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Abstract.
Objective. The effect of task load on performance is investigated by simultaneously collecting multi-modal physiological data and
participant response data. Periodic response to a questionnaire is also obtained. The goal is to determine combinations of modalities
that best serve as predictors of task performance.

Approach. A group of participants performed a computer-based visual search task mimicking postal code sorting. A five-digit
number had to be assigned to one of six different non-overlapping numeric ranges. Trials were presented in blocks of progressively
increasing task difficulty. The participants’ responses were collected simultaneously with 32 channels of electroencephalography
(EEG) data, eye-tracking data, and Galvanic Skin Response (GSR) data. The NASA Task-Load-Index self-reporting instrument
was administered at discrete time points in the experiment.

Main results. Low beta frequency EEG waves (12.5-18 Hz) were more prominent as cognitive task load increased, with most activity
in frontal and parietal regions. These were accompanied by more frequent eye blinks and increased pupillary dilation. Blink duration
correlated strongly with task performance. Phasic components of the GSR signal were related to cognitive workload, whereas tonic
components indicated a more general state of arousal. Subjective data (NASA TLX) as reported by the participants showed an
increase in frustration and mental workload. Based on one-way ANOVA, EEG and GSR provided the most reliable correlation to
perceived workload level and were the most informative measures (taken together) for performance prediction.

Significance. Numerous modalities come into play during task-related activity. Many of these modalities can provide information
on task performance when appropriately grouped. This study suggests that while EEG is a good predictor of task performance,
additional modalities such as GSR increase the likelihood of more accurate predictions. Further, in controlled laboratory conditions,
the most informative or minimum number of modalities can be isolated for monitoring in real work environments.

Keywords: Electroencephalography, EEG, galvanic skin response, GSR, eye-tracking, multi-modal data fusion, task
loading, task difficulty, cognitive load.
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1. Introduction

An objective method for determining the effect of task load
on performance is useful particularly when such information
is required in real-time as when the load changes quickly
(Coyne et al., 2009; Chen et al., 2012; Hancock et al.,
2013). However, the effects of task loading are inherently
multi-dimensional and go beyond cognitive and mental effort
(Young et al., 2015) or physical effort (Borg, 1990). For
example demands may be temporal and perceptual, with
effects that lead to fatigue, frustration, or boredom (Szalma
et al., 2004; Epps, 2018). Measuring task load along these
dimensions, particularly when internal mental and physical
states are not readily accessible or observable, makes for a
challenging problem. Measurements usually fall into three
broad categories. Behavioral measurements such as various
types of eye movement (de Greef et al., 2009) or gross
motor behaviors (Boxtel and Jesserun, 1993), subjective
measures including self-reporting scales such as the multi-
dimensional SWAT (Reid and Nygren, 1988) and NASA
Task Load Index questionnaires (Hart and Staveland, 1988),
and objective physiological measurements which capture a
signal that potentially scales or correlates with task loading
(Chen et al., 2012; Lean and Shan, 2012; Young et al., 2015;

Charles and Nixon, 2019). Among the last are measures
such as electroencephalography (EEG), electromyography
(EMG), electrocardiography (ECG), galvanic skin response
(GSR), inertial measurements, and speech (Chen et al., 2012).
The advantage of physiological measurements lies in their
objectivity and, in recent years, in the low-cost and ease of
deployment of body-worn sensors.

Many studies have measured task loading using a limited
number of physiological signals such as eye movement, or
EEG, or GSR in an attempt to measure task loading along
one or few dimensions (Smallwood and Schooler, 2006; Feng
et al., 2013; Lean and Shan, 2012; Charles and Nixon,
2019). However, few studies have combined modalities so
that estimation error can be reduced while classification
accuracy can be increased (Chen et al., 2012). In an early
attempt by Kittler et al. (1998) multimodal data fusion
helped to disambiguate data from single modalities, resulting
in higher precision and greater reliability. Similarly, Lazzeri
et al. (2014) reported the advantage of combining behavioral
and psycho-physiological responses in a case study involving
robots used in affective communication.

The relation between task load and performance has
been extensively studied. For example, Kim (2005)
focused on the discrepancy between expected (objective) and
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experienced (subjective) difficulty. In a collective intelligence
regime, Wagner and Suh (2013) found that tasks of medium-
range difficulty are suited best for expertise transfer and
collective judgments. Adler and Benbunan-Fich (2015)
investigated the effect of multitasking with varying subjective
difficulty on performance. They found that when the
primary task was considered difficult, subjects who were
forced to multitask had significantly reduced performance,
whereas in the case of an easy primary task, the forced
subjects even experienced a performance boost compared to
non-multitaskers. Horvath et al. (2006) found that task
difficulty was positively correlated with the level of interest an
individual had in the task and goal orientation. In practical
situations, where subjective and/or objective measures of
difficulty may be absent, it remains to find neurophysiological
quantities with predictive power for task difficulty.

In the following sections, we present results from an
experiment where cognitive task load is gradually varied.
The task performance and objective measures obtained
simultaneously from EEG, GSR, and eye gaze patterns, are
linked with subjective measures of perceived levels of task
loading reported by the NASA TLX questionnaire. An earlier
report details preliminary findings (Ramachandran et al.,
2017).

2. Methods

All human subject experiments were conducted at the
Advanced Digital Sciences Center (Singapore) and approved
by the National University of Singapore (IRB NUS B-15-038).
Written informed consent was obtained from all participants.

2.1. Participants

A cohort of healthy human subjects (6M/2F, 24-55
years old) was selected to participate in the study.
Participants engaged in a computer task simulating a
numerical postal code sorting task while they were monitored
through non-invasive, physiological techniques (i.e., objective
measurements). Participants were also asked to respond to an
electronic questionnaire at selected intervals (i.e., subjective
measurements). All participants had normal or corrected-to-
normal vision and participated voluntarily in the experiment.

2.2. Measurements

Participant testing was carried out in a large office
room with 80 lux illumination and background sound
level of about 60 dB SPL. During the task, scalp-based
electroencephalography (EEG) data, galvanic skin response
(GSR, i.e., electrodermal activity), and eye movements were
recorded, along with a video recording of the participant
performing the task (see further below for details on the
sensors and instrumentation).

