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Summary 1 

To explore glioma biomarkers with high specificity, enable non-invasive detection and 2 

possess clinical significance, we perform large-scale integrative analyses on multi-omics 3 

multi-cohort datasets collected from public resources. We identify PRKCG as a brain-4 

specific gene that is highly expressed in cerebrospinal fluid, thus achieving higher 5 

specificity and detectability in the periphery. Importantly, PRKCG bears great potential in 6 

clinical application for glioma diagnosis, prognosis, and treatment prediction, which have 7 

been consistently testified on a number of independent discovery and validation datasets 8 

consisting of multi-omics molecular profiles and different ethnic populations/countries. 9 

Based on the comprehensive characterization of multi-omics molecular profiles, our 10 

findings suggest the reliability and potential application of PRKCG as a biomarker for 11 

glioma. 12 

Keywords: glioma, multi-omics, PRKCG, biomarker, cerebrospinal fluid 13 

 14 

Significance 15 

Glioma is one of the most lethal human malignancies and exhibits low resection rate and 16 

high recurrence risk. Powered by high-throughput sequencing technologies, the public 17 

availability of vast amounts of multi-omics molecular datasets provides unprecedented 18 

opportunities to identify effective biomarkers for glioma. Here, we assemble a large-scale 19 

collection of multi-omics multi-cohort glioma datasets from public resources. Our 20 

integrative molecular analyses reveal that PRKCG achieves higher specificity and 21 

detectability in the periphery and bears the significant potential in glioma diagnosis, 22 
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prognosis and treatment prediction as testified on different datasets. Our study features 1 

comprehensive molecular characterization of PRKCG in glioma and highlights the value 2 

of integrative multi-omics data analysis toward accurate therapeutic strategies and 3 

precision healthcare in the era of big data. 4 

 5 
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Introduction 1 

Glioma, one of the serious central nervous system (CNS) tumors, represents 80% of 2 

malignant brain tumors (A.Maher. et al., 2019; Schwartzbaum et al., 2006) and features 3 

low resection rate and high recurrence risk (Stewart, 2002). Since tumor classification 4 

benefits accurate diagnosis and facilitates precise treatment, gliomas can be classified, 5 

according to the 2007 World Health Organization (WHO) grading scheme (Louis et al., 6 

2007), into low-grade gliomas (LGG: astrocytoma, oligodendroglioma, 7 

oligoastrocytoma) and high-grade gliomas (GBM: glioblastoma). Therefore, 8 

identification of effective biomarkers for precise classification of different-grade gliomas 9 

is crucial to aid tumor diagnosis, establish appropriate therapies, recognize prognostic 10 

outcome and predict therapeutic response (Cancer Genome Atlas Research et al., 2015; 11 

Wesseling et al., 2011). 12 

Powered by high-throughput sequencing technologies, a set of molecular biomarkers 13 

have been discovered from different omics levels to assist glioma diagnosis and treatment 14 

(Kim et al., 2013; Wiestler et al., 2013). Among them, isocitrate dehydrogenase (IDH) 15 

mutation and 1p/19q co-deletion (1p/19q codel) are two most important molecular 16 

signatures for glioma grading (Cohen et al., 2013; Eckel-Passow et al., 2015; Waitkus et 17 

al., 2018). Patients with IDH mutation (IDH-mut) have longer survival than those with 18 

IDH wild-type (IDH-WT) (Cohen et al., 2013; Guo et al., 2011; Ichimura et al., 2009; 19 

Kloosterhof et al., 2011; Turcan et al., 2012). And the 1p/19q codel is a distinctive feature 20 

of oligodendroglioma (Cairncross et al., 2013; Eckel-Passow et al., 2015; Jenkins et al., 21 

2006; van den Bent et al., 2013). Furthermore, based on these two signatures, 22 

accumulated evidence suggested that gliomas can be divided into three subtypes (IDH-23 
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mut & 1p/19q codel, IDH-mut & 1p/19q non-codel, and IDH-WT & 1p/19q non-codel), 1 

which are associated with diverse clinical outcomes (Mur et al., 2015). Accordingly, in 2 

2016, the WHO combined histology and genetic signatures to divide gliomas into five 3 

categories (Molinaro et al., 2019), including three low-grade gliomas (diffuse 4 

astrocytoma, IDH-mut & 1p/19q non-codel; oligodendroglioma, IDH-mut & 1p/19q 5 

codel; diffuse astrocytoma, IDH-WT & 1p/19q non-codel) and two high-grade gliomas 6 

(GBM, IDH-mut; GBM, IDH-WT) (see a review in (Louis et al., 2016)). Meanwhile, 7 

biomarkers at the transcriptome level have also been identified (Flynn et al., 2008; Wang 8 

et al., 2016); for example, an increased expression of Epidermal Growth Factor Receptor 9 

(EGFR) has been reported to associate with malignant progression of gliomas (Fan et al., 10 

2009; van den Bent et al., 2015; Verhaak et al., 2010). In addition, epigenetic 11 

modifications are also implicated in glioma (Esteller, 2007; Park et al., 2014; Zhang et 12 

al., 2017). One classical biomarker is O6-methylguanine-DNA-methyltransferase 13 

(MGMT) (Binabaj et al., 2018; Donson et al., 2007); patients with methylated MGMT 14 

promoter have better clinical outcomes and are more sensitive to the alkylating 15 

chemotherapy than those without methylated MGMT promoter (Binabaj et al., 2018; Hegi 16 

et al., 2005; Rivera et al., 2010; Wick et al., 2014). 17 

Although tremendous efforts have been devoted for better understanding of glioma 18 

tumorigenesis and identification of molecular biomarkers, existing glioma biomarkers 19 

have several drawbacks. First, they are lack of glioma specificity. For instance, the IDH 20 

mutation has also been identified as a biomarker in other tumor types including acute 21 

myeloid leukemia (AML) (Dang et al., 2010; Dang et al., 2016), chondrosarcoma and 22 

intrahepatic cholangiocarcinoma (Kerr et al., 2013). Second, existing biomarkers are 23 
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unable to differentiate glioma subtypes with high accuracy, which would be beneficial to 1 

glioma grading and personalized medicine. Third, although biomarkers have been 2 

discovered to aid the prognosis and prediction of GBM (Hu et al., 2018; McNamara et al., 3 

