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Abstract 

The brown planthopper (BPH), Nilaparvata lugens, is a serious migratory rice pest, 

which is distributed in the broad area of the tropical and temperate Asian-Pacific region. 

However, we know little about key aspects regarding its evolution such as how they 

diverged and dispersed worldwide. By resequencing and analyzing 358 BPH genomes 

from 92 populations across the world, we uncover the genetic relationships among their 

worldwide populations and the history of their global dispersal. We recovered five genetic 

groups representing the major population structures. Of these, Australian BPHs were 

shown large genetic divergence with Asian BPHs; two distinct groups have formed in South 

and Southeast/East Asia that show strong genetic admixture in the southwest border 

regions of China and west Thailand with Myanmar; two local populations in Bangladesh 

and Fujian province of China, respectively, unexpectedly separated with surrounding 

populations. We also find the genetic similarity and closely phylogenetic relationships 

between majority of East Asian BPHs and Indo-china peninsula BPHs, indicating that 

Southeast Asia mainland is the major insect sources and overwintering sites for East Asia. 

Our study provides important molecular evidence to address BPH evolution and other key 

aspects of its biology such as insecticides resistance and rice varieties virulence. 
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Introduction 

   Rice (Oryza sativa) is amongst the staple food of most Asian people for more than 

5,000 years, and now more than 90% of the world’s rice is planted and consumed in Asia-

Pacific region, supporting half of the global population there. The brown planthopper (BPH), 

Nilaparvata lugens (Stål) (Hemiptera:Delphacidae), is a serious migratory rice (Oryza 

sativa L.) pest, which causes a conservative estimation of more than US$300 million per 

year world wide1. BPH is widely distributed across the region west from Pakistan to north-

central Japan and south through the Malay Archipelago to New Guinea and the Solomon 

Islands, and north-eastern Australia1. Habitats of BPH extend through such a wide area, 

however, critical questions regarding its evolution, such as where BPH originated, how the 

species diverged, and how populations dispersed around the globe are still largely 

unknown. 

BPH could not survive severe winters in temperate East Asian region north of 25°N2, 

because of the low temperature and no rice planting in winter, but the infestation of BPHs 

still occurs by new immigrants annually3, which migrate hundreds or even thousands 

kilometers far away by the favor of monsoon. In the past few decades, atmospheric 

trajectories were used to track insect sources and overwintering sites in East Asian 

countries, and the results supported an origin from the north part of Indo-China peninsula4-

7. However, majority of BPH populations reside in the tropical areas of South Asia, 

Southeast Asia, and Oceania perennially, migration patterns in these regions remain 

unclear, even some migration movements has been detected in India8,9, south Vietnam10 

and Philippines11. Mitochondrial markers have been proved to be difficult to distinguish 

regional populations in Asia12,13. BPH strains in different regions show phenotypic variation. 

Subtropical and temperate East Asian macropters were more adapted to migration with 

longer pre-oviposition periods and stronger starvation tolerance14, while tropical Asian 

strains (Southern Vietnam, Thailand, Malaysia, Philippines) were more adapted to 

reproduction15. BPH strains in South Asia, Southeast Asia and Oceania showed distinct 

virulence reactions to some rice varieties16,17, which suggests the exists of genetic 

difference among regional populations. 

Here, we investigate the migration, dispersal and evolution of BPHs by performing 

whole-genome sequencing of 358 BPH individuals from 92 populations worldwide. 

 

Results 

We sequenced the whole-genome of 358 BPH individuals collected from 92 sampling 

sites (Fig.1a) throughout South Asia (SA), Southeast Asia (SEA), East Asia (EA), and 

Australia, covering the most countries where BPH potentially exists. We also sequenced 

two individuals of Nilaparvata muiri as the outgroup. A total of 5.05Tb high-quality data 

were obtained after quality control, with an average coverage depth of 11X for each sample. 

By mapping to the improved BPH reference genome, we identified 1.95 million single 

nucleotide polymorphism (SNP) variations that were used for further population genomic 

analyses. 

