; ** P≤0.01; *** P≤0.001; ****P≤0.0001. 11 

B. Quantification of absolute CFCs after treatment with glycolysis inhibitors. 12 

C. Representative images of CFC plates at the end of 6-day treatment. Inhibitors, 13 

concentrations and the mammary cell types are indicated.  14 

 15 
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