ABSTRACT
Cancer metabolism adapts the metabolic network of its tissue-of-origin. However, breast cancer is not a disease of a singular origin. Multiple epithelial populations serve as the culprit cell-of-origin for specific breast cancer subtypes, yet knowledge surrounding the metabolic network of normal mammary epithelial cells is limited. Here, we show that mammary populations have cell type-specific metabolic programs. Primary human breast cell proteomes of basal, luminal progenitor, and mature luminal populations revealed their unique enrichment of metabolic proteins. Luminal progenitors had higher abundance of electron transport chain subunits and capacity for oxidative phosphorylation, whereas basal cells were more glycolytic. Targeting oxidative phosphorylation and glycolysis with inhibitors exposed distinct metabolic vulnerabilities of the mammary lineages. Computational analysis indicated that breast cancer subtypes retain metabolic features of their putative cell-of-origin. Lineage-restricted metabolic identities of normal mammary cells partly explain breast cancer metabolic heterogeneity and rationalize targeting subtype-specific metabolic vulnerabilities to advance breast cancer therapy.
Footnotes
↵5 Lead contact