1 Running title (optional): Choosing the optimal population for GWAS

- 2
- 3 Core ideas (3-5 impact statements, 85 char max for each)
- 4 Genome-wide association studies with mixture populations are expected to improve the
- 5 detection power of novel genes due to the increase of the sample size although the influence of
- 6 population structure is a concern.
- 7 When a quantitative trait nucleotide (QTN) is polymorphic in a target population, a
- 8 combination of the target population and a population with higher diversity than the target
- 9 population improves the detection power of the QTN.
- We found that the fixation index (F_{ST}) and the expected heterozygosity (H_e) were strongly

11 related to the detection power of QTNs.

- 12 Germplasm collections which have been already sequenced/genotyped are useful for improving
- 13 the detection power of GWAS without any addition of sequence costs by using a subset of them
- 14 with a target population.

16	Choosing the optimal population for a genome-wide association study: a simulation using
17	whole-genome sequences from rice
18	Kosuke Hamazaki, Hiromi Kajiya-Kanegae, Masanori Yamasaki, Kaworu Ebana, Shiori Yabe,
19	Hiroshi Nakagawa and Hiroyoshi Iwata*
20	
21	Affiliations:
22	K. Hamazaki, H. Kajiya-Kanegae and H. Iwata, Department of Agricultural and Environmental
23	Biology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1
24	Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan; H. Kajiya-Kanegae, current address: Research
25	Center for Agricultural Information Technology, National Agriculture and Food Research
26	Organization, 3-1-1 Kannondai, Tsukuba, Ibaraki 305-8517, Japan; M. Yamasaki, Food
27	Resources Education and Research Center, Graduate School of Agricultural Science, Kobe
28	University, 1348 Uzurano, Kasai, Hyogo 675-2103, Japan; K. Ebana, Genetic Resources Center,
29	National Agriculture and Food Research Organization, 2-1-2 Kannondai, Tsukuba, Ibaraki 305-
30	8602, Japan; S. Yabe, Institute of Crop Science, National Agriculture and Food Research
31	Organization, 2-1-2 Kannondai, Tsukuba, Ibaraki 305-8518, Japan; H. Nakagawa, Institute for
32	Agro-Environmental Sciences, National Agriculture and Food Research Organization, 3-1-3
33	Kannondai, Tsukuba, Ibaraki 305-8604, Japan. *Corresponding author (aiwata@mail.ecc.u-
34	tokyo.ac.jp)

35

36 Abbreviations:

37	AUC, area under the curve; CDR, correct detection rate; FDR, false discovery rate; FN, false
38	negative FP, false positive; F_{ST} , the fixation index; GWAS, genome-wide association study; H,
39	high; HM, higher-middle; <i>H_e</i> , the expected heterozygosity; L, low; LD, linkage disequilibrium;

40 LM, lower-middle; M, middle MAF, minor allele frequency QTL, quantitative trait loci; QTN,

41 quantitative trait nucleotide; ROC, receiver operating characteristic; SNP, single nucleotide

42 polymorphism; TN, true negative; TP, true positive.

- 43
- 44

ABSTRACT

A genome-wide association study (GWAS) needs to have a suitable population. The 45 factors that affect a GWAS, e.g. population structure, sample size, and sequence analysis and 46 47 field testing costs, need to be considered. Mixture populations containing subpopulations of different genetic backgrounds may be suitable populations. We conducted simulation 48 experiments to see if a population with high genetic diversity, e.g., a diversity panel, should be 49 50 added to a target population, especially when the target population harbors small genetic diversity. The target population was 112 accessions of Oryza sativa subsp. japonica, mainly 51 52 developed in Japan. We combined the target population with three populations that had higher genetic diversities. These were 100 *indica* accessions, 100 *japonica* accessions, and 100 53 accessions with various genetic backgrounds. The results showed that the GWAS power with a 54 mixture population was generally higher than with a separate population. Also, the GWAS 55 optimal population varied depending on the fixation index F_{ST} of the quantitative trait nucleotide 56 (QTN) and its polymorphism of QTN in each population. When a QTN is polymorphic in a 57 58 target population, a target population combined with a higher diversity population improves the

59	QTN detection power. Investigating F_{ST} and the expected heterozygosity H_e as factors
60	influencing the detection power, we showed that SNPs with high F_{ST} or low H_e are less likely to
61	be detected by GWAS with mixture populations. Sequenced/genotyped germplasm collections
62	can improve the GWAS detection power by using a subset of them with a target population.
~~	
63	
64	INTRODUCTION
65	Recently, as genome sequencing costs have continued to decrease (Metzker, 2010), the
66	whole-genome sequences of a large number of cultivars/lines have become available for major
67	crop species, such as rice (Li et al., 2014; Wang et al., 2018). A genome-wide association study
68	(GWAS) based on whole-genome sequences can more efficiently and accurately identify genes
69	that control important agronomic traits than previous methods (Koboldt et al., 2013; Ott et al.,
70	2015; Yano et al., 2016).
71	It is important to prepare an appropriate population to be analyzed when attempting to detect
72	candidate genes using GWAS techniques. For example, to avoid potential false positives caused
73	by population stratification/structure, a GWAS population should be selected that results in low
74	stratification (Begum et al., 2015; Yano et al., 2016). However, if such a population is selected as
75	an analytical population for a GWAS, the sample size may be limited and the detection power of
76	the GWAS will decrease (Korte and Farlow, 2013). Therefore, when designing an appropriate
77	GWAS population, one should be aware of the trade-off relationship between population
78	stratification and sample size.
79	When preparing the population to be analyzed, the factors that directly affect the GWAS
80	results, such as population structure, sample size, and the sequence analysis and cultivation
50	results, such as population surveture, sample size, and the sequence analysis and cultivation

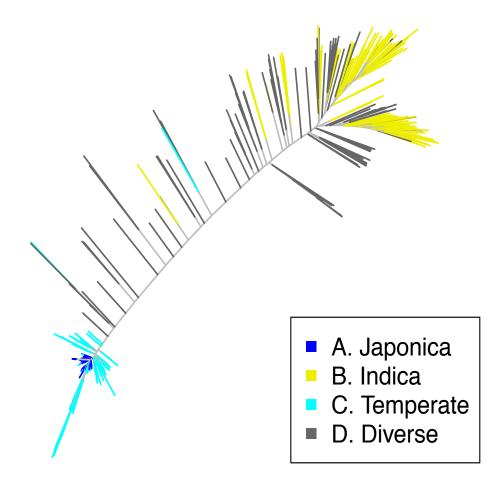
testing costs, need to be considered. In recent years, the whole-genome sequences of a large 81 number of cultivars/lines have become publicly available due to highly efficient sequencing 82 analyses and database enrichment. The publically available whole-genome sequence data will 83 improve GWASs and could enable researchers to avoid the costs of sequencing analyses. For 84 example, in rice, "The 3,000 Rice Genomes Project" (Li et al., 2014; Wang et al., 2018) by the 85 International Rice Research Institute (IRRI) is a well-known whole-genome sequence dataset 86 that is available in the "Rice SNP-Seek Database" (Alexandrov et al., 2015; Mansueto et al., 87 88 2016; 2017). Therefore, an appropriate GWAS population could potentially utilize existing public sequence data. 89

A mixture population obtained by mixing subpopulations with different genetic backgrounds could also potentially be used in a GWAS. An advantage of using such a mixture population is that it should improve the detection of causal variants by increasing the sample size. Conversely, a GWAS with a mixture population may suffer from large numbers of false positives caused by the population structure. Although a mixed effect model that suppresses the influence of the population structure has been proposed (Yu et al., 2006), such a mixture population has rarely been analyzed by a GWAS.

