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Summary 
 

High quality population allele frequencies of DNA variants can be used to discover new biology,               

and study rare disorders. Here, we created a public catalog of mitochondrial DNA variants              

based on a population of 195,983 individuals. We focused on 3 criteria: (i) the population is not                 

enriched for mitochondrial disorders, or other clinical phenotypes, (ii) all genomes are            

sequenced and analyzed in the same clinical laboratory, and (iii) both homoplasmic and             

heteroplasmic variants are reported. We found that 47% of the mitochondrial genome was             

invariant in this population, including large stretches in the 2 rRNA genes. This information could               

be used to annotate the mitochondrial genome in future studies. We also showed how to use                

this resource for the interpretation of pathogenic variants for rare mitochondrial disorders. For             

example, 42% of variants previously reported to be pathogenic for Leber Hereditary Optic             

Neuropathy (LHON) should be reclassified.  
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Introduction  
Mitochondrial diseases are among the most common of inherited disorders, with an estimated             

combined prevalence of 1 in 5,000 (Gorman et al., 2015; Schaefer et al., 2008). Mitochondrial               

disorders can be caused by variants encoded in nuclear (nDNA) or mitochondrial DNA (mtDNA);              

we focus here specifically on mtDNA variants. The mitochondrial genome codes for 13             

protein-coding genes, 22 transfer RNA (tRNA) genes, 2 ribosomal RNA (rRNA) genes, and the              

non-genic displacement (D)-loop (Anderson et al., 1981). Unlike the nuclear genome, there are             

no introns, and there are very few non-coding bases in between genes. Human mitochondria              

are inherited through the maternal line, and there are multiple copies (>>2 copies) in every cell.                

Mitochondrial DNA can be uniform in sequence (homoplasmic) or can have variable sequences             

(heteroplasmy) within an individual cell. The level of heteroplasmy (or the proportion of mutated              

and wild-type mitochondria in a cell) can vary over time and between tissues (Wei et al., 2019).                 

It is important to assess the level of heteroplasmy because often a phenotype is observed only if                 

the levels of mutated mitochondrial DNA reach a certain level, deemed the “threshold effect”              

(Russell et al., 2020). Reports show that at the cellular level, a phenotype is typically observed if                 

the heteroplasmy levels are above 70% (Russell et al., 2020), although some variants have              

been reported to have a phenotypic impact at levels as low as 20%. At the level of an individual,                   

differences in levels of heteroplasmy can lead to varying phenotypic presentations of the same              

disease (Chinnery and Samuels, 1999; Chinnery et al., 2002).  

The analysis of genetic variation in the population has been an efficient tool to understand the                

role and essentiality of genes and functional domains. It is also an essential tool to assess the                 

pathogenicity of variants underlying rare disease. For example, scientists have recently drawn            

maps of constrained coding regions using the Genome Aggregation Database (gnomAD)           

(Havrilla et al., 2019), which highlighted regions depleted of non-synonymous variants across a             

large adult population. These regions pointed to genes and functional domains (including some             

without any known function) that may cause severe developmental phenotypes when mutated            

(Havrilla et al., 2019). Another example is the development of a framework that uses population               

allele frequency information to assess whether a variant is “too common” to be pathogenic for a                

specific disease, given the prevalence of this disease in the population and its assumed genetic               

architecture (Whiffin et al., 2017). These two examples illustrate how large databases such as              
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Bravo (University of Michigan and NHLBI, 2018) and gnomAD (Karczewski et al., 2019) have              

been used to aid the interpretation of the human genome. However, these two databases do not                

have information on variants in the human mitochondrial genome (last checked in March 2020).  

Before the public release of this study, MITOMAP (Lott et al., 2013) and HmtDB (Preste et al.,                 

2019) were the two largest publicly available databases of human mtDNA variants, and have              

been used to assess the pathogenicity of mtDNA variants (Richards et al., 2015). For example,               

MITOMAP was used to select candidate mtDNA variants that may cause tubulointerstitial kidney             

disease (Connor et al., 2017). However, both databases gathered mtDNA variant information            

drawn from nearly the same ~50,000 full mitochondrial genomes reported in GenBank, resulting             

in three known and reported limitations (Richards et al., 2015; Wong et al., 2020). Firstly, these                

databases are affected by biases in recruitment and are enriched for samples derived from              

patients with inherited mitochondrial disease. Secondly, mitochondrial genome sequences         

uploaded in GenBank come from different sources and are of unequal (and unknown) quality.              

These biases likely skew baseline rates of variation and estimates of allele frequencies. Lastly,              

these databases did not include heteroplasmic variants, which are essential when studying            

mitochondrial disorders (Wallace, 2018). 

Here we provide a research resource of all mtDNA variants identified in 195,983 unrelated              

individuals without bias towards individuals with a mitochondrial disorder. All of the            

mitochondrial genomes were sequenced in the same clinical laboratory and analyzed using the             

same mitochondria-tailored pipeline. This resource includes both homoplasmic and         

heteroplasmic variants. After the characterization of mitochondrial DNA variation in humans, we            

report on two direct applications of this resource. We first studied the constraint on the               

mitochondrial genome sequence, pinpointing the most constrained regions. This will enable new            

annotations of particular relevance in the rRNA and tRNA genes. We then evaluated the utility               

of this resource for the interpretation of disease-causing variants by analyzing those reported to              

be pathogenic for Leber’s Hereditary Optic Neuropathy (LHON, OMIM:535000), the genetics of            

which has been studied for the past 30 years (Wallace et al., 1988).  
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Results  

Creation of a high-quality catalogue of variation for the         

mitochondria  

To create a resource that could be used to study rare mitochondrial disorders, we needed to                

aggregate information from a population who was not enriched in patients with mitochondrial             

disorders. Here, we sequenced individuals who are Helix users. There were no inclusion or              

exclusion criteria based on a mitochondrial disorder. The only inclusion criteria were: (i) being              

18 years old or more, (ii) living in the United States at the time of consent, and (iii) having a                    

unique email address. For all individuals, we sequenced their Exome+Ⓡ, which includes the             

sequence of the full mitochondrial genome, followed by analysis of the mitochondrial genome             

using a mitochondria-specific pipeline (Methods). We then performed several quality control           

steps including the standard clinical laboratory analysis for the nuclear genomes: (i) quality of              

the overall sequencing output, (ii) assessment of contamination levels and re-collection of            

contaminated samples, and (iii) sex matching (Figure 1A). We also filtered samples that had              

five or more heteroplasmic variants outside of the hypervariable region as having more was              

considered very unlikely to be the result of true heteroplasmy, and more likely to be due to very                  

low levels of contamination (originating from food in most of these cases) (Figure S1). Lastly,               

for all individuals, we calculated (i) ancestry using ADMIXTURE, (ii) mitochondria haplogroups            

using Haplogrep, and (iii) relatedness using Hail’s pc_relate function. We removed           

second-degree or closer related individuals. After applying these steps, we had 195,983            

individuals and mitochondrial genomes to analyze and aggregate (Figure 1A-C). While almost            

all lineages present in the most recent version of PhyloTree (van Oven and Kayser, 2009) were                

represented in our dataset, 91.2% of the haplogroups were part of the Eurasian N lineages               

