
 

 

Running title (optional): Choosing the optimal population for GWAS 1 

 2 

Core ideas (3-5 impact statements, 85 char max for each) 3 

- Genome-wide association studies with mixture populations are expected to improve the 4 

detection power of novel genes due to the increase of the sample size although the influence of 5 

population structure is a concern. 6 

- When a quantitative trait nucleotide (QTN) is polymorphic in a target population, a 7 

combination of the target population and a population with higher diversity than the target 8 

population improves the detection power of the QTN.  9 

- We found that the fixation index (FST) and the expected heterozygosity (He) were strongly 10 

related to the detection power of QTNs. 11 

- Germplasm collections which have been already sequenced/genotyped are useful for improving 12 

the detection power of GWAS without any addition of sequence costs by using a subset of them 13 

with a target population. 14 

  15 
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AUC, area under the curve; CDR, correct detection rate; FDR, false discovery rate; FN, false 37 

negative  FP, false positive; FST, the fixation index; GWAS, genome-wide association study; H, 38 

high; HM, higher-middle; He, the expected heterozygosity; L, low; LD, linkage disequilibrium; 39 

LM, lower-middle; M, middle  MAF, minor allele frequency  QTL, quantitative trait loci; QTN, 40 

quantitative trait nucleotide; ROC, receiver operating characteristic; SNP, single nucleotide 41 

polymorphism; TN, true negative; TP, true positive. 42 

 43 

ABSTRACT 44 

A genome-wide association study (GWAS) needs to have a suitable population. The 45 

factors that affect a GWAS, e.g. population structure, sample size, and sequence analysis and 46 

field testing costs, need to be considered. Mixture populations containing subpopulations of 47 

different genetic backgrounds may be suitable populations. We conducted simulation 48 

experiments to see if a population with high genetic diversity, e.g., a diversity panel, should be 49 

added to a target population, especially when the target population harbors small genetic 50 

diversity. The target population was 112 accessions of Oryza sativa subsp. japonica, mainly 51 

developed in Japan. We combined the target population with three populations that had higher 52 

genetic diversities. These were 100 indica accessions, 100 japonica accessions, and 100 53 

accessions with various genetic backgrounds. The results showed that the GWAS power with a 54 

mixture population was generally higher than with a separate population. Also, the GWAS 55 

optimal population varied depending on the fixation index FST of the quantitative trait nucleotide 56 

(QTN) and its polymorphism of QTN in each population. When a QTN is polymorphic in a 57 

target population, a target population combined with a higher diversity population improves the 58 
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QTN detection power. Investigating FST and the expected heterozygosity He as factors 59 

influencing the detection power, we showed that SNPs with high FST or low He are less likely to 60 

be detected by GWAS with mixture populations. Sequenced/genotyped germplasm collections 61 

can improve the GWAS detection power by using a subset of them with a target population. 62 

 63 

INTRODUCTION 64 

Recently, as genome sequencing costs have continued to decrease (Metzker, 2010), the 65 

whole-genome sequences of a large number of cultivars/lines have become available for major 66 

crop species, such as rice (Li et al., 2014; Wang et al., 2018). A genome-wide association study 67 

(GWAS) based on whole-genome sequences can more efficiently and accurately identify genes 68 

that control important agronomic traits than previous methods (Koboldt et al., 2013; Ott et al., 69 

2015; Yano et al., 2016).  70 

It is important to prepare an appropriate population to be analyzed when attempting to detect 71 

candidate genes using GWAS techniques. For example, to avoid potential false positives caused 72 

by population stratification/structure, a GWAS population should be selected that results in low 73 

stratification (Begum et al., 2015; Yano et al., 2016). However, if such a population is selected as 74 

an analytical population for a GWAS, the sample size may be limited and the detection power of 75 

the GWAS will decrease (Korte and Farlow, 2013). Therefore, when designing an appropriate 76 

GWAS population, one should be aware of the trade-off relationship between population 77 

stratification and sample size. 78 

When preparing the population to be analyzed, the factors that directly affect the GWAS 79 

results, such as population structure, sample size, and the sequence analysis and cultivation 80 
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testing costs, need to be considered. In recent years, the whole-genome sequences of a large 81 

number of cultivars/lines have become publicly available due to highly efficient sequencing 82 

analyses and database enrichment. The publically available whole-genome sequence data will 83 

improve GWASs and could enable researchers to avoid the costs of sequencing analyses. For 84 

example, in rice, "The 3,000 Rice Genomes Project" (Li et al., 2014; Wang et al., 2018) by the 85 

International Rice Research Institute (IRRI) is a well-known whole-genome sequence dataset 86 

that is available in the "Rice SNP-Seek Database" (Alexandrov et al., 2015; Mansueto et al., 87 

2016; 2017). Therefore, an appropriate GWAS population could potentially utilize existing 88 

public sequence data. 89 

A mixture population obtained by mixing subpopulations with different genetic backgrounds 90 

could also potentially be used in a GWAS. An advantage of using such a mixture population is 91 

that it should improve the detection of causal variants by increasing the sample size. Conversely, 92 

a GWAS with a mixture population may suffer from large numbers of false positives caused by 93 

the population structure. Although a mixed effect model that suppresses the influence of the 94 

population structure has been proposed (Yu et al., 2006), such a mixture population has rarely 95 

been analyzed by a GWAS.  96 

An actual data analysis of rice using whole-genome sequences showed that the detection 97 

power of a GWAS improved when Oryza sativa subsp. japonica and Oryza sativa subsp. indica 98 

populations were combined (Misra et al., 2017). Furthermore, the identification of new rice 99 

genes using a GWAS and populations with extremely high genetic diversities has also been 100 

previously reported (Zhao et al., 2011). Conversely, it has been reported that the genetic 101 