An actual data analysis of rice using whole-genome sequences showed that the detection power of a GWAS improved when *Oryza sativa* subsp. *japonica* and *Oryza sativa* subsp. *indica* populations were combined (Misra et al., 2017). Furthermore, the identification of new rice genes using a GWAS and populations with extremely high genetic diversities has also been previously reported (Zhao et al., 2011). Conversely, it has been reported that the genetic differentiation between subpopulations in a population with high genetic diversity could cause a reduction in the power of a GWAS (Huang et al., 2012). Therefore, real data studies have been

104	inconsistent about whether mixture populations or populations with high genetic diversities
105	should be used in a GWAS. However, these previous studies mostly analyzed actual data, and
106	there have been no theoretical simulation studies that have considered the possibility of using a
107	mixture population in a GWAS. Furthermore, no previous studies have discussed which kinds of
108	populations should be mixed to improve the GWAS detection power or which kinds of
109	populations are most appropriate for a GWAS. Therefore, in this study, we conducted simulation
110	experiments to see whether adding a population with a high genetic diversity compared to a
111	target population (e.g., adding a diversity panel to a target population) is appropriate, especially
112	when the genetic diversity of the target population is small.
113	
114	MATERIALS AND METHODS
115	Materials (populations used in the GWAS)
115 116	Materials (populations used in the GWAS) In this study, 112 accessions of <i>Oryza sativa</i> subsp. <i>japonica</i> (referred to as "A"), which
116	In this study, 112 accessions of Oryza sativa subsp. japonica (referred to as "A"), which
116 117	In this study, 112 accessions of <i>Oryza sativa</i> subsp. <i>japonica</i> (referred to as "A"), which were accessions that had mainly been developed in Japan, were used as a target population with
116 117 118	In this study, 112 accessions of <i>Oryza sativa</i> subsp. <i>japonica</i> (referred to as "A"), which were accessions that had mainly been developed in Japan, were used as a target population with low genetic diversity (Yabe et al., 2016). We used the following three populations selected from
116 117 118 119	In this study, 112 accessions of <i>Oryza sativa</i> subsp. <i>japonica</i> (referred to as "A"), which were accessions that had mainly been developed in Japan, were used as a target population with low genetic diversity (Yabe et al., 2016). We used the following three populations selected from "The 3,000 Rice Genomes Project" (J. Y. Li et al., 2014), i.e., 100 accessions of <i>Oryza sativa</i>
116 117 118 119 120	In this study, 112 accessions of <i>Oryza sativa</i> subsp. <i>japonica</i> (referred to as "A"), which were accessions that had mainly been developed in Japan, were used as a target population with low genetic diversity (Yabe et al., 2016). We used the following three populations selected from "The 3,000 Rice Genomes Project" (J. Y. Li et al., 2014), i.e., 100 accessions of <i>Oryza sativa</i> subsp. <i>indica</i> (referred to as "B"), 100 accessions of <i>Oryza sativa</i> subsp. <i>japonica</i> (referred to as
116 117 118 119 120 121	In this study, 112 accessions of <i>Oryza sativa</i> subsp. <i>japonica</i> (referred to as "A"), which were accessions that had mainly been developed in Japan, were used as a target population with low genetic diversity (Yabe et al., 2016). We used the following three populations selected from "The 3,000 Rice Genomes Project" (J. Y. Li et al., 2014), i.e., 100 accessions of <i>Oryza sativa</i> subsp. <i>indica</i> (referred to as "B"), 100 accessions of <i>Oryza sativa</i> subsp. <i>japonica</i> (referred to as "B"), 100 accessions of <i>Oryza sativa</i> subsp. <i>japonica</i> (referred to as "B"), 100 accessions of <i>Oryza sativa</i> subsp. <i>japonica</i> (referred to as "B"), 100 accessions of <i>Oryza sativa</i> subsp. <i>japonica</i> (referred to as
116 117 118 119 120 121 122	In this study, 112 accessions of <i>Oryza sativa</i> subsp. <i>japonica</i> (referred to as "A"), which were accessions that had mainly been developed in Japan, were used as a target population with low genetic diversity (Yabe et al., 2016). We used the following three populations selected from "The 3,000 Rice Genomes Project" (J. Y. Li et al., 2014), i.e., 100 accessions of <i>Oryza sativa</i> subsp. <i>indica</i> (referred to as "B"), 100 accessions of <i>Oryza sativa</i> subsp. <i>japonica</i> (referred to as "C" or temperate), and 100 accessions of <i>Oryza sativa</i> with various genetic backgrounds (referred to as "D" or diverse), as populations with higher diversities than the target population

- differentiated from A, whereas C was the most similar to A. Population D contained subsp.
- 127 *indica*, subsp. *japonica*, and *aus*, and *aromatic* rice accessions, which meant that the D
- 128 population had the highest genetic diversity. Fig. 1 is an unrooted phylogenetic tree that shows
- the genetic relationships among accessions belonging to populations A, B, C, and D.



131

132 Fig. 1. Unrooted phylogenetic tree plot for four non-mixture populations.

- 133 Unrooted phylogenetic tree plot for the four non-mixture populations, which consisted of 112
- 134 accessions of *japonica* (A), 100 accessions of *indica* (B), 100 accessions of temperate *japonica*
- 135 (C), and 100 diverse accessions (D) with neighbor-joining method.

137	The genetic relationships among the accessions were estimated by the neighbor-joining (NJ)
138	method (Saitou and Nei, 1987) using the R package "ape" version 5.3 (Paradis et al., 2004). The
139	genetic distances were estimated according to the Jukes and Cantor (1969) model. In addition to
140	these four populations, we synthesized three populations by combining population A with
141	populations B, C, or D. The mixture populations A + B, A + C, and A + D were named "E", "F",
142	and "G", respectively. We compared the QTN detection power the GWAS when the seven non-
143	mixture (A, B, C, and D) and mixture populations (E, F, and G) were used.
144	
145	
146	Genotype data
147	Whole genome sequencing data were available for the accessions (Jarquin et al., 2019).
148	Details about the DNA extraction and whole genome sequencing techniques are provided in a
149	previous report (Jarquin et al., 2019). The data sets deposited in the DDBJ Sequence Read
150	Archive (SRA106223, ERA358140, DRA000158, DRA000307, DRA000897, DRA000927,
151	DRA007273, DRA007256, and DRA008071) were reanalyzed. We processed the whole-genome
152	sequence data as follows so that they could be used in the GWAS. Adapters and low-quality
153	bases were removed from paired reads using the Trimmomatic v0.36 program (Bolger et al.,
154	2014). The preprocessed reads were aligned using Os-Nipponbare-Reference-IRGSP-1.0
155	
	(Kawahara et al., 2013) and the bwa-0.7.12 mem algorithm with the default options (H. Li, 2012).
156	(Kawahara et al., 2013) and the bwa-0.7.12 mem algorithm with the default options (H. Li, 2012). The binary alignment map (BAM) files deposited in the Rice SNP-Seek database were also
156 157	

159	al., 2014) and Picard package V2.5.0 (http://broadinstitute.github.io/picard). The mapped reads
160	were realigned using RealignerTargetCreator and indelRealigner in the GATK software. The
161	SNPs and InDels were called at the population level using the UnifiedGenotyper in GATK and
162	the -glm BOTH option. We extracted bi-allelic sites in all the accessions from the variants using
163	VCFtools version 0.1.13 (Danecek et al., 2011). Then, imputations were imputed using Beagle
164	version 4.1 (Browning and Browning, 2016). Finally, we analyzed the SNPs with minor allele
165	frequencies (MAFs) \geq 0.05 in each population. In the analysis, the genotypes were represented as
166	-1 (homozygous of the reference allele), 1 (homozygous of the alternative allele) or 0
167	(heterozygous of the reference and alternative alleles). Out of all the whole-genome sequence
168	polymorphisms, only the SNPs on chromosome 1 were analyzed. The number of SNPs on
169	chromosome 1 in each population is shown in Table 1.

170

	Population name	Number of accessions	Number of SNPs	Diversity level [†]
A.	Japonica	112	72,110	263.095
B.	Indica	100	427,943	660.416
C.	Temperate japonica	100	135,665	362.649
D.	Diverse	100	647,731	798.646
E.	A + B	212	633,507	803.064
F.	A + C	212	151,675	334.606
G.	A + D	212	684,774	859.678

171 Table 1. Number of SNPs and the diversity level of non-mixture and mixture populations.

¹⁷² † Diversity level is the index that was used to indicate the degree of genetic diversity and is

173 described in the "Degree of genetic diversity index" section below.