A schematic of the experimental setup is shown in
Figure 1. EEG data were collected using a 32-channel
ASALab system (ANT Neuro) with a 32-channel EEG cap
(Waveguard) which utilizes the 5 percent electrode placement
system (an extension of the 10/20 and 10/10 systems).
Raw EEG data along with GSR data were sampled at
2.5 kHz. Eye movements were monitored for both eyes
independently using an eye-tracking system (SMI REDn
Scientific eyetracker, SensoMotoric Instruments GmbH) with
a sampling rate of 30 Hz, controlled by SMI Experiment
Center software. Participant responses were collected using
a 7-button response pad (Cedrus RB730, Cedrus Corp).
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Figure 1: Equipment and data-flow schematic for the multi-modal
experiment.

GSR, eye-movement data, and participant response data were
synchronized with EEG data capture. A digital webcam
(Logitech C920) was used for videography of the participant
during the task, but the video data were not analyzed and
are not presented here. Stimulus presentation and response
registration (through the response pad) was controlled by
SuperLab (Cedrus Corp). Participants were also required to
complete an electronic questionnaire that implemented the
NASA Task Load Index (NASA-TLX) (Hart and Staveland,
1988). The NASA-TLX self-reporting instrument is a set
of questions targeted at mental workload, physical workload,
temporal workload, performance, effort, and frustration. The
ratings provided by the subjects are subjective, and used
to compare and correlate with the objective physiological
measurements.

2.3. Task and Stimulus

Tasks involved the visual sorting of five-digit numbers as they
appeared on a computer screen. The numbers resembled
the postal codes used in the United States (Figure 2).
Participants were asked to match a randomly generated
postal code (shown in red in the middle of the screen) to
its corresponding range (shown on the left of the screen).
There were a total of six ranges, each identified by a
color that corresponded to the colors of the buttons on the
Cedrus response box. The correct range was indicated by
pressing the corresponding color-coded button. A pie-chart
marking the progress of the experiment was displayed on the
right of the screen. The number of correct responses and
number of remaining trials were provided as feedback to the
participants. Participants were guided to perform their tasks
by sequential instructions shown on the screen, and to provide
their responses as required during stimulus presentation.
EEG, GSR, and eye-movements were monitored continuously.
Stimulus and responses along with other events were time-
stamped.

2.4. Experiment Design

A sequential series of tasks was designed to induce increasing
levels of task difficulty by manipulating three binary-valued
variables: Color (C), Numerical arrangement of the six ranges
(N), and Time (T). The CNT triplet of binary values yields
8 possible values, each constituting a block. In each block,
numeric “postal” codes were presented 40 times without
repetition. Within a block, C = 0 if the color of each range is
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Figure 2: Screenshot with stimuli presented to the participant in one
trial.

held constant across trials; C = 1 if the color for each range
is randomly shuffled for every trial. N = 0 if the arrangement
of the range labels on the screen does not change across trials,
whereas N = 1 if the range labels are scrambled every trial.
T = 0 if the allotted response-time is kept constant (at 7
seconds) and T = 1 if the allotted response-time is variable
(chosen randomly from the interval 2-7 seconds with uniform
probability). We hypothesize that when task conditions are
changed (i.e., when C, T, or N are 1) the task load increases.
Thus, the easiest task is CTN = 000 (the first block in the
sequence of tasks, labeled CTN000), and the most difficult is
CTN = 111 (the last block in the sequence of tasks, labeled
CTN111). The last block was repeated (CTN111A), resulting
in 9 blocks and 360 trials in total. The time sequence of the
trials is depicted in Figure 3.

Figure 3: Protocol depicting the time sequence of the experiment.

The task flow is interrupted at several time points
in between blocks. At time points A-D (see Figure 3),
the participant is asked electronically to respond to the
NASA-TLX questionnaire (responses are time-stamped). At
time point B, the tasks are interrupted and the participant
is required to watch a video (of a randomly selected
advertisement) for 30 seconds. Between time points C and
D, the blocks CTN111 and CTN111A are separated in time
by the appearance of a ”Blue screen of death” (or BSOD,
a PC error message) for 10 seconds. These two events were
hypothesized to cause a subjective and objective increase in
task load in the block immediately following the event.

2.5. Grouping of Data

The blocks CTN000 to CTN111, with a repeat CTN111A,
can be tested for across-block differences in task difficulty.
However, it is possible that some combinations of the blocks
may have similar levels of difficulty. Therefore, to improve the
discrimination of task difficulty, we grouped together blocks
based on properties that are assumed to be shared. While
many such groupings are possible, we decided on eight groups
shown in Table 1. These are:

• Rows 1-4: Groupings considering single variables C,
T, N, or the temporal flow of the experiment. Row
4 (Temporal Flow) is the most fine-grained grouping
retaining all 8 possible values.
• Rows 5-8: Groupings considering the hypothetical

difficulty of the task. Row 5 groups the interaction
of the C and N variable (which differentiates blocks in
which visual search was required to solve the task, i.e.
C = 1 ∨ N = 1, from blocks with steady legends).
Row 6, Hypothetical Difficulty, groups the modulation
of task difficulty by the binary task variables. Row 7,
# Variables (number of variables) groups blocks which
have the same number of manipulations of C, T, and
N. Row 8, < 2 Variables, groups manipulated variables
together to reflect the participant’s adaptation to the
task. Here, groups that are 0 and 1 in row 7 are grouped
as 0, group 2 in row 7 is now group 1, and group 3 is 2.

Finally, a post-hoc grouping of the individual performance was
done (not shown in Table 1). Based on the standardized intra-
subject performance z, blocks were classified into one of the
three classes low (z < −0.6), medium (−0.6 < z < 0.6), high
performance (z > 0.6).

Table 1: Grouping of blocks, based on combinations of the C, T, and
N variables, to reduce the number of manipulated variables. Each row
depicts a group of blocks. Groupings depend on the manipulation of the
3 binary variables, temporal flow, or hypothetical task difficulty.

