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6

Abstract The precision of human decisions is limited by both processing noise and basing7

decisions on finite information. But what determines the degree of such imprecision? Here we8

develop an efficient coding framework for higher-level cognitive processes, in which information9

is represented by a finite number of discrete samples. We characterize the sampling process that10

maximizes perceptual accuracy or fitness under the often-adopted assumption that full11

adaptation to an environmental distribution is possible, and show how the optimal process12

differs when detailed information about the current contextual distribution is costly. We tested13

this theory on a numerosity discrimination task, and found that humans efficiently adapt to14

contextual distributions, but in the way predicted by the model in which people must economize15

on environmental information. Thus, understanding decision behavior requires that we account16

for biological restrictions on information coding, challenging the often-adopted assumption of17

precise prior knowledge in higher-level decision systems.18

19

Introduction20

It is well-established that sensory perception is imprecise, andmoreover that the precision of com-21

parative judgments regarding sensory magnitudes are not uniform over the domain of possible22

stimuli. Increasing evidence suggests that observed patterns of non-uniformity in discrimination23

thresholds can often be explained as reflecting a principle of efficient coding: the idea that informa-24

tion is encoded in ways that minimize the costs of inaccurate decisions given biological constraints25

on information acquisition (Niven and Laughlin, 2008; Sharpee et al., 2014). While early applica-26

tions of efficient coding theory have primarily been to early stages of sensory processing (Laughlin,27

1981; Ganguli and Simoncelli, 2014;Wei and Stocker, 2015), it is worth considering whether similar28

principles may also shape the structure of internal representations of higher-level concepts, such29

as the perceptions of value that underlie economic decision making (Louie and Glimcher, 2012;30

Polanía et al., 2019; Rustichini et al., 2017). In this work, we contribute to the efficient coding31

framework applied to cognition and behavior in several respects.32

A first aspect concerns the range of possible internal representation schemes that should be33

considered feasible, which determines the way in which greater precision of discrimination in one34

part of the stimulus space requires less precision of discrimination elsewhere. Implementational35

architectures proposed by Ganguli and Simoncelli (2014) orWei and Stocker (2015) assume a pop-36

ulation coding scheme in which different neurons have distinct "preferred" stimuli. While this is37

clearly relevant for some kinds of low-level sensory features such as orientation, it is not obvi-38

ous that this kind of internal representation is used in representing higher-level concepts such as39

economic values. We instead develop an efficient coding theory for a case in which an extensive40

magnitude (something that can be described by a larger or smaller number) is represented by the41

total number of processing units, fromamong a population of units operating in parallel, that “vote”42
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in favor of the magnitude’s being larger rather than small. The internal representation therefore43

necessarily consists of a finite collection of binary signals.44

Our restriction to representations made up of binary signals is in conformity with the obser-45

vation that neural systems at many levels appear to transmit information via discrete stochastic46

events (Schreiber et al., 2002; Sharpee, 2017). Moreover, cognitive models with this general struc-47

ture have been argued to be relevant for higher-order decision problems such as value-based48

choice. For example, it has been suggested that the perceived values of choice options are con-49

structed by acquiring samples of evidence from memory regarding the emotions evoked by the50

presented items (Shadlen and Shohamy, 2016). Related accounts suggest that when a choice must51

be made between alternative options, information is acquired via discrete samples of information52

that can be represented as binary responses (e.g., “yes/no” responses to queries) (Norman, 1968;53

Weber and Johnson, 2009). The seminal decision-by-sampling (DbS) theory (Stewart et al., 2006) sim-54

ilarly posits an internal representation of magnitudes relevant to a decision problem by tallies of55

the outcomes of a set of binary comparisons between the currentmagnitude and alternative values56

sampled from memory. The architecture that we assume for imprecise internal representations57

has the general structure of proposals of these kinds; but we go beyond the above-mentioned in-58

vestigations, in analyzing what an efficient coding scheme consistent with our general architecture59

would be like.60

A second aspect concerns the conclusions about efficient coding depending on the objective61

for which the encoding system is assumed to be optimized. Information maximization theories62

(Laughlin, 1981; Ganguli and Simoncelli, 2014; Wei and Stocker, 2015) assume that the objective63

should be maximal mutual information between the true stimulus magnitude and the internal64

representation. While thismay be a reasonable assumption in the case of early sensory processing,65

it is less obvious in the case of circuits involved more directly in decision making, and in the latter66

case an obvious alternative is to ask what kind of encoding schemewill best serve to allow accurate67

decisions to be made. In the theory that we develop here, our primary concern is with encoding68

schemes that maximize a subject’s probability of giving a correct response to a binary decision.69

However, we compare the coding rule that would be optimal from this standpoint to one that70

would maximize mutual information, or to one that would maximize the expected value of the71

chosen item rather than the probability of choosing the larger item.72

Third, andmost importantly, we extend our theory of efficient coding to consider notmerely the73

nature of an efficient coding system for a single environmental frequency distribution assumed to74

be permanently relevant – so that there has been ample time for the encoding rule to be optimally75

adapted to that distribution of stimulus magnitudes – but also an efficient approach to adjusting76

the encoding as the environmental frequency distribution changes. Prior discussions of efficient77

coding have often considered the optimal choice of an encoding rule for a single environmental78

frequency distribution, and derived quantitative predictions for an empirical stimulus distribution79

that is assumed to represent a permanent feature of the natural environment (Laughlin, 1981;80

Ganguli and Simoncelli, 2014). Such an approach may make sense for a theory of neural coding in81

cortical regions involved in early-stage processing of sensory stimuli, but is less obviously appro-82

priate for a theory of the processing of higher-level concepts such as economic value, where the83

idea