2013) and LGG (Cancer Genome Atlas Research et al., 2015; Wesseling et al., 2015), 4 

they are incapable to reflect the progression from low- to high-grade gliomas. Last but 5 

foremost, considering the practical significance of detectability in periphery, genetic 6 

tumor profiling based on extant biomarkers yet involves brain surgery (Miller et al., 7 

2019), limiting its clinical applicability for glioma diagnosis and prognosis. 8 

The public availability of multi-omics datasets for glioma (Cancer Genome Atlas 9 

Research et al., 2015; Ceccarelli et al., 2016; Zhao et al., 2019) as well as cerebrospinal 10 

fluid (CSF) which is the only accessible source to obtain genes stemmed from human 11 

CNS (Miller et al., 2019; Mouliere et al., 2018; Sasayama et al., 2017), provides 12 

unprecedented opportunities for identifying biomarkers without craniotomy operation and 13 

comprehensively characterizing the pathophysiology of brain tumors. To this end, we 14 

collected a large-scale assemble of multi-omics multi-cohort datasets from public 15 

resources, established a methodological strategy on integrative identification of 16 

biomarkers with higher specificity and feasible detectability from periphery, and revealed 17 

that PRKCG is specifically expressed in brain and also detectable in CSF. Through 18 

comprehensive integrative analyses on a total of five discovery datasets and fourteen 19 

validation datasets, we systematically characterized PRKCG as a potential biomarker for 20 

glioma diagnosis, prognosis and treatment prediction. 21 
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STAR Methods 1 

Data collection 2 

In this study, we collected a comprehensive assemble of multi-omics datasets (including 3 

genomics, transcriptomics, DNA methylomics and proteomics) from The Cancer Genome 4 

Atlas (TCGA, https://portal.gdc.cancer.gov/) (Ceccarelli et al., 2016), Genotype-Tissue 5 

Expression Portal (GTEx, https://gtexportal.org/home/) (John Lonsdale, 2013), Gene 6 

Expression Omnibus (GEO, https://www.ncbi.nlm.nih.gov/geo), Ivy Glioblastoma Atlas 7 

Project (Ivy GAP, http://glioblastoma.alleninstitute.org) (Puchalski. et al., 2018) and 8 

Chinese Glioma Genome Atlas (CGGA, http://www.cgga.org.cn) (Bao et al., 2014; Sun et 9 

al., 2014). Particularly, discovery datasets were derived from TCGA, GTEx and large 10 

cohort studies in GEO (GSE83710, GSE16011 and GSE36278 for protein, expression 11 

and methylation, respectively). As a result, a total of five discovery datasets and fourteen 12 

validation datasets were obtained. For convenience, each dataset collected in this study is 13 

assigned a unique accession number with the format: [D/V][i]-14 

[TCGA/GTEx/GEO/CGGA/Ivy GAP]-[E/V/P/M], where D/V in the first bracket 15 

represents the dataset for discovery or validation, i in the second bracket indicates the 16 

dataset number, the third bracket shows the data source (as mentioned above), and the last 17 

bracket indicates the data type, namely, E for RNA expression, V for CNV, P for protein 18 

expression and M for DNA methylation, respectively. The detailed information about all 19 

collected datasets was tabulated in Table 1. 20 

Identification of brain-specific genes 21 
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To identify brain-specific genes, we used the RNA-Seq dataset from GTEx (2016-01-15; 1 

v7) (John Lonsdale, 2013), which contains 11,688 samples across 53 tissue sites of 714 2 

donors. Considering that several tissues have multiple different sites, gene expression 3 

levels were averaged over sites that are from the same tissue. To reduce background 4 

noise, genes with maximal expression levels smaller than 10 TPM (Transcripts Per 5 

Million) were removed. Finally, we obtained a total of 15,176 gene expression profiles 6 

across 30 tissues (Table S1). 7 

Based on the expression levels across 30 tissues, we calculated the tissue specificity 8 

index τ (Yanai et al., 2005) for each gene to identify tissue-specific genes. τ is valued 9 

between 0 and 1, where 0 represents housekeeping genes that are consistently expressed 10 

in different tissues, and 1 indicates tissue-specific genes that are exclusively expressed in 11 

only one tissue (Yanai et al., 2005). In this study, brain-specific genes were defined as 12 

those genes that are maximally expressed in the brain with τ>0.9. As a consequence, a list 13 

of the top 100 brain-specific genes ranked by the τ index were obtained for further 14 

analysis (Table S2). 15 

Sample classification 16 

To comprehensively study the potential of PRKCG in glioma diagnosis, we compared its 17 

molecular profiles between normal and glioma samples, between LGG and GBM 18 

samples, between primary GBM (pGBM) and recurrent GBM (rGBM) samples, and 19 

between glioma samples with different anatomic features. We collected 122 GBM 20 

samples from the Ivy GAP database (Puchalski. et al., 2018) and grouped them according 21 

to their anatomic regions, namely, leading edge (LE, the ratio of tumor/normal cells is 22 
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about 1–3/100), infiltrating tumor (IT, the ratio of tumor/normal cells is about 10–1 

20/100), cellular tumor (CT, the ratio of tumor/normal cells is about 100/1 to 500/1), 2 

pseudo-palisading cells around necrosis (PAN, the narrow boundary of cells along the 3 

dead tissue), and microvascular proliferation (MVP, two or more blood vessels sharing a 4 

common vessel wall of endothelial). 5 

To investigate the prognostic role of PRKCG, for each dataset we divided samples into 6 

three groups based on its expression/methylation level, where the top 25% are “High”, 7 

the 25%-75% are “Middle”, and the remaining are “Low”. When exploring the predictive 8 

role of PRKCG, we obtained methylation status (methylated and unmethylated) directly 9 

from the original study (Ceccarelli et al., 2016), which was defined based on the beta 10 

value cutoff 0.3. 11 

Identification of PRKCG-like genes 12 

PRKCG-like genes were identified by adopting the following criteria (Figure S1): (1) 13 

Higher methylation level of at least one CpG site (promoter region; 450K) in glioma 14 

samples than normal samples; (2) Higher DNA methylation level in LGG samples than 15 

GBM samples; (3) Higher expression level in LGG samples than GBM samples; and (4) 16 