174

175

176

Generating phenotype data

Phenotypic data were simulated using the following formula:

177 178

$$\mathbf{y} = \mathbf{X}_1 \boldsymbol{\beta}_1 + \mathbf{X}_2 \boldsymbol{\beta}_2 + \mathbf{X}_3 \boldsymbol{\beta}_3 + \mathbf{u} + \mathbf{e}, \tag{Eq.}$$

1)

179 where \mathbf{y} is the vector that represents the simulated phenotypic values for all 411 accessions; \mathbf{X} is the design matrix representing the genotypes of three quantitative trait nucleotides (QTNs) with 180 scores -1, 0, or 1; $\boldsymbol{\beta} = \begin{bmatrix} \beta_1 & \beta_2 & \beta_3 \end{bmatrix}^T$ is the vector representing the effects of the three QTNs, **u** 181 is the vector for polygenetic effects, and **e** is the residuals vector. Three QTN-SNPs whose MAF 182 was equal to or larger than 0.05 in all 411 accessions (672,923 SNPs in total) were randomly 183 184 selected from the SNPs on chromosome 1. The simulations were divided into five categories (low, lower-middle, middle, higher-middle, high) based on the fixation index (F_{ST}) between 185 populations A and B for the first QTN (Fig. S1 in Supplemental File 2). We assumed that the 186 first QTN had four times greater variance than the remaining two QTNs (referred to as "QTN1", 187 "QTN2", and "QTN3" respectively). The remaining two QTNs were chosen randomly from 188 SNPs where the F_{ST} between A and B were low (SNPs whose F_{ST} value was in the lower 20% 189 category among the 672,923 SNPs). The F_{ST} for each marker was calculated according to Wright 190 (1965) as follows: 191

192
$$F_{ST} = 1 - \frac{H_S}{H_T}$$
, (Eq. 2)

193 where H_S is the average of the expected heterozygosity based on the allele frequencies of

- 194 populations A and B, and H_T is the expected heterozygosity based on the average allele
- 195 frequency of populations A and B. H_S and H_T were calculated as follows:

196
$$H_S = \frac{N_A \cdot \{2p_A(1-p_A)\} + N_B \cdot \{2p_B(1-p_B)\}}{N_A + N_B},$$
 (Eq. 3)

197
$$H_T = 2\left(\frac{N_A p_A + N_B p_B}{N_A + N_B}\right) \left(1 - \frac{N_A p_A + N_B p_B}{N_A + N_B}\right),$$
 (Eq. 4)

where p_A , p_B , N_A , and N_B are the allele frequencies and the sample sizes of populations A and B respectively, and $N_A = 112$ and $N_B = 100$. The F_{ST} distribution between A and B is shown in Fig. S1, which also shows the thresholds for the five F_{ST} categories.

The polygenetic effect in Eq. 5 was sampled from the multivariate normal distribution whose variance-covariance matrix was proportional to the additive numerator relationship matrix **A** and was normalized so that their variance was equal to that of the three QTN effects.

204 $u \sim MVN(0, G)$, (Eq. 5)

where $\mathbf{G} = \mathbf{A}\sigma_{A}^{2}$ is the genetic covariance matrix, and the additive genetic variance σ_{A}^{2} was automatically determined from the relationship with heritability. In this study, the additive numerator relationship matrix \mathbf{A} was estimated based on the marker genotype data for 402,509 SNPs, which consisted of the core SNPs (defined by the Rice SNP-Seek Database as the "404k CoreSNP Dataset") in all 12 chromosomes (this marker genotype data was prepared separately from the whole-genome sequence data), using the "A.mat" function in R package "rrBLUP" version 4.5 (Endelman and Jannink, 2012; Endelman, 2011).

212	The residual \mathbf{e} in Eq. 6 was sampled identically and independently from the normal distribution,
213	and was then normalized so that the narrow-sense heritability was equal to 0.6. Residual e was
214	calculated using the following formula:
215	$\mathbf{e} \sim \text{MVN}(0, \mathbf{I}\sigma_{e}^{2}),$ (Eq. 6)
216	where I is an identity matrix, and the residual variance σ_e^2 was determined so that the heritability
217	was equal to 0.6.
218	
219	
220	Genome-wide association study (GWAS) using simulated data
221	We performed a GWAS on the seven non-mixture (A, B, C, D) and mixture populations
222	(E, F, and G) using the marker genotype data and the simulated phenotypic data. We fitted the
223	linear mixed model (Yu et al., 2006).
224	$\mathbf{y} = \mathbf{X}\boldsymbol{\beta} + \mathbf{S}_i \alpha_i + \mathbf{Q}\mathbf{v} + \mathbf{Z}\mathbf{u} + \mathbf{e}, \qquad (Eq. 7)$
225	where y is the vector of phenotypic values, X β , S _{<i>i</i>} α_i , and Qv are the fixed effects terms, Zu is
226	the random effects term, and \mathbf{e} is the residuals vector. $\boldsymbol{\beta}$ represents all of the fixed effects other
227	than $S_i \alpha_i$, and $Q \nu$, and X is the incidence design matrix corresponding to β . In this study, $X\beta$
228	was an intercept. $\mathbf{S}_i \alpha_i$ is composed of \mathbf{S}_i , which is the i_{th} marker of the genotype data, and α_i ,
229	which is the effect of that marker. $\mathbf{Q}\mathbf{v}$ is the term used to correct for the effect of population
230	structure, and in this study \mathbf{Q} was the matrix of two eigenvectors corresponding to the upper two
231	eigenvalues of the additive numerator for relationship matrix A , Finally, u represents the
232	polygenetic effects, and \mathbf{Z} is the incidence design matrix corresponding to \mathbf{u} .

233	We used the EMMAX and P3D algorithms to reduce the computation time (Kennedy et al.,
234	1992; Kang et al., 2008; 2010; Zhang et al., 2010). The "GWAS" function in R package
235	"rrBLUP" version 4.5 (Endelman, 2011) was used to perform the GWAS described above.
236	
237	
238	Evaluation of the simulation results
239	The <i>p</i> -value (or $-\log_{10}(p)$) for each marker effect was estimated 100 times by the
240	GWAS in five patterns according to the size of the F_{ST} for the seven non-mixture/mixture
241	populations. In this study, the following summary statistics were mainly used to evaluate the
242	GWAS results.
243	In the 100 simulations, the QTNs were not always polymorphic in each population
244	(because the MAF of the whole population did not necessarily match the MAF of each individual
245	population). In such cases, the $-\log_{10}(p)$ value of a QTN that was not polymorphic within a
246	population could not be calculated. Therefore, when two SNPs were polymorphic within that
247	population and were adjacent to the QTN, then the statistic of the more significant SNP was used
248	as the QTN statistic. Since it was difficult to detect such QTNs using a GWAS, we calculated the
249	summary statistics by dividing two patterns depending on polymorphism patterns of QTN1, i.e.,
250	whether using all simulation results or using only results whose QTN1 was polymorphic in the
251	target population (referred to as "All" and "Polymorphic in the population", respectively).
252	

253 Correct detection rate (CDR) and $-\log_{10}(p)$

254	The first summary statistic was whether the $-\log_{10}(p)$ rate for each QTN exceeded the
255	threshold in each GWAS (referred to as "CDR; correct detection rate"). We assumed that QTNs
256	would be successfully detected by the GWAS when the CDR was large. The $-\log_{10}(p)$ value
257	whose false discovery rate (FDR) was 0.05 was set as the threshold using the Benjamini-
258	Hochberg method (Benjamini and Hochberg, 1995; Storey and Tibshirani, 2003). As the second
259	summary statistic, we used the $-\log_{10}(p)$ for each QTN in each GWAS, and we also assumed
260	that QTNs were successfully detected by the GWAS when this statistic was large.

261

262 Area under the curve (AUC)

We also regarded the mean of the AUC as one summary statistic. The AUC refers to the area under the receiver operating characteristic (ROC) curve (Fig. S2 in Supplemental File 3), which was obtained by plotting the false positive rate on the horizontal axis and the true positive rate on the vertical axis when the threshold was varied (Hanley and McNeil, 1982). The AUC was calculated using the following formula:

268
$$AUC = \frac{1}{2}FPRs_1TPRs_1 + \frac{1}{2}\sum_{i=2}^{m+1}(FPRs_i - FPRs_{i-1})(TPRs_i + TPRs_{i-1}), \quad (Eq. 8)$$

where *m* is the number of QTNs, and m = 3 in this study. The *FPRs* and *TPRs* are the m + 1vectors whose i_{th} elements are *FPRs_i* and *TPRs_i*, respectively. *FPRs_i* = *TPRs_i* = 1 when i = m + 1. When $1 \le i \le m$, the *FPRs_i* and *TPRs_i* represent the false positive rate and the true positive rate at the time when *i* QTNs exceed the threshold, respectively. They were calculated using the following formula:

