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Abstract

Measurement of in-vivo chromosome conformations (structures) in single cells is a major technological goal of
structural biology. If one could identify many genetic loci in a microscope image despite the limited palette of
fluorescent colors used to label them, then the conformation could be solved at some resolution by ‘connecting the
dots’. Computational tools for making this reconstruction are expected to produce near-perfect reconstructions
when the number of fluorescent colors is high enough, irrespective of the number of loci assayed. Here we
report the first experimental test of the performance of these reconstruction algorithms and check their ability
to reconstruct experimentally-measured conformations. We also demonstrate the experimental metrics needed to
assess reconstruction quality. Our results indicate that current sequential FISH experiments may be close to the
point where the reconstructions are nearly flawless at some distance scales.

The in-vivo conformation of chromosomes plays an ma-
jor role in controlling gene expression [1] and is therefore
of great importance to structural biology. Unfortunately
there is not yet a direct assay of chromosome conforma-
tion in single cells. Until recently, most conformational
inferences have been based on contact frequencies be-
tween pairs of chromosomal loci as measured by various
chromosome-capture methods [2–7]. There is some doubt
as to how well contact-based inferences work [8, 9], par-
ticularly when the contact frequencies have been averaged
over many cells owing to high cell-to-cell variability [10,
11] (single-cell chromosome-capture is possible but tech-
nically difficult). Alternatively, fluorescence microscopy
can directly measure the locations of a set of chromo-
somal loci, and ‘connecting the dots’ produces a confor-
mation at the resolution of the locus spacing. The mi-
croscopy approach is becoming popular due to several ad-
vantages: it can directly measure the spatial locations of
fluorophore-labeled chromosomal loci; like chromosome-
capture it can assay many chromosomal loci in parallel;
and unlike chromosome-capture it is inherently a single-
cell method. However, its major weakness is scalability
in number of loci: the number of genetic loci that can be
identified in an image is usually taken to be equal to the
number of different fluorophores that can be distinguished
by color, typically ∼ 3 − 5. Recent developments in se-
quential FISH techniques [12] have pushed the number
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of uniquely identifiable loci beyond the number of colors,
to around 50 in a typical experiment. However, a full
measurement of chromosome conformation that resolves
kilobase-scale structures will require thousands of loci to
be discriminated, which is not yet possible using purely
experimental tools.

In order to scale further to the thousand-locus scale,
one can use computational tools. This final boost involves
labeling many times more loci than can be discriminated
by color or round of hybridization, and then computa-
tionally disambiguating look-alike spots in the image in
order to reconstruct the underlying conformation. This
disambiguation works by requiring loci that are nearby on
the genome to also be close in three-dimensional space.
The nearness requirement is obvious on small scales: for
example, two loci spaced by 100 bp can only be physically
separated 30 nm or less without the DNA breaking. But
such a relationship has also been observed over kilobase-
to-megabase scales [13–15], implying that computational
reconstructions should also work at these larger scales.
Simple reconstructions can be done ‘by eye’ [16], but
two computational tools have been developed to auto-
mate this process and quantify the uncertainty in large
reconstructions: align3d [17, 18] and ChromoTrace [19].
These tools have been tested using simulations but not
yet using real-world experimental data.

A major advantage of reconstruction algorithms is that
once the point is reached where adding more loci does
not affect their density in the image, reconstruction per-
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formance should plateau. In other words, at this point
reconstructions can be scaled up indefinitely, with little
performance penalty. In this regime, reconstruction qual-
ity seems to be determined mainly by the number of what
we term ‘pseudocolors’, which we define as groups of loci
that can be distinguished purely experimentally. In a sim-
ple imaging experiment, the number of pseudocolors is
simply the number of different fluorophores available: an
experiment labeling some loci with red fluorophores and
others with green fluorophores has 2 pseudocolors, since
the red spots in an image can be discriminated from the
green spots but not the other red spots, and vice versa. In
a sequential FISH experiment the number of pseudocolors
is the number of fluorophores times the number of rounds
of hybridization: for example if 2 fluorophores are used
over 5 rounds of hybridization, then labeled loci can be
grouped into 10 categories (pseudocolors) when consider-
ing both color and round of hybridization. Simulations
indicate that if labeling experiments use enough pseu-
docolors, reconstruction algorithms produce near-perfect
results irrespective of the size of the reconstruction [18,
19].1