Lower expression level in glioma samples than normal samples. As a result, we obtained 17 

a total of 720 genes, which were further divided into two groups according to their 18 

correlations between gene expression and methylation, namely, 193 genes with positive 19 

correlation and 269 genes with negative correlation. These 193 genes were considered as 20 

PRKCG-like genes. 21 

Statistical analysis 22 
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All statistical analyses were performed using R version 3.3.2. The Wilcoxon test was 1 

used for the analysis of the difference in gene expression/methylation between tumor and 2 

normal samples, and between different glioma subtypes. The statistical significance levels 3 

were coded by ns (not significant) p > 0.05, * p < 0.05, ** p < 0.01 and *** p < 0.001. 4 

We performed the survival analysis using the Kaplan-Meier method and estimated the 5 

statistical difference using the log-rank test. To identify whether age or gender might 6 

exert an influence on survival, the Cox proportional hazards regression model was 7 

applied to the univariate and multivariate analyses. 8 

Lead contact and materials availability 9 

This study did not generate new unique reagents. Further information and requests for 10 

resources should be directed to and will be fulfilled by the Lead Contact, Z.Z. 11 

(zhangzhang@big.ac.cn). 12 

Data availability statement 13 

All datasets integrated in this study were obtained from multiple public database 14 

resources (see details in Table 1), which are freely available at 15 

ftp://download.big.ac.cn/glioma_data/. 16 

Results 17 

PRKCG is a brain-specific gene and detectable in cerebrospinal fluid 18 

To identify glioma biomarkers with high brain specificity, we integrated expression data 19 

from GTEx (D1-GTEx-E) (John Lonsdale, 2013), explored genes’ expression profiles 20 

and their tissue-specificity, and identified a list of top 100 brain-specific genes (Table S2). 21 
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To achieve the detectability in the periphery, we assembled a total of 1,126 CSF-1 

detectable proteins from GEO GSE83710 (D2-GSE83710-P) (Sasayama et al., 2017), due 2 

to the critical significance of CSF as the only feasible way to detect genes expressed in 3 

human CNS. After integrating brain-specific genes with CSF proteins, we found that 4 

there are five brain-specific proteins that can be detected in CSF (Figures 1 and S2), in 5 

terms of fluorescence intensity from low to high, namely, CAMK2A, GFAP, OPCML, 6 

BCAN and PRKCG, which are diversely expressed in different brain regions (Figure S3). 7 

Specifically, CAMK2A is a calcium calmodulin-dependent protein kinase and reduced 8 

expression of CAMK2A is associated with better survival in GBM (John et al., 2017; 9 

Long et al., 2017). GFAP, encoding one of the major intermediate filament proteins of 10 

mature astrocytes (Horst et al., 2007), can be used to assess the differentiation state of 11 

astrocytoma (van Bodegraven et al., 2019). OPCML encodes a member of the IgLON 12 

subfamily in the immunoglobulin proteins and is down-regulated in gliomas and other 13 

brain tumors (Carminati. et al., 2010; Reed et al., 2007). BCAN, a member of the lectican 14 

family of chondroitin sulfate proteoglycans, is highly expressed in glioma and may 15 

promote cell motility of brain tumor cells (Phillips et al., 2006; Sydney C. Gary, 2000). In 16 

addition, the fusion event between BCAN and NTRK1 (BCAN-NTRK1) is a potential 17 

glioma driver and therapeutic target (Cook et al., 2018).  18 

Remarkably, PRKCG (Protein Kinase C Gamma), a member of protein kinase C (PKC) 19 

family, exhibits higher fluorescence intensity than the other four genes (Figures 1 and 20 

S2). Previous studies have documented that unlike other PKC family members that are 21 

expressed in many tissues aside from brain, PRKCG is brain-specifically expressed and 22 

its localization is restricted to neurons (Saito and Shirai, 2002) and that mutations in 23 
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PRKCG are associated with spinocerebellar ataxia (Klebe et al., 2005; Yabe et al., 2003). 1 

Additionally, it has been reported that PKC signaling pathways contribute to the 2 

aggressive behavior of glioma cells (do Carmo et al., 2013) and atypical PKC isozymes 3 

are fundamental regulators of tumorigenesis (Reina-Campos et al., 2019). Despite this, 4 

the potential role of PRKCG in glioma remains unknown, and therefore, comprehensive 5 

molecular characterization of PRKCG across multi-omics glioma datasets is highly 6 

desirable. 7 

PRKCG is a potential biomarker for glioma diagnosis and prognosis 8 

First, we explored the expression profile of PRKCG across multiple brain developmental 9 

stages, and revealed that its expression is extremely lower in the prenatal stages, but 10 

dramatically increased in the infancy stages and then stabilized in the latter stages using 11 

the data of GenTree (Shao et al., 2019) (Figure S4). Moreover, using a total of 607 12 

TCGA glioma samples, we identified its co-expressed genes (Table S3; p-value < 0.01, 13 

r2>0.8) and performed the gene ontology analysis, showing that PRKCG co-expressed 14 

genes are significantly associated with “chemical synaptic transmission”, “axon”, and 15 

“GABA-A receptor activity”.  16 

Next, we compared the expression profiles of PRKCG between normal and glioma 17 

samples. We found that PRKCG expression is significantly reduced in gliomas by 18 

contrast to normal samples, and this reduced expression is consistently observed in 19 

multiple datasets (Figure 2A to 2F; p-value < 0.01, Wilcoxon test). Then, using data 20 

collected from the Ivy GAP database (Puchalski. et al., 2018) (see Methods), we explored 21 

the expression of PRKCG among GBMs from different anatomic regions. As expected, 22 
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PRKCG shows significantly different expression patterns among these anatomic regions; 1 

its expression is highest in LE (the outermost boundary of the tumor), significantly 2 

decreased in IT (the intermediate zone between the LE and the serious CT regions), and 3 

lowest in the serious regions (CT, PAN and MVP) (Figure 2G; p-value < 0.01, Wilcoxon 4 

test). We further examined PRKCG expression in gliomas with different grades, and 5 

found that its expression level is significantly lower in GBM samples than LGG samples 6 

(Figure 2H to 2J; p-value < 0.01, Wilcoxon test). Collectively, these results demonstrate 7 

that the reduced expression of PRKCG is not only associated with glioma, but also 8 

associated with glioma progression in a quantitative manner, highlighting its potential for 9 

glioma diagnosis and prognosis. 10 

Since PRKCG harbors two CpG sites (namely, cg26626089 and cg04518808) that are 11 

located in the promoter region and covered in both HumanMethylation27 (27K) and 12 