differentiation between subpopulations in a population with high genetic diversity could cause a 102 

reduction in the power of a GWAS (Huang et al., 2012). Therefore, real data studies have been 103 
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inconsistent about whether mixture populations or populations with high genetic diversities 104 

should be used in a GWAS. However, these previous studies mostly analyzed actual data, and 105 

there have been no theoretical simulation studies that have considered the possibility of using a 106 

mixture population in a GWAS. Furthermore, no previous studies have discussed which kinds of 107 

populations should be mixed to improve the GWAS detection power or which kinds of 108 

populations are most appropriate for a GWAS. Therefore, in this study, we conducted simulation 109 

experiments to see whether adding a population with a high genetic diversity compared to a 110 

target population (e.g., adding a diversity panel to a target population) is appropriate, especially 111 

when the genetic diversity of the target population is small. 112 

 113 

MATERIALS AND METHODS 114 

Materials (populations used in the GWAS) 115 

In this study, 112 accessions of Oryza sativa subsp. japonica (referred to as “A”), which 116 

were accessions that had mainly been developed in Japan, were used as a target population with 117 

low genetic diversity (Yabe et al., 2016). We used the following three populations selected from 118 

“The 3,000 Rice Genomes Project” (J. Y. Li et al., 2014), i.e., 100 accessions of Oryza sativa 119 

subsp. indica (referred to as “B”), 100 accessions of Oryza sativa subsp. japonica (referred to as 120 

“C” or temperate), and 100 accessions of Oryza sativa with various genetic backgrounds 121 

(referred to as “D” or diverse), as populations with higher diversities than the target population 122 

(Table S1 in Supplemental File 1). The process used to select each of the 100 accessions is 123 

described in Supplemental File 9. One accession (IRIS ID: IRIS 313-11868) was duplicated in 124 

populations B and D. Among populations B, C, and D, the B population was the most 125 
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differentiated from A, whereas C was the most similar to A. Population D contained subsp. 126 

indica, subsp. japonica, and aus, and aromatic rice accessions, which meant that the D 127 

population had the highest genetic diversity. Fig. 1 is an unrooted phylogenetic tree that shows 128 

the genetic relationships among accessions belonging to populations A, B, C, and D. 129 

  130 
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 131 

Fig. 1. Unrooted phylogenetic tree plot for four non-mixture populations. 132 

Unrooted phylogenetic tree plot for the four non-mixture populations, which consisted of 112 133 

accessions of japonica (A), 100 accessions of indica (B), 100 accessions of temperate japonica 134 

(C), and 100 diverse accessions (D) with neighbor-joining method.  135 

A. Japonica
B. Indica
C. Temperate
D. Diverse
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 136 

The genetic relationships among the accessions were estimated by the neighbor-joining (NJ) 137 

method (Saitou and Nei, 1987) using the R package “ape” version 5.3 (Paradis et al., 2004). The 138 

genetic distances were estimated according to the Jukes and Cantor (1969) model. In addition to 139 

these four populations, we synthesized three populations by combining population A with 140 

populations B, C, or D. The mixture populations A + B, A + C, and A + D were named “E”, “F”, 141 

and “G”, respectively. We compared the QTN detection power the GWAS when the seven non-142 

mixture (A, B, C, and D) and mixture populations (E, F, and G) were used.  143 

 144 

 145 

Genotype data 146 

Whole genome sequencing data were available for the accessions (Jarquin et al., 2019). 147 

Details about the DNA extraction and whole genome sequencing techniques are provided in a 148 

previous report (Jarquin et al., 2019). The data sets deposited in the DDBJ Sequence Read 149 

Archive (SRA106223, ERA358140, DRA000158, DRA000307, DRA000897, DRA000927, 150 

DRA007273, DRA007256, and DRA008071) were reanalyzed. We processed the whole-genome 151 

sequence data as follows so that they could be used in the GWAS. Adapters and low-quality 152 

bases were removed from paired reads using the Trimmomatic v0.36 program (Bolger et al., 153 

2014). The preprocessed reads were aligned using Os-Nipponbare-Reference-IRGSP-1.0 154 

(Kawahara et al., 2013) and the bwa-0.7.12 mem algorithm with the default options (H. Li, 2012). 155 

The binary alignment map (BAM) files deposited in the Rice SNP-Seek database were also 156 

reanalyzed. Single nucleotide polymorphism (SNP) calling was based on alignments determined 157 

using the Genome Analysis Toolkit (GATK), 3.7-0-gcfedb67 (McKenna et al., 2009; Auwera et 158 
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al., 2014) and Picard package V2.5.0 (http://broadinstitute.github.io/picard). The mapped reads 159 

were realigned using RealignerTargetCreator and indelRealigner in the GATK software. The 160 

SNPs and InDels were called at the population level using the UnifiedGenotyper in GATK and 161 

the -glm BOTH option. We extracted bi-allelic sites in all the accessions from the variants using 162 

VCFtools version 0.1.13 (Danecek et al., 2011). Then, imputations were imputed using Beagle 163 

version 4.1 (Browning and Browning, 2016). Finally, we analyzed the SNPs with minor allele 164 

frequencies (MAFs) ≥ 0.05 in each population. In the analysis, the genotypes were represented as 165 

-1 (homozygous of the reference allele), 1 (homozygous of the alternative allele) or 0 166 

(heterozygous of the reference and alternative alleles). Out of all the whole-genome sequence 167 

polymorphisms, only the SNPs on chromosome 1 were analyzed. The number of SNPs on 168 

chromosome 1 in each population is shown in Table 1. 169 

 170 

Table 1. Number of SNPs and the diversity level of non-mixture and mixture populations. 171 

Population name Number of accessions Number of SNPs Diversity level† 
A. Japonica 112 72,110 263.095 