Here we describe the first tests of computational re-
construction algorithms using real-world labeling data,
including both blind tests of the reconstructions (where
the answer is genuinely unknown) and tests using pub-
lished conformations where we have added ambiguity us-
ing a recoloring scheme (so that the reconstructions could
be checked). Our immediate goal was to determine the
performance on actual, as opposed to simulated or in-
ferred, chromosomal conformations, and to validate as
the accuracy of the reconstruction quality metrics that
are produced by these analyses. In particular, the re-
colored data sets let us begin to address the question of
whether current experiments have sufficient pseudocolors
to solve the reconstruction problem; however recoloring
produces fewer pseudocolors than can be attained exper-
imentally, so we only directly test experiments that are
less than state-of-the-art. As a secondary result, these
recolored data sets allowed us to accurately model the
distance function between pairs of loci, which itself gives
clues to the biology of chromosome structure.

1Ref. [18] argues that reconstruction quality depends on a com-
petition between the number of pseudocolors and the density (not
number) of spots in the image, and that the number of pseudocol-
ors required for near-perfect results is on the order of the number
of competing loci that are spatially as close to a given locus Li as
either of its neighbors Li−1 or Li+1.

Results

10-locus experiment

For our first reconstruction experiment, we fluorescently
labeled 10 genomic loci over a 4 Mb stretch of chromo-
some 4 in fixed human cells (GM12878), using one of 3
spectrally distinct fluorophores to hybridize each locus
(see Figure 1A). The cells were then imaged to localize
the fluorescent labels in 3 dimensions, as illustrated in
Figure 1B. There were several identical-looking spots in
each color channel of the image, and the only way to iden-
tify these spots with specific loci was to compare the dis-
tances between them with the likelihoods of finding such
distances given the known spacing of genomic labels, a
relationship we call the interlocus distance function. In
this experiment, we did not measure the distance function
directly, but rather fit a Gaussian chain model [20] to the
relationship between mean spatial distance between loci
and their genomic separation found in Ref. [13], as illus-
trated in Figure 1C. Using the labeling pattern, the spot
locations in each image, and the distance function, the re-
construction algorithm align3d produced likelihoods of
assigning each spot in an image to each possible labeled
locus of the same color, shown schematically as circles in
Figure 2A. These ‘mapping probabilities’ can be used to
infer likely conformations (Figure 2B) in which the level
of confidence in each spot assignment is known.

The true conformations were unknown, so the recon-
struction quality could not be measured directly. How-
ever, we were able to test the null hypothesis of no sig-
nificance by comparing each reconstruction with several
‘control’ reconstructions produced from identical inputs
except that the imaged spot colors were randomly scram-
bled (see Figure 2C). Specifically, we compared two fig-
ures of merit between the true reconstruction and the
controls: 1) the uncertainty in the spot assignments based
on the mapping probabilities that we term ‘entropy’ (de-
noted by ‘S’), and 2) the total statistical weight over all
possible conformations (denoted by Z). The expectation
is that the entropy S is lower in the true reconstruction
than the controls, and that Z (which roughly measures
the ease with which the chromosome can be fit through
the spots in the image) should be higher for the true map-
ping than the control mappings. We also looked at an
adjusted Z that subtracts, in an approximate way, an
unphysical contribution coming from the calculation (see
Methods for details). The top row of Figure 2D shows the
results of this test aggregated over all 42 chromosomes we
measured. The bottom row shows the same tests applied
to the 15 highest-quality chromosomes, selected as hav-
ing 8-12 spots in the image and being more than 200 nm
thick perpendicular to the slide (their width in the imag-
ing plane was typically ∼ 1µm). In all metrics the true
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Figure 1. Inputs to the reconstruction algorithm.
(A) Genetic locations and colors of fluorescent labels
along human chromosome 4. (B) A summed z-stack of a
typical cell image viewed from above, leading to a list of
3-dimensional spot positions and colors. (C) Left panel:
distance function ρ(R|L) modeled as a Gaussian for 3
values of L. Right panel: scaling of Gaussian width
(RMS |R|) as a function of interlocus spacing L.

reconstructions outperformed the controls, as expected.
Z was a more sensitive measure of significance than S,
particularly when adjusted for artifacts of the calcula-
tion. Despite the much smaller sample size of high-quality
chromosomes, the overall significance of their reconstruc-
tions against the null hypothesis was higher. Chromoso-
mal thickness was an important determinant of quality
(see Supplementary Figure S1), showing the importance
of maintaining cell thickness with non-dehydrating fixa-
tion protocols in future experiments.