(Figure 1D, Table S1 ). The median age group was 46-50 years old (Figure 1E) and were                

52.3% female.  
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Figure 1. Overview of the 195,983 individuals and mitochondrial genomes aggregated in            
HelixMTdb. (A) Overview of the different quality control steps undertaken to narrow down the list of                
individuals included in this resource. (B) Continental ancestry principal components. Ancestries were            
inferred from coefficients from ADMIXTURE analysis. The majority of individuals in the “Other” category              
are individuals that are admixed. (C) Number of individuals per inferred continental ancestry. (D)              
Distribution of top-level haplogroups represented in HelixMTdb. Black lines define the mitochondrial            
phylogenetic tree originating at the mitochondrial genome RSRS. rCRS refers to the revised Cambridge              
sequence, which is the mitochondrial genome reference in this study. This figure was adapted from a                
figure on the Mitomap website under a Creative Commons Attribution 3.0 license. (E) Age-group              
distribution of individuals included in the resource. Age-group was self-reported at the time of providing a                
saliva sample. Individuals aged above the age 89 were all grouped together. 
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The next step was to assess the quality of the variant calls used to create the dataset. The                  

mean base coverage was 182x. We first filtered out poor quality calls (GQ < 21 or DP <10).                  

Next, we compared the allele frequencies of variants in HelixMTdb and MITOMAP as a quality               

check for the accuracy of our calls. We first assessed variants in a three small and known                 

hard-to-sequence regions (Andrews et al., 1999; Wei et al., 2019): bases 300-316, 513-525,             

and 16182-16194. The majority of variants in these regions were insertions or deletions, and              

only a minority of these variants were observed in both datasets (Figure S2), which reinforced               

the fact that these regions are hard to sequence. We decided to filter out variants in these                 

regions and not represent them in the final HelixMTdb. However, the absence of variants in               

these regions does not imply that these positions are not variable in the population. After               

removing the variants in known hard-to-sequence regions, the concordance of allele           

frequencies between the two databases was high (rho=0.82, Spearman Rho) (Figure 2A,            
Figure S2 ). The majority of variants unique to HelixMTdb (Figure 2B) and unique to MITOMAP               

are singletons in each, respectively (Figure 2C). These results provided confidence in the             

accuracy of the calls generated by our mitochondria-specific bioinformatics pipeline. On           

average, individuals had 25 homoplasmic variants (range: 0-99, median: 27), and 1            

heteroplasmic variant (range: 0-13, median: 0) (Figure 2D-E). The number of homoplasmic            

variants per individual is explained mostly by the haplogroup and the evolutionary distance of              

that haplogroup from the haplogroup of the reference genome (rCRS). All individuals with             

haplogroups from the L and M lineages carried at least 22 homoplasmic variants (Figure 2D).               

There was also a small but significant increase of haplogroups in the L and M lineages among                 

individuals with at least 1 heteroplasmic variant (L vs N: OR=1.7 p=4.2E-108, Fisher’s exact              

test; and M vs N: OR=1.3, p=1.5E-27, Fisher’s exact test) (Figure 2E). After aggregation of               

these results per variant over the sequenced population, we find a set of 14,324 mtDNA variants                

observed in at least one individual.  

The full database, HelixMTdb, can be downloaded (link in Data availability section, or             

https://Helix.com/Mito ). It has information on the identity of variants, the number of times they              

were observed as homoplasmic or heteroplasmic, and the haplogroup(s) on which the variants             

were found.  
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Figure 2. Reproducibility and accuracy of the variant calls. (A) Comparison of allele frequencies (AF)               
for variants present in both HelixMTdb and MITOMAP. Ρ is the Spearman rho. (B) Allele frequencies (AF)                 
of variants unique to HelixMTdb. The top panel represents SNVs and the bottom panel insertions and                
deletions. Of note, the majority of singletons unique to HelixMTdb are variants only observed at               
heteroplasmic levels in the population (represented by a pink box). (C) Allele frequencies (AF) of variants                
unique to MITOMAP. Top panel is for SNVs and the bottom panel for insertions and deletions. Mitomap                 
does not report on heteroplasmic calls/variants. (D) Distribution of number of homoplasmic variants per              
individual. The pie charts represent the distribution of haplogroup lineages in individuals with a low               
number (less than the median) of homoplasmic variants, and in individuals with a high number (more than                 
the median) of homoplasmic variants. (E) Distribution of number of heteroplasmic variants per individual.              
The pie chart represents the distribution of haplogroup lineages in individuals with a low number (n=0) of                 
heteroplasmic variants, and in individuals with a high number (n≥1) of heteroplasmic variants. L, M and N                 
haplogroups refer to all haplogroups downstream these 3 key nodes in the Phylotree (Figure 1D and                
Table S1 ).  
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Characterization of mitochondrial DNA variation in 195,983       

individuals 

The distribution of allele frequencies of variants across the mitochondrial genome is represented             

in Figure 3A. The majority of variants (66%, n=9,400) were found to be present in less than 1 in                   

10,000 individuals in this cohort, with 24% of the variants (n=3,385) observed in only one               

individual (Figure 3B). Only 0.2% of the variants (n=35) were present in more than 10% of the                 

individuals. We identified 13,435 single nucleotide variants (SNVs), 651 insertions, 237           

deletions, and 1 indel (Figure 3C), and observed a higher abundance of transitions (73% of               

unique SNVs) than transversions (Figure 3D). Lastly, 51% of the variants (n=7,303) were             

observed both as homoplasmic and heteroplasmic in the population, whereas 29% of the             

variants (n=4,188) were only observed in homoplasmic calls, and 20% of the variants (n=2,833)              

were only observed in heteroplasmic calls (Figure 3E). For heteroplasmic variants, we defined             

the Alternate Read Fraction (ARF) to quantify the level of heteroplasmy observed. The             

distribution of the mean ARF of heteroplasmic calls for variants only seen at heteroplasmic              

levels is skewed towards lower ARF compared to the distribution for variants seen at              

homoplasmic and heteroplasmic levels in the population (Figure 3F). 
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Figure 3. Characterization of the 14,324 variants identified in the population. (A) Linearized view of               
mitochondrial genome. pink: protein-coding genes; green: tRNA genes; blue: rRNA genes; yellow:            
noncoding. Lollipops above genomic features indicate variants observed at heteroplasmic levels only (x),             
at homoplasmic levels only (o), and at both heteroplasmic and homoplasmic levels (+) of plasmicity. (B)                
Variants were grouped by their frequency in this cohort. (C) Counts by variant type are indicated. (D)                 
Proportion of transition, transversion. Analysis is restricted to SNVs and bi-allelic variants. (E) Distribution              
of variants that are seen in HelixMTdb only at homoplasmic levels (hom only), only at heteroplasmic                
levels (het only), or both (hom & het). Present in both means that there is at least one occurrence of the                     
variant as homoplasmic and one occurrence as heteroplasmic for the given variant. (F) Distribution of the                
mean (left panel) and max (center panel) Alternate Read Fraction (ARF) for variants seen at               
heteroplasmic levels only. The right panel shows the mean ARF for variants seen at both homoplasmic                
and heteroplasmic levels in the population.  
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The mitochondrial genome is not tolerant to truncating variants in          

protein-coding genes 

We hypothesized that variants predicted to be damaging are less frequent than non-damaging             

variants in the general population, and are more often heteroplasmic (higher ratio            