274
$$FPRs_i = \frac{FP_i}{FP_i + TN_i} \qquad (1 \le i \le m), \tag{Eq. 9}$$

275
$$TPRs_i = \frac{TP_i}{TP_i + FN_i} \qquad (1 \le i \le m), \tag{Eq. 10}$$

where TP_i , FP_i , FN_i , and TN_i are the numbers of SNPs that are the true positives (where the SNP 276 is a QTN and exceeds the threshold), the false positives (where the SNP is not a QTN but 277 exceeds the threshold), the false negatives (where the SNP is a QTN but does not exceed the 278 279 threshold), and the true negatives (where the SNP is not a QTN and does not exceed the threshold) at the time when i QTNs exceed the threshold respectively. When we evaluated the 280 true/false positive rate, we considered the existence of linkage disequilibrium (LD) by 281 investigating SNPs with LD as one set. In this study, we defined SNPs that satisfied the 282 283 conditions that they were within 300 kb from the focused SNP and the condition that their 284 squares of the correlation coefficients with the focused SNP were 0.35 or more as one set when considering LD. When we counted TP_i , FP_i , FN_i , and TN_i , we counted the number of the sets 285 described above instead of the number of SNPs. The value for AUC calculated in this manner 286 287 takes a value between 0 and 1. The GWAS is more successful when the AUC is closer to 1. Using the mean of the AUC as one of the summary statistics meant that it was possible to focus 288 on each QTN and evaluate the overall results of the GWAS. 289

290

291

292 Precision, recall, and F-measure

We calculated the mean of precision, the mean of recall, and the mean of the *F*-measure as other summary statistics to evaluate the GWAS results. These summary statistics can be

295 calculated from the numbers of true positives, false positives, false negatives, and true negatives.

296 More specifically, the precision can be calculated using the following formula:

297
$$Precision = \frac{TP}{TP + FP}.$$
 (Eq. 11)

We regarded an SNP as "positive" when the
$$-\log_{10}(p)$$
 of that SNP exceeded the

threshold described above. The precision represents the ratio of the detected SNPs that were

300 QTNs. The recall was defined using the following formula:

301
$$\operatorname{Recall} = \frac{TP}{TP + FN}.$$
 (Eq. 12)

The recall represents the proportion of QTNs detected by the GWAS. Finally, the *F*measure was calculated as the harmonic mean of the precision and the recall, and can be used to comprehensively evaluate the GWAS results. The *F*-measure was calculated using the following formula:

306
$$F = \frac{2 \cdot \text{Precision} \cdot \text{Recall}}{\text{Precision} + \text{Recall}}.$$
 (Eq. 13)

307 The greater these summary statistics, the more accurate the GWAS results were.

308

309

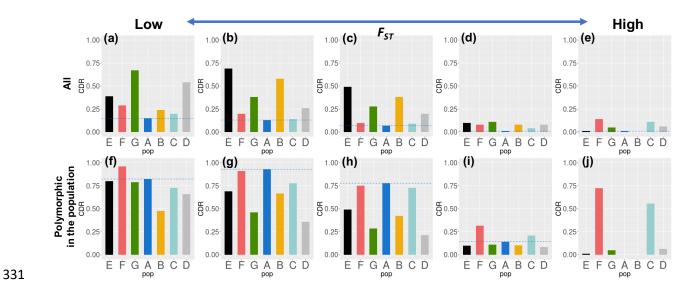
310

311 Degree of genetic diversity index

In order to evaluate the relationship between genetic diversity and the CDR results, we

313 prepared an index that indicated the degree of genetic diversity in each population. The

314	Euclidean distance matrix between accessions for each population was calculated. The median
315	for the off-diagonal elements of the distance matrix was used to indicate the degree of genetic
316	diversity (referred to as the "diversity level", Table 1). The median was chosen as the diversity
317	level because the distribution of the distances between the accessions for E and G had a double
318	peak. This was because, for mixture populations such as E and G, the distance within the
319	subpopulations was small whereas the distance between subpopulations was large. Therefore, if
320	the mean of the distances (almost the same as Nei's gene diversity index (NEI, 1973)) is chosen
321	as the diversity level, then there is a risk of overestimating the diversity level.
322	
323	
324	RESULTS
325	Comparisons between the CDR and AUC for the QTN1s in each population
326	The CDRs of the QTN1s in each population were calculated under ten conditions: five levels
327	of F_{ST} between A and B and two patterns of QTN polymorphism, i.e., whether the QTN was
328	polymorphic or not in the target population (Fig. 2 and Table S2 in Supplemental File 5).
329	
330	



332 Fig. 2. Correct detection rate for QTN1 in each population under ten conditions.

The barplots of CDR of QTN1 in each population under ten conditions: five levels of F_{ST} of QTN1 and two patterns of polymorphisms of QTN. Blue horizontal dashed lines indicate the CDR in the population A for each population. A: *japonica*, B: *indica*, C: temperate *japonica*, D: diverse, E: A+ B, F: A + C, G: A + D.

For almost all levels of F_{ST} , the CDRs for QTN1 in the mixture populations E, F, and G 338 were larger than in the corresponding non-mixture populations B, C, and D, regardless of the two 339 340 QTN polymorphism patterns (Fig. 2). The CDRs for QTN1 in the mixture populations E, F, and G were always larger than in population A when all the simulation results were taken into 341 account (Fig. 2). When F_{ST} was low, and all simulation results were taken into account (Fig. 2a), 342 populations G and D, which were highly diverse populations, had a higher CDR than the other 343 populations. When F_{ST} was in the lower-middle or middle category, and all simulation results 344 were taken into account (Figs. 2b, c), population E had the highest CDR. The CDR of the highly 345 diverse populations G and D significantly decreased as F_{ST} increased. This result suggested that 346 the QTN1 effect could confound with the population structure at higher F_{ST} values, which meant 347 that it was difficult to detect QTN1 in a highly diverse population. When the F_{ST} value was in the 348 higher-middle or high level categories, and all simulation results were taken into account, (Figs. 349 2d, e), the CDR for QTN1 became quite low in all populations. In populations D, E, and G, 350 351 QTN1 was hardly detected because of the strong confounding effect of the population structure. In the other populations, the expected heterozygosity (H_e) for QTN1 was extremely small (In A 352 353 and B, H_e was less than 0.1 in all 100 simulations). The small H_e may make the detection of 354 QTN1 difficult.

We excluded the simulations in which there were no polymorphisms in the population so that the detection power of the GWAS when there were polymorphisms in an analyzed population could be evaluated (Figs. 2f-j). When F_{ST} was low, population F had the highest CDR and when F_{ST} was in the lower-middle or middle categories, population A had the highest CDR. However, there were only 14 and 9 cases in which QTN1 was polymorphic in population A. In general, the populations with low or moderate genetic diversities (A, C, and F) had higher CDRs than the populations with high genetic diversities (D, E, and G). When F_{ST} was in the highermiddle or high categories, the results were similar to when F_{ST} was in the lower-middle or middle categories.

364	The CDRs of QTN2 and QTN3 were much lower than that of QTN1 because smaller
365	genetic variances were assigned to these QTLs than QTN1 (Table S2). As in the case of QTN1,
366	for almost all levels of F_{ST} , the CDRs of QTN2 and QTN3 were higher in the mixture
367	populations (E, F, and G) than their corresponding non-mixture populations (B, C, and D).
368	Furthermore, the CDRs for QTN2 and QTN3 in all the mixture populations were higher than for
369	population A. The CDRs for QTN2 and QTN3 were also larger when the F_{ST} for QTN1 was
370	higher.
371	Populations D and G had high AUC values in all cases (Table S2). Population F had a
372	smaller AUC than populations D and G, even when the CDR was highest in population F.
373	
374	Comparisons of the $-\log_{10}(p)$ values for the GWAS on each mixture population
375	containing <i>japonica</i> (A)
376	We compared the $-\log_{10}(p)$ values for each QTN between populations mixed with the
377	japonica population (A) to see if QTN1 was polymorphic in A (Fig. 3). Comparing these values
378	allowed us to examine whether the detection power of the GWAS improved when genetic
379	resources with higher genetic diversities were added to target population A. There is no plot for
380	the high F_{ST} values because no QTN1 was polymorphic in population A over 100 simulations
381	when the F_{ST} of QTN1 was high.