Analysis of recolored published conforma-
tions

Our 10-spot experiments had two main limitations: 1)
the distance function was not measured directly within
the experiment, and 2) the reconstruction quality could

not be checked directly since the true conformation was
unknown (as would be the case in a practical use of our
method, but ideally not in a method demonstration).
To circumvent both these limitations, we reanalyzed two
sequential FISH data sets that were published soon af-
ter our experiment, in which several tens of loci were
uniquely identified and localized using variants of the pro-
tocol known as Oligopaints [12]. The first data set, which
we refer to simply as the Oligopaints data [12], measured
conformation at the megabase scale over whole chromo-
somes. The second data set, using the Oligopaints variant
called ORCA [21], probed conformation at kilobase scales
over small regions of chromosomes.

Oligopaints and ORCA are significant for us in three
ways. First, these methods greatly increase the number
of pseudocolors available to a reconstruction algorithm,
potentially allowing the reconstruction of very large-scale
conformations using hundreds or thousands of loci. Sec-
ond, the interlocus distance functions could be measured
precisely in Oligopaints data, since the locus positions
were measured unambiguously. Third, by ‘recoloring’ the
Oligopaints data to introduce ambiguity (see Figure 3),
we could construct synthetic images requiring reconstruc-
tion, and then check the reconstruction quality using the
known true conformations.

Reconstructions at megabase scales
(Oligopaints)

The first recolored data set we analyzed was that from
the Oligopaints paper [12], which labeled TADs in several
chromosomes of human cells. We were most interested in
label spacing in the ∼ 0.5 Mb range, because at that scale
adjacent loci should be near enough for reconstructions
to work, but far enough that one should not need special
superresolution techniques even when labeling many loci
per pseudocolor. To obtain this rough label spacing, we
restricted our analysis to the most densely-labeled parts
of the Oligopaints data sets: one region in chromosomes
21 having 28 loci, and another region in chromosome 22
having 9 loci. Although the tiny chromosome 22 recolored
conformations are probably not representative of future
Oligopaints experiments, we think those reconstructions
may be relevant for future live-cell experiments with lim-
ited pseudocolors.

Our first step was to use the Oligopaints data set to
determine the interlocus distance function for these ex-
periments and locus spacings. Our baseline assumption
was that the distribution of locus separations would be
described by the diffusive Gaussian chain model. How-
ever, we found somewhat more pairs of loci at large sep-
arations than predicted by the Gaussian chain model.
This excess at large separations was well modeled by
an exponential distribution in the interlocus separation
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Figure 2. Reconstruction procedure (align3d). (A) align3d produces likelihoods of mapping the various
labeled loci (x axis, at bottom) to the spots in the image (box at left), as shown schematically using circles. The
uncertainty (entropy) S and the total statistical weight Z are outputs of this calculation. (B) By selecting a set of
strong mappings one can infer a plausible conformation. (C) A control locus-to-spot mapping using a random
permutation of spots colors. The rank-orderings of Strue and Ztrue among the controls provide blind tests of the
null hypothesis. S is expected to be lower, and Z higher, in the true mappings than the controls. (D) Distribution
of ranks of the true S and Z over all experiments, without (top row) and with (bottom row) quality-filtering the
experiments based on number of spots and chromosome thickness in z.
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Figure 3. Recoloring procedure. Illustration of our
recoloring scheme applied to the Oligopaints/ORCA
sequential FISH data sets. Since these experiments
uniquely localized each locus in a given image, the loci
all have unique pseudocolors indicating their
distinguishability. Our recoloring method randomly
reassigns colors using a smaller palette (fewer
pseudocolors than loci), simulates an experiment having
more labeled loci than pseudocolors available. This
process introduces ambiguity into the image, that
requires a computational reconstruction to resolve.
After applying our reconstruction algorithm to the
recolored image, we can check the reconstruction quality
using the original unambiguous locus assignments.

R. As shown in Supplementary Figures S2 and S3, our
distance function model was a sum of a Gaussian chain
whose width scaled with interlocus distance according to
an empirically-determined power law, and a exponential
function that did not change with interlocus distance.