(heteroplasmic calls) / (heteroplasmic + homoplasmic calls)). Of the 9,607 unique variants in             

protein-coding genes, only 85 (0.9%) were putative loss-of-function (LoF): 48 frameshift           

variants, 27 stop-gained variants, and 10 stop-loss variants (Table S2). They were found in all               

genes (Figure 4A). These LoF variants were extremely rare in the population, with a mean               

allele frequency 0.007%, which is far lower than 0.14%, the mean allele frequency of all variants                

in protein-coding genes. Moreover, there was a significant enrichment of heteroplasmy among            

calls for predicted LoF variants: heteroplasmies represent 23% of all the calls for these variants,               

compared to ~1% of the calls for variants predicted to be of medium or low severity (26% vs 1%;                   

p=2.2E-240, Fisher’s exact test) (Table S2). In particular, all 48 frameshift and 26/27             

stop-gained variants were only observed in the heteroplasmic state in the population at low              

levels of heteroplasmy (the average max ARF observed across these variants was 0.15)             

(Figure 4B ), suggesting that they may not be tolerated when homoplasmic.  

 

Figure 4. Intolerance to loss-of-function variants in protein-coding genes. (A) Summary counts of             
variants per gene, colored based on predicted severity. Pink: low; green: med; blue: high; yellow:               
unknown. Severity was annotated using VEP most_severe_consequence and grouped as follows: high            
(stop gained, frameshift, stop lost), medium (nonsynonymous, inframe indel, coding sequence variant,            
protein altering variant), low (synonymous, incomplete terminal codon variant). (B) Distribution of the             
maximum observed Alternate Read Fraction (ARF) in protein-coding genes for each severity category.  
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The only nonsense variant observed at homoplasmic levels was p.M1* in the MT-ND1 gene. A               

few lines of evidence suggested that p.M1* in MT-ND1 may not be a true loss-of-function: (i) it                 

was observed in 89 individuals at homoplasmic levels, and none at heteroplasmic levels, (ii) it               

was only observed on haplogroup T, suggesting that this is a common polymorphism in a               

specific haplogroup, (iii) it was also observed in 6 individuals in MITOMAP, all of them belonging                

to the T1a haplogroup, (iv) there is a common missense variant at this position (m.3308T>C),               

and (v) the next methionine is at amino acid position 3, which may serve as an alternate start                  

codon. These results indicate that all protein-coding genes in the mitochondrial genome were             

highly intolerant to LoF variants, especially at homoplasmic levels. 

Outside of the protein-coding genes, we also observed intolerance to variants predicted to be              

damaging, especially in the 22 tRNA genes where variant annotations exist. There were 1,046              

unique variants that mapped to the 22 tRNA genes. We classified the predicted pathogenicity of               

each tRNA variant using the scoring model from MitoTip (Sonney et al., 2017). There were 84                

(8.0%) observed variants classified as known (P), or likely (LP) pathogenic (Figure S3A). These              

variants were very rare in the population as the total number of counts in the population was                 

457 including both homoplasmic and heteroplasmic calls (0.3% of the total counts of tRNA              

variants) (Table S2). Moreover, 56% of the calls for variants predicted to be of high-severity               

were heteroplasmic calls, which is significantly more compared to 27% for variants predicted to              

be of medium severity (p=1.3E-25, fisher-exact test), 2% for variants predicted to be of low               

severity (p=9.3E-280, fisher-exact test), and 22% for variants of unknown severity (p=4.4E-24,            

fisher-exact test) (Figure S3B, Table S2 ). There were 1,684 unique variants that mapped to the               

2 rRNA genes (Figure S3C-D). The only annotation we were able to find to predict the impact of                  

variants in rRNA genes was the heterologous inferential analysis (HIA) technique (Elson et al.,              

2015; Smith et al., 2014) (Methods). The application of this method is not yet fully automated,                

and we were only able to annotate a small number (~3%) of the variants in rRNA genes (Table                  
S2).  

Constrained regions in the mitochondrial genome 

Inspired by the work to map the coding constrained regions in the nuclear genome (Havrilla et                

al., 2019), we looked for regions of the mitochondrial genome without any variation,             
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hypothesizing that highly constrained regions may be functionally important. This may be            

particularly important for rRNA genes where very few annotations are available as evidenced in              

the previous section. When restricting our variant list to only homoplasmic calls, we observed              

that 7,938 bases were without any variation in this cohort (Figure 5A). When restricting to only                

homoplasmic calls plus heteroplasmic calls with an alternate read fraction (ARF) ≥0.5, we             

observed that 7,723 bases were invariable in this cohort (Figure 5B, Table S3). When              

considering all homoplasmic and heteroplasmic calls, we observed that 6,228 bases were            

invariable in this cohort (Figure 5C). The full lists of invariant bases for the model based on                 

variants observed at homoplasmic levels or heteroplasmic levels with at least one individual with              

an ARF ≥0.5 + are reported in Table S3.  
 

We then focused on the most constrained regions, which we defined as the longest stretches of                

mtDNA without any variation, when taking into account homoplasmic calls and heteroplasmic            

calls with a ARF≥0.5. We found 42 intervals of 11 bases or longer (Table S3). We hypothesized                 

that haplogroup markers should not be located within these constrained regions, and could be              

used as a control to verify the observed constraint. We obtained a list of 1,495 unique                

haplogroup markers from MITOMAP, using markers found at >=80% in haplogroups           

(Letter-Number-Letter). Indeed, we found that no haplogroup markers -- even those from            

haplogroups not represented in our dataset -- were mapped to these highly constrained regions              

(Table S3 ). In addition, no variants from PhyloTree Build 17 mapped to one of these highly                

constrained regions. Of note, the majority (28 out of 42) of these highly constrained regions               

were located in the 2 rRNA genes, and all but three of the remaining (11) were located in tRNAs                   

(Figure 5D). This map of highly constrained regions will be helpful to decipher the role of                

specific domains of rRNA or tRNA genes, and will provide an additional annotation to interpret               

variants in noncoding regions, in tRNA and rRNA genes. 
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Figure 5. Constrained regions in the mitochondrial genome. (A) Proportion of the bases that were               
invariant when looking at homoplasmic variants only, grouped by genomic feature. (B) Proportion of the               
bases that were invariant when looking at homoplasmic calls plus heteroplasmic calls with an alternate               
read fraction (ARF) ≥0.5, grouped by genomic feature. (C) Proportion of the bases that were invariant                
when looking at all homoplasmic and heteroplasmic calls, grouped by genomic feature. (D) Visualization              
of a highly constrained region in MT-TM . Bases in red are bases that were invariable in the 195,983                  
mitochondrial genomes analyzed. 
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Assessing classification of LHON variants reported in MITOMAP        

and ClinVar  
In addition to identifying highly constrained regions that can help prioritize variants involved in              

severe developmental disorders, large databases with population allele frequencies of variants           

can help discriminate variants for researchers or physicians interested in rare diseases (even             

those with adult age of onset, or non-lethal phenotype). Inclusion in or exclusion from              

HelixMTdb was not based on any clinical phenotype. This database can therefore be used to               

assess whether a mtDNA variant is a good candidate variant for a rare mitochondrial disorder. If                

the frequency of a variant in HelixMTdb is above the maximum credible population allele              

frequency, then the variant is unlikely to cause a mitochondrial disorder by itself (Figure 6A).               