HumanMethylation450 (450K) BeadChip datasets, we systematically investigated DNA 13 

methylation profiles of these two sites (Figure 3). Using the four independent datasets 14 

from D5-GSE36278-M (Sturm et al., 2012), V8-GSE50923-M (Lai et al., 2014), V9-15 

GSE61160-M (Mur et al., 2013) and V10-CGGA-M (Zhang et al., 2013), we found that 16 

cg26626089 is significantly hyper-methylated in GBM patients compared with normal 17 

samples (Figure 3A and 3C; p-value < 0.01, Wilcoxon test). The other CpG site 18 

cg04518808, albeit not significantly, is also observed to be hyper-methylated in GBM 19 

patients (Figure 3B and 3D; p-value > 0.05, Wilcoxon test). Furthermore, we examined 20 

the variation of methylation level using whole-genome bisulfite sequencing data of six 21 

GBM samples from TCGA and one normal sample from UCSC (2017 version; 22 

http://genome.ucsc.edu, last accessed on 12 May 2019). Consistently, we observed that 23 
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most GBM patients show higher methylated promoter region than normal samples 1 

(Figure S5). In addition, considering different grading gliomas, we observed that both 2 

sites present much lower methylation levels in GBM samples than LGG samples (Figure 3 

3E to 3H; p-value < 0.01, Wilcoxon test). 4 

Collectively, PRKCG exhibits differential molecular profiles in normal and glioma 5 

samples. Compared with normal samples, PRKCG presents lower expression and higher 6 

methylation in glioma samples. With tumor malignancy, PRKCG expression and 7 

methylation are both on the decrease (discussed later). These results suggest PRKCG as a 8 

potential biomarker for glioma diagnosis and prognosis. 9 

PRKCG is significantly associated with survival 10 

To further investigate the prognostic potential of PRKCG, we conducted the survival 11 

analysis with samples’ expression data and survival information. We discovered that 12 

higher PRKCG expression is associated with longer overall survival (Figure 4A; p-value 13 

< 0.01, log-rank test). Remarkably, this is consistently observed in three independent 14 

validation datasets (Figure 4B to 4D; p-value < 0.01, log-rank test). The univariate and 15 

multivariate Cox regression analyses also revealed that PRKCG expression is statistically 16 

significantly associated with patients’ survival (Table 2; p-value < 0.01).  17 

DNA methylation is implicated in transcriptional regulation and may play a central role in 18 

the generation of phenotypic instability (Baylin, 2005). Accordingly, we further 19 

investigated whether PRKCG methylation is associated with clinical outcome. Based on 20 

two independent datasets from TCGA (n = 862) and CGGA (n = 151), we observed that 21 

higher methylation level of the site cg04518808 is significantly associated with better 22 
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survival (Figure S6A and S6B; p-value < 0.01, log-rank test). The other site cg26626089 1 

exhibits similar effect, but is statistically insignificant in the CGGA dataset presumably 2 

due to smaller sample size (Figure S6C, p-value < 0.01, log-rank test; Figure S6D, p-3 

value = 0.3, log-rank test). However, we found that the averaged methylation level of the 4 

two sites is a more powerful and robust prognositc biomarker; higher PRKCG 5 

methylation indicates better survival outcome, which is less affected by the sample size 6 

(Figure 5A and 5B; p-value < 0.01, log-rank test). Moreover, the univariate and 7 

multivariate Cox analyses excluded the age and gender as confounding variables 8 

affecting patients’ survival as well (Table 2; p value < 0.01). 9 

Since PRKCG is located on 19q13.42, PRKCG CNV is most likely correlated with the 10 

status of 19q and thus may be associated with clinical outcome. Therefore, we 11 

investigated these relationships using 1,018 samples from TCGA (Figure 6). Consistent 12 

with our expectation, the copy number status of PRKCG is accompanied by 19q gain/loss 13 

(Figure 6A). As 1p/19q codel is an acknowledged prognostic biomarker for glioma, we 14 

adopted both 1p/19q codel and PRKCG to further divide gliomas into four groups: 15 

PRKCG normal, PRKCG gain, PRKCG loss & 1p/19q codel, and PRKCG loss & 1p/19q 16 

non-codel. Interestingly, patients under these four groups present significantly different 5-17 

year overall survival (OS) rates, which, from better to worse, are 82% for 1p/19q codel, 18 

42% for 1p/19q non-codel, 20% for PRKCG (19q) normal, and <8% for PRKCG (19q) 19 

gain, respectively (Figure 6A; p value < 0.01, log-rank test). These results indicate that 20 

one single biomarker might not be sufficient for accurate and reliable prognosis. We 21 

illustrated the survival rates and the distributions of age, WHO grade and histology across 22 

the four groups (Figure 6B). Intriguingly, PRKCG CNV status is closely associated with 23 
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different grading gliomas; nearly all LGG patients are PRKCG CNV loss and have 1 

relatively young ages, whereas most GBM patients are older and possess PRKCG CNV 2 

gain. Collectively, multi-omics analyses on expression, methylation and CNV datasets 3 

demonstrated that PRKCG is a potential prognosis biomarker for glioma. 4 

Combined methylation signatures of PRKCG and MGMT are effective in treatment 5 

prediction 6 

It is known that MGMT encodes a DNA-repair protein and hypermethylation of MGMT is 7 

associated with diminished DNA-repair activity, accordingly allowing the alkylating drug 8 

temozolomide (TMZ) to have greater effect in GBM treatment (Donson et al., 2007; 9 

Fukushima et al., 2009; Hegi et al., 2005; Stupp et al., 2005). In our study, consistently, 10 

we found that patients with methylated MGMT are more sensitive to TMZ treatment than 11 

those with unmethylated MGMT (Figure 7A; p-value < 0.01, log-rank test).  12 

Considering that a single biomarker might be lack of sufficient prediction power and thus 13 

fail to determine the clinical therapeutic efficacy due to tumor heterogeneity (Li et al., 14 