The genetic relationships among geographical populations 

We analysed the genetic relationships among geographical populations based on the 

genome-wide SNPs. Principal-component analysis (PCA) unequivocally separated all BPH 
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individuals into five groups (Fig.1b). Of them, there were two groups clustering multiple 

geographically-neighboring populations, i.e. the group SEA that, includes populations from 

seven Southeast Asian countries (Thailand, Cambodia, Laos, Vietnam, Maylaysia, 

Indonesia, Philippines) and three East Asian countries (China, Japan, South Korea) and 

the group SA that includes populations from four South Asian countries (India, Nepal, 

Pakistan, Sri Lanka) and a Southeast Asian country (Myanmar). We also found samples 

from Bangladesh, Fujian (China), and Australia form a distinctive group, respectively. Such 

an overall genetic grouping pattern was also well supported by the ancestry estimation and 

the phylogenetic analysis (Fig. 1c, d). AUS samples were shown relatively large genetic 

divergence with Asian populations, while the genetic divergence within Asian populations 

is low. The neighbor-joining (NJ) tree placed the FuJ clade as the sister clade to SEA and 

clustered the clades of BGD and SA together, agreeing with their geographic distributions. 

(Fig.1d). The well separation of these two populations suggests little gene flow of them 

with their surrounding populations which was probably caused by their unique local 

adaptions.  

The NJ-tree further revealed that SEA group could be marginally subdivided into 3 

subgroups, i.e. Southeast Asian mainland (SA mainland), Southeast Asian offshore (SEA 

offshore), and East Asia (EA) (Fig. 1d). Such a fine separation was also supported by the 

PCA analysis of SEA samples only (Fig. 1b). These results suggested gene flows 

frequently occurred among the populations of Southeast and East Asian region, and that 

the slightly genetic divergence between them was probably led by genomic loci that were 

under selection during annually migration in EA.  

We found that some individuals in southwest Yunnan, the southwest border of China, 

west Thailand, and Laos showed close phylogenetic relationships with SA group 

individuals (Fig. 1d). Population structure analysis further revealed that populations in 

Yunnan, Thailand and Laos comprised large proportions of SA ancestry components (Fig. 

1c,e). These observations suggested that regions in west Yunnan and Thailand might have 

received large amount of migrants from neighboring country Myanmar and the genetic 

structure of these populations are highly mixed. 

All our population genetic analyses showed genetic relatedness between the majority 

of East Asian populations (except southwest Yunnan and Fujian) and SEA group (Fig. 

1b,c,d). In the NJ-tree, except those individuals that formed EA subgroup alone, the rest of 

other East Asian individuals were undistinguishablely clustered with SEA mainland 

subgroup, indicating SEA mainland was the major yearly immigrant source of EA. In 

structure analysis at k=6, populations in northern Vietnam, north-central Laos, north-

central Thailand showed more genetic similarity with East Asian populations (Fig. 1f). Thus, 

we hypothesized that these regions were the annually overwintering sites for East Asian 

populations.  

Above results indicate a central role of SEA mainland in the genetic exchange of BPH, 

where migratory EA populations generally overwinter, populations on SEA islands 

frequently disperse, and migrants from west South Asian regions occasionally visit. SA 

mainland is an another place for genetic exchanges among regional BPH populations. 
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Fig.1 Population structure and phylogenetic relationships of BPH populations. a Geographic locations of 

sampling sites. b Principal component analysis (PCA) based on the first two components, inset shows 

separation of East Asia populations from Southeast Asia, BGD, Bangladesh; SA, South Asia; SEA, 

Southeast Asia; EA, East Asia; CHFuJ, Fujian,China; AUS, Australia. c ADMIXTURE analysis for K=2-