B. Indica 100 427,943 660.416 

C. Temperate japonica 100 135,665 362.649 

D. Diverse 100 647,731 798.646 

E. A + B 212 633,507 803.064 

F. A + C 212 151,675 334.606 

G. A + D 212 684,774 859.678 

† Diversity level is the index that was used to indicate the degree of genetic diversity and is 172 

described in the “Degree of genetic diversity index” section below. 173 
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 174 

 175 

Generating phenotype data 176 

Phenotypic data were simulated using the following formula: 177 

𝐲 = 𝐗$𝛽$ + 𝐗'𝛽' + 𝐗(𝛽( + 𝐮 + 𝐞, (Eq.		1) 178 

where 𝐲 is the vector that represents the simulated phenotypic values for all 411 accessions; 𝐗 is 179 

the design matrix representing the genotypes of three quantitative trait nucleotides (QTNs) with 180 

scores -1, 0, or 1; 𝛃 = [𝛽$ 𝛽' 𝛽(]6 is the vector representing the effects of the three QTNs, 𝐮 181 

is the vector for polygenetic effects, and 𝐞 is the residuals vector. Three QTN-SNPs whose MAF 182 

was equal to or larger than 0.05 in all 411 accessions (672,923 SNPs in total) were randomly 183 

selected from the SNPs on chromosome 1. The simulations were divided into five categories 184 

(low, lower-middle, middle, higher-middle, high) based on the fixation index (FST) between 185 

populations A and B for the first QTN (Fig. S1 in Supplemental File 2). We assumed that the 186 

first QTN had four times greater variance than the remaining two QTNs (referred to as “QTN1”, 187 

“QTN2”, and “QTN3” respectively). The remaining two QTNs were chosen randomly from 188 

SNPs where the FST between A and B were low (SNPs whose FST value was in the lower 20% 189 

category among the 672,923 SNPs). The FST for each marker was calculated according to Wright 190 

(1965) as follows: 191 

𝐹89 = 1 −
𝐻8
𝐻9

, (Eq.		2) 192 
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where 𝐻8 is the average of the expected heterozygosity based on the allele frequencies of 193 

populations A and B, and 𝐻9 is the expected heterozygosity based on the average allele 194 

frequency of populations A and B. 	𝐻8 and 𝐻9 were calculated as follows:  195 

𝐻8 =
𝑁> ⋅ {2𝑝>(1 − 𝑝>)} + 𝑁C ⋅ {2𝑝C(1 − 𝑝C)}

𝑁> + 𝑁C
, (Eq.		3) 196 

𝐻9 = 2 E
𝑁>𝑝> + 𝑁C𝑝C
𝑁> + 𝑁C

F E1 −
𝑁>𝑝> + 𝑁C𝑝C
𝑁> + 𝑁C

F,														 (Eq.		4) 197 

where 𝑝>, 𝑝C, 𝑁>, and 𝑁C are the allele frequencies and the sample sizes of populations A and B 198 

respectively, and 𝑁> = 112 and 𝑁C = 100. The FST distribution between A and B is shown in 199 

Fig. S1, which also shows the thresholds for the five FST categories. 200 

The polygenetic effect in Eq. 5 was sampled from the multivariate normal distribution 201 

whose variance-covariance matrix was proportional to the additive numerator relationship matrix 202 

𝐀 and was normalized so that their variance was equal to that of the three QTN effects. 203 

𝐮	~	MVN(0, 𝐆),										 (Eq.		5) 204 

where 𝐆 = 𝐀𝜎Q' is the genetic covariance matrix, and the additive genetic variance 𝜎Q' was 205 

automatically determined from the relationship with heritability. In this study, the additive 206 

numerator relationship matrix 𝐀 was estimated based on the marker genotype data for 402,509 207 

SNPs, which consisted of the core SNPs (defined by the Rice SNP-Seek Database as the “404k 208 

CoreSNP Dataset”) in all 12 chromosomes (this marker genotype data was prepared separately 209 

from the whole-genome sequence data), using the “A.mat” function in R package “rrBLUP” 210 

version 4.5 (Endelman and Jannink, 2012; Endelman, 2011).  211 
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The residual 𝐞 in Eq. 6 was sampled identically and independently from the normal distribution, 212 

and was then normalized so that the narrow-sense heritability was equal to 0.6. Residual e was 213 

calculated using the following formula:   214 

𝐞	~	MVN(0, 𝐈𝜎S'),										 (Eq.		6) 215 

where 𝐈 is an identity matrix, and the residual variance 𝜎S' was determined so that the heritability 216 

was equal to 0.6. 217 

 218 

 219 

Genome-wide association study (GWAS) using simulated data 220 

We performed a GWAS on the seven non-mixture (A, B, C, D) and mixture populations 221 

(E, F, and G) using the marker genotype data and the simulated phenotypic data. We fitted the 222 

linear mixed model (Yu et al., 2006). 223 

𝐲 = 𝐗𝛃 + 𝐒V𝛼V + 𝐐𝛎 + 𝐙𝐮 + 𝐞, (Eq.		7) 224 

where 𝐲 is the vector of phenotypic values, 𝐗𝛃, 𝐒V𝛼V, and 𝐐𝛎 are the fixed effects terms, 𝐙𝐮 is 225 

the random effects term, and 𝐞 is the residuals vector. 𝛃 represents all of the fixed effects other 226 

than 𝐒V𝜶V, and 𝐐𝝂, and X is the incidence design matrix corresponding to 𝛃. In this study, Xβ 227 

was an intercept. 𝐒V𝛼V is composed of 𝐒V, which is the ith marker of the genotype data, and 𝛼V, 228 

which is the effect of that marker. 𝐐𝛎 is the term used to correct for the effect of population 229 

structure, and in this study 𝐐 was the matrix of two eigenvectors corresponding to the upper two 230 

eigenvalues of the additive numerator for relationship matrix 𝐀, Finally, 𝐮 represents the 231 

polygenetic effects, and 𝐙 is the incidence design matrix corresponding to 𝐮. 232 
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 We used the EMMAX and P3D algorithms to reduce the computation time (Kennedy et al., 233 