2018), we sought to examine the predictive potential of PRKCG for TMZ using 228 15 

glioma samples with matched DNA methylation and clinical data from TCGA. We 16 

discovered that among the two CpG sites of PRKCG (cg26626089 and cg04518808), the 17 

methylation level of cg26626089 is able to classify patients into two groups with distinct 18 

survival advantages, as patients with methylated cg26626089 have significantly longer 19 

survival than those with unmethylated cg26626089 (Figure 7B; p-value < 0.01, log-rank 20 

test; Table 2, p-value < 0.01). In contrast, cg04518808 is unable to be used for glioma 21 

classification (Figure S7A, p-value > 0.05, log-rank test). By combining PRKCG 22 
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(cg26626089) with MGMT, intriguingly, GBM patients receiving TMZ treatment can be 1 

classified into four groups that exhibit significantly different survivals (Figures 7C and 2 

S7B; p-value < 0.01, log-rank test). The four groups, namely, MGMT-unmethylated + 3 

PRKCG-unmethylated, MGMT-unmethylated + PRKCG-methylated, MGMT-methylated 4 

+ PRKCG-unmethylated, and MGMT-methylated + PRKCG-methylated, present 5 

gradually improved longer survivals, as their 20-month OS rates are 0.18, 0.29, 0.39 and 6 

0.51 (Figure 7C), respectively. Therefore, the combined methylation signatures of 7 

PRKCG and MGMT can be utilized to guide more accurate glioma stratification and 8 

achieve better personalized therapeutic decisions. 9 

Discussion 10 

With the rapid advancement of sequencing technologies, there has been an increasing 11 

number of high-throughput studies on glioma, resulting in massive multi-omics multi-12 

cohort datasets generated from different projects and laboratories throughout the world. 13 

Therefore, it has become crucially significant on how to make full use of these valuable 14 

data for comprehensive molecular identification of glioma biomarkers. In this study, we 15 

for the first time, assembled the most comprehensive collection of public glioma datasets 16 

with multi-omics data types and different populations/countries and established a 17 

methodological strategy on integrative identification of biomarkers with higher 18 

specificity and feasible detectability from periphery. Based on these, we performed 19 

comprehensive molecular characterization of PRKCG as a biomarker for glioma 20 

diagnosis, prognosis and treatment prediction, which have been consistently verified 21 

across multiple independent discovery and validation datasets (Figures 2 to 5). 22 

Specifically, 1) PRKCG presents lower expression and higher methylation in glioma 23 

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted October 9, 2019. ; https://doi.org/10.1101/798785doi: bioRxiv preprint 

https://doi.org/10.1101/798785


 
 
 

18 

samples, which, with tumor malignancy, are both decreasing; 2) PRKCG is associated 1 

with glioma progression, as its expression change from high to low is indicative of 2 

glioma progression from low-grade to high-grade; 3) High RNA expression, high DNA 3 

methylation, and low copy number, are all suggestive of good survivals (discussed 4 

below); 4) Patients with DNA methylation in both PRKCG and MGMT are more sensitive 5 

to TMZ treatment, suggesting the effectiveness of combined application of PRKCG with 6 

the classical biomarker MGMT to achieve more precise survival after TMZ 7 

chemotherapy. Although it has been documented that PRKCG is up-regulated in colon 8 

cancer and loss of PRKCG inhibits cell migration and enhances the proliferation 9 

(Catriona M. Dowling and Kiely, 2017), the up-regulation in colon cancer, as a matter of 10 

fact, is extremely lower by comparison with glioma (LGG and GBM) (Figure S8). Thus, 11 

unlike previous efforts that most discovered biomarkers at single omics level and with 12 

limited samples, our findings highlight the importance of integrative multi-omics multi-13 

cohort data analysis and represents a data-driven blueprint toward accurate therapeutic 14 

decisions and precision healthcare in cancer research. 15 

Taking advantage of the comprehensive datasets, we explored how PRKCG is regulated 16 

in glioma. Obviously, PRKCG is a glioma tumor suppressor gene significantly repressed 17 

from normal brain tissue to glioma (Figure 2). At the same time, we found that most of 18 

the GBM patients show higher methylated PRKCG than normal samples (Figure 3). 19 

Noting that high methylation on the promoter region may lead to low expression (Herman 20 

and Baylin, 2003), it is most likely that PRKCG expression is significantly negatively 21 

affected by its methylation. However, it does not follow this rule in the comparison 22 

between LGG and GBM; LGG exhibits both higher methylation level and higher 23 
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expression level than GBM (Figures 2 and 3). In fact, multi-omics profiles of PRKCG are 1 

in harmony with classical biomarkers (Figure 8A); PRKCG methylation (cg26626089) is 2 

associated with IDH status, consistent with a previous finding that IDH-mut is associated 3 

with high methylation (Christensen et al., 2011). As LGG samples are always associated 4 

with IDH-mut and GBM samples are associated with IDH-WT, it is not difficult to 5 

understand why the methylation level of PRKCG is significantly lower in GBM than in 6 

LGG. Such higher expression level and higher methylation level lead to the suspicion 7 

whether PRKCG expression in glioma is positively regulated by its DNA methylation or 8 

is attributable to its CNV. 9 

Surprisingly, PRKCG CNV is positively correlated with its expression, as expected 10 

within the CNV loss/gain group (Figure 8B and 8C; p-value < 0.01, Spearman correlation 11 

= 0.26/0.32), while it exhibits a contradictory negative association in the group of all 12 

CNV status (Figure 8D). According to the dosage effect theory (Henrichsen et al., 2009), 13 

the CNV loss group should not express more PRKCG than the CNV gain group. This 14 

implies that there is probably another factor rather than CNV to dominantly regulate 15 

PRKCG expression in glioma. Although it contradicts the commonly accepted negative 16 

association between gene expression and promoter CpG methylation, a large-scale pan-17 

cancer analysis has revealed positive correlation between promoter CpG methylation and 18 

gene expression (John CG Spainhour, 2019). Consistently, we did observe significant 19 

positive correlations between PRKCG expression and CpG methylation within the 20 

promoter region (Figure 8E and 8F). This positive regulation of CpG methylation could 21 

be quite strong, which significantly improves PRKCG expression in LGG samples; even 22 

these samples exhibit obvious CNV loss (Figure 8A). 23 
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Therefore, PRKCG is most likely regulated in different directions by DNA methylation, 1 

which negatively regulates PRKCG expression from normal to tumor, while positively 2 

regulates the expression within tumor. This finding does challenge our understanding of 3 

methylation regulation. To analyze whether this kind of regulation has any biological 4 

significance, we characterized and identified 462 glioma suppressor genes that tend to be 5 

regulated by DNA methylation (Table S4) (described in Methods). Among the 462 genes, 6 