Next, we randomly recolored the Oligopaints data sets
using 3, 5 and (for chromosome 21) 10 pseudocolors, and
then passed the recolored images to align3d to obtain
mapping probabilities for assigning spots to labeled loci.
We also reconstructed 9 color-scrambled control images
per ‘true’ recolored image, to compare the rank of the
true image relative to the controls using various statis-
tics of the reconstruction process. Note that the align3d

calculation can only be done approximately for large cal-
culations, so to simulate that we used a ‘baseline’ approxi-
mate calculation for all runs described here (see Methods
section for details). Two statistics (entropy S and the
adjusted statistical weight Z) proved sensitive in iden-
tifying the true reconstructions, particularly when 5 or
more pseudocolors were used (see Supplementary Figures
S4 and S5).

We measured the quality of the probabilistic align3d

output using the metric of ‘unrecovered information’ I,
which is the Shannon information required to specify
the correct assignments given the locus-to-spot mapping
probabilities. In the recolored experiments the true spot
assignments were known, so I could be determined from
the mapping probabilities, but in a real experiment one

would approximate as I ≈ S since entropy S is simply
a weighted average of information I over the mapping
probabilities. A mapping that confidently assigns spots
to their correct loci will have S ≈ I ≈ 0; if the spot as-
signments are very uncertain then S ≈ I ≈ log(N/C) for
N loci per C pseudocolors; and if the spot assignment is
confident but wrong then S is small but I →∞. Figure 4
(left-hand panels) plots unrecovered information I versus
entropy S over the various recolored Oligopaints recon-
structions. These plots show that when the true mapping
has significantly lower entropy than the controls, then
I ≈ S, which is critical because it means that an experi-
menter can blindly gauge the quality of a reconstruction.
We note that poor mappings send I � S, probably be-
cause unrecovered information is very sensitive to errors:
a single mistaken assignment of zero probability to a cor-
rect locus assignment sends I →∞ but does not affect S.
Next, we used each set of mapping probabilities to guess
a likely conformation, using a heuristic formula that se-
lects the most likely mapping probabilities and iteratively
resolves conflicts where two loci map to the same spot.
The right-hand panels of Figure 4 show the quality of the
inferred conformations as measured by the rate of locus
assignment errors, and show that this error rate can also
be predicted by S although the relationship is weaker.

Reconstructions at kilobase scales
(ORCA)

Next, we tested our reconstruction performance using the
fine-scale conformations found in the three ORCA data
sets [21], whose labeled loci were spaced at 2, 3 and 10 kb
respectively. Since the locus spacing was uniform we used
the entire conformations for recoloring and reconstruc-
tions. First, we examined the distances between nearby
loci to determine the interlocus distance function at small
scales (see Supplementary Figures S6, S7 and S8). As be-
fore, the Gaussian chain model was adequate for the bulk
of the distribution, but again a long tail indicated that
nearby loci would take long excursions more often than
a Gaussian chain would predict. As before, the residuals
after subtracting the Gaussian chain distribution followed
an exponential distribution. Thus we fit the 3 kb and 10
kb data sets using a Gaussian-plus-exponential distribu-
tion. At the smallest separations a second exponential
was needed to provide a good fit.

We randomly recolored each of the three ORCA data
sets using 3, 5, 10 and 20 pseudocolors, produced locus-
to-spot mapping probabilities using align3d and inferred
explicit conformations using those mapping probabilities,
as before. The quality of the mapping probabilities and
the locus assignments of the explicit conformations are
shown in Figure 5, and their rankings relative to con-
trols are shown in Supplementary Figures S9, S10 and
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Figure 4. Reconstruction quality of Mb-scale
(Oligopaints) conformations. (A) Actual
information recovery I versus estimated information
recovery S, for various recolorings of the Oligopaints
conformations. Note that for these experiments we
selected 28 closely-spaced loci from the chromosome 21
data set, and 9 closely-spaced loci from the chromosome
22 data set. The 5-95 percentile range of I and S from
the color-scrambled (control) reconstructions fall within
the respective dotted rectangles. (B) Rates of
incorrectly-inferred locus identities as a function of
estimated information recovery S. Dotted lines show the
5th percentile in S of their respective control: i.e. 95%
of the controls had a higher value of S.