1992; Kang et al., 2008; 2010; Zhang et al., 2010). The “GWAS” function in R package 234 

“rrBLUP” version 4.5 (Endelman, 2011) was used to perform the GWAS described above.  235 

 236 

 237 

Evaluation of the simulation results 238 

The 𝑝-value (or −log$b(𝑝)) for each marker effect was estimated 100 times by the 239 

GWAS in five patterns according to the size of the FST for the seven non-mixture/mixture 240 

populations. In this study, the following summary statistics were mainly used to evaluate the 241 

GWAS results. 242 

In the 100 simulations, the QTNs were not always polymorphic in each population 243 

(because the MAF of the whole population did not necessarily match the MAF of each individual 244 

population). In such cases, the −log$b(𝑝) value of a QTN that was not polymorphic within a 245 

population could not be calculated. Therefore, when two SNPs were polymorphic within that 246 

population and were adjacent to the QTN, then the statistic of the more significant SNP was used 247 

as the QTN statistic. Since it was difficult to detect such QTNs using a GWAS, we calculated the 248 

summary statistics by dividing two patterns depending on polymorphism patterns of QTN1, i.e., 249 

whether using all simulation results or using only results whose QTN1 was polymorphic in the 250 

target population (referred to as “All” and “Polymorphic in the population”, respectively). 251 

 252 
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Correct detection rate (CDR) and −𝐥𝐨𝐠𝟏𝟎(𝒑) 253 

The first summary statistic was whether the −log$b(𝑝) rate for each QTN exceeded the 254 

threshold in each GWAS (referred to as “CDR; correct detection rate”). We assumed that QTNs 255 

would be successfully detected by the GWAS when the CDR was large. The −log$b(𝑝) value 256 

whose false discovery rate (FDR) was 0.05 was set as the threshold using the Benjamini-257 

Hochberg method (Benjamini and Hochberg, 1995; Storey and Tibshirani, 2003). As the second 258 

summary statistic, we used the −log$b(𝑝) for each QTN in each GWAS, and we also assumed 259 

that QTNs were successfully detected by the  GWAS when this statistic was large.  260 

 261 

Area under the curve (AUC) 262 

We also regarded the mean of the AUC as one summary statistic. The AUC refers to the 263 

area under the receiver operating characteristic (ROC) curve (Fig. S2 in Supplemental File 3), 264 

which was obtained by plotting the false positive rate on the horizontal axis and the true positive 265 

rate on the vertical axis when the threshold was varied (Hanley and McNeil, 1982). The AUC 266 

was calculated using the following formula: 267 

AUC = 	
1
2
𝐹𝑃𝑅𝑠$𝑇𝑃𝑅𝑠$ +

1
2
p(𝐹𝑃𝑅𝑠V − 𝐹𝑃𝑅𝑠Vq$)(𝑇𝑃𝑅𝑠V + 𝑇𝑃𝑅𝑠Vq$),
rs$

Vt'

(Eq. 8) 268 

where 𝑚 is the number of QTNs, and 𝑚 = 3 in this study. The 𝐹𝑃𝑅𝑠 and 𝑇𝑃𝑅𝑠 are the 𝑚 + 1 269 

vectors whose ith elements are 𝐹𝑃𝑅𝑠V and 𝑇𝑃𝑅𝑠V, respectively. 𝐹𝑃𝑅𝑠V = 𝑇𝑃𝑅𝑠V = 1 when 𝑖 =270 

𝑚 + 1. When 1 ≦ 𝑖 ≦ 𝑚, the 𝐹𝑃𝑅𝑠V and 𝑇𝑃𝑅𝑠V represent the false positive rate and the true 271 

positive rate at the time when 𝑖 QTNs exceed the threshold, respectively. They were calculated 272 

using the following formula: 273 
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𝐹𝑃𝑅𝑠V =
𝐹𝑃V

𝐹𝑃V + 𝑇𝑁V
									(1 ≦ 𝑖 ≦ 𝑚), (Eq. 9) 274 

𝑇𝑃𝑅𝑠V =
𝑇𝑃V

𝑇𝑃V + 𝐹𝑁V
									(1 ≦ 𝑖 ≦ 𝑚), (Eq. 10) 275 

where 𝑇𝑃V, 𝐹𝑃V, 𝐹𝑁V, and 𝑇𝑁V are the numbers of SNPs that are the true positives (where the SNP 276 

is a QTN and exceeds the threshold), the false positives (where the SNP is not a QTN but 277 

exceeds the threshold), the false negatives (where the SNP is a QTN but does not exceed the 278 

threshold), and the true negatives (where the SNP is not a QTN and does not exceed the 279 

threshold) at the time when 𝑖 QTNs exceed the threshold respectively. When we evaluated the 280 

true/false positive rate, we considered the existence of linkage disequilibrium (LD) by 281 

investigating SNPs with LD as one set. In this study, we defined SNPs that satisfied the 282 

conditions that they were within 300 kb from the focused SNP and the condition that their 283 

squares of the correlation coefficients with the focused SNP were 0.35 or more as one set when 284 

considering LD. When we counted 𝑇𝑃V, 𝐹𝑃V, 𝐹𝑁V, and 𝑇𝑁V, we counted the number of the sets 285 

described above instead of the number of SNPs. The value for AUC calculated in this manner 286 

takes a value between 0 and 1. The GWAS is more successful when the AUC is closer to 1. 287 