269 genes show negative correlations between methylation level and expression level, 7 

whereas 193 genes show positive correlations (Figure S9A; Table S4) that are exactly 8 

PRKCG-like. Intriguingly, the two groups’ genes are enriched in different pathways. The 9 

negatively correlated genes are significantly enriched in the pathways of “Neuroactive 10 

ligand-receptor interaction”, “cAMP signaling pathway”, “cGMP-PKG signaling” and 11 

“Morphine addiction”, whereas the PRKCG-like genes are significantly enriched in the 12 

pathways of “Ras signaling”, “Dopaminergic synapse” and “Glutamatergic synapse” 13 

(Figure S9B). Thus, PRKCG-like genes presumably present heterogeneous roles in 14 

tumorigenesis with complex molecular mechanisms that need further extensive 15 

explorations both bioinformatically and experimentally. 16 

PRKCG is located on the chromosome 19q13.42, unifying previous findings that 1p/19q 17 

codel is closely associated with glioma. Consistently, PRKCG CNV is associated with 18 

19q status (Figure 6A). To our knowledge, in addition to PRKCG, other genes (e.g., 19 

TTYH1, UBE2S) (Hu et al., 2017; Jung et al., 2017) that are located in 19q, are also 20 

linked with glioma. However, it is still unclear why 19q is associated with patients’ status 21 

and what is the driving force responsible for the variation of these associated genes. 22 

Interestingly, different from other genes as mentioned above, PRKCG (as well as other 23 
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four genes identified in this study, viz., GFAP, BCAN, CAMK2A and OPCML) is a highly 1 

brain-specifically expressed gene and its protein is abundant in CSF, accordingly 2 

achieving higher specificity and enabling practical detectability from periphery without 3 

surgery operation. Nevertheless, it is noted that the CSF data used in this study involves 4 

1,126 proteins across 133 normal samples (Sasayama et al., 2017). In fact, it would be 5 

more desirable and helpful to compare the PRKCG protein pattern in CSF across normal 6 

and glioma samples (ideally with different grades). Therefore, future inclusion of more 7 

glioma CSF datasets is needed to systematically characterize the diagnostic variables and 8 

their association to more precision clinical subtypes. 9 

Particularly, although it is well-known that MGMT hypermethylation status is associated 10 

with longer survival (Donson et al., 2007), here for the first time, we revealed that within 11 

different status of MGMT (methylated or unmethylated), patients with methylated 12 

PRKCG (cg26626089) always show better treatment outcome. MGMT encodes a DNA-13 

repair protein, and elevated MGMT expression is associated with TMZ resistance 14 

(Donson et al., 2007). Not surprisingly, the methylated groups with better survivals show 15 

significantly lower expression of MGMT than the unmethylated groups (Figure S7C). 16 

Why would the combination of MGMT methylation with PRKCG methylation indicate an 17 

even better survival? According to our results, PRKCG is potentially a glioma suppressor 18 

gene. Therefore, the elevated expression of PRKCG positively regulated by DNA 19 

methylation would promote the inhibition of tumor cells and thus exhibit a better effect 20 

when combined with MGMT. In the future, it is necessary to collect a large number of 21 

samples to elucidate the mechanisms behind. Also, it is crucial to identify more predictive 22 
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biomarkers for accurate stratification, precise clinical treatment, and improved healthcare 1 

in oncology (La Thangue and Kerr, 2011). 2 

The occurrence and development of glioma is a complicated heterogeneous process. In 3 

our study, PRKCG performs well in differentiating normal, LGG, and GBM samples and 4 

predicting patients’ survival states. However, in pGBM and rGBM, we obtained 5 

contradictory results when applied to different populations; PRKCG methylation shows 6 

no significant difference between pGBM and rGBM in the Chinese population (V10-7 

CGGA-M) (Figure S10A and S10B; p-value > 0.05, Wilcoxon test) but significantly 8 

difference in the Switzerland population (V14-GSE60274-M) (Kurscheid et al., 2015) 9 

(Figure S10C and S10D; p-value < 0.05, Wilcoxon test). This is most likely caused by the 10 

population genetic difference and/or the small sample size (both datasets have < 5 rGBM 11 

samples). Undoubtedly, comprehensive integrated analysis across multi-omics datasets 12 

and different populations is an inevitable trend in the era of big data, which would greatly 13 

benefit systematic exploration of optimal biomarkers as well as characterization of their 14 

molecular profiles in aid of accurate therapeutic decisions and precision healthcare. 15 
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 1 

Figure 1 Identification of brain-specific and CSF-detectable genes. Three steps were 2 

involved, namely, detection of brain-specific genes, identification of CSF-detectable 3 

genes, and ranking of candidate genes in light of protein fluorescence. See also Figures 4 

S1 and S2, and Tables S1 and S2. 5 

 6 
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 1 

Figure 2 Expression profiles of PRKCG for glioma diagnosis and prognosis. PRKCG 2 

expression profiles were compared between glioma and normal samples (D3-GSE16011-3 

E in panel A [RMA normalized], V1-GSE4290-E in panel B [MAS5 normalized], V2-4 

GSE50161-E in panel C [gcRMA normalized], V3-GSE59612-E in panel D, V4-5 

GSE111260-E in panel E [RMA normalized], V5-GSE2223-E in panel F [Lowess 6 

normalized]), between different anatomic regions (V6-Ivy GAP-E in panel G), and 7 

between GBM and LGG samples (D4-TCGA-E in panel H, V1-GSE4290-E in panel I 8 

[MAS5 normalized] and V7-CGGA-E in panel J [Lowess normalized]). All the 9 
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normalization methods labeled above were derived from and detailed in their 1 

corresponding publications, and all these datasets were made publicly accessible at 2 

ftp://download.big.ac.cn/glioma_data/. The Wilcoxon tests were performed and the 3 

statistical significance levels were coded by: ns p>0.05, * p<0.05, ** p<0.01 and *** 4 

p<0.001. 5 
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 1 

Figure 3 DNA  methylation profiles of PRKCG for glioma diagnosis and prognosis. 2 