Row Grouping 000 001 100 010 101 011 110 111
1 Color (C) 0 0 1 0 1 0 1 1
2 Time (T) 0 0 0 1 0 1 1 1
3 Postal Code (N) 0 1 0 0 1 1 0 1
4 Temporal Flow 1 2 3 4 5 6 7 8
5 C+N 0 1 1 0 1 1 1 1
6 Hypo. Diff. 0 1 1 2 2 3 3 4
7 # Variables 0 1 1 1 2 2 2 3
8 <2 Variables 0 0 0 0 1 1 1 2

In the single-modality analysis we used the data
from individual modalities (GSR, EEG, Eye-tracking) and
searched for significant differences between the groups using
one-way ANOVA. We tested for H0: µ1 = µ2 · ·· = µi against
H1 where there are at least 2 groups of means. In case
ANOVA results revealed significance, post-hoc Tukeys Honest
Significant Difference (HSD) tests (multiple comparison test
between all combinations of groups) were conducted.

3. Data Processing

Software. All data were analyzed using Matlab (The
MathWorks, Inc). EEG data were analyzed using EEGLAB
(Delorme and Makeig, 2004), GSR data with Ledalab
(Benedek and Kaernbach, 2010a,b); both are open-source
toolboxes for Matlab. Eye-tracking data were processed by
SMI BeGaze, integrated with the SMI Experiment Center and
analyzed in Matlab.
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Eye Tracking. Data were averaged within each block of
trials, and then standardized across all blocks within each
participant.

Galvanic Skin Response (GSR). GSR data were analyzed in
terms of phasic and tonic skin conductance components (in
µS) after pre-processing (down-sampling to 10 Hz, filtering
with a 4th-order IIR filter having cutoff frequency 2 Hz,
smoothing with moving average window of 100 samples, and
segmenting data using the event triggers generated by the
recording system). GSR feature values were calculated for
every subject and condition as a mean response of all trials,
and converted to standardized scores.

Eye Tracking. Data were averaged within each block of
trials, and then standardized across all blocks within each
participant.

Electroencephalography (EEG). EEG data were acquired at
2500 Hz from 32 electrodes. The following preprocessing
pipeline was applied to the raw data, based on the detrending
procedure suggested by Cohen (2014).
1. Removal of Line Noise: A notch filter was applied in
order to remove the 50 Hz frequency component and its har-
monics up to 250 Hz.

2. Epoching: To facilitate the study of task-related changes,
the continuous data were cut into time segments surrounding
the events. The epochs were defined within a time window of
[−1.5; +1.5] seconds from the onset at time 0 (the appearance
of the postal code on the screen).

3. Channel rejection of electrodes that showed artifacts or
a mean channel power over three standard deviations from
the mean among all channels. This resulted in the rejection
of the electrodes Fp, FPz and Fp2 due to eye blink contami-
nation, and M1 and T7 due to the presence of EMG artifacts,
leaving 27 electrodes.

4. Spatial filter: Application of a common average removal
(CAR) spatial filter was chosen as an alternative to other spa-
tial filters that improve resolution to localized sources, due to
the spread nature of the measured EEG response.

5. Filtering: Application of a 4th-order finite impulse re-
sponse (FIR) bandpass filter, preserving a frequency band
from 0.5 to 80 Hz.

6. Rejection of epochs containing an abnormally larger
power in comparison to other epochs, a linear drift in the sig-
nal or movement artifacts.

7. ICA for artifact rejection: Applying the logistic info-
max ICA decomposition (Bell and Sejnowski, 1995) on the
epoched data as an artifact removal method in order to reject
components that were likely to be caused by blink artifacts
(strong frontal activation, steep power spectrum) and/or mus-
cular activity (spatially localized activity, high power above
20 Hz).

8. Normalization: A baseline referencing of each data epoch
on a time window of [−1.5;−0.1] seconds from stimulus onset
was chosen with a window of the same length as the epochs
(±1.5 seconds) to compute the Welch power spectral density
(PSD) (Welch, 1967). This choice is based on the PCA de-
composition of the PSD data, which showed that this normal-
ization approach resulted in the largest proportion of variance
(71%) being explained by the first three components.

9. Feature extraction: The EEG features were extracted
in the frequency domain via PSD with Welch’s overlapped

segment averaging estimator. This computes a modified pe-
riodogram for each segment window and then averages these
estimates to produce the estimate of the PSD. As opposed to
the standard periodogram, it reduces noise with the trade-off
of having lower frequency resolution. Its Hamming window
further prevents ripple effects at window extremities. For
this method, the epochs were divided into sliding windows of
500ms with an overlap of 50% between each other, as sug-
gested by Zhang et al. (2014). The PSD was calculated in-
side a range of 0.5 to 45 Hz, taking 30 equally distributed
frequency bins.

The initial feature extraction step results in 810 features
(30 frequency bins for 27 electrodes). Such a large number
of features creates a computationally expensive classification
problem. Furthermore, it results in estimation errors due to
reduced sample size (for each feature). Thus, we resort to
dimension reduction so as to increase the sample size and
estimation accuracy, as follows.

1. Grouping of frequency bins into frequency bands:
The mean of the PSD was calculated for the frequency bins
in the following 8 bands: Delta (0.5-3.5 Hz), Theta (3.5-7.5
Hz), Alpha (7.5-12.5 Hz), low-Beta (12.5-18 Hz), mid-Beta
(18-24 Hz), high-Beta (24-30 Hz), low-Gamma (30-37.5 Hz),
and Gamma (37.5-45 Hz), resulting in 216 features (one value
per band and electrode).

2. Preselection of electrodes: Features were sorted by
the Fisher Score, which ranks the features so as to maximize
the distances between data points from different groups and
minimizes the distances between data points in the same class.
It is defined as:

F (xj) =

∑c
k=1 nk(µj

k − µj)2

(σj)2
, (1)

where µj
k and σj

k are the mean and standard deviation of
the kth group or class respectively, corresponding to the jth

feature; µj and σj the mean and standard deviation of the
whole data set corresponding to the jth feature, nk the size
of the kth class and (σj)2 =

∑c
k=1 nk(σj

k)2.