S11. As before, when the true reconstruction outper-
forms controls, the entropy S accurately measures both
unrecovered information I and locus-assignment errors,
which are closely-related error measures (see Supplemen-
tary Figure S12). These reconstructions performed no-
ticeably worse than the Oligopaints reconstructions, as
measured by the greater values of unrecovered informa-
tion I and error rates in the conformations for the same
number of pseudocolors. There are several likely reasons
for this. 1) The recolored ORCA data had more labeled
loci than the recolored Oligopaints data. 2) The regular
spacing of the ORCA labels made reconstruction more

difficult. (In the Oligopaints data sets, irregularity in la-
bel spacing and color ordering are the two characteristics
that help identify genetic loci). 3) The occasional long-
distance excursions taken by loci (corresponding to the
exponential tail in the distance function) are more sig-
nificant at small scales. The farther these excursions go
relative to a typical displacement between two adjacent
loci, the more difficult reconstructions become, since the
volume where neighboring loci may be found grows to en-
compass many more competing loci. In support of this
last explanation, we note that the 3 kb and 10 kb data
sets gave better results than the 2 kb data set.

Discussion

Conformation capture experiments such as Hi-C provide
much useful information about genome architecture, but
they are not an ideal tool for measuring explicit chro-
mosomal conformations, for several reasons. First, most
Hi-C data comes from large cell populations whose con-
formations are likely very dissimilar: a ‘consensus confor-
mation’ deduced from these experiments is mostly mean-
ingless [8], especially given that the structures visible in
population-averaged data only exist in a small fraction
of cells [10, 11]. Single-cell chromosome-capture exper-
iments are possible but they have lower resolution [10].
Second, these experiments require deep sequencing, which
is expensive. Third, even single-cell contact-based struc-
tural inference has the overfitting problem where many
continuous degrees of freedom are adjusted to fit noisy
contact data: the resulting conformations may plausibly
fit the data, but the uncertainty in these guesses is com-
pletely unknown. Finally, some important information
about chromosomal positioning is inevitably absent from
contact data, the most obvious examples being the loca-
tion, orientation and ‘parity’ of the chromosomes.

By contrast, image-based chromosomal reconstructions
avoid many of the problems of Hi-C reconstructions, as
our results demonstrate. Fluorescence imaging uses cheap
reagents, is widely available and is inherently a single-cell
assay. The reconstruction method we demonstrate factors
in the various types of experimental error. It produces
definite conformations where the data is unambiguous,
and gives the spectrum of possible conformations with
accurate likelihoods where the reconstructions have un-
certainty (even when the calculation is only approximate
– see Supplementary Figure S14). The inference itself re-
quires finding a finite set of discrete mapping variables,
rather than a continuum of real-valued parameters as in
the case of Hi-C reconstructions: thus it is far less under-
determined than Hi-C reconstructions, and its output is
able to consider all possible solutions and properly weight
their likelihoods. We believe our permutation tests are
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Figure 5. Reconstruction on kb-scale (ORCA)
conformations. (A) Actual information recovery I
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from the respective control mappings. (B) Rates of
incorrectly-inferred locus identities as a function of
estimated information recovery S. Dotted lines show the
value of S lying below 95% of the values of S from
color-scrambled control reconstructions.

practically immune to known and unknown systematic ef-
fects when the label colors are chosen randomly. In turn,
when a reconstruction is significant vis-á-vis the permu-
tation tests, the specific error rate in the reconstruction
can be accurately determined from the entropy S. For

these reasons we believe that conformational reconstruc-
tions from microscopy have much better-understood error
bounds than those from Hi-C data.

Refs. [18] and [19] argue that once experiments at-
tain sufficient pseudocolors, the conformational inference
problem should be essentially solved for reconstructions of
any size, and that there is little purpose in improving ex-
perimental techniques further. The question is whether
we have already reached the required number of pseu-
docolors with state-of-the-art sequential FISH protocols.
We cannot yet give a complete answer from the recolored
sequential FISH data, because while those methods are
capable of ∼ 50 pseudocolors, the data sets localized only
∼ 50 loci so our recolored data sets necessarily used far
fewer than 50 pseudocolors. A full experiment labeling
hundreds or thousands of loci using the full 50 pseuod-
color palette could perform worse or better than our 20-
pseudocolor results: the density of competing spots will
increase (if for no other reason than the fraction of spots
on the boundary will drop), but on the other hand the
number of pseudocolors will be much higher. However,
our 3- and 5-pseudocolor results should directly corre-
spond to the reconstruction performance in live-cell ex-
periments where only 3 − 5 pseudocolors are available.
One result we are already confident in even for static ex-
periments is that kilobase-scale reconstructions will re-
quire more pseuodcolors than megabase-scale reconstruc-
tions having the same number of loci, since the long tail
in the distance function increases the search radius rela-
tively much more when looking at small scales.