PRKCG methylation profiles were compared between GBM and normal samples (panels 3 

A to D), and between LGG and GBM samples (panels E to H). All these datasets can be 4 

publicly accessible at ftp://download.big.ac.cn/glioma_data/. The Wilcoxon tests were 5 
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used and their statistical significance levels were coded by: ns p>0.05, * p<0.05, ** 1 

p<0.01 and *** p<0.001. 2 

 3 

Figure 4 PRKCG expression associated with survival. Glioma patients were divided 4 

into three groups based on the first and third quartile of PRKCG expression level in one 5 

discovery dataset (D4-TCGA-E in panel A) and three validation datasets (V7-CGGA-E in 6 

panel B, V12-CGGA-E in panel C, and V13-CGGA-E in panel D). All these datasets can 7 
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be publicly accessible at ftp://download.big.ac.cn/glioma_data/. The log-rank tests were 1 

used to examine the statistical significance between different survival curves. 2 

 3 

Figure 5 PRKCG DNA methylation associated with survival. Glioma patients were 4 

divided into three groups based on the first and third quartile of PRKCG methylation 5 

level in one discovery dataset (D4-TCGA-M in panel A) and one validation dataset (V10-6 

CGGA-M in panel B). All these datasets can be publicly accessible at 7 

ftp://download.big.ac.cn/glioma_data/. The log-rank tests were used to examine the 8 

statistical significance between different survival curves. See also Figure S6. 9 
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 1 

Figure 6 PRKCG CNV associated with survival. (A) Four groups of glioma patients 2 

were divided based on the 1p/19q status (19q gain, 19q normal, 1p/19q non-codel, and 3 

1p/19q codel). (B) Kaplan-Meier survival probability, age, WHO grade and histology of 4 

the four groups. 5 
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 1 

Figure 7 Combined DNA methylation signatures of MGMT and PRKCG for 2 

treatment prediction. (A) Kaplan-Meier survival curves for GBM patients with TMZ 3 

treatment based on MGMT methylation. (B) Kaplan-Meier survival curves for GBM 4 

patients with TMZ treatment based on PRKCG (cg26626089) methylation. (C) Kaplan-5 

Meier survival curves for GBM patients with TMZ treatment based on MGMT and 6 

PRKCG combined methylation signatures. See also Figure S7. 7 

 8 

 9 

 10 
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 1 

Figure 8 Multi-omics molecular profiles of PRKCG. (A) Association of PRKCG’s 2 

multi-omics signatures with IDH, 1p/19q status and WHO classification. (B) Correlation 3 

between PRKCG expression and CNV Loss. (C) Correlation between PRKCG expression 4 

and CNV Gain. (D) Correlation between PRKCG expression and all CNV status. (E) 5 

Correlation between PRKCG expression and DNA methylation of the CpG site 6 

cg04518808. (F) Correlation between PRKCG expression and DNA methylation of the 7 

CpG site cg26626089. 8 

 9 
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Tables 1 

Table 1. Summary of multi-omics multi-cohort glioma datasets 

Category Accession number Source Omics type # 
Sample 

# Population 
country/race Reference 

Discovery D1-GTEx-E GTEx Expression (RNA-Seq) 11,688 mostly white (John Lonsdale, 
2013) 

 D2-GSE83710-P GSE83710 Protein 133 Japan (Sasayama et al., 
2017) 

 D3-GSE16011-E GSE16011 Expression (Microarray) 284 Netherlands (Gravendeel et 
al., 2009) 

 

D4-TCGA-V 
D4-TCGA-E 
D4-TCGA-M 
D4-TCGA-M 
(TMZ treatment) 

TCGA 

CNV 
Expression (RNA-Seq) 
Methylation (27K+450K) 
Methylation (27K+450K) 
 

1,018 
607 
862 
228 
 

mostly white (Ceccarelli et al., 
2016) 

 D5-GSE36278-M GSE36278 Methylation (450K) 142 Germany (Sturm et al., 
2012) 

Validation V1-GSE4290-E GSE4290 Expression (Microarray) 180 USA (Sun et al., 
2006) 

 V2-GSE50161-E GSE50161 Expression (Microarray) 130 USA (Griesinger et 
al., 2013) 

 V3-GSE59612-E GSE59612 Expression (RNA-Seq) 92 USA (Gill et al., 
2014) 

 V4-GSE111260-E GSE111260 Expression (Microarray) 70 Norway - 

 V5-GSE2223-E GSE2223 Expression (Microarray) 54 USA 
(Bredel et al., 
2006; Bredel et 
al., 2005) 

 V6-Ivy GAP-E Ivy GAP Expression (RNA-Seq) 122 unknown (Puchalski. et 
al., 2018) 

 V7-CGGA-E CGGA Expression (Microarray) 301 China (Sun et al., 2014; 
Yan et al., 2012) 

 V8-GSE50923-M GEO Methylation (27K) 78 USA (Lai et al., 2014) 

 V9-GSE61160-M GEO Methylation (450K) 51 Spain (Mur et al., 
2013) 

 V10-CGGA-M CGGA Methylation (27K) 159 China (Zhang et al., 
2013) 

 V11-TCGA-M TCGA Methylation (WGBS) 6 white - 
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 V12-CGGA-E CGGA Expression (RNA-Seq) 310 China (Bao et al., 
2014) 

 V13-CGGA-E CGGA Expression (RNA-Seq) 667 China - 

 V14-GSE60274-M GEO Methylation (450K) 68 Switzerland (Kurscheid et 
al., 2015) 

 
    

Note: 1 
CGGA: Chinese Glioma Genome Atlas, http://www.cgga.org.cn 2 
GEO: Gene Expression Omnibus, https://www.ncbi.nlm.nih.gov/geo/ 3 
GTEx: Genotype-Tissue Expression, https://www.gtexportal.org/ 4 
TCGA: The Cancer Genome Atlas, https://portal.gdc.cancer.gov 5 
Ivy GAP: Ivy Glioblastoma Atlas Project, http://glioblastoma.alleninstitute.org/ 6 
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Table 2. Univariate and multivariate Cox regression analyses for PRKCG 1 