3. ANOVA tests of the remaining electrodes: The
trials were grouped into classes depending on the # Variables
grouping (Table 1, row 7). Next, we selected the electrodes
that were represented in the 100 features with the highest
Fisher score. The final set of electrodes and frequency bands
were determined from the results of the ANOVA test for
each pre-selected electrode in each frequency band. For
each location group (see Table 2), the electrode with the
most significant ANOVA tests for the previously described
grouping was chosen, so as to have a uniform distribution of
the tested areas. The selection of the frequency bands for
analysis was based on the same criterion.

This approach resulted in the selection of the following
7 electrodes: FC1, FC6, CP1, C4, Cz, F4, POz. The 6 most
significant frequency bands were Alpha, low-Beta, mid-Beta,
high-Beta, low-Gamma, and Gamma, resulting in 42 EEG
features for the posterior analysis.

4. Results

4.1. Behavioural Responses

Figure 4 shows the fraction of correct responses as a function
of the nine blocks (the permutations of the values taken by the
variables C, T, and N, hereafter referred to as CTN blocks to
distinguish them from other blocks depicted in Table 1). The
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Table 2: Electrodes in spatial proximity were grouped into 7 location
groups. From every group, one electrode (in bold) was picked for
posterior analysis.

Location
Group

Electrode
Number

Electrode Names

A 5, 9, 10, 15 F3, FC5, FC1, C3
B 7, 11, 12, 17 F4, FC2, FC6, C4
C 15, 20, 21, 25 C3, CP5, CP1, P3
D 17, 22, 23, 27 C4, CP2, CP6, P4
E 10, 11, 16, 21,

22
FC1, FC2, Cz, CP1, CP2

F 5, 6, 7 F3, Fz, F4
G 29, 30, 31, 32 POz, O1, Oz, O2

blocks are arranged along the abscissa in their temporal order
of presentation. The proportion of correctly sorted postal
codes degrades over time (i.e., blocks), with a clear separation
of the first 5 blocks from the last 4. As hypothetical task
difficulty increases, the rate of correct answers declines.
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Figure 4: Fraction of correct responses averaged across participants
for each block, where C, T, and N assume binary values (CTN111A is a
repeat of CTN111). The responses are arranged in the sequential order
of presentation. Bars represent 95% confidence intervals, the dashed red
line indicates performance at chance level (16.67%).

For each CTN block, Figure 5 depicts the average
response time of correct and incorrect responses. Across
all blocks, incorrect responses were quicker (smaller response
times) than correct responses.

Figure 6 shows the z-scores for error (inverse of the
performance) and response time as a function of increasing
number of manipulated variables C, T, and N (Table 1, row
7, # Variables). Blocks are grouped together if they have the
same number of manipulated variables. The assumption is
that the level of task difficulty increases as more variables are
manipulated (i.e., going from left to right along the abscissa).
Multiple comparison of all difficulty pairs (0 vs. 1, 1 vs. 2, 2 vs.
3) yields statistically significant differences. Response time on
the other hand does not vary significantly across groups, and
is almost uncorrelated (r = −0.07) with task performance.

4.2. NASA TLX Questionnaire

At various points in time throughout the experiment (denoted
A, B, C and D in Figure 3) participants were asked to
provide a self-assessment of the perceived level of workload
based on the NASA TLX instrument. This psychometric
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Figure 5: Average response time for both correct and incorrect
responses. Error bars represent 95% confidence intervals. Quicker
responses were more likely to be incorrect.
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Figure 6: Interval plot of z-scores for error (blue, inverse of the
performance), and response time (green), as a function of hypothetical
task difficulty.

assessment comprises six aspects, namely performance, effort,
frustration, as well as mental, physical, and temporal
workload. For each of these aspects, ratings were collected on
a 7-point Likert scale, from 1 (very low) to 7 (very high). The
grand averages of individual ratings are depicted in Figure 7.
All six aspects had the lowest scores at the first time point
(easiest task) and increased thereafter, albeit at different
rates.

4.3. EEG

Figure 8 shows representative EEG images of the most active
regions on the scalp for a set of 6 groupings. Activity was
most prevalent in central and parietal regions of the right
hemisphere and strongest for the initially assumed grouping
of task difficulty (Table 1, row 6, Hypothetical Difficulty ;
Figure 8, bottom row, center) – the only grouping in which a
tendency for symmetric activity could be revealed. Activity
in frontocentral regions (particularly electrode FC6) underlies
modulation by task performance.

In the following, we outline the results of the ANOVA
tests for the selected electrodes, frequency bands and
groupings.
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Figure 7: NASA Task Load Index ratings (self-assessment) were
collected 4 times during the experiment (A-D). Each data point is the
grand average of the ratings across participants. Error bars depict
confidence intervals.

Grouping by Temporal Flow : This group is depicted
in row 4, Table 1, and reflects the chronological flow of
time along with a gradual increase in task difficulty. One-
way ANOVA test results for significant response are shown
in Table 3. Although the power in the low-Beta band for
FC6 was itself not significant, the low-Beta band had the
most significant response when viewed across the selected
electrodes, whereas FC6 had the most significant response
across frequency bands.

Table 3: One-way ANOVA test of EEG signal power in various
frequency bands and electrodes when grouped according to Temporal
Flow (CTN blocks 1 to 8, see row 4, Table 1). Significant p-values are
highlighted in red (p < 0.001) and pink (0.001 < p < 0.05).

Low Mid High Low
Electrode Alpha Beta Beta Beta Gamma Gamma

10/FC1 0.83 3E-3 0.04 0.20 0.53 0.13
12/FC6 0.07 0.09 0.03 0.01 0.01 0.01
21/CP1 0.20 2E-4 0.09 0.11 0.07 0.03
17/C4 0.01 0.04 0.09 0.05 0.04 0.02
16/Cz 0.77 0.01 0.04 0.32 0.49 0.21
7/F4 0.27 0.05 0.09 0.30 0.26 0.33

29/POz 0.23 6E-4 0.17 0.27 0.57 0.21
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Figure 8: EEG topoplots depicting for how many participants a certain
channel showed a significant response (p < 0.05) based on the indicated
groupings.