The interlocus distance functions themselves reflect in-
teresting biology. Our models are consistent with chro-
mosomal DNA taking a simple random walk polymers
occasionally punctuated by long-distance excursions, hav-
ing an exponentially-decaying likelihood with distance
that reflects some unknown biology. One might expect
that long stretches of DNA should undergo more excur-
sions than short ones, but surprisingly the interlocus dis-
tance functions we fit show that the rate of excursions
is constant no matter the length of intervening DNA.
Our explanation is that the DNA is initially bundled as
a random-walk polymer, and subsequent processes in the
cell cause certain genomic regions to become stretched
away from their initial position without affecting DNA
on either side of a given affected region. Thus when mea-
suring the positions of two loci, an excursion is only reg-
istered if one of the two loci happens to be in the part of
DNA being stretched: interior stretches ‘leave and come
back’ between the loci and are not registered. The pres-
ence of two exponential functions in the small-scale 2 kb
ORCA data set is consistent with the fact that one or
both endpoint loci can be undergoing an excursion, and
the coarser data sets most likely only register excursions
taken by both endpoints.
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Several experimental lessons come out of our early re-
sults. First, having fully three-dimensional conformations
is not only important for preserving genomic integrity,
but also essential for obtaining accurate locus-to-spot in-
ferences. In the flattest cells of our original experiment,
the collapse of the out-of-plane dimension handicapped
our analysis in the same way that simply ignoring the z-
coordinate information in our spot data would. Second,
it is important for the experimental color channels to be
aligned, as this significantly affects the spacing between
spots of different colors (and hence pseudocolors). Third,
it is important to measure the interlocus distance func-
tion within each experiment, ideally by hybridizing set
of probes labeling 1 locus per pseudocolor to a parallel
preparation of cells. A good example showing why this is
important is the difference in distance functions between
the ORCA 2 kb and 10 kb data sets versus that of the
ORCA 3 kb data set. Fourth, we find slight evidence that
certain random labeling patterns are slightly better than
others (see Supplementary Figure S13) though the effect
is slight, but we did not look into nonrandom labeling
patterns.

The computational protocols we developed here will be
useful in the reconstruction of much longer and higher-
resolution conformations. Computation time for all re-
constructions in this paper including controls was only
∼ 3 processor-days, so if experiments can scale to assay-
ing thousands of loci per cell, then the reconstructions
easily can too. If the observed trend in quality versus
number of pseudocolors extends to the regime of ∼ 50
pseudocolors, then large-scale conformational reconstruc-
tions are already possible using experimental techniques
which are becoming routine.

Methods

Interphase nuclei were obtained from lymphoblast cell
lines (GM12878). FISH experiments were performed
using human fosmids containing non-duplicated re-
gion directly labeled by nick-translation with Cy3-
dUTP (PerkinElmer), Cy5-dUTP (PerkinElmer), and
fluorescein-dUTP (Enzo) as described by Ref. [22], with
minor modifications. Briefly, 300 ng of labeled probe
were used for the FISH experiments; hybridization was
performed at 37◦ C in 2x SSC, 50% (v/v) formamide,
10% (w/v) dextran sulphate, and 3 mg sonicated salmon
sperm DNA, in a volume of 10 ml. High stringency post-
hybridization washing was performed at 60◦ C in 0.1x
SSC three times.

Nuclei were simultaneously DAPI-stained. Digital im-
ages for 2D-FISH were obtained using a Leica DMRXA2
epifluorescence microscope equipped with a cooled CCD
camera (Princeton Instruments). DAPI, Cy3, Cy5, and

fluorescein fluorescence signals, detected with specific fil-
ters, were recorded separately as grayscale images. Color-
ing and merging of images were performed using ImageJ.
In total, 21 interphase cells were scored.

Spots were located and their x/y centers were recorded
manually from the deconvolved image stack. (The posi-
tional error introduced by deconvolution was found to
be about 30 nm.) The z position of each spot was
found to sub-stack-spacing resolution by fitting the in-
tensity profile of each spot’s x/y pixel over the image
stack to a Gaussian. Each spot on the color-calibration
slide was localized in all color channels, and the differ-
ence of each channel from the bead was used to build a
linearly-interpolated chromatic error model. This model
was used to correct the localizations of the single-color flu-
orophores on the 3-spot and 10-spot slides. Lastly, spots
were grouped into 2 chromosomes on each of the 10-spot
slides.