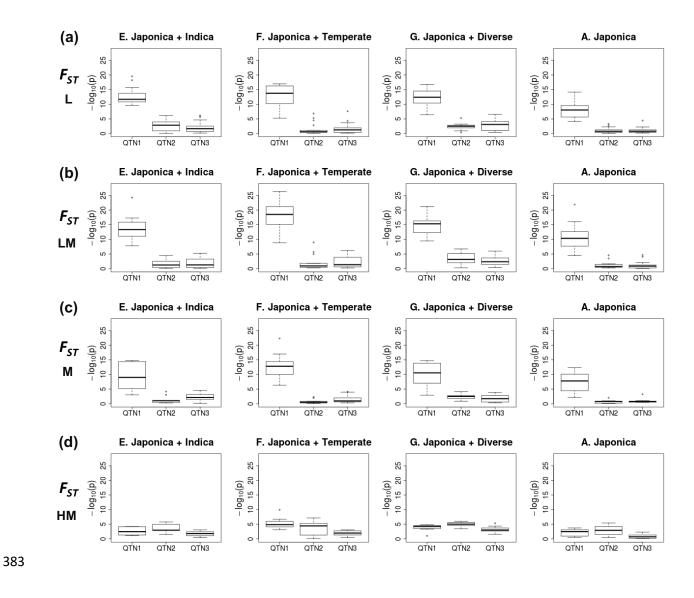
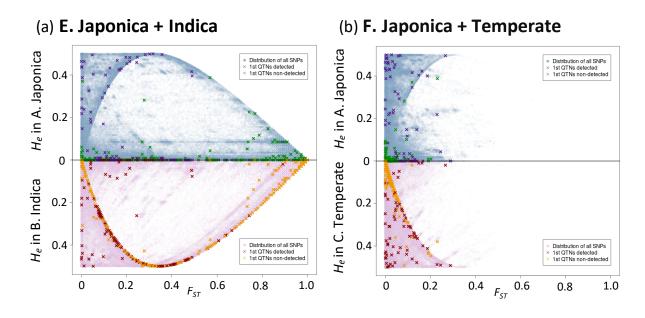


Fig. 3. Boxplots of $-\log_{10}(p)$ of each QTN when QTN1 was polymorphic in *japonica* (A).

Boxplots of $-\log_{10}(p)$ of each QTN for each mixture population and *japonica* (A) when QTN1 was polymorphic in A. These plots are shown divided into four categories according to the F_{ST} value for QTN1 (a: low, b: lower-middle, c: middle, d: higher-middle).

389	For all of the four F_{ST} levels, the detection power improved in all mixture populations
390	compared to A (Fig. 3). Population F showed the highest detectability, and this tendency was
391	conspicuous even when F_{ST} was in the middle or higher-middle categories (Figs. 3c, d,
392	respectively). This is because the QTN1 effect is less likely to be confounded with the population
393	structure in F than in the other mixture populations (E and G). Population G had the highest
394	$-\log_{10}(p)$ values for QTN2 and QTN3, although only slightly (Fig. 3).
395	
396	
397	Factors affecting the detection power of QTNs in the mixture populations
398	We considered the factors related to the detection power of QTNs in the mixture populations
399	by creating a figure that represented the relationship between F_{ST} , the expected heterozygosity
400	(H_e), and the QTN1 detection power (Fig. 4 and Fig. S4 in Supplemental File 6).
401	



403 Fig. 4. Relationship between F_{ST} , H_e , and the detection power of QTN1.

The distribution of each marker is plotted thinly with between subpopulation F_{ST} on the horizontal axis and H_e of each subpopulation on the vertical axis. The dark X marks on the plot show the SNPs selected as QTN1s in this study. Red and purple marks were detected by GWAS, and green and yellow ones were not detected by GWAS.

409	Detection of the QTNs by the GWAS was generally difficult when the between-
410	subpopulation F_{ST} value was high, or H_e was low (Fig. 4). There seemed to be a significant
411	difference between plots F and E or G (Fig. 4a, Fig. S4, and Fig. 4b). However, in population F,
412	because A and C are genetically close, the F_{ST} between the subpopulations was not high.
413	Therefore, the relationships between F_{ST} , H_e , and the GWAS detection power applied to all
414	mixture populations.
415	Some of the QTNs were detected by the GWAS when F_{ST} was in the medium category, and
416	H_e in one of the subpopulations was close to 0 (Fig. 4a and Fig. S4). This suggested that even if
417	the QTN was fixed in one subpopulation, the QTN may still be detected by the GWAS if another
418	subpopulation was added to the analysis.
419	
420	
421	
400	
422	
423	Comparisons among the precision, recall, and <i>F</i> -measure values for each population
424	The three summary statistics (the mean of precision, the mean of recall, and the mean of the
425	F-measure) were also calculated under ten conditions (Fig. S5 in Supplemental File 7). The
426	precision of the mixture populations was better than the precision value for population A for
427	almost all F_{ST} categories when all simulation results were taken into account (Fig. S5a). However,
428	it is not necessarily true that the precision of the mixture populations outperformed that of their
429	original genetic resources (compare E with B, F with C, and G with D). The recall values of the
430	mixture populations were larger than for their original genetic resources under all conditions.

431	Finally, a comparison of the F-measure for each population showed that there seemed to be no
432	tendency associated with F_{ST} . Therefore, it was difficult to conclude which population was
433	suitable for a GWAS when the F-measure is used. These results indicated that using mixture
434	populations for a GWAS led to the detection of more SNPs, including QTNs.
435	
436	Relationship between the CDR results and genetic diversity
437	The relationship between the CDR results for QTN1 and the degree of genetic diversity was
438	evaluated under the two QTN polymorphism patterns, i.e., whether or not QTN was polymorphic
439	in the population (Fig. S6 in Supplemental File 8). The CDRs for the mixture populations were
440	usually larger than for the non-mixture populations if their diversity levels were close (Fig. S6a,
441	b). A comparison of the results for the different F_{ST} categories showed that when F_{ST} was low,
442	the populations with the highest diversities, such as D or G, had the highest CDRs, and when F_{ST}
443	was in the lower-middle or middle categories, the populations with the second-highest diversities,
444	such as B or E, had the highest CDRs. Finally, when F_{ST} was in the higher-middle or high
445	categories, the populations with relatively low diversities, such as C or F, had the highest CDRs
446	(Fig. S6a). However, when the simulations in which there were no polymorphisms in the
447	population were excluded, the populations with relatively low diversities, such as A, C, or F, had
448	the highest CDRs in almost all the F_{ST} categories (Fig. S6b).
449	

452

DISCUSSION

453 Relationship between F_{ST} and QTN detection One of the main results of this study was that the detection of QTNs was difficult in populations 454 with high genetic diversities, such as D, E, and G, when the F_{ST} for QTN1 between *japonica* (A) 455 456 and indica (B) was high. This was because the QTN effect confounds with the effect of population structure in these populations. We also examined the reasons why the CDRs for 457 QTN2 and QTN3 were high when the QTN1 F_{ST} value was high. 458 In this study, phenotypic values were simulated using the following expression: 459 $\mathbf{y} = \mathbf{X}_1 \beta_1 + \mathbf{X}_2 \beta_2 + \mathbf{X}_3 \beta_3 + \mathbf{u} + \mathbf{e},$ (Eq. 3) 460 where \mathbf{u} is the polygenetic effect, and is the term that reflects differences between accessions and 461 462 thus differences between subpopulations. Therefore, if the degree of QTN1 genetic differentiation between *japonica* (A) and *indica* (B) is high, it can be assumed that there is a high 463 correlation between $X_1\beta_1$ and **u**. In this study, we generated phenotypic values using a certain 464 variance ratio under the assumption that each term is independent. Therefore, if there is a 465 correlation between $\mathbf{X}_1 \beta_1$ and \mathbf{u} , and the variance between these two terms is considered as one 466 unit, it can be assumed that the variance is smaller than the total value of the two variances under 467 the assumption of independence. Therefore, the variance of these two terms $(X_1\beta_1 + u)$ in the 468 total phenotypic variance becomes smaller, whereas the variances caused by the terms $\mathbf{X}_2 \boldsymbol{\beta}_2$ and 469 $\mathbf{X}_3 \boldsymbol{\beta}_3$ become greater than those when it is assumed that each term is independent. 470

471 The GWAS model used in this study was

472
$$\mathbf{y} = \mathbf{X}\boldsymbol{\beta} + \mathbf{S}_i \boldsymbol{\alpha}_i + \mathbf{Q}\mathbf{v} + \mathbf{Z}\mathbf{u} + \mathbf{e}, \qquad (Eq. 7)$$