7. Colored columns inferred the ancestry proportion of each sample. d Neighbor-joining tree based on 

1000 bootstraps. e The average ancestry proportions for each sampling sites, according to ADMIXTURE 

analysis at K=6, which showing the genetic differentiation between EA and SEA. f The average ancestry 

proportions for each sampling sites, according to ADMIXTURE analysis at K=6, which showing the 

population genetic influence in SA and EA to SEA mainland. 
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Fig. 2 Genetic diversity and demographic history of BPH populations. a Heterozygosity of all 358 

individuals, by calculating the ratio of heterozygous to homozygous SNPs. b Tajima’D and θπ scans for 

major groups using 10-kb windows on the genome. c Linkage disequilibrium (LD) decay for all the groups. 

d Minor allele frequencies (MAF) histogram. e Demographic history of the major populations inferred using 

PSMC. Each population was represented by 3 samples with the highest sequencing depth ranges from 

12-fold to 17-fold. 
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Genetic diversity and demographic history 

We found high levels of genetic diversities and individual heterozygosities in groups 

of SA, SEA (offshore and mainland), and EA, in consistent with the fast decay of linkage 

disequilibrium (LD) (Fig. 2a, b, c). These features suggest the high effective population 

sizes and frequently gene flows within these groups. In contrast, we found elevated LD 

and low level of genetic diversities and individual heterozygosites in three single 

populations, i.e. BGD, AUS and FuJ, indicating either founder effects existed in these 

groups or contracted population size (Fig. 2a,b,c,d). Tajima’D results also suggested that 

the BGD, AUS, FuJ groups have experienced population size contraction, whereas SA and 

SEA groups underwent expansion (Fig. 2b). 

We applied pairwise sequentially Markovian (PSMC) to estimate the historical size 

changes (Fig. 2e) and reconstructed a consistent demographic pattern across all main 

groups, except the slight deviation in the Australian population. BPH populations started to 

decline since approximately 20000 years ago until 2,000 years ago population sizes got 

recovered and reached the peak in about 1,000 years ago, in concordance with the earliest 

records of BPH outbreaks in 697 A.D in Japan18. These results supported a deep split 

between the Australian population and Asian populations, and that divergence between 

Asian populations occurred very recently. Previous study found the divergence of male 

courtship signals between Australian and Asian population, which influenced the success 

of hybridation, but showed little post-mating incompatibilities once mating successful19, 

reproductive isolation did not formed yet. The striking increase of population sizes reflected 

the intensified cultivation of domesticated rice in the past 2000 years. 

 

Discussion 

Our studies clearly uncover the genetic structure, phylogenetic relationships, and 

evolutionary history among BPH geographic populations worldwide. Population structure 

and phylogenetic analyses revealed the existence of 5 distinct genetic groups and 

Southeastern Asia mainland was the major yearly immigrant source for East Asia. Our 

demographic analyses detected the populations expansion in recent 2,000 years in relation 

to the rice expanding cultivation.  

The results revealed the deep divergence between Australian and Asian populations. 

Due to the low amount of insecticides input and host plant resistance selections, Australian 

populations might suffer a lower level of selection than Asian populations. However, we 

note that we only collected samples from wild rice in one site in Australia, which is probably 

not enough to represent the whole structure of Oceanian populations. 

BPHs in Asia had formed two main genetic groups in South and Southeast Asia, which 

might be caused by the rice varieties, the different monsoon pattern between these two 

regions, the input of different types of insecticides, and the climate. Previous researches 

have reported the distinct virulence reactions to some rice varieties between South and 

Southeast Asian BPHs17,18. The genetic basis of the host virulence and local environment 

adaptation need further researches, and selective sweep scanning on the genome will be 

helpful. 

Population structure analysis also showed massive genetic admixture in southwest 

Yunnan, west Thailand, and Laos. These populations will further migrate to East Asia and 
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other part of Southeast Asia due to the massive migration within SEA group, all the samples 

in SEA and EA showed varying degrees of ancestry components from SA (Fig. 1c,e,f), 

which might suggested the gene flows between South and Southeast/East Asia were larger 

than we previous known17.  

The data presented in this study will help us better understand the local adaptation of 

geographic populations that will be informative for the pest management. 