Table 4: Grouping by Time (T) (see row 2, Table 1). Description
follows Table 3.

Low Mid High Low
Electrode Alpha Beta Beta Beta Gamma Gamma

10/FC1 0.82 9E-4 0.09 0.25 0.52 0.31
12/FC6 5E-3 8E-4 4E-3 0.02 0.02 6E-3
21/CP1 0.08 8E-4 4E-3 0.01 0.19 0.15
17/C4 0.01 2E-3 0.02 0.04 0.12 0.08
16/Cz 0.16 4E-4 2E-3 0.02 0.16 0.20
7/F4 0.31 2E-3 0.01 0.04 0.06 0.08

29/POz 0.11 8E-4 0.01 0.07 0.23 0.17

Table 5: Grouping by Hypothetical Difficulty (see row 6, Table 1).
Description follows Table 3.

Low Mid High Low
Electrode Alpha Beta Beta Beta Gamma Gamma

10/FC1 0.88 0.01 0.27 0.13 0.22 0.04
12/FC6 7E-3 0.03 4E-3 5E-4 1E-3 4E-4
21/CP1 0.09 2E-5 0.02 0.01 0.01 4E-3
17/C4 2E-3 8E-3 0.01 7E-3 8E-3 2E-3
16/Cz 0.68 9E-4 0.01 0.12 0.19 0.07
7/F4 0.74 0.06 0.03 0.06 0.13 0.14

29/POz 0.43 4E-3 0.12 0.07 0.22 0.06

Grouping by Time (T): This group is depicted in row
2, Table 1 and reflects the manipulation of time. One-way
ANOVA test results for significant response are shown in
Table 4. Responses were most significant in the three Beta
bands (especially low-Beta) across most electrodes, and for
the FC6 electrode across all frequency bands. In all cases the
PSD features increased in their standardized scores with the
change from T = 0 to T = 1.

Grouping by Hypothetical Difficulty : This group is
depicted in row 6, Table 1, and reflects increasing task
difficulty as variables (C, T, N) are manipulated, with
additional weight given to the manipulation of the time
(T) variable. One-way ANOVA test results for significant
response are shown in Table 5. One-way ANOVA tests of
the remaining groupings (rows 1, 3, 5, 7, and 8 in Table 1)
did not reveal any significant responses over the range of
electrodes or frequency bands and are therefore not presented
here. To obtain Figure 9, the error rates of all participants in
all blocks were standardized per subject and then correlated
with the PSD of a particular channel at a specific frequency
band. Consistently across the presented electrodes and
frequency bands (excluding alpha), increased error rate was
accompanied by increased PSD values.

EEG Asymmetry Index. The EEG asymmetry index quan-
tifies hemispherical imbalances of cortical activity and was
calculated to investigate the apparent greater responsiveness
of the FC6 electrode compared to its contralateral equivalent
(FC5):

A.I. := log

(
PSDright

PSDleft

)
= log

(
PSDFC6

PSDFC5

)
ANOVA tests of the asymmetry index on the change

between conditions of low and high workload revealed
significances for all tested groupings, in particular for the
# Variables grouping (p < 0.005). Figure 10 depicts the
increase in asymmetry index for levels of higher difficulty.
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Figure 9: Pearson correlation coefficient of the seven preselected
electrodes with the individual error rates. Correlations are shown for
each frequency band individually.
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Figure 10: The EEG-asymmetry index of the electrodes FC6 and FC5
reveals an increase in fronto-central regions of the right hemisphere as a
function of cognitive load.

4.4. Galvanic Skin Response

The Galvanic Skin Response (GSR) is usually decomposed
into two components: i) the tonic response (slow changes
in the GSR signal with time-scales ranging from seconds to
minutes), also called Skin Conductance Level (SCL), and
ii) the phasic response (rapid changes in the GSR signal
with time-scale up to seconds), named Skin Conductance
Response (SCR). Results of one-way ANOVA tests are shown
in Table 6, for four groups taken from Table 1 (rows 2, 5, 6,
and 7). Due to the high correlation between various SCR- and
SCL-related features (the full list of tested features is available
in the Appendix), only the results for mean amplitude of both
components are presented.

Table 6: p-values of one-way ANOVA for representative GSR features
across selected groupings. Pink indicates 0.001 < p < 0.05, and red
indicates p < 0.001.

Grouping SCR amplitude SCL amplitude

Time (T) 0.02 0.59
C+N 0.05 0.65

Hypo. Diff. 9E-5 0.06
# Variables 7E-5 0.02

4.5. Eye Tracking Data

Of the eleven eye-tracking features tested (see Appendix
for a complete list), we focus on fixation duration, fixation
positions, blink duration, and pupil diameter, which were
found to be correlated with task difficulty and cognitive
load, and can potentially determine blocks where performance
exceeds chance level. There were no significant findings for
distance to the screen, ratio and duration of saccades.

Fixation Duration: Average duration of fixations in our data
showed an 11% reduction in fixation (p < 3e−7) in the
blocks that required visual search for solving the task (C+N
grouping). Although the participants had to solve the same
sorting task in principle, they fixated much longer on a
position on the screen if visual search was not required.
Thus, a task requiring visual search involves shorter fixation
durations than the same task without visual search.

Fixation Positions: Fixations of gaze on the screen were
analysed in detail by generating heatmaps so as to visualize
the areas of visual interest (see Figure 11). In general,

Figure 11: Position of most frequent fixations (thresholded) for the first
block (top) and last block (bottom). Heatmaps show averages across all
participants.

participants rarely read the names of the colors (shown on
the extreme left of the screen), but perceived the color
button peripherally while fixating on the lower bound of the
postal code range (the upper bound was mostly ignored).
Next, fixations on the rightmost digits of the 5-digit postal
code diminished over time, since participants realized their
irrelevance for the decision (both for the current postal code
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Figure 12: A blockwise comparison of task performance with blink
duration and fixation position predictability revealed high correlations
(r = 0.57 and r = 0.59) and a weaker, negative correlation with pupil
diameter (r = −0.4). Thus, participants had less structured fixation
trajectories in blocks of lower performance.