For a mitochondrial disorder assumed to be caused by a homoplasmic variant, the maximum              

credible population allele frequency can be calculated with the equation: Maximum credible            

population AF = prevalence x maximum allelic contribution x 1/penetrance (Whiffin et al., 2017).              

It is then possible to estimate the upper bound of the allele count expected in a population                 

database given this maximum credible population AF (Methods).  
 

We tested the utility of HelixMTdb using this approach on Leber’s Hereditary Optic Neuropathy              

(LHON), which is one of the most studied mitochondrial disorders, with many references             

available to calculate the prevalence of the disease, genetic homogeneity, and penetrance            

(Yu-Wai-Man and Chinnery, 2000). With a model aimed at providing an upper estimate of the               

allele frequency in the population, we estimated the LHON maximum credible population AF =              

1/30,000 x 0.7 x 1/(0.1) = 0.00023. Assuming that the number of observed variant instances in                

HelixMTdb follows a Poisson distribution (Whiffin et al., 2017), the expected allele count for              

LHON in HelixMTdb is 45, based on 195,983 mitochondrial genomes, with a maximum tolerated              

allele count (MTAC) for an LHON-causing variant of 56 (95% confidence). Variants reported to              

be LHON-causing in the literature should have allele counts below the maximum tolerated allele              

count calculated. 

MITOMAP and ClinVar are two databases that catalog variants reported to be pathogenic for              

many mitochondrial diseases. As of July 2019, there were a total of 45 variants linked to LHON                 

in either MITOMAP or ClinVar (Table S4). We grouped these variants based on the amount of                

evidence that supported the impact of the variant for LHON: (i) the 3 primary LHON variants, (ii)                 
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26 additional variants reported as pathogenic in ClinVar and linked to LHON in MITOMAP, (iii) 9                

variants reported as pathogenic in ClinVar but not reported in MITOMAP, and (iv) 7 variants on                

the MITOMAP LHON page (www.mitomap.org/foswiki/bin/view/MITOMAP/MutationsLHON,     

accessed in May 2020), but not reported as pathogenic in ClinVar (Table S4). We compared the                

observed counts for homoplasmic calls for these known LHON variants in HelixMTdb to the              

MTAC (summarized with their quality metrics in Table S4). On average, the read depth (DP)               

was 168, the genotype quality (GQ) was above 95, the mapping quality (MQ) was 60 (see                

Methods ), and the strand odds ratio (SOR) was 0.83, which altogether indicate that the calls for                

LHON variants were of high quality. Homoplasmic counts in HelixMTdb were above the MTAC              

for LHON for 19 (of 45) reportedly pathogenic LHON variants (Figure 6B, Table S4). These 19                

variants are unlikely to be pathogenic by themselves, assuming the estimates regarding the             

prevalence of LHON, genetic homogeneity, and penetrance of the most common LHON variant             

are accurate.  

 

Figure 6. Counts of LHON variants in HelixMTdb and UK Biobank. (A) Visual aid to read the graphs                  
and to assess whether the population allele frequency (AF) of a variant is higher than expected for a                  
variant causing the disease, given what is known about the prevalence and the genetic architecture of the                 
disease. MTAC is the Maximum Tolerated Allele Count (given a disease, the prevalence and genetic               
architecture of the disease, and the size of the database). The grey box indicates the zone where variants                  
would meet the BS1 (Benign Strong 1) criteria defined by the American College of Medical Genetics and                 
Genomics. The BS1 criteria provides strong evidence that variants in this zone would not be pathogenic /                 
having a high impact on the disease studied. (B) Allele counts for reported LHON variants in HelixMTdb.                 
Each circle, square or triangle represents a unique mitochondrial DNA variant. The 3 LHON primary               
mutations are represented by circles. LHON variants reported as pathogenic in ClinVar and present in the                
LHON MITOMAP page are represented by squares. Triangles represent LHON variants described as             
pathogenic on ClinVar or in the MITOMAP LHON page, but not by both. The pink dotted line represents                  
the maximum tolerated allele count (MTAC), which is 56 for HelixMTdb. (C) Allele counts for reported                
LHON variants in UK Biobank. MTAC is 130 for the UK Biobank. 
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One example of a variant whose frequency in this unselected cohort challenges existing             

literature is m.14484T>C, one of the three primary mutations for LHON (Brown et al., 1995,               

1997; Torroni et al., 1997). This variant was present in 170 individuals, with 144 homoplasmic               

calls and 26 heteroplasmic calls, out of 195,983 individuals (AFhom: ~9 in 10,000). Electronic              

medical records (EMR) were available for 18 of the 144 individuals with a homoplasmic              

m.14484T>C call in HelixMTdb. None of these 18 individuals had an ICD10 code starting with               

H47.2 in their electronic health record, which represents all optic atrophies, including hereditary             

optic atrophy (code H47.22) (Table 1). We then tested whether this result would replicate by               

looking at the allele frequency of m.14484T>C in the UK Biobank (UKB) cohort. The              

m.14484T>C variant and 8 other known LHON variants were directly genotyped with the UKB              

genotyping array. The allele frequency was AFhom: ~8 in 10,000 in the entire cohort (n=392               

individuals out of 486,036), and it was AFhom: ~9 in 10,000 in a subset of unrelated individuals of                  

European ancestry (n=291 individuals out of 335,840). These results confirmed the relatively            

high frequency of m.14484T>C variant in the population (Figure 6C, Table S4). Looking at the               

ICD10 codes in all UKB medical records, 97 participants had at least one ICD10 code H47.2 in                 

their health records (optic atrophies have been recorded); however, none of the participants             

with the m.14484T>C variant had an ICD10 code starting with H47.2 (Table 1). Altogether,              

these analyses strongly suggest  that the m.14484T>C variant does not cause LHON by itself.  