Subgroup Univariate Multivariate 
HR 95% CI P-value HR 95% CI P-value 

D4-TCGA-E (n = 607) 
PRKCG-expression 0.48 0.38-0.61 p < 0.01 0.58 0.45-0.73 p < 0.01 
Age 1.07 1.06-1.09 p < 0.01 1.07 1.06-1.08 p < 0.01 
Gender 1.01 0.75-1.36 p = 0.9 0.87 0.64-1.17 p = 0.37 

V7-CGGA-E (n = 301) 
PRKCG-expression 0.73 0.60-0.88 p < 0.01 0.81 0.66-0.98 p = 0.03 
Age 1.04 1.03-1.06 p < 0.01 1.04 1.02-1.05 p < 0.01 
Gender 0.83 0.61-1.15 p = 0.27 0.87 0.63-1.20 p = 0.39 

V12-CGGA-E (n = 310) 
PRKCG-expression 0.59 0.41-0.86 p < 0.01 0.59 0.40-0.86 p < 0.01 
Age 1.04 1.02-1.05 p < 0.01 1.05 1.02-1.07 p < 0.01 
Gender 0.85 0.60-1.19 p = 0.35 0.71 0.39-1.28 p = 0.26 

V13-CGGA-E (n = 667) 
PRKCG-expression 0.64 0.5-0.74 p < 0.01 0.63 0.54-0.74 p < 0.01 
Age 1.03 1.02-1.04 p < 0.01 1.03 1.02-1.04 p < 0.01 
Gender 1.03 0.83-1.27 p = 0.82 1.07 0.86-1.32 p = 0.57 

D4-TCGA-M (n = 862) 
PRKCG-methylation 0.45 0.39-0.52 p < 0.01 0.57 0.48-0.66 p < 0.01 
Age 1.07 1.06-1.08 p < 0.01 1.06 1.05-1.07 p < 0.01 
Gender 1.15 0.93-1.45 p = 0.21 1.23 0.99-1.52 p = 0.06 

D4-TCGA-M (TMZ treatment; n = 228) 
PRKCG-methylation 0.69 0.49-0.98 p = 0.04 0.67 0.47-0.95 p = 0.03 
MGMT 0.61 0.44-0.86 p < 0.01 0.66 0.47-0.94 p = 0.02 
Age 1.03 1.02-1.05 p < 0.01 1.03 1.02-1.05 p < 0.01 
Gender 0.76 0.54-1.07 p = 0.11 0.73 0.51-1.03 p = 0.07 

V10-CCGA-M (n = 159) 
PRKCG-methylation 0.53 0.36-0.77 p < 0.01 0.50 0.34-0.73 p < 0.01 

Age 1.04 1.02-1.05 p < 0.01 1.04 1.02-1.06 p < 0.01 

Gender 1.23 0.75-2.02 p = 0.42 1.52 0.91-2.53 p = 0.11 

Note: HR=Hazard 

Ratio 

 

      

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted October 9, 2019. ; https://doi.org/10.1101/798785doi: bioRxiv preprint 

https://doi.org/10.1101/798785


 
 
 

36 

Supplemental Information 1 

 2 

 3 

Figure S1 Workflow for identification of PRKCG-like genes. Four steps were adopted 4 

to detect PRKCG-like genes in glioma. As a result, there are 193 and 269 genes that 5 
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present positive and negative correlation between expression and methylation, 1 

respectively. 2 

 3 

 4 

 5 
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Figure S2 Protein level distributions in CSF and RNA expression profiles of PRKCG 1 

(A), BCAN (B), OPCML (C), GFAP (D), CAMK2A (E) across 30 normal human 2 

tissues. Related to Figure 1. 3 

 4 

 5 
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 1 

Figure S3 Expression profiles of PRKCG (A), BCAN (B), OPCML (C), GFAP (D), 2 

and CAMK2A (E) across 13 human brain regions. Related to Figure 1. 3 
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 1 

 2 

Figure S4 Expression profiles of PRKCG during brain development. 3 

 4 

Figure S5 Bisulfite DNA methylation profiles of PRKCG across six GBM samples 5 

and one normal sample. Related to Figure 3. 6 
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 1 

Figure S6 Prognostic potential of PRKCG DNA methylation. Glioma patients were 2 

divided into three groups based on the first and third quartile of cg04518808/cg26626089 3 

methylation in discovery dataset (D4-TCGA-M in panel A/C) and validation dataset 4 

(V10-CGGA-M in panel B/D). All these datasets can be publicly accessible at 5 

ftp://download.big.ac.cn/glioma_data/. The log-rank tests were used to examine the 6 

statistical significance between different survival curves. 7 
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 1 

Figure S7 Predictive potential of PRKCG DNA methylation. (A) Kaplan-Meier 2 

survival curves for GBM patients with TMZ treatment based on PRKCG (cg04518808) 3 

methylation. (B) Methylation site cg26626089 in combination with MGMT, which were 4 

used to classify GBM patients into four groups. (C) Expression profiles of MGMT in the 5 

four groups. 6 
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 1 

Figure S8 Expression profiles of PRKCG across 31 human tumor and normal tissues.  2 
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 1 

Figure S9 Comparative analysis of two groups’ genes that present positive and 2 

negative correlations between gene expression and methylation, respectively. (A) The 3 

density plot of the Spearman correlation. (B) The KEGG pathway enrichment. 4 
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 1 

Figure S10 DNA methylation profiles of PRKCG in recurrent GBM (rGBM) and 2 

primary GBM (pGBM) samples. PRKCG methylation profiles were compared between 3 

rGBM and pGBM samples (V10-CGGA-M in panels A and B and V14-GSE60274-M in 4 

panels C and D). All these datasets can be publicly accessible at 5 

ftp://download.big.ac.cn/glioma_data/. The Wilcoxon tests were used and the statistical 6 

significance levels were coded by: ns p>0.05, * p<0.05, ** p<0.01 and *** p<0.001. 7 

 8 

Table S1 15,176 genes’ RNA expression levels across 30 normal human tissues. 9 

 10 

Table S2 τ values and maximum expression levels of the 100 brain-specific protein-11 

coding genes. 12 
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 1 

Table S3 Gene Ontology categories of genes co-expressed with PRKCG. 2 

 3 

Table S4 Spearman correlation between gene expression and CpG site methylation 4 

(PRKCG-like genes). 5 

 6 
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