Locus-to-spot mapping probabilities for each chro-
mosome were produced using the align3d tool [17],
which is available for download at https://github.com/
heltilda/align3d. For the 10-spot experiment we com-
puted the mapping probabilities exactly (to within the
accuracy of the distance function we provided), by enu-
merating each possible conformation consistent with the
data and weighing it according to the distance function.
For the recolored experiments, we wanted to simulate the
performance of a much larger reconstruction where such
enumeration is impossible, so we used the lowest-order
approximation (denoted Z in Ref. [17] or Z0 in Ref. [18])
that optimized spot penalties to approximate the true
mapping probabilities.

In the original align3d paper the total statistical
weight Z contains an unphysical contribution from spot
penalties and skipped-spot penalties, which are part of
the calculation and unrelated to the ease of fitting phys-
ical contours through the spots. For purposes of com-
puting rankings of true reconstructions versus controls,
we considered an ‘adjusted Z’ which removes those fac-
tors in an approximate way by calculating the following
quantity:

Zadjusted =
Z(∏

α f
∑
i pi;α

α

)
wN ·p∅

.
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Supplementary Figures
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Supplementary Figure S1. Chromosome thickness vs. rank in statistical weight Z. Thickness of
chromosomes in z, plotted versus rank in the statistical weight Z of the true mapping versus controls. Thickness
was measured from 2nd-lowest to 2nd-highest spot, to exclude outliers. Chromosomes with near-correct numbers of
imaged spots (8-12 out of 10 expected) are plotted in blue; chromosomes with fewer than 8 or more than 12 imaged
spots are plotted in red. Filtering the chromosomes on a) having 8-12 spots, and b) having reasonable thickness in
z (greater than one 200 nm imaging slice) causes the average Z rank of the true mappings to increase relative to
the controls, in line with the expectation that good mappings should have higher statistical weight than controls.
The improved test against the null hypothesis indicates that preserving cell thickness is important for obtaining
good reconstructions. Note that even the good chromosomes here are very flat in z compared with x and y,
indicating that the ranks would probably have been higher yet if volume-preserving fixation were used.
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Supplementary Figure S2. Distance function for Oligopaints chromosome 21 reconstructions. The
observed probability distribution ρ of spatial distances between pairs of loci (blue histograms) overlaid with the
model fit (solid red line), binned for different values of the interlocus distance L. We modeled ρ as a sum of a
Gaussian chain distribution (pGauss = 0.81369, |R|RMS = 0.0001303µm · L0.60817 for L in bp; dotted red line) and
an exponential decay in |R| (pexp = 0.18631, decay constant 2.7209 bp−1; green line). First plot for each value of L
shows the likelihood of observing a given separation distance; second plot shows the log distribution for observing a
given separation vector R; third plot shows the residuals of log10 ρ(R;L) when the Gaussian chain is subtracted
from the observed distribution, overlaid with the model exponential capturing these residuals. There are no empty
bins in the histograms, as they have been absorbed neighboring bins: therefore an ideal fit would touch the top of
every bin.
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Supplementary Figure S3. Distance function for Oligopaints chromosome 22 reconstructions.
Observed probability distribution ρ of spatial distances between pairs of loci (blue histograms) overlaid with the
model fit (solid red line), at different values of the interlocus distance L. See Figure S2 caption for details. We
modeled ρ as a sum of a Gaussian chain distribution (pGauss = 0.54969, |R|RMS = 0.042279µm · L0.18933 for L in
bp; dotted red line) and an exponential decay in |R| (pexp = 0.45031, decay constant 2.9893 bp−1; green line).
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Supplementary Figure S4. Null hypothesis tests of Oligopaints chromosome 21 reconstructions.
Ranks of several statistics from the true mappings relative to those from control mappings, for three different
recolorings. The statistics are: 1) the number of iterations required to converge the calculation; 2) the mapping
entropy S, 3) the total weight Z (or equivalently its logarithm); 4) the total weight Z adjusted to approximately
subtract the contribution coming from the unphysical free parameters. The expectation is that the true mapping
will have: fewer iterations (lower rank in the convergence column), lower S, and higher logZ (with and without
adjustment). p-values are the likelihood of randomly selecting aggregate ranks as low (first 2 columns) or as high
(last 2 columns) as the aggregate (summed) ranks observed.