473	where $\mathbf{Q}\mathbf{v}$ is the term used to correct the effect of population structure, and Zu shows the
474	polygenetic effect. In this GWAS model, $\mathbf{S}_i \alpha_i$ and $\mathbf{Q} \mathbf{v}$ or $\mathbf{Z} \mathbf{u}$ have some correlation when $\mathbf{S}_i =$
475	X ₁ . This correlation results in the underestimation of α_i by the terms originally used to correct
476	the effects of population structure or family relatedness, such as $\mathbf{Q}\mathbf{v}$ and $\mathbf{Z}\mathbf{u}$. Therefore, QTN
477	detection is quite difficult when a GWAS is performed on mixture populations. For QTN2 and
478	QTN3, where $\mathbf{S}_i = \mathbf{X}_2$ or $\mathbf{S}_i = \mathbf{X}_3$, there is generally no correlation between $\mathbf{S}_i \alpha_i$ and $\mathbf{Q} \mathbf{v}$ or $\mathbf{Z} \mathbf{u}$.
479	Therefore, the detection of these QTNs is not related to these terms. Furthermore, the variances
480	represented by the terms $\mathbf{X}_2 \beta_2$ and $\mathbf{X}_3 \beta_3$ are considered to be higher when the QTN1 genetic
481	differentiation is not high. Therefore, the CDRs of QTN2 and QTN3 were high when the F_{ST} for
482	QTN1 was high (Fig. 2 and Table S1). It has been suggested by Atwell et al. (2010) that a bias
483	may occur in the GWAS results when the QTN correlates with population structure or family
484	relatedness.

485

486

487

Relationship between H_e and the QTN detection

The detection of QTNs by a GWAS was difficult when the expected heterozygosity (H_e) in the population was low. When H_e in the population was low, the MAF was low, and alleles and mutations with low allele frequencies are known as "rare alleles" or "rare variants". In such cases, the QTN effect when the H_e values are low may be concealed by the QTN effect when H_e is not low or by the environmental effect because there are few accessions with one allele. For this reason, it is generally challenging to detect QTNs in such cases, but a method to deal with this problem has been developed (Wu et al., 2011).

495	One example of a "rare variant" that is common in plants is the haplotype condition. It has
496	been reported that haplotypes are difficult to detect using a GWAS (Stram, 2014). This is
497	because haplotypes are often "rare variants" and their H_e values in the population are low.
498	Another problem caused by "rare variants" is that the non-causal SNP whose LD is strong with
499	the "rare variant" may have a higher $-\log_{10}(p)$ value than the "rare variant". This occurrence,
500	known as "synthetic association", often happens when the minor allele frequency of the SNP is
501	higher than that of the "rare variant" (Dickson et al., 2010). These "synthetic associations" were
502	often detected in this simulation study.
503	
504	
505	Summary and further discussion on each result
506	Generally, the CDRs of the QTNs showed that the populations suitable for a GWAS were
507	different depending on whether all the QTNs were to be detected or only the polymorphic QTNs
508	in the target population. Specifically, if all QTNs are to be detected when the degree of genetic
509	differentiation between QTNs is low, then it is optimal to use a population with high genetic
510	diversity that has as many polymorphisms as possible. However, as the degree of genetic
511	differentiation becomes more extensive, a population with high genetic diversity is not suitable
512	for a GWAS because the QTN effect is more likely to confound with the population structure. In
513	contrast, a population with moderate genetic diversity, such as population F, was suitable for a
514	GWAS, regardless of the degree of genetic differentiation. This was partly because the QTN1
515	effect was less likely to confound with the population structure in F than in E or G, even when
516	F_{ST} was high. However, in either case, when the degree of genetic differentiation is extensive, it

which means that another approach, such as biparental QTL mapping, must be used to identifygenes (Lander and Botstein, 1989).

520 Population F had a smaller AUC than populations D and G, even when the CDR for 521 population F was the highest. From its definition, AUC is more dependent on how low $-\log_{10}(p)$ of the QTN with the lowest $-\log_{10}(p)$ value is than on how high the $-\log_{10}(p)$ of 522 523 the QTN with the highest $-\log_{10}(p)$ value is. Furthermore, in this study, the number of markers for the GWAS differed (Table 1). When $-\log_{10}(p)$ values for the QTNs were similar among the 524 525 different populations, the larger number of markers meant that the true negative rate increased, 526 and the false positive rate decreased in a population, which resulted in an increase in the AUC of 527 a population with a larger number of markers, e.g. D and G.

A comparison of the mixture populations and *japonica* (A) using $-\log_{10}(p)$ showed that when the QTNs are polymorphic in a target population with low genetic diversity, genetic resources with higher genetic diversities should be added to the target population. However, in order to avoid cases where the degree of genetic differentiation among the QTNs is extensive between the target population and genetic resources, it is desirable to use populations that are genetically close to the target population.

Finally, the results suggested that the F_{ST} differences between the subpopulations and the expected heterozygosity (H_e) of each subpopulation greatly influenced QTN detection by the GWAS in the mixture populations (Fig. 4 and Fig. S4). This result was in agreement with the above finding that QTN detection using a GWAS was generally difficult when F_{ST} was high, or H_e were low. However, these situations frequently happened when the F_{ST} between the subpopulations was moderate. Therefore, even if a QTN is fixed in one subpopulation, it may be

540	possible to detect the QTN by adding another population to the analysis because when the H_e of
541	the QTN is low in one population and F_{ST} is moderate, it can be assumed that H_e is relatively
542	high in the other population. Therefore, the H_e of the mixture population as a whole becomes
543	larger and the detection of a QTN is possible unless the confounding of the effect of that QTN
544	with the population structure is extensive. Although this situation is not difficult to interpret, it is
545	extremely important that SNPs with high F_{ST} and low H_e values must exist in large numbers
546	among populations. After taking this fact into account, a GWAS with a mixture population can
547	be useful. Therefore, creating the proposed diagram shown in Fig. 4 and Fig. S4, will lead to a
548	quantitative understanding of what kind of SNPs can be detected by a GWAS in mixture
549	populations of interest.
550	
551	

552

Relationships with using whole-genome sequences

One of the major factors related to the QTN detection power was the fixation index F_{ST} 553 554 differences among subpopulations. When the F_{ST} difference between the *japonica* (A) and *indica* (B) subpopulations was low, the CDR of the mixture populations was high. One example of such 555 markers is that mutations may have occurred at the same position in both populations after they 556 differentiated. Since such variants are relatively new variants, the LD relationship between these 557 variants and surrounding markers will be weak. Therefore, these variants cannot be detected 558 using marker genotype data with a small number of markers, such as an SNP array. However, the 559 use of whole-genome sequences will increase the marker density, which improves the possibility 560 of detecting such variants with a GWAS. In summary, using whole-genome sequences improves 561

562	the possibility of detecting QTNs with low F_{ST} values and the use of mixture populations should
563	further improve the QTN detection power. In this study, there were cases where SNPs in a low
564	LD region were selected as QTNs when F_{ST} was low.

565

566

- 567
- 568

CONCLUSION

In this study, we examined a way of selecting a population that was suitable for a GWAS by 569 conducting simulations using populations with various genetic backgrounds. We evaluated the 570 results of the simulations by dividing them into ten patterns according to two criteria: the degree 571 of genetic differentiation (F_{ST}) between two main subpopulations and QTN polymorphism in a 572 573 target population. When the QTNs are polymorphic in a target population, increasing the 574 population size by adding available genotypes to the target population improves the detection power. We suggest that a population genetically similar to a target population is desirable. After 575 576 investigating F_{ST} and expected heterozygosity H_e as factors that may substantially influence the detection power of a GWAS, the results showed that SNPs with high F_{ST} and low H_e values were 577 less likely to be detected by a GWAS that used mixture populations. These results indicated that 578 579 the detection power of a GWAS was improved by using mixture populations with different genetic backgrounds. Furthermore, the use of publicly available whole-genome sequences meant 580 it was possible to increase the population size and to use polymorphic markers that were present 581 in high numbers, which should also improve the detection power of the GWAS. 582

584	
585	
586	
587	
588	ACKNOWLEDGMENTS
589	This study was supported by Grant-in-Aid for Scientific Research(A) (25252002), Grant-
590	in-Aid for Scientific Research(B) (Grant number 15H04436), JST, PRESTO (Grant number
591	JPMJPR1506), the Cross-ministerial Strategic Innovation Promotion Program (SIP), the
592	"Technologies for creating next-generation agriculture, forestry and fisheries" (funding agency:
593	Bio-oriented Technology Research Advancement Institution, NARO), and JST CREST (Grant
594	Number JPMJCR16O).
595	We are also grateful for the advice given by Dr. Ryokei Tanaka.
596	SUPPLEMENTAL MATERIAL
597	Supplemental File 1: Table S1. Information about the 299 rice accessions used in this study.
598	Supplemental File 2: Fig. S1. Histogram showing the F_{ST} differences between <i>japonica</i> (A) and <i>indica</i>
599	(B).
600	Supplemental File 3: Fig. S2. Example of a ROC curve and the AUC.
601	Supplemental File 4: Fig. S3. Principal components analysis results for chromosome 1 and all the
602	chromosomes.
603	Supplemental File 5: Table S2. Correct detection rate rates for all QTNs and the AUC in each population.