 
Table 1: Phenotype of individuals carrying the m.14484T>C variant 

 

HelixMTdb 

all individuals 

HelixMTdb 

homoplasmic 

m.14484T>C 

UK Biobank 

all individuals 

UK Biobank 

homoplasmic 

m.14484T>C 

n samples 195,983 144 486,428 392 

n samples with EHR available (% of samples) 18,503 (9%) 18 413,647 318 

Mean number of records in EHR when 

available (range) 54 (1 - 823) 39 (1 - 156) 21 (1 - 5012) 17 (1 - 209) 

Median number of records in EHR when 

available 35 34 8 8 

Number of individuals with ICD10 code H47.2 

(% of samples) 12 (0.06%) 0 (0%) 97 (0.02%) 0 (0%) 
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Discussion  

Here we present a genomic resource that can be used to answer new biological questions, and                

decipher the genetic etiology of rare mitochondrial disorders. HelixMTdb reflects the aggregated            

and de-identified mitochondrial DNA variants of 195,983 unrelated individuals. This is           

approximately 4 times more full mitochondrial genomes than what is currently available in             

MITOMAP or HmtDB (Lott et al., 2013; Preste et al., 2019), two prominent mtDNA variant               

databases. Unique properties of HelixMTdb are that: (i) it is not enriched for patients with               

mitochondrial disorders; (ii) it is less prone to batch effects since all samples were processed               

through the same lab protocol and variant calling pipeline; and (iii) it includes heteroplasmic              

calls and statistics on the allele fraction for these calls. It is also worth noting that all individuals                  

sequenced were adults, with a median age group of 46-50, which is essential when evaluating               

candidate variants for rare and life-threatening diseases in childhood. This resource thus            

addresses the three main limitations of current population allele frequency databases for mtDNA             

variants, but also has its own limitations. A first limitation is that the average read depth per                 

sample was 182 for the mitochondrial genome, which reduced the sensitivity for extremely             

low-fraction heteroplasmies (<10%). This limitation should not have an impact for the use of the               

database in a clinical setting as the majority of pathogenic variants have a functional impact               

when heteroplasmy levels are >70% (Russell et al., 2020). A second limitation comes from the               

fact that mitochondrial DNA in this study was extracted from saliva, and heteroplasmic levels              

may not reflect levels present in mitochondria from phenotype-affected tissues such as muscle.             

A third consideration is the relatively low diversity of mitochondrial genomes / haplogroups             

represented in HelixMTdb. For example, a smaller percentage of the individuals came from the              

L lineages (African) or M lineages (Asian) in HelixMTdb compared to MITOMAP.  

We identified 14,324 unique variants, excluding variants overlapping homopolymer tracts. We           

showed that 20% of the variants were only observed at heteroplasmic levels, which would be               

missed if heteroplasmic calls were not included. When looking at the 13 protein-coding genes,              

we showed that the mitochondrial genome is not tolerant to protein-truncating variants at high              

levels of heteroplasmy. This is in contrast with the relative tolerance of the mitochondrial              

genome for missense variants as shown by the high number of missense variants observed at               

homoplasmic levels in the population, which was very close to the number of synonymous              
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variants observed at homoplasmic levels in the population. The only exception to this rule was               

the presence of a nonsense variant at the start codon of MT-ND1. All of the individuals carrying                 

the nonsense variant were from the same haplogroup T. It is also present in MITOMAP in                

individuals from the T haplogroup. It is likely that MT-ND1 is still properly translated in these                

individuals with the use of a non-canonical start codon in the context of the T haplogroup, or                 

with the use of the Methionine encoded at the third cdon.  

We found that 47% of the bases of the mitochondrial genome did not even have one                

homoplasmic or heteroplasmic call at a level higher than 50% across the entire cohort. Given               

the fact that the number of unrelated individuals in the cohort was >10x the number of bases in                  

the mitochondrial genome, and the fact that the mutation rate of mtDNA is higher than the                

mutation rate of nuclear DNA (Sigurðardóttir et al., 2000), this result shows the very high               

constraint on the mitochondrial genome. Notably, the two rRNA genes were under highest             

constraint with 65% of their bases invariant. This high level of constraint is potentially the result                

of the absence of redundancy for the mitochondrial rRNA genes, unlike the rRNA genes in the                

nuclear genome that are present in >100 copies located in five rDNA clusters (Lander et al.,                

2001). Most of the known modifications of 16S rRNA and 12S rRNA fall within the most highly                 

constrained regions (Hällberg and Larsson, 2014). The tRNA genes also showed strong            

constraints, and the smaller representation of the tRNAs in the longest stretches without any              

variant may be explained by the smaller size of tRNA genes compared to the 2 rRNA genes. At                  

the opposite of rRNA and tRNA genes, most of the non-coding bases were variable in the                

population. The one exception to this rule was a short stretch mapping to the mitochondrial light                

strand origin of replication.  

We hope that these maps of highly constrained regions in the mitochondrial genome will be               

used to annotate variants, especially those falling in rRNA genes. Here are three illustrations.              

First example: the regions under high constraint in the rRNA genes allow molecular biologists to               

design experiments to study translation and regulation of protein expression in the mitochondria             

(Hällberg and Larsson, 2014). Second example: these annotations could be used to analyze             

somatic mitochondrial mutations identified in cancers (Reznik et al., 2017; Yuan et al., 2020).              

For example, a recent study reported a ‘comprehensive’ molecular characterization of           

mitochondrial genomes in human cancers based on 2,658 cancers from The Cancer Genome             

Atlas, but the study focused on the impact of truncating variants (and other nonsynonymous              

variants) as well as mitochondria copy number (Yuan et al., 2020). The analysis of variants in                
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rRNA genes was omitted possibly due to the difficulty of analyzing these without available              

annotations. We hope HeixMTdb will help in that context. Third example: this is useful when               

interpreting the potential role of a variant for a rare (and potentially life-threatening in childhood)               

developmental disorder. Variants in these regions under high constraint are very good            

candidates. 

We have also shown that this resource can be used to better evaluate and prioritize variants                

suspected to cause rare mitochondrial disease, as long as some assumptions on the             

prevalence, and genetic architecture of the disease could be made. Through a comparison of              

the allele frequencies of LHON variants to disease prevalence, we showed that ~40% of the               

variants reported to be pathogenic for LHON on ClinVar or MITOMAP could be re-classified as               

Benign / Likely Benign based on the ACMG standards and guidelines because the Benign              

Strong 1 (BS1) criteria would apply (Richards et al., 2015; Wong et al., 2020). In particular, the                 

primary LHON m.14484T>C variant is likely not pathogenic for LHON by itself. We were able to                

replicate these results using the UK Biobank cohort, and we showed that the frequency of the                

variant in unselected cohorts is high, with very low penetrance (0/144 and 0/392 individuals had               

a LHON diagnosis in their health record). These results are consistent with previously reported              

pedigree analyses finding that this variant exhibits a low LHON penetrance in a             

non-haplogroup-J background (Brown et al., 1997; Howell et al., 2003; Puomila et al., 2007;              

Torroni et al., 1997). Of note, the m.14484T>C variant was present in 13 different haplogroup               

lineages in HelixMTdb (Table S4), and the ratio of (haplogroup J m.14484T>C carriers) / (all               

haplogroup J) = 4 / 16,030 was the lowest compared to the ratio for the 12 other haplogroups. It                   

remains a possibility that there may be a branch of haplogroup J where a combination of                

variants with m.14484T>C is pathogenic (Brown et al., 1995; Carelli et al., 2006). Overall, our               

analysis of variants reported to be pathogenic in ClinVar and MITOMAP for a well-characterized              

mitochondrial disorder highlights the clinical utility of HelixMTdb. We believe this resource will be              

instrumental in improving clinical classification of variants, similar to the role that other large              

nuclear DNA variation databases play in clinical interpretation today (Richards et al., 2015).  
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Methods  

Individuals  

The HelixMTdb database reflects aggregated and de-identified mitochondrial DNA variants          

observed in individuals sequenced at Helix. The cohort is skewed slightly female at 52%, with a                

non-normal distribution of samples aged 18-85+ (median age group = 46-50). All individuals             

sequenced resided in the United States at the time of providing their saliva sample. Importantly,               

these individuals have not been sequenced based on the presence or absence of any medical               

phenotype (i.e. there are no inclusion or exclusion criteria in the registration process based on               

any medical phenotype). Nine percent of Helix users in this study were also participants in the                

Healthy Nevada Project under the University of Nevada Reno IRB protocol: #7701703417.            