Using the mean of the AUC as one of the summary statistics meant that it was possible to focus 288 

on each QTN and evaluate the overall results of the GWAS. 289 

 290 

 291 

Precision, recall, and F-measure 292 

We calculated the mean of precision, the mean of recall, and the mean of the F-measure 293 

as other summary statistics to evaluate the GWAS results. These summary statistics can be 294 
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calculated from the numbers of true positives, false positives, false negatives, and true negatives. 295 

More specifically, the precision can be calculated using the following formula:  296 

Precision =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃.									
(Eq.		11) 297 

We regarded an SNP as “positive” when the −log$b(𝑝) of that SNP exceeded the 298 

threshold described above. The precision represents the ratio of the detected SNPs that were 299 

QTNs. The recall was defined using the following formula: 300 

Recall =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁.											
(Eq.		12) 301 

The recall represents the proportion of QTNs detected by the GWAS. Finally, the F-302 

measure was calculated as the harmonic mean of the precision and the recall, and can be used to 303 

comprehensively evaluate the GWAS results. The F-measure was calculated using the following 304 

formula: 305 

𝐹 =
2 ⋅ Precision ⋅ Recall
Precision + Recall .											

(Eq.		13) 306 

The greater these summary statistics, the more accurate the GWAS results were. 307 

  308 

 309 

 310 

Degree of genetic diversity index 311 

In order to evaluate the relationship between genetic diversity and the CDR results, we 312 

prepared an index that indicated the degree of genetic diversity in each population. The 313 
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Euclidean distance matrix between accessions for each population was calculated. The median 314 

for the off-diagonal elements of the distance matrix was used to indicate the degree of genetic 315 

diversity (referred to as the “diversity level”, Table 1). The median was chosen as the diversity 316 

level because the distribution of the distances between the accessions for E and G had a double 317 

peak. This was because, for mixture populations such as E and G, the distance within the 318 

subpopulations was small whereas the distance between subpopulations was large. Therefore, if 319 

the mean of the distances (almost the same as Nei’s gene diversity index (NEI, 1973)) is chosen 320 

as the diversity level, then there is a risk of overestimating the diversity level.  321 

 322 

 323 

RESULTS 324 

Comparisons between the CDR and AUC for the QTN1s in each population 325 

The CDRs of the QTN1s in each population were calculated under ten conditions: five levels 326 

of FST between A and B and two patterns of QTN polymorphism, i.e., whether the QTN was 327 

polymorphic or not in the target population (Fig. 2 and Table S2 in Supplemental File 5). 328 

 329 

  330 
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 331 

Fig. 2. Correct detection rate for QTN1 in each population under ten conditions. 332 

The barplots of CDR of QTN1 in each population under ten conditions: five levels of FST of QTN1 and 333 

two patterns of polymorphisms of QTN. Blue horizontal dashed lines indicate the CDR in the population 334 

A for each population. A: japonica, B: indica, C: temperate japonica, D: diverse, E: A+ B, F: A + C, G: 335 

A + D. 336 
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 For almost all levels of FST, the CDRs for QTN1 in the mixture populations E, F, and G 338 

were larger than in the corresponding non-mixture populations B, C, and D, regardless of the two 339 

QTN polymorphism patterns (Fig. 2). The CDRs for QTN1 in the mixture populations E, F, and 340 

G were always larger than in population A when all the simulation results were taken into 341 

account (Fig. 2). When FST was low, and all simulation results were taken into account (Fig. 2a), 342 

populations G and D, which were highly diverse populations, had a higher CDR than the other 343 

populations. When FST was in the lower-middle or middle category, and all simulation results 344 

were taken into account (Figs. 2b, c), population E had the highest CDR. The CDR of the highly 345 

diverse populations G and D significantly decreased as FST increased. This result suggested that 346 

the QTN1 effect could confound with the population structure at higher FST values, which meant 347 

that it was difficult to detect QTN1 in a highly diverse population. When the FST value was in the 348 

higher-middle or high level categories, and all simulation results were taken into account, (Figs. 349 

2d, e), the CDR for QTN1 became quite low in all populations. In populations D, E, and G, 350 

QTN1 was hardly detected because of the strong confounding effect of the population structure. 351 

In the other populations, the expected heterozygosity (He) for QTN1 was extremely small (In A 352 

and B, He was less than 0.1 in all 100 simulations). The small He may make the detection of 353 

QTN1 difficult.  354 

We excluded the simulations in which there were no polymorphisms in the population 355 

so that the detection power of the GWAS when there were polymorphisms in an analyzed 356 

population could be evaluated (Figs. 2f-j). When FST was low, population F had the highest CDR 357 

and when FST was in the lower-middle or middle categories, population A had the highest CDR. 358 

However, there were only 14 and 9 cases in which QTN1 was polymorphic in population A. In 359 

general, the populations with low or moderate genetic diversities (A, C, and F) had higher CDRs 360 
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than the populations with high genetic diversities (D, E, and G). When FST was in the higher-361 

middle or high categories, the results were similar to when FST was in the lower-middle or 362 

middle categories.  363 

The CDRs of QTN2 and QTN3 were much lower than that of QTN1 because smaller 364 

genetic variances were assigned to these QTLs than QTN1 (Table S2). As in the case of QTN1, 365 

for almost all levels of FST, the CDRs of QTN2 and QTN3 were higher in the mixture 366 

populations (E, F, and G) than their corresponding non-mixture populations (B, C, and D). 367 

Furthermore, the CDRs for QTN2 and QTN3 in all the mixture populations were higher than for 368 

population A. The CDRs for QTN2 and QTN3 were also larger when the FST for QTN1 was 369 

higher.  370 

Populations D and G had high AUC values in all cases (Table S2). Population F had a 371 

smaller AUC than populations D and G, even when the CDR was highest in population F. 372 