Supplemental File 6: Fig. S4. Relationship between F_{ST} , H_e , and the QTN1 detection power for the

605	population G.				
606	Supplemental File 7: Fig. S5. Bar plots of the precision, the recall and the <i>F</i> -measure results.				
607	Supplemental File 8: Fig. S6. Relationship between the diversity level and the CDR of QTN1.				
608	Supplemental File 9: Supplementary Note. Additional information about the materials used in this study.				
609	OPTIONAL SECTIONS				
610	Availability of data and material				
611	Whole genome sequencing data are available of 112 accessions of Oryza sativa subsp.				
612	japonica in the DDBJ Sequence Read Archive (SRA106223, ERA358140, DRA000158,				
613	DRA000307, DRA000897, DRA000927, DRA007273, DRA007256, and DRA008071). Whole				
614	genome sequencing data for all the other accessions are available in the "Rice SNP-Seek				
615	Database".				
616					
617	Competing interests				
618	The authors declare that they have no competing interests.				
619					
620	Author's contributions				
621	KH, HKK, and HI conceived and designed the study. KH and HI performed the				
622	mathematical and statistical analysis. KH, HKK, MY, EK, SY and HN contributed to marker				

- 623 genotyping. KH, HKK, and HI wrote the manuscript in consultation with MY, EK, SY, and HN.
- 624 All authors read and approved the final manuscript.

625

626

REFERENCES

- Alexandrov, N., S. Tai, W. Wang, L. Mansueto, K. Palis, R.R. Fuentes, V.J. Ulat, et al. 2015.
 SNP-Seek Database of SNPs Derived from 3000 Rice Genomes. Nucleic Acids Res.
 43(D1):D1023–27. doi: 10.1093/nar/gku1039.
- Atwell, S., Y.S. Huang, B.J. Vilhjálmsson, G. Willems, M. Horton, Y. Li, D. Meng, et al. 2010.
 Genome-Wide Association Study of 107 Phenotypes in Arabidopsis Thaliana Inbred Lines.
 Nature 465(7298):627–31. doi: 10.1038/nature08800.
- Auwera, G.A. Van Der, M.O. Carneiro, C. Hartl, R. Poplin, A. Levy-moonshine, T. Jordan, K.
 Shakir, et al. 2014. From FastQ Data to High Confidence Varant Calls: The Genonme
 Analysis Toolkit Best Practices Pipeline. Curr Protoc Bioinformatics 11(10):1–33. doi:
 10.1002/0471250953.bi1110s43.From.
- Begum, H., J.E. Spindel, A. Lalusin, T. Borromeo, G. Gregorio, J. Hernandez, P. Virk, B.
 Collard, and S.R. McCouch. 2015. Genome-Wide Association Mapping for Yield and Other
 Agronomic Traits in an Elite Breeding Population of Tropical Rice (Oryza Sativa). PLoS
 One 10(3):1–19. doi: 10.1371/journal.pone.0119873.
- Benjamini, Y., and Y. Hochberg. 1995. Controlling the False Discovery Rate: A Practical and
 Powerful Approach to Multiple Testing. J. R. Stat. Soc. 57(1):289–300. doi:
 10.2307/2346101.
- Bolger, A.M., M. Lohse, and B. Usadel. 2014. Trimmomatic: A Flexible Trimmer for Illumina
 Sequence Data 30(15):2114–20. doi: 10.1093/bioinformatics/btu170.
- Browning, B.L., and S.R. Browning. 2016. Genotype Imputation with Millions of Reference
 Samples. Am. J. Hum. Genet. 98(1):116–26. doi: 10.1016/j.ajhg.2015.11.020.
- Danecek, P., A. Auton, G. Abecasis, C.A. Albers, E. Banks, M.A. DePristo, R.E. Handsaker, et
 al. 2011. The Variant Call Format and VCFtools 27(15):2156–58. doi:
 10.1093/bioinformatics/btr330.
- Dickson, S.P., K. Wang, I. Krantz, H. Hakonarson, and D.B. Goldstein. 2010. Rare Variants
 Create Synthetic Genome-Wide Associations. PLoS Biol. 8(1):e1000294. doi:
 10.1371/journal.pbio.1000294.
- Endelman, J.B. 2011. Ridge Regression and Other Kernels for Genomic Selection with R
 Package RrBLUP. Plant Genome J. 4(3):250. doi: 10.3835/plantgenome2011.08.0024.

Endelman, J.B., and J.L. Jannink. 2012. Shrinkage Estimation of the Realized Relationship Matrix. G3 (Bethesda) 2(11):1405–13. doi: 10.1534/g3.112.004259.

- Hanley, J.A., and B.J. McNeil. 1982. The Meaning and Use of the Area under a Receiver
 Operating Characteristic (ROC) Curve. Radiology 142(1):29–36. doi:
 10.1080/02634938208400381.
- Huang, X., Y. Zhao, X. Wei, C. Li, A. Wang, Q. Zhao, W. Li, et al. 2012. Genome-Wide
 Association Study of Flowering Time and Grain Yield Traits in a Worldwide Collection of
 Rice Germplasm. Nat. Genet. 44(1):32–39. doi: 10.1038/ng.1018.
- Jarquin, D., H. Kajiya-Kanegae, C. Taishen, S. Yabe, R. Persa, J. Yu, H. Nakagawa, M.
 Yamazaki, and H. Iwata. 2019. Coupling Day Length Data and Genomic Prediction Tools
 for Predicting Time-Related Traits under Complex Scenarios, 703488.
- Kang, H.M., J.H. Sul, S.K. Service, N.A. Zaitlen, S.Y. Kong, N.B. Freimer, C. Sabatti, and E.
 Eskin. 2010. Variance Component Model to Account for Sample Structure in GenomeWide Association Studies. Nat. Genet. 42(4):348–54. doi: 10.1038/ng.548.
- Kang, H.M., N.A. Zaitlen, C.M. Wade, A. Kirby, D. Heckerman, M.J. Daly, and E. Eskin. 2008.
 Efficient Control of Population Structure in Model Organism Association Mapping.
 Genetics 178(3):1709–23. doi: 10.1534/genetics.107.080101.

Kawahara, Y., M. de la Bastide, J.P. Hamilton, H. Kanamori, W.R. McCombie, S. Ouyang, D.C.
Schwartz, et al. 2013. Improvement of the Oryza Sativa Nipponbare Reference Genome
Using next Generation Sequence and Optical Map Data 6(1):1–10. doi: 10.1186/1939-8433676 6-1.