(red) shown in the center of the screen, and the legend shown
to the left of the screen). Furthermore, fixation positions
were more scattered in later blocks, potentially indicating a
less goal-oriented behavior in more difficult tasks.

In order to quantify this visually inferred tendency, we
trained a simple multi-layer perceptron (MLP) to predict the
position of the next fixation point based solely on the position
of the current fixation point. Assuming that a frustrated
subject would be more likely to get distracted from the task
and randomly perform saccades while viewing the screen,
we hypothesized that for blocks with worse performance the
classification accuracy of the MLP would diminish. The
classification was based on a discretization of the screen into
bins of equal size, and the fixation positions of all agents were
used as training data. As hypothesized, higher predictability
of the fixation positions in one block (the accuracy of
the MLP) was accompanied by better performance. A
blockwise comparison of (standardized) network accuracy
and performance revealed a high correlation, supporting
our assumption that more random or unexpected fixations
occurred in more challenging blocks (r = 0.59, see Figure 12).
In other words, a more structured, goal-oriented behavior
in blocks with better performance could be inferred from
the data. A hypothesis test comparing the predictability
of fixation positions in blocks above and below average
performance was significant (p < 4e−5).

Blink Duration: Blink duration is thought to be a reliable
measurement of drowsiness. Our data shows positive
correlation between blink duration and task performance
(r = 0.57, see Figure 12). For our data, the ANOVA test
allows distinctions based on the individual performance, i.e.,
between blocks with satisfactory performance (standardized
score > 0.5) and those with poor performance (standardized
score < −0.5, post-hoc Tukeys HSD test: p = 0.001), and
medium performance (p = 0.03).

Pupillometry: Since pupil diameter is mostly sensitive to
variation in illumination rather than cognitive states (Dehais
et al., 2008), we conservatively removed the 10 seconds of

data following the inter-block pauses that were interrupted
by distractions (see Figure 3). The remaining measurements
indicate an increase in pupil diameter with task difficulty
(r = 0.63, p < 0.02), confirming previous findings.

4.6. Multimodal Analysis

Multimodal analysis attempts to quantify the amount of
information carried by the features of the previously examined
modalities and determines which physiological measures are
reliable. For example, do we gain additional information from
eyetracking data in combination with EEG?

Perhaps the most direct method is to employ a
multimodal model that iteratively adds independent variables
from the pool of features based on some optimization
criterion. From the various regression models we chose a
linear model (implemented in Matlab via fitlm and step)
due to its simplicity and interpretability (it can quantify
the relevance for performance prediction for each of the
physiological measurements and their individual features).

First, linear regression models were computed for all
three modalities (EEG, GSR, and ET, i.e., eye-tracking)
separately (top 3 rows in Table 7). Models started with all
features and improved stepwise by adding or removing terms
based on the p-value of an F-test as an optimization criterion.

For combinations of modalities, the features selected on
the single-modality models were used (pre-selected) before
the same optimization technique was executed (step+pre).
For model comparison, root mean squared error (RMSE), the
adjusted R2 (i.e. the squared correlation coefficient weighted
by the number of features used in the model) and the
mentioned p-value of the model vs. a constant model (guessing
the mean) were considered. Since RMSE is a scale-dependent
parameter, all variables were normalized. The constant model
yielded an RMSE of 0.935.

The results in Table 7 suggest that EEG data is by far the
most informative to infer about task performance, compared
with eyetracking and GSR data. Even combining the latter
two modalities yields worse results than EEG alone. Within
the single-modality models, the most discriminant features of
the ANOVA analysis (e.g. blink duration in eyetracking) had
the highest coefficients (in absolute terms) in the linear model.
As expected, the EEG models were dominated by features
of the low Beta band, in particular fronto-central electrodes
(compare Figure 9). Importantly, the full model (taking into
consideration all modalities) outperforms all others, although
the EEG+GSR model comes very close. A repetition of
model fitting with a 10-fold cross validation, conducted in an
attempt to obtain a more robust estimate of model quality,
yields nearly the same values as in Table 7.

5. Discussion

5.1. Behavioural Responses

We noticed a clear degradation in percent-correct responses
with increase in time (Figure 4), while there was also a
concomitant increase in hypothesized task difficulty. This
may suggest that (1) task difficulty indeed increases with
time, and (2) that a joint manipulation of the time variable
and at least one of the legend variables (C, N) severely
hampers sorting performance. Presumably, performance was
subject to online learning processes, as indicated by the
increases between block pairs (CTN001, CTN100), (CTN011,
CTN110) and (CTN111, CTN111A) where the alteration in
task difficulty was minimal or absent.
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Table 7: Linear Regression models were computed from the features of individual modalities (top 3 rows) and various combinations. Model
quality was assessed by RMSE and adjusted R2. The full model outperforms all others. For a legend of the feature indices, see the Appendix.

Modalities Details RMSE R2 Adj. R2 p-value # Features

GSR Stepwise 0.81 0.32 0.28 1E-04 4 GSR: 1,2,5,15
ET Stepwise 0.79 0.36 0.30 9E-05 5 ET: 3,4,8,10,11

EEG Stepwise 0.56 0.74 0.65 8E-09 16 EEG: 1-4,6,10,14-17,20,26-28,31,34

GSR+ET Pre-selected 0.72 0.51 0.43 8E-06 9
GSR+ET Step+Pre 0.72 0.49 0.42 3E-06 7 GSR: 1,2 ET: 3,4,8,10,11
EEG+ET Pre-selected 0.55 0.78 0.66 1E-07 21
EEG+ET Step+Pre 0.55 0.73 0.66 6E-10 13 EEG: 1-4,6,10,14,17,26,27,34 ET: 4,11

EEG+GSR Pre-selected 0.50 0.81 0.72 2E-09 20
EEG+GSR Step+Pre 0.51 0.79 0.71 2E-10 13 EEG: 1-4,6,10,14-17,26,27,31,34 GSR: 1,2

ALL Pre-selected 0.52 0.80 0.72 1E-07 25
ALL Step+Pre 0.50 0.80 0.72 2E-10 16 EEG: 1-4,6,10,14-17,26,27,31,34 ET: 4 GSR: 1,2

The perceived level of workload was assessed from the
NASA TLX questionnaire at four time points (Figure 3) for
six aspects, namely performance, effort, and frustration, and
for mental, physical, and temporal workload (Figure 7). All
six aspects had the lowest scores at the first time point (easiest
task) and thereafter increased, albeit at different rates. This
suggests that the loading of the task had a differential effect
on each aspect. Unfortunately, the sample size was too small
for a more in-depth statistical analysis, so we provide only a
qualitative description of the results.