 373 

Comparisons of the −𝐥𝐨𝐠𝟏𝟎(𝒑) values for the GWAS on each mixture population 374 

containing japonica (A) 375 

We compared the −log$b(𝑝) values for each QTN between populations mixed with the 376 

japonica population (A) to see if QTN1 was polymorphic in A (Fig. 3). Comparing these values 377 

allowed us to examine whether the detection power of the GWAS improved when genetic 378 

resources with higher genetic diversities were added to target population A. There is no plot for 379 

the high FST values because no QTN1 was polymorphic in population A over 100 simulations 380 

when the FST of QTN1 was high.  381 

 382 
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 383 

Fig. 3. Boxplots of −𝐥𝐨𝐠𝟏𝟎(𝒑) of each QTN when QTN1 was polymorphic in japonica (A). 384 

Boxplots of −log$b(𝑝) of each QTN for each mixture population and japonica (A) when QTN1 385 

was polymorphic in A. These plots are shown divided into four categories according to the FST 386 

value for QTN1 (a: low, b: lower-middle, c: middle, d: higher-middle). 387 
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For all of the four FST levels, the detection power improved in all mixture populations 389 

compared to A (Fig. 3). Population F showed the highest detectability, and this tendency was 390 

conspicuous even when FST was in the middle or higher-middle categories (Figs. 3c, d, 391 

respectively). This is because the QTN1 effect is less likely to be confounded with the population 392 

structure in F than in the other mixture populations (E and G). Population G had the highest 393 

−log$b(𝑝) values for QTN2 and QTN3, although only slightly (Fig. 3). 394 

 395 

 396 

Factors affecting the detection power of QTNs in the mixture populations 397 

We considered the factors related to the detection power of QTNs in the mixture populations 398 

by creating a figure that represented the relationship between FST, the expected heterozygosity 399 

(He), and the QTN1 detection power (Fig. 4 and Fig. S4 in Supplemental File 6). 400 

  401 
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 402 

Fig. 4. Relationship between FST, He, and the detection power of QTN1. 403 

The distribution of each marker is plotted thinly with between subpopulation FST on the 404 

horizontal axis and He of each subpopulation on the vertical axis. The dark X marks on the plot 405 

show the SNPs selected as QTN1s in this study. Red and purple marks were detected by GWAS, 406 

and green and yellow ones were not detected by GWAS. 407 
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Detection of the QTNs by the GWAS was generally difficult when the between-409 

subpopulation FST value was high, or He was low (Fig. 4). There seemed to be a significant 410 

difference between plots F and E or G (Fig. 4a, Fig. S4, and Fig. 4b). However, in population F, 411 

because A and C are genetically close, the FST between the subpopulations was not high. 412 

Therefore, the relationships between FST, He, and the GWAS detection power applied to all 413 

mixture populations.  414 

Some of the QTNs were detected by the GWAS when FST was in the medium category, and 415 

He in one of the subpopulations was close to 0 (Fig. 4a and Fig. S4). This suggested that even if 416 

the QTN was fixed in one subpopulation, the QTN may still be detected by the GWAS if another 417 

subpopulation was added to the analysis. 418 

 419 

  420 

 421 

 422 

Comparisons among the precision, recall, and F-measure values for each population 423 

The three summary statistics (the mean of precision, the mean of recall, and the mean of the 424 

F-measure) were also calculated under ten conditions (Fig. S5 in Supplemental File 7). The 425 

precision of the mixture populations was better than the precision value for population A for 426 

almost all FST categories when all simulation results were taken into account (Fig. S5a). However, 427 

it is not necessarily true that the precision of the mixture populations outperformed that of their 428 

original genetic resources (compare E with B, F with C, and G with D). The recall values of the 429 

mixture populations were larger than for their original genetic resources under all conditions. 430 
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Finally, a comparison of the F-measure for each population showed that there seemed to be no 431 

tendency associated with FST. Therefore, it was difficult to conclude which population was 432 

suitable for a GWAS when the F-measure is used. These results indicated that using mixture 433 

populations for a GWAS led to the detection of more SNPs, including QTNs.  434 

 435 

Relationship between the CDR results and genetic diversity 436 

The relationship between the CDR results for QTN1 and the degree of genetic diversity was 437 

evaluated under the two QTN polymorphism patterns, i.e., whether or not QTN was polymorphic 438 

in the population (Fig. S6 in Supplemental File 8). The CDRs for the mixture populations were 439 

usually larger than for the non-mixture populations if their diversity levels were close (Fig. S6a, 440 

b). A comparison of the results for the different FST categories showed that when FST was low, 441 

the populations with the highest diversities, such as D or G, had the highest CDRs, and when FST 442 

was in the lower-middle or middle categories, the populations with the second-highest diversities, 443 

such as B or E, had the highest CDRs. Finally, when FST was in the higher-middle or high 444 

categories, the populations with relatively low diversities, such as C or F, had the highest CDRs 445 

(Fig. S6a). However, when the simulations in which there were no polymorphisms in the 446 

population were excluded, the populations with relatively low diversities, such as A, C, or F, had 447 

the highest CDRs in almost all the FST categories (Fig. S6b). 448 

 449 

 450 

 451 
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DISCUSSION 452 

Relationship between FST and QTN detection 453 

One of the main results of this study was that the detection of QTNs was difficult in populations 454 

with high genetic diversities, such as D, E, and G, when the FST for QTN1 between japonica (A) 455 

and indica (B) was high. This was because the QTN effect confounds with the effect of 456 

population structure in these populations. We also examined the reasons why the CDRs for 457 

QTN2 and QTN3 were high when the QTN1 FST value was high.  458 

In this study, phenotypic values were simulated using the following expression: 459 