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Supplementary Figure S5. Null hypothesis tests of Oligopaints chromosome 22 reconstructions.
Ranks of mapping statistics from the true chromosome 22 mappings relative to the controls. See Figure S4 caption
for details.
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Supplementary Figure S6. Distance function for ORCA 2 kb reconstructions. Observed probability
distribution ρ of spatial distances between pairs of loci (blue histograms) overlaid with the model fit (solid red
line), at different values of the interlocus distance L. See Figure S2 caption for details. We modeled ρ as a sum of a
Gaussian chain distribution (pGauss = 0.540408, |R|RMS = 0.0025927µm · L0.39361 for L in bp; dotted red line) and
two exponential decays in |R| (pexp1 = 0.40666 having decay constant 9.8286 bp−1, pexp1 = 0.052932 having decay
constant 4.1475 bp−1; green line). The underfit for very small displacements likely comes from the microscope error
correction (a constant subtracted term in the squared distance).
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Supplementary Figure S7. Distance function for ORCA 3 kb reconstructions. Observed probability
distribution ρ of spatial distances between pairs of loci (blue histograms) overlaid with the model fit (solid red
line), at different values of the interlocus distance L. See Figure S2 caption for details. We modeled ρ as a sum of a
Gaussian chain distribution (pGauss = 0.58758, |R|RMS = 0.012231µm ·L0.27371 for L in bp; dotted red line) and an
exponential decay in |R| (pexp = 0.41242, decay constant 5.9577 bp−1; green line). This fit differed noticably from
that of the 2 kb and 10 kb experiments, showing the importance of calibrating each set of experiments individually.
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Supplementary Figure S8. Distance function for ORCA 10 kb reconstructions. Observed probability
distribution ρ of spatial distances between pairs of loci (blue histograms) overlaid with the model fit (solid red
line), at different values of the interlocus distance L. See Figure S2 caption for details. We modeled ρ as a sum of a
Gaussian chain distribution (pGauss = 0.49086, |R|RMS = 0.0025231µm · L0.42298 for L in bp; dotted red line) and
an exponential decay in |R| (pexp = 0.50914, decay constant 4.3206 bp−1; green line).
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Supplementary Figure S9. Null hypothesis tests of ORCA 2 kb reconstructions. Ranks of mapping
statistics from the true ORCA 2 kb mappings relative to the controls. See Figure S4 caption for details.
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Supplementary Figure S10. Null hypothesis tests of ORCA 3 kb reconstructions.. Ranks of mapping
statistics from the true ORCA 3 kb mappings relative to the controls. See Figure S4 caption for details.
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Supplementary Figure S11. Null hypothesis tests of ORCA 10 kb reconstructions. Ranks of mapping
statistics from the true ORCA 10 kb mappings relative to the controls. See Figure S4 caption for details.
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Supplementary Figure S12. Spot-assignment error rate vs. unrecovered information per locus I.
This plot connects the abstract measure of information recovery I, which is defined over mapping probabilities
generated by align3d, to the more tangible error rate when trying to identify imaged spots, by inferring an explicit
conformation from the strongest mapping probabilities. The various experiments produce similar curves, indicating
a simple universal relation between the two measures.
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Supplementary Figure S13. Reconstruction quality from independent label coloring. Each plot
compares histograms of unrecovered information I from two independent, randomly-generated color assignments
for the labeled loci and the corresponding imaged spots. Only one experiment showed a sizeable difference between
the two labeling patterns, and the difference was small although statistically robust (see p-values on plot). For
comparison, the dot-dash line is a histogram of the chromosome-by-chromosome difference in I for the respective
experiment. These experiments seem to indicate that the quality of a randomly-chosen coloring pattern mainly
varies randomly between chromosomes, and that the systematic quality difference between labeling patterns is
fairly small. However, we only tested a few labeling patterns.
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Supplementary Figure S14. Assigned mapping p-values versus their likelihoods of being true
mappings. Mapping p-values are split into 100 bins (x axis), and the fraction of true mappings in each bin are
plotted using a dot on the y axis. Grey shaded regions show the 3σ confidence interval owing to counting statistics.
Ideal mapping p-values would lie along the pmeasured = passigned diagonal (dotted line).
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