Electronic medical records were available for most of the Healthy Nevada Project participants,             

and these records showed no enrichment for classic mitochondrial diseases as shown in Table              
S5.  
 

The replication study for the primary LHON variants was based on the UK Biobank resource               

(Sudlow et al., 2015),  under application number 40436.  

Sample preparation, Sequencing, and Variant Calling 

Library Preparation and Enrichment was performed in the Helix clinical laboratory (CLIA            

#05D2117342 , CAP #9382893). Samples were sequenced using the Exome+ assay, a            

proprietary exome that combines a highly performant medical exome, the mitochondrial           

genome, and a microarray-equivalent SNP backbone into a single sequencing assay           

(www.helix.com). Read length was 75 bp. Base calling and alignment were run on BaseSpace              

servers. For mitochondria, we first extracted read pairs in which both reads were mapped and               

at least one was mapped to the mtDNA. This enabled us to map regions that might otherwise be                  

discarded due to multimapping regions of homology with nuclear sites (NUMTs). Reads were             

mapped to the rCRS (GenBank: J01415.2) using BWA mem (Li, 2013), and were deduplicated              

and realigned using the Sentieon implementation of the GATK algorithms(DePristo et al., 2011)             

(Freed et al., 2017). VCF files were generated using haplotyper with emit_mode=confident .  
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The mean read depth across the mitochondria for an individual was DP=182.  

Before including samples and calls into HelixMTdb, we used the following filters: removed             

samples with mean mtDNA coverage <20; removed calls at positions covered by less than 10               

reads; removed calls with genotype quality (GQ) below 20.  

Haplogroup Calling 

We collapsed heteroplasmic calls into either ALT or REF homoplasmic calls whenever the             

majority call consisted of at least 75% of the total reads. The remaining sites were left as                 

heteroplasmic, although they are ignored (assumed as reference) by the haplogroup caller.            

Some indels in a VCF can be left- or right-aligned, meaning that they could be expressed in                 

more than one fashion, changing the coordinates of the positions that are affected. For instance,               

a change in the number of repeats of a microsatellite can be expressed as an indel at the                  

beginning or at the end of the microsatellite. Both of these can be used to reconstruct the same                  

sequence, but might be used differently by haplogroup callers. Our pipeline originally makes a              

left-alignment, which is the way the calls are represented in HelixMTdb. We changed it to a                

right-alignment to be able to use Haplogrep (Weissensteiner et al., 2016). We removed, in              

advance, sites and mutations that were not incorporated in Phylotree v17 (van Oven and              

Kayser, 2009), because they are not commonly used for haplogroup assignment. We then ran              

Haplogrep, using rCRS as reference, and kept the first (ranked) 40 hits for further analysis. A                

number of steps were taken to further reduce the number of haplogroups under consideration:              

(i) the quality call (for haplogroup) had to be at least 0.94 of that of the maximum, and (ii) at                    

least as high as the value of the third ranked quality (ties might result in more than three                  

haplogroup passing this filter). The most recent common ancestor of these haplogroups was             

selected as representative for the sample. When the lineage falls in a haplogroup that is similar                

to that of rCRS, Haplogrep tends to provide inaccurate results. For instance, a VCF file without                

any position, does not provide a haplogrep call, but corresponds to a sequence that matches               

the rCRS. Also, lineages similar to the rCRS that share a mutation with a different part of the                  

tree might be assigned to an incorrect haplogroup, but are characterized by a large number of                

missing mutations for the haplogroup. These were all corrected afterwards. 
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For comparative representation in HelixMTdb, we combined haplogroups into higher-level          

haplogroups that matched those shown in MITOMAP (Table S1). For HelixMTdb, we further             

grouped higher-level haplogroups with less than 10 individuals with other higher-level           

haplogroups to avoid providing an individual’s full mitochondrial DNA sequence. This resulted in             

the grouping together of ‘L4 + L5 + L6’ and ‘X + S’.  

Relatedness analysis 

In addition to calling mitochondrial DNA variants, reads from the entire Exome+ were mapped to               

Human Reference GRCh38 for non-mitochondrial variant calling, using a custom version of the             

Sentieon align and calling algorithms (Kendig et al., 2018) following GATK best practices. For              

allele frequency analysis, we further reduced the sample set by removing individuals related at              

the 2nd-degree or closer.  

Briefly, we calculated kinship using the Hail pc_relate method ([CSL STYLE ERROR:            

reference with no printed form.]) using 11,772 representative common SNPs spread across the             

genome. The method pc_relate was run with the first 10 principal components and a kinship               

cutoff of 0.0884. 

From clusters of family members, we kept both halves of the father-child relationships. For other               

relationships, we randomly selected one representative to retain. In total, 21,074 samples were             

removed at this stage. We labeled this the unrelated dataset, and proceeded with our analysis               

based on this cohort of 195,983 individuals.  

Ancestry assignment and principal component analysis 

For each individual we ran a supervised ADMIXTURE algorithm with k=5 ancestral populations. 

From these admixture coefficients, we then labeled each individual with one ancestry using the 

following decision tree: 

- When (ADMIX_EUR>0.85) & (ADMIX_EAS<0.1) & (ADMIX_SAS<0.1) & 

(ADMIX_AFR<0.1) & (ADMIX_AMR<0.1) then "European" 

- When ADMIX_EAS>0.6 then “East Asian” 

- When ADMIX_SAS>0.6 then “South Asian” 
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- When (ADMIX_AFR>0.3) & (ADMIX_EAS<0.1) & (ADMIX_SAS<0.1) & (ADMIX_AFR > 

ADMIX_AMR) then “African” 

- When (ADMIX_AMR>0.1) & (ADMIX_EAS<0.1) & (ADMIX_SAS<0.1) then “Latinx) 

- Default (“Other”) 

 

Principal Component Analysis was done using Hail hwe_normalized_pca  function and based 

on 12,000 autosomal SNPs spread across the genome.  