Physical workload had the lowest scores overall across all
time-points, as the task made almost no physical demands.
However, physical workload scores showed an increase when
two and three (all) variables were changed but demonstrated
larger standard deviations, reflecting perhaps an inability to
appropriately scale the perceived physical effort (i.e., the noise
in the estimate dominates any significant change in the score).
This was also true for frustration which demonstrated higher
scores than physical workload, but along with perceived effort
had the smallest range among all aspects (going from 3 to 4
across the times points). Frustration scores also had large
standard deviations, and combined with the narrow range
indicate that the increase in task load may not have led to
any real increase in perceived frustration.

The remaining four aspects (performance, effort, mental
workload, and temporal workload) all started at scores that
were 4 or higher and increased to about 5.5 to 6. Perceived
effort increased modestly from about 4.5 to 5.5, but unlike
frustration, started at a much higher level (time point A in
Figure 7) and had much smaller variability. This indicates
a modest, and perhaps real, increase in perceived effort
over time and task-load. Perceived temporal effort increased
sharply when one variable was changed but thereafter did
not exhibit any change when two variables were changed,
and experienced a small reduction when all variables were
changed. However, this last time point was taken after a
repeat of CTN111, and may be a result of the participant
gaining more practice.

Perceived performance and mental workload had the
largest absolute increase in scores (from about 4 to about 6),
with perceived performance increasing steadily across all time
points. Perceived mental workload increased rapidly from
zero to one to two variables, and thereafter either stayed the
same or showed a small decline. The greatest changes in all
aspects, except performance and effort, was observed when
going from zero to two variables. However, any changes in
perceived performance exceeded that of perceived effort.

5.2. EEG

From the EEG results, we can draw some conclusions about
the tested groupings (which were designed to assess cognitive
load) as follows:

• Least Responsive Frequency Band: Alpha. The
alpha PSD values were not being consistently attenuated
or increased with the difficulty of the task (see Figure 9).
This is somewhat unexpected, as Smith and Gevins
(2005) reported that frontal midline EEG attenuated
alpha activity proportional to increasing cognitive load
during performance of an n-back working memory task.
• Most responsive electrode: FC6. Our results are

similar to those reported in a recent study by Adewale
and Panoutsos (2019) which reported a power increase
with workload in frontal regions. In their study, the
increase was highest in FC6, next to AF4 as reported
here. Further, Adewale and Panoutsos (2019) found
that this region was also most responsive in the mid and
high beta band, the same bands as in this study (see
Table 5). The corroboration with the results reported
by Adewale and Panoutsos (2019) suggests that the mid-
and high-beta bands responses from FC6 require further
investigation in task load experiments.
• Most responsive frequency band: Low Beta (12.5-

18 Hz), followed by higher frequency bands. The
responsiveness of the highest frequency components is
only present when the T variable is considered to
have greater weight in the task difficulty modulation
(Hypothetical Difficulty). This is also implicitly tested
when the variables are grouped by performance, as
the main effect of the Time (T) variable was highly
significant (p = 2e − 18) in the ANOVA tests for the
error rate.

These findings are in accordance with Berka et al. (2007)
who reported that the discriminative features for their
workload classifier were mostly located in frequency bins
inside the beta and gamma bands. In contrast to our findings
based on monopolar recordings, their study is based on
bipolar derivations, in which the CzPOz electrode contained
the largest number of discriminative features. In our
case, these electrodes were also selected to provide greatest
discrimination among the set of electrodes (Tables 2–5).

The grouping by Temporal Flow could be the best
approach to test for fatigue, as both time and difficulty could
generate fatigue in the participant. The results from the
grouping by Time (T) on the other hand indicate that the
low Beta band may be useful in predicting detecting time
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pressure. A previous report has suggested that increased
low-Beta power is an indicator of cognitive task demand
(Ray and Cole, 1985). Thus, the T variable could contribute
greater weight to cognitive load or task difficulty than C or
N variables.

In the grouping by Hypothetical Difficulty, significant
responses were observed over a wider range of frequencies and
more numbers of electrodes, than were elicited by grouping
according to temporal flow (Table 3) or Time (Table 4). This
group showed greater response among all difficulty-related
groupings, with significant responses across a wider range
of frequency bands (in particular high-frequency bands) as
well as in more parieto-central electrodes such as C4 and
CP1. Similar to grouping by Time (Table 4), electrode FC6
demonstrated more significant response across all frequency
bands.

We also investigated potential causes of the asymmetric
frontal cortical activity. This has traditionally been
associated with affective valence, specifically that increased
positive (negative) affect accompanies increased left (right)
cortical activity (Heller, 1990). However, Davidson (1992)
postulated the approaching-withdrawing behavior in social
situations as giving rise to the asymmetry; Harmon-Jones
and Allen (1997) suggested that trait approach motivation
was related to greater left than right frontal activity. To
tease apart the various causative factors, Harmon-Jones and
Allen (1998) disentangled confounds of affective valence and
an approach/withdraw behavior. They showed that anger, an
approach related state with negative valence, induced greater
left cortical activity. Accordingly, it was later established that
anterior asymmetric activity which favors the left hemisphere
is related to approach motivation irrespective of valence
(Harmon-Jones et al., 2010). We calculated an objective
metric, the asymmetry index, for the alpha band. This band
is inversely correlated with cerebral metabolism (Cook et al.,
1998) and thus, an increase in the PSD ratio of right compared
to the left hemisphere reflects increased left cortical activity.