- Kennedy, B.W., M. Quinton, and J.A. van Arendonk. 1992. Estimation of Effects of Single
 Genes on Quantitative Traits. J. Anim. Sci. 70(7):2000–2012. doi:
 10.1016/j.alcohol.2011.07.002.
- Koboldt, D.C., K.M. Steinberg, D.E. Larson, R.K. Wilson, and E.R. Mardis. 2013. The NextGeneration Sequencing Revolution and Its Impact on Genomics. Cell 155(1):27–38. doi:
 10.1016/j.cell.2013.09.006.
- Korte, A., and A. Farlow. 2013. The Advantages and Limitations of Trait Analysis with GWAS:
 A Review. Plant Methods 9(1):29. doi: 10.1186/1746-4811-9-29.
- Lander, E.S., and D. Botstein. 1989. Mapping Mendelian Factors Underlying Quantitative Traits
 Using RFLP Linkage Maps. Genetics 121:185–99.
 http://www.ncbi.nlm.nih.gov/pubmed/2563713.
- Li, H. 2012. Exploring Single-Sample Snp and Indel Calling with Whole-Genome de Novo
 Assembly 28(14):1838–44. doi: 10.1093/bioinformatics/bts280.
- Li, J.Y., J. Wang, and R.S. Zeigler. 2014. The 3,000 Rice Genomes Project: New Opportunities
 and Challenges for Future Rice Research. Gigascience 3(1):1–3. doi: 10.1186/2047-217X3-8.
- Mansueto, L., R.R. Fuentes, F.N. Borja, J. Detras, J.M. Abrio-Santos, D. Chebotarov, M.
 Sanciangco, et al. 2017. Rice SNP-Seek Database Update: New SNPs, Indels, and Queries.
 Nucleic Acids Res. 45(D1):D1075–81. doi: 10.1093/nar/gkw1135.
- Mansueto, L., R.R. Fuentes, D. Chebotarov, F.N. Borja, J. Detras, J.M. Abriol-Santos, K. Palis,
 et al. 2016. SNP-Seek II: A Resource for Allele Mining and Analysis of Big Genomic Data
 in Oryza Sativa. Curr. Plant Biol. 7–8:16–25. doi: 10.1016/j.cpb.2016.12.003.

- 699 McKenna, A., M. Hanna, E. Banks, A. Sivachenko, K. Cibulskis, A. Kernytsky, K. Garimella, et
- al. 2009. The Genome Analysis Toolkit: A MapReduce Framework for Analyzing nextGeneration DNA Sequencing Data. Proc. Int. Conf. Intellect. Capital, Knowl. Manag.
 Organ. Learn. 20:254–60. doi: 10.1101/gr.107524.110.20.
- Metzker, M.L. 2010. Sequencing Technologies the next Generation. Nat. Rev. Genet. 11(1):31–
 46. doi: 10.1038/nrg2626.
- Misra, G., S. Badoni, R. Anacleto, A. Graner, N. Alexandrov, and N. Sreenivasulu. 2017. Whole
 Genome Sequencing-Based Association Study to Unravel Genetic Architecture of Cooked
 Grain Width and Length Traits in Rice. Nat. Sci. Reports 7(1):12478. doi: 10.1038/s41598017-12778-6.
- NEI, M. 1973. Analysis of Gene Diversity in Subdivided Populations. Proc. Nat. Acad. Sci. USA
 70(12):3321–23. doi: 10.1016/j.jasrep.2018.01.028.
- Ott, J., J. Wang, and S.M. Leal. 2015. Genetic Linkage Analysis in the Age of Whole-Genome
 Sequencing. Nat. Rev. Genet. 16(5):275–84. doi: 10.1038/nrg3908.
- Paradis, E., J. Claude, and K. Strimmer. 2004. APE: Analyses of Phylogenetics and Evolution in
 R Language 20(2):289–90. doi: 10.1093/bioinformatics/btg412.
- Saitou, N., and M. Nei. 1987. The Neighbor-Joining Method a New Method for Reconstructing
 Phylogenetic Trees. Mol. Biol. Evol. 4(4):406–25.
- Storey, J.D., and R. Tibshirani. 2003. Statistical Significance for Genomewide Studies. Proc.
 Natl. Acad. Sci. 100(16):9440–45. doi: 10.1073/pnas.1530509100.
- Stram, D. 2014. Design, Analysis, and Interpretation of Genome-Wide Association Scans.
 Heidelberg, New York: Springer Science+Business Media.
- Wang, W., R. Mauleon, Z. Hu, D. Chebotarov, S. Tai, Z. Wu, M. Li, et al. 2018. Genomic
 Variation in 3,010 Diverse Accessions of Asian Cultivated Rice. Nature 557(7703):43–49.
 doi: 10.1038/s41586-018-0063-9.
- Wright, S. 1965. THE INTERPRETATION OF POPULATION STRUCTURE BY FSTATISTICS WITH SPECIAL REGARD TO SYSTEMS OF MATING. Evolution (N. Y).
 19:395–420.
- Wu, M.C., S. Lee, T. Cai, Y. Li, M. Boehnke, and X. Lin. 2011. Rare-Variant Association
 Testing for Sequencing Data with the Sequence Kernel Association Test. Am. J. Hum.
 Genet. 89(1):82–93. doi: 10.1016/j.ajhg.2011.05.029.
- Yabe, S., M. Yamasaki, K. Ebana, T. Hayashi, and H. Iwata. 2016. Island-Model Genomic
 Selection for Long-Term Genetic Improvement of Autogamous Crops. PLoS One 11(4):1–
 21. doi: 10.1371/journal.pone.0153945.
- Yano, K., E. Yamamoto, K. Aya, H. Takeuchi, P.C. Lo, L. Hu, M. Yamasaki, et al. 2016.
 Genome-Wide Association Study Using Whole-Genome Sequencing Rapidly Identifies
 New Genes Influencing Agronomic Traits in Rice. Nat. Genet. 48(8):927–34. doi:
 10.1038/ng.3596.

737 738 739	Yu, J., G. Pressoir, W.H. Briggs, I. Vroh Bi, M. Yamasaki, J.F. Doebley, M.D. McMullen, et al. 2006. A Unified Mixed-Model Method for Association Mapping That Accounts for Multiple Levels of Relatedness. Nat. Genet. 38(2):203–8. doi: 10.1038/ng1702.					
740 741 742	Zhang, Z., E. Ersoz, C.Q. Lai, R.J. Todhunter, H.K. Tiwari, M.A. Gore, P.J. Bradbury, et al. 2010. Mixed Linear Model Approach Adapted for Genome-Wide Association Studies. Nat. Genet. 42(4):355–60. doi: 10.1038/ng.546.					
743 744 745	Zhao, K., CW. Tung, G.C. Eizenga, M.H. Wright, M.L. Ali, A.H. Price, G.J. Norton, et al. 2011. Genome-Wide Association Mapping Reveals a Rich Genetic Architecture of Complex Traits in Oryza Sativa. Nat. Commun. 2:467. doi: 10.1038/ncomms1467.					
746						
747	FIGURES AND TABLES					
748	Fig. 1. Unrooted phylogenetic tree plot for four non-mixture populations.					
749	Unrooted phylogenetic tree plot for the four non-mixture populations, which consisted of 112					
750	accessions of <i>japonica</i> (A), 100 accessions of <i>indica</i> (B), 100 accessions of temperate <i>japonica</i>					
751	(C), and 100 diverse accessions (D) with neighbor-joining method.					
752						
753	Fig. 2. Correct detection rate for QTN1 in each population under ten conditions.					
754	The barplots of CDR of QTN1 in each population under ten conditions: five levels of F_{ST} of QTN1 and					
755	two patterns of polymorphisms of QTN. Blue horizontal dashed lines indicate the CDR in the population					
756	A for each population. A: <i>japonica</i> , B: <i>indica</i> , C: temperate <i>japonica</i> , D: diverse, E: A+ B, F: A + C, G:					
757	A + D.					
758						
759	Fig. 3. Boxplots of $-\log_{10}(p)$ of each QTN when QTN1 was polymorphic in <i>japonica</i> (A).					

760	Boxplots of $-\log_{10}(p)$) of each Q	TN for each mixture	population and p	iaponica (A)	when QTN1
-----	-----------------------------	-------------	---------------------	------------------	--------------	-----------

- 761 was polymorphic in A. These plots are shown divided into four categories according to the F_{ST}
- value for QTN1 (a: low, b: lower-middle, c: middle, d: higher-middle).

763

- Fig. 4. Relationship between F_{ST} , H_e , and the detection power of QTN1.
- The distribution of each marker is plotted thinly with between subpopulation F_{ST} on the
- horizontal axis and H_e of each subpopulation on the vertical axis. The dark X marks on the plot
- show the SNPs selected as QTN1s in this study. Red and purple marks were detected by GWAS,
- and green and yellow ones were not detected by GWAS.

769

	Population name	Number of accessions	Number of SNPs	Diversity level [†]
A.	Japonica	112	72,110	263.095
B.	Indica	100	427,943	660.416
C.	Temperate japonica	100	135,665	362.649
D.	Diverse	100	647,731	798.646
E.	A + B	212	633,507	803.064
F.	A + C	212	151,675	334.606
G.	A + D	212	684,774	859.678

770 Table 1. Number of SNPs and the diversity level of non-mixture and mixture populations.

⁷⁷¹ [†] Diversity level is the index to indicate the degree of genetic diversity, which is described in the

772 Materials and Method section.