Analysis of Allele Frequency and Heteroplasmy  

All allele frequency and heteroplasmy analysis, as well as all of the analyses listed after this                

paragraph, were performed in Hail (Hail Team. Hail 0.2.13-81ab564db2b4.         

https://github.com/hail-is/hail/releases/tag/0.2.13 .) on Amazon HPC clusters. Briefly, batches of        

500 gVCF files were combined into multi-sample gVCF files using GenomicsDB           

(https://github.com/Intel-HLS/GenomicsDB/wiki ). Multi-sample VCF files were extracted from the        

resulting gVCF at sites deemed to be informative and then combined into large pVCF files for                

ingest into Hail using Bcftools (https://samtools.github.io/bcftools/bcftools.html ). All variants were         

left-aligned.  

Levels of heteroplasmy play important roles in causing a mitochondrial disease, as well as              

modulating the strength of phenotypes. To provide as much information as possible regarding             

the levels of heteroplasmy observed for each heteroplasmic call, we defined ARF = Alternate              

Read Fraction = (counts of reads supporting the alternate allele) / (count of all reads at this                 

position).  

Comparison with MITOMAP database 

We downloaded the MITOMAP GenBank FL ID set (all of the full-length sequences) on June 16,                

2019 (http://www.mitomap.org). The MITOMAP database at the time was based on 47,412            

full-length mitochondrial sequences (www.mitomap.org/foswiki/bin/view/MITOMAP/Mitobank).    

However, the maximum allele count displayed for one variant was 48,241. For the Mitomap              

Allele Frequency calculation, we considered that there were 48,241 mitochondrial genomes with            

coverage at every base.  
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We compared the variants, their counts and their allele frequencies in multiple ways. We looked               

at all calls, homoplasmic SNVs, homoplasmic insertions, and homoplasmic deletions. We           

plotted the results using a scatter plot, and calculated the Spearman rho coefficient. The most               

notable differences in variant calls between HelixMTdb and MITOMAP were observed in the             

homopolymer stretch between position m.302 and m.315. We think that it is likely that both               

HelixMTdb and MITOMAP have inaccurate calls at this locus. In addition, some differences in              

variant frequencies between the two databases may be due to differences in left- or right-               

alignment in homopolymer stretches.  

Annotation of feature type  

Genomic feature locations were annotated using the list from MITOMAP          

(https://www.mitomap.org/foswiki/bin/view/MITOMAP/GenomeLoci ), and further curated into     

four groups: protein-coding, rRNA, tRNA, and non-coding (all remaining sites including the            

D-loop).  

 

Moreover, a few positions overlap multiple features (e.g. positions 4329-4331 overlapping MT-TI            

and MT-TQ , or positions 5721-5729 overlapping MT-TN and the noncoding L strand origin             

MT-OLR). In these cases, we made arbitrary decisions to avoid overlapping annotations that             

may impact some future analyses. The positions and their associated feature type are             

represented in Table  S6.  

List of constrained intervals in the mitochondrial genome 

To calculate invariable positions in HelixMTdb, we defined a position as being variable if at least                

one SNV, or one deletion was overlapping this position. Figure 5 provides the results taking into                

account (A) only homoplasmic calls, or (B) homoplasmic calls and heteroplasmic variants where             

at least one individual was observed with a ARF ≥0.5, or (C) all homoplasmic and heteroplasmic                

calls. We used BEDTools (Quinlan and Hall, 2010) to sort and merge the list of SNVs and                 

positions deleted, and defined the final list of positions that were variable.  

 

We then used bedtools complement to obtain the list of constrained intervals in the              

mitochondrial genome.  
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PhyloTree variants in highly constrained intervals 

To test that the regions identified as highly constrained are invariable in the main structure of                

the mitochondrial phylogenetic tree, we collected the list of mutations from the official phylotree              

page. After trimming the characters that do not identify position (e.g. ref base, their character of                

recurrent, deletion, insertion), we generated a list of all positions, and a BED file spanning those                

positions. Likewise, we generated a BED file for the intervals indicated in Table S3 . Using               

BEDTools we assessed the intersection of these BED files, and the result is that the intersection                

was empty. 

Annotation of impact and predicted severity 

All variants were classified using Variant Effect Predictor (VEP) against ENSEMBL e!95.            

Conservation scores were reported from phastCons 100way_vertebrate, obtained from UCSC          

for GRCh38  

(http://hgdownload.cse.ucsc.edu/goldenpath/hg38/phastCons100way/hg38.100way.phastCons/

chrM.phastCons100way.wigFix.gz). 

 

For protein-coding variants, severity was determined using the VEP         

most_severe_consequence  annotation, and grouped as follows in Table S2:  
- High: frameshift, stop_gained, stop_loss  

- Medium: inframe indel, missense, start loss  

- Low: synonymous, stop_retained 

tRNA variants were classified by submitting variants in tabular format to the Mitomaster Web              

Service API, obtaining their raw MitoTip (Sonney et al., 2017) score, then converting the score               

to a predicted pathogenicity, using the MitoTip scoring matrix         

(https://www.mitomap.org/foswiki/bin/view/MITOMAP/MitoTipInfo ) as follows: >16.25=Likely    

Pathogenic (LP); 12.66-16.25=Possibly Pathogenic (PP); 8.44-12.66=Possibly Benign (PB);        

<8.44=Likely Benign (LB). Mitotip tRNA pathogenicity scores are a result of a combination of              

conservation, frequency in databases, and predicted secondary structure disruption. In Table           
S2, these tRNA variants were combined as follows:  
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- High severity: known Pathogenic (P), likely pathogenic (LP) 

- Medium severity: Possibly pathogenic (PP)  

- Low severity: Benign (B), likely benign (LB),  and possibly benign (PB) 

rRNA variants were annotated using the list of variants and their severity categories determined              

by Heterologous Inferential Analysis (HIA) published in (Elson et al., 2015; Smith et al., 2014).               

Briefly, this technique maps rRNA variants onto the crystal structure for Human 12S and 16S               

subunits to understand likely structural defects and leverages functional assay results from            

highly conserved homologs in multiple species to assign pathogenicity. Of the 113 variants             

derived from Genbank sequences collected from these two papers, we were able to annotate              

the predicted severity for only 43 matching variants. In addition, we found 1,807 novel variants               

that have not been previously classified in the literature or reported in MITOMAP. We left these                

as “Unknown” severity. 

Maximum tolerated allele count 

Our main objective was to filter out variants that could not be disease-causing given a               

pre-defined genetic architecture. The objective was not to prove the pathogenicity of any given              

variant. Therefore, we opted for a conservative model that would minimize the number of              

variants discarded and provide a high estimate of the maximum credible population AF. The              

method and calculations used here are almost identical to a method previously published to              

calculate the maximum credible population AF, and maximum tolerated allele count for            

dominant disorders (Whiffin et al., 2017)  

 

Maximum credible population AF = prevalence x maximum allelic contribution x 1/penetrance 

 

For LHON: 

- Genetic architecture : disease is caused by a homoplasmic mtDNA variant. 

- Prevalence in the population: 1 in 30,000 . Reports have shown that prevalence is             

about 1/31,000 in the North East of England, and 1 in 50,000 in Finland (Puomila               

et al., 2007; Yu-Wai-Man and Chinnery, 2000; Yu-Wai-Man et al., 2003).  