5.3. Galvanic Skin Response

Skin Conductance Level (SCL, tonic response) rises in
anticipation of performing tasks and fluctuates in the range of
seconds to minutes depending upon the psychological state,
hydration, skin dryness, and autonomic arousal. Evidence
has been reported of SCL concomitant with sensitivity
and the general arousal systems, as well as hippocampal
information processing (Boucsein, 2012). On the other
hand, Skin Conductance Response (SCR, phasic response)
is typically associated with short-term events induced by
discrete environmental stimuli such as sight, sound, and
smell, or modulated by cognitive processes. Most SCR
features were positively modulated by cognitive workload,
whereas some SCL features tended to encode a rather general
state of arousal – with higher emotional levels at the start
and end of the experiment. The time variable (T) had a
more significant phasic response than tonic response, whereas
the group C+N did not have significant phasic or tonic
responses. Likewise, phasic responses for the Hypothetical
difficulty group demonstrated strongly significant responses
whereas tonic responses were not significant. The # Variables
group was the only group with significant phasic and tonic
responses.

5.4. Eye Tracking Data

Häkkänen et al. (1999) found that bus drivers with
hypersomnia have significantly higher blink duration than
control groups. Morris and Miller (1996) claimed that blink
duration (1) increases with time on task and (2) correlates
with decreased performance. On the other hand, blink
duration is reported to be correlated with mental activity
and effort (Andreassi, 2013; Ikehara and Crosby, 2005). We
hypothesize that in our paradigm, the negative effects on
blink duration induced by cognitive measures like arousal,
mental activity and interest outweigh the positive effects
induced by fatigue, difficulty and drowsiness.

From a neurophysiological perspective, the pupil diam-
eter is thought to increase with cognitive workload (Brook-
ings et al., 1996; Kahneman and Beatty, 1966) and emotional
arousal (Partala and Surakka, 2003), but to decrease with
drowsiness and fatigue (Morad et al., 2000). Our measure-
ments confirm previous findings. Also, pupil diameter was
negatively correlated with task performance (r = −0.4), hint-
ing that it may function as an index of fatigue and drowsiness.

In our experiments, we found that fixation duration
varied significantly whether or not visual search was
performed. Fixation positions were more predictable in tasks
where performance was high. Blink duration correlated
strongly with the participant’s individual performance, and
pupil dilation was positively correlated with task difficulty.

Eyetracking data were particularly useful to infer
whether visual search was necessary to solve a problem
(fixation duration), but blink duration also turned out to be
predictive of performance. Signal to noise ratio in fixation
positions could be strongly correlated to task performance.
Further, a strong positive relation between subjectively
measured frustration and blink rate (r = 0.71) hints at
the relevance of blink rate to quantify mental states, an
observation that has been made very recently (Yang et al.,
2017). Pupil diameter on the other hand was presumably
confounded by the experimental design as cognitive load, and
fatigue acted oppositely to potentially level out each other.
As a consequence, its results have been found of much less
significance than in related work (McCuaig et al., 2010).

5.5. Multimodal Data

Based on our results, we conclude that EEG was the best
modality to quantify cognitive load and that the low beta
band activity provides the most reliable source for prediction
of task performance. The accuracy of the multimodal
performance prediction model is poorer than those reported
in recent studies which carried out classification, rather
than regression of related quantities like operator workload
(Schultze-Kraft et al., 2016). However, model selection is
ultimately guided by the nature of the real-world application.
Our aim here was to explore approaches where widely-
different physiological variables can be integrated into
statistical modeling.

Although not explored here in detail, the EEG
asymmetry index may offer insights into predicting anger or
frustration. However, a larger sample sample size is necessary
to evaluate the possibility of differentiating these emotions in
approaching and withdrawing situations. Our study suggests
that this may be a promising aspect to investigate in future
work.
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6. Conclusions

In this work we investigated gradually increasing cognitive
load and its correlation with several physiological variables
(EEG, eye-tracking, and GSR) along with subjective data
from the NASA TLX workload questionnaire. We aimed
to identify pertinent information relating to cognitive load,
emotional quantities like frustration, and task performance,
as a function of task difficulty.

Low-beta frequency EEG waves (12.5-18 Hz) showed up
more prominently as cognitive task load increased. The most
responsive regions of the surface scalp EEG were found to
be frontal and parietal regions. More frequent eye blinks
and higher pupil dilation were detected as tasks got more
difficult, while blink duration correlated strongly with task
performance. Phasic components of the GSR signal were
related to cognitive workload, whereas tonic components may
encode a general state of arousal. Subjective data (NASA
TLX) showed an increase in frustration and mental workload
as reported by the participants. Based on one-way ANOVA,
EEG alone, and EEG with GSR, provided the most reliable
correlation to the subjective workload level and were the most
informative measures for performance prediction.

Future investigations should carefully consider amending
the experimental design to disentangle confounds of time
and difficulty increasing simultaneously (e.g. by block
randomization), thus allowing clearer inference on the
dynamics of features driven by otherwise opposing forces such
as pupil diameter.
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7. Appendix

Features used for multimodal analysis:
GSR features: 1: SCR mean frequency, 2: SCR number,
3: SCR mean amplitude, 4: SCR sum of amplitude, 5: SCR
max. amplitude, 6: SCR median, 7: SCR sum of integral
(total sum of AUC), 8: Latency of first SCR after stimulus,
9: SCR maximum, 10: SCR amplitude, 11: SCL median
slope, 12: SCR onset (median), 13: SCL onset (mean), 14:
SCL and SCR (mean), 15: SCL amplitude, 16: SCR mean
integral (mean AUC).
Eyetracking features: 1: Blink rate, 2: Fixation rate, 3:
Saccade rate, 4: Blink duration, 5: Fixation duration, 6:
Saccade duration, 7: Pupil diameter, 8: Interpupil distance,
9: Eyegaze distance, 10: POR distance, 11: Distance to
screen.
EEG features: FC1, FC6, CP1, C4, Cz, F4, POz; each
for the frequency bands: low beta, mid beta, high beta, low
gamma and gamma.
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