𝐲 = 𝐗$𝛽$ + 𝐗'𝛽' + 𝐗(𝛽( + 𝐮 + 𝐞, (Eq.		3) 460 

where 𝐮 is the polygenetic effect, and is the term that reflects differences between accessions and 461 

thus differences between subpopulations. Therefore, if the degree of QTN1 genetic 462 

differentiation between japonica (A) and indica (B) is high, it can be assumed that there is a high 463 

correlation between 𝐗$𝛽$ and 𝐮. In this study, we generated phenotypic values using a certain 464 

variance ratio under the assumption that each term is independent. Therefore, if there is a 465 

correlation between 𝐗$𝛽$ and 𝐮, and the variance between these two terms is considered as one 466 

unit, it can be assumed that the variance is smaller than the total value of the two variances under 467 

the assumption of independence. Therefore, the variance of these two terms (𝐗$𝛽$ + 	𝐮) in the 468 

total phenotypic variance becomes smaller, whereas the variances caused by the terms 𝐗'𝛽' and 469 

𝐗(𝛽( become greater than those when it is assumed that each term is independent. 470 

The GWAS model used in this study was  471 

𝐲 = 𝐗𝛃 + 𝐒V𝛼V + 𝐐𝛎 + 𝐙𝐮 + 𝐞, (Eq. 7) 472 
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where 𝐐𝛎 is the term used to correct the effect of population structure, and Zu shows the 473 

polygenetic effect. In this GWAS model, 𝐒V𝛼V and 𝐐𝛎 or 𝐙𝐮 have some correlation when 𝐒V =474 

𝐗$. This correlation results in the underestimation of 𝛼V by the terms originally used to correct 475 

the effects of population structure or family relatedness, such as 𝐐𝛎 and 𝐙𝐮. Therefore, QTN 476 

detection is quite difficult when a GWAS is performed on mixture populations. For QTN2 and 477 

QTN3, where 𝐒V = 𝐗' or 𝐒V = 𝐗(, there is generally no correlation between 𝐒V𝛼V and 𝐐𝛎 or 𝐙𝐮. 478 

Therefore, the detection of these QTNs is not related to these terms. Furthermore, the variances 479 

represented by the terms 𝐗'𝛽' and 𝐗(𝛽( are considered to be higher when the QTN1 genetic 480 

differentiation is not high. Therefore, the CDRs of QTN2 and QTN3 were high when the FST for 481 

QTN1 was high (Fig. 2 and Table S1). It has been suggested by Atwell et al. (2010) that a bias 482 

may occur in the GWAS results when the QTN correlates with population structure or family 483 

relatedness. 484 

 485 

 486 

Relationship between He and the QTN detection 487 

The detection of QTNs by a GWAS was difficult when the expected heterozygosity (He) in the 488 

population was low. When He in the population was low, the MAF was low, and alleles and 489 

mutations with low allele frequencies are known as "rare alleles" or "rare variants". In such cases, 490 

the QTN effect when the He values are low may be concealed by the QTN effect when He is not 491 

low or by the environmental effect because there are few accessions with one allele. For this 492 

reason, it is generally challenging to detect QTNs in such cases, but a method to deal with this 493 

problem has been developed (Wu et al., 2011).  494 
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One example of a “rare variant” that is common in plants is the haplotype condition. It has 495 

been reported that haplotypes are difficult to detect using a GWAS (Stram, 2014). This is 496 

because haplotypes are often “rare variants” and their He values in the population are low. 497 

Another problem caused by "rare variants" is that the non-causal SNP whose LD is strong with 498 

the “rare variant” may have a higher −log$b(𝑝) value than the “rare variant”. This occurrence, 499 

known as “synthetic association”, often happens when the minor allele frequency of the SNP is 500 

higher than that of the “rare variant” (Dickson et al., 2010). These "synthetic associations" were 501 

often detected in this simulation study.  502 

 503 

 504 

Summary and further discussion on each result 505 

Generally, the CDRs of the QTNs showed that the populations suitable for a GWAS were 506 

different depending on whether all the QTNs were to be detected or only the polymorphic QTNs 507 

in the target population. Specifically, if all QTNs are to be detected when the degree of genetic 508 

differentiation between QTNs is low, then it is optimal to use a population with high genetic 509 

diversity that has as many polymorphisms as possible. However, as the degree of genetic 510 

differentiation becomes more extensive, a population with high genetic diversity is not suitable 511 

for a GWAS because the QTN effect is more likely to confound with the population structure. In 512 

contrast, a population with moderate genetic diversity, such as population F, was suitable for a 513 

GWAS, regardless of the degree of genetic differentiation. This was partly because the QTN1 514 

effect was less likely to confound with the population structure in F than in E or G, even when 515 

FST was high. However, in either case, when the degree of genetic differentiation is extensive, it 516 

is difficult to detect the QTNs in any population. Therefore a GWAS analysis is not suitable, 517 
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which means that another approach, such as biparental QTL mapping, must be used to identify 518 

genes (Lander and Botstein, 1989).  519 

Population F had a smaller AUC than populations D and G, even when the CDR for 520 

population F was the highest. From its definition, AUC is more dependent on how low 521 

−log$b(𝑝) of the QTN with the lowest −log$b(𝑝) value is than on how high the −log$b(𝑝) of 522 

the QTN with the highest −log$b(𝑝) value is. Furthermore, in this study, the number of markers 523 

for the GWAS differed (Table 1). When −log$b(𝑝) values for the QTNs were similar among the 524 

different populations, the larger number of markers meant that the true negative rate increased, 525 

and the false positive rate decreased in a population, which resulted in an increase in the AUC of 526 

a population with a larger number of markers, e.g. D and G. 527 

A comparison of the mixture populations and japonica (A) using −log$b(𝑝) showed 528 

that when the QTNs are polymorphic in a target population with low genetic diversity, genetic 529 

resources with higher genetic diversities should be added to the target population. However, in 530 

order to avoid cases where the degree of genetic differentiation among the QTNs is extensive 531 

between the target population and genetic resources, it is desirable to use populations that are 532 

genetically close to the target population.  533 

Finally, the results suggested that the FST differences between the subpopulations and 534 

the expected heterozygosity (He) of each subpopulation greatly influenced QTN detection by the 535 