- Maximum allelic contribution: 0.7 . The three primary LHON mutations         

(m.3460G>A, m.11778G>A, and m.14484T>C) explain the majority of reported         
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LHON cases. Among these, the m.11778G>A is accounting for approximately          

70% of cases among northern European populations (Mackey et al., 1996;           

Yu-Wai-Man and Chinnery, 2000). Overall, we felt like one variant accounting for            

70% of LHON cases in our cohort from all parts of the United States was a very                 

high estimate for maximum allelic contribution.  

- Penetrance: 0.1 . Penetrance is probably the harder number to estimate for this            

equation. Of note, the penetrance for LHON is sex-specific (Yu-Wai-Man and           

Chinnery, 2000). Males have a much higher risk of developing symptoms than            

females. The ranges of the risk of developing symptoms were 32-57% for males             

and 8-28% for females (Yu-Wai-Man and Chinnery, 2000; Yu-Wai-Man et al.,           

2003). To be conservative, we selected a penetrance number on the lower end of              

these ranges.  

- Result: Maximum credible population AF for LHON =  0.00023 .  
 

To calculate the maximum tolerated allele count (MTAC), we calculated the allele count at the               

upper bound of the one-tailed 95% confidence interval for the established maximum allele             

frequency, given the number of alleles in the population database. An approximation using a              

Poisson distribution has been previously reported (Whiffin et al., 2017), and we used the same               

method in R.  

MTAC = qpois(quantile_limit, an*af) 

where an is the number of total alleles in the database, and af is the maximum credible                 

population allele frequency.  

 

For LHON in HelixMTdb:  

MTAC = qpois(0.95, 195983*0.00023) = 56 

 

We also looked at LHON variants in the UK Biobank cohort.  Genotyping information was 

available for 265 mtDNA positions, for 488,377 samples.  

 

For LHON in UK Biobank: 

MTAC = qpois(0.95, 488377*0.00023) = 130 
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LHON variants  

The list of LHON variants from MITOMAP was copied and pasted in July 2019 from this 

address: https://www.mitomap.org/foswiki/bin/view/MITOMAP/MutationsLHON. The list of LHON 

variants from ClinVar was obtained using the following steps:  

- Started from clinvar_20190603.vcf.gz (obtained here: 

ftp://ftp.ncbi.nlm.nih.gov/pub/clinvar/vcf_GRCh38/) 

- Selected mitochondrial DNA variants 

- Kept variants that included ‘Leber’s_optic_atrophy’ in the CLNDN field.  

- Selected variants that were labeled as Pathogenic (of note, there were no Likely 

Pathogenic variants).  

 

Analysis of LHON phenotype in electronic medical records  

 

Electronic medical records were analyzed by parsing the ICD10 codes. No filters were applied              

based on the source or date of entry. The code H47.2 was used for all Optic Atrophies, which                  

includes the LHON phenotype H47.22). Other ICD10 codes related to eye diseases or other              

mitochondrial diseases were used as controls. Details are in Table S5. 
 

Data availability  
This database is published under a Creative Commons Attribution-NonCommercial-ShareAlike 

4.0 License , and may be used, shared and redistributed appropriately. Please cite this paper 

when using this database.  

HelixMTdb can be downloaded using this link:  

https://s3.amazonaws.com/helix-research-public/mito/HelixMTdb_20200327.tsv  
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Supplementary Information (3 supplementary figures 

and 6 supplementary tables): 
 

Figure S1, related to Figure 1. Overview of the 195,983 individuals and mitochondrial genomes              

aggregated in HelixMTdb. Distribution of the number of heteroplasmic SNVs outside of the             

hyper-variable region per individual. The panels on the right are a zoom of the panels on the left. (A) in                    

the initial 347,114 mitochondrial genomes analyzed. (B) in the final 195,983 mitochondrial genomes             

included in HelixMTdb.  

  

 

31 

.CC-BY-NC 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted June 26, 2020. ; https://doi.org/10.1101/798264doi: bioRxiv preprint 

https://doi.org/10.1101/798264
http://creativecommons.org/licenses/by-nc/4.0/


Figure S2, related to Figure 2. Comparison of the variants and their allele frequencies in               

HelixMTdb and MITOMAP. Graphs are scatter plots where each variant is represented by one dot. The                

x-axis represents AF in HelixMTdb, and the y-axis represented AF in MITOMAP. The spearman rho (ϱ)                

coefficient rho is indicated on the upper left of the plot. (A) AF of variants within the 3 hard-to-sequence                   

regions: m.300-316, m.513-525, and m.16182-16194. (B) AF of homoplasmic and heteroplasmic variants            

in HelixMTdb, and all variants in MITOMAP -- excluding the hard-to-sequence regions -- are represented.               

(C) AF of homoplasmic variants in HelixMTdb, and all variants in MITOMAP -- excluding the               

hard-to-sequence regions -- are represented. (A,B,C) For each, the top graph represents SNVs, the              

middle graph represents insertions and the lower one represents deletions.  

 

 

  

32 

.CC-BY-NC 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted June 26, 2020. ; https://doi.org/10.1101/798264doi: bioRxiv preprint 

https://doi.org/10.1101/798264
http://creativecommons.org/licenses/by-nc/4.0/


Figure S3, related to Figure 4. Intolerance to loss-of-function variants in tRNA and rRNA genes.               

(A) Summary counts of variants per tRNA gene, colored based on predicted severity. Pink: low; green:                

med; blue: high; yellow: unknown. Severity was calculated using MitoTip. (B) Distribution of the maximum               

observed Alternate Read Fraction (ARF) in tRNA genes for each severity category. (C) Summary counts               

of variants per rRNA gene, colored based on predicted severity. Pink: low; green: med; blue: high; yellow:                 

unknown. Severity was manually determined from previous publications. (D) Distribution of the maximum             

observed Alternate Read Fraction (ARF) in rRNA genes for each severity category. Note the very low                

number of variants for the ‘Low’, ‘Med’ and ‘High’ groups creating these strange-looking Box plots.  
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Table S1, related to Figure 1: Distribution of mitochondrial haplogroups in HelixMTdb  
 
Table S2, related to Figure 4: Variant attributes by genomic features 

- variants in ‘hard to sequence’ regions were excluded.  

- Mean allele frequency = ratio of n_non_ref / n_samples. So the % of individuals either 

with a homoplasmic or heteroplasmic variant vs number of total samples.  

- % conservation = hl.agg.mean(phastcons100v).  

 
Table S3, related to Figure 5: List of all constrained mitochondrial regions inferred from 
homoplasmic calls and heteroplasmic calls with a ARF >=0.5 
Regions / intervals of 1bp were not included in this analysis. 

 

Table S4, related to Figure 6: Counts of all LHON variants reported in HelixMTdb and the 
UK Biobank 
 
Table S5, related to Figure 6 and Table 1:  ICD10 codes in Healthy Nevada Project and UK 
Biobank 
 
Table S6, related to Methods: Location of genomic features in the mitochondrial genome 
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