 

Methods 

Sampling 

We sampled a total of 360 individuals, including 358 BPH individuals and 2 Nilaparvata 

muiri China. The East Asian population of BPH undergoes a yearly migration from the north 

Vietnam to Central-East China, Japan and South Korea. Our sampling sites for the 

migratory population covered the main stopover points from 16 provinces in 28 sampling 

points around China, and 3 points in Japan, 1 points in South Korea (Fig.1a, lightblue 

points). In southeast Asia, we sampled the tropical populations across seven countries, 

including 5 southeast Asian mainland countries, Vietnam (3 points in North region and 6 

points in the South region), Laos (6 points ranging from north to south Laos), Thailand (9 

points around Thailand), Cambodia (3 points in the South), Myanmar (7 points expand from 

Central to South regions) and 3 Southeast Asian offshore countries, Philippines (4 points 

from north to South), Indonesia (2 points), and Malaysia (4 points). In south Asia, our 

samples ranges in 5 countries, including Pakistan (1 point from the North East), India (4 

points spanning North-Central to South), Sri Lanka(1 point), Nepal(2 points in Central) 

(Fig.1a, yellow points), and Bengal (3 points in Central and 1 point in Southeast Bengal) 

(Fig.1a, red points). We also sampled a site from north Australia to represent the BPH 

population in Australia (Fig.1a, purple point). 

Sequencing and quality control 

Genomic DNA extraction, library construction and amplification followed standard 

protocols. All samples were sequenced on the Illumina sequencing platform (Hiseq X) with 

a pair-end read length of 150bp. We filtered raw data using the following thresholds to 

remove reads with low-quality and adapters: (1) unidentified nucleotides (i.e., N) more than 

10% in a single read, remove the paired reads;(2) low quality bases (<=5) in a single read 

more than 50%, remove the paired reads;(3) remove reads aligned to adaptors. Finally 

approximately 33.78 billion clean reads were kept for later analysis. 

Mapping and SNP calling 

Clean data were mapped against the BPH reference genome (updated 3rd version) 

using Burrows-Wheeler Alignment Tool (BWA)20 v0.7.17-r1188 with command line ‘bwa 

mem –t 10 –k 32 –M –R ’. The alignment results were further sorted by SAMtools v1.9. 

Consecutive variant calling were performed on GATK4 v4.1.3.0. Potential PCR duplicates 

were removed by ‘gatk MarkDuplicates’. Next, ‘HaplotypeCaller --emit-ref-confidence 

GVCF’ was applied to generate gvcf files for every individuals, and used ‘CombineGVCFs’ 

to combine the gvcf file of all the individuals and ‘GenotypeGVCFs’ was applied to call the 

raw variants sets. To reduce the SNP calling errors, we filtered out SNP variants according 

to the following thresholds: QD < 2.0, MQ < 40.0, FS > 60.0, SOR > 3.0, MQRankSum < -

12.5, ReadPosRankSum < -8.0, QUAL<50, MAF < 0.05, --max-missing > 0.1, -max-
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meanDP >30 --min-meanDP < 3. Potential variants were annotated by ANNOVAR 

software21. 

Population structure  

    Based on the genome-wide SNPs of 360 samples in our study, neighbor-joining tree 

were constructed using PHYLIP v3.697 with 1000 bootstraps. iTOL22 was used to present 

the constructed tree. PCA analysis was conducted by GCTA v1.92.123,24. The population 

genetic structure was inferred using ADMIXTURE v1.3.025 from k=2 to 7. We used 

TreeMix26 to infer the population split and mixtures.  

Genetic diversity and Demographic history 

Linkage disequilibrium (LD) and minor allele frequency (MAF) among different 

populations were calculated by Samtools v1.927. We estimated the heterozygosity for each 

sample by calculated the ratio of heterozygous to homozygous SNPs. 

We inferred the historical population size of each population by pairwise sequentially 

Markovian coalescence (PSMC) model28. The generation time g was set as 1/12 year, and  

the mutation rate μ equal 8.4x10-9 as referred from Drosophila29. 
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