GWAS in the mixture populations (Fig. 4 and Fig. S4). This result was in agreement with the 536 

above finding that QTN detection using a GWAS was generally difficult when FST was high, or 537 

He were low. However, these situations frequently happened when the FST between the 538 

subpopulations was moderate. Therefore, even if a QTN is fixed in one subpopulation, it may be 539 
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possible to detect the QTN by adding another population to the analysis because when the He of 540 

the QTN is low in one population and FST is moderate, it can be assumed that He is relatively 541 

high in the other population. Therefore, the He of the mixture population as a whole becomes 542 

larger and the detection of a QTN is possible unless the confounding of the effect of that QTN 543 

with the population structure is extensive. Although this situation is not difficult to interpret, it is 544 

extremely important that SNPs with high FST and low He values must exist in large numbers 545 

among populations. After taking this fact into account, a GWAS with a mixture population can 546 

be useful. Therefore, creating the proposed diagram shown in Fig. 4 and Fig. S4, will lead to a 547 

quantitative understanding of what kind of SNPs can be detected by a GWAS in mixture 548 

populations of interest.  549 

 550 

 551 

Relationships with using whole-genome sequences 552 

One of the major factors related to the QTN detection power was the fixation index FST 553 

differences among subpopulations. When the FST difference between the japonica (A) and indica 554 

(B) subpopulations was low, the CDR of the mixture populations was high. One example of such 555 

markers is that mutations may have occurred at the same position in both populations after they 556 

differentiated. Since such variants are relatively new variants, the LD relationship between these 557 

variants and surrounding markers will be weak. Therefore, these variants cannot be detected 558 

using marker genotype data with a small number of markers, such as an SNP array. However, the 559 

use of whole-genome sequences will increase the marker density, which improves the possibility 560 

of detecting such variants with a GWAS. In summary, using whole-genome sequences improves 561 
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the possibility of detecting QTNs with low FST values and the use of mixture populations should 562 

further improve the QTN detection power. In this study, there were cases where SNPs in a low 563 

LD region were selected as QTNs when FST was low. 564 

  565 

 566 

 567 

CONCLUSION 568 

In this study, we examined a way of selecting a population that was suitable for a GWAS by 569 

conducting simulations using populations with various genetic backgrounds. We evaluated the 570 

results of the simulations by dividing them into ten patterns according to two criteria: the degree 571 

of genetic differentiation (FST) between two main subpopulations and QTN polymorphism in a 572 

target population. When the QTNs are polymorphic in a target population, increasing the 573 

population size by adding available genotypes to the target population improves the detection 574 

power. We suggest that a population genetically similar to a target population is desirable. After 575 

investigating FST and expected heterozygosity He as factors that may substantially influence the 576 

detection power of a GWAS, the results showed that SNPs with high FST and low He values were 577 

less likely to be detected by a GWAS that used mixture populations. These results indicated that 578 

the detection power of a GWAS was improved by using mixture populations with different 579 

genetic backgrounds. Furthermore, the use of publicly available whole-genome sequences meant 580 

it was possible to increase the population size and to use polymorphic markers that were present 581 

in high numbers, which should also improve the detection power of the GWAS. 582 

 583 
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 746 

FIGURES AND TABLES 747 

Fig. 1. Unrooted phylogenetic tree plot for four non-mixture populations. 748 

Unrooted phylogenetic tree plot for the four non-mixture populations, which consisted of 112 749 

accessions of japonica (A), 100 accessions of indica (B), 100 accessions of temperate japonica 750 

(C), and 100 diverse accessions (D) with neighbor-joining method. 751 

 752 

Fig. 2. Correct detection rate for QTN1 in each population under ten conditions. 753 

The barplots of CDR of QTN1 in each population under ten conditions: five levels of FST of QTN1 and 754 

two patterns of polymorphisms of QTN. Blue horizontal dashed lines indicate the CDR in the population 755 

A for each population. A: japonica, B: indica, C: temperate japonica, D: diverse, E: A+ B, F: A + C, G: 756 

A + D. 757 

 758 

Fig. 3. Boxplots of −𝐥𝐨𝐠𝟏𝟎(𝒑) of each QTN when QTN1 was polymorphic in japonica (A). 759 
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Boxplots of −log$b(𝑝) of each QTN for each mixture population and japonica (A) when QTN1 760 

was polymorphic in A. These plots are shown divided into four categories according to the FST 761 

value for QTN1 (a: low, b: lower-middle, c: middle, d: higher-middle). 762 

 763 

Fig. 4. Relationship between FST, He, and the detection power of QTN1. 764 

The distribution of each marker is plotted thinly with between subpopulation FST on the 765 

horizontal axis and He of each subpopulation on the vertical axis. The dark X marks on the plot 766 

show the SNPs selected as QTN1s in this study. Red and purple marks were detected by GWAS, 767 

and green and yellow ones were not detected by GWAS. 768 

 769 

Table 1. Number of SNPs and the diversity level of non-mixture and mixture populations. 770 

Population name Number of accessions Number of SNPs Diversity level† 
A. Japonica 112 72,110 263.095 

B. Indica 100 427,943 660.416 

C. Temperate japonica 100 135,665 362.649 

D. Diverse 100 647,731 798.646 

E. A + B 212 633,507 803.064 

F. A + C 212 151,675 334.606 

G. A + D 212 684,774 859.678 

† Diversity level is the index to indicate the degree of genetic diversity, which is described in the 771 

Materials and Method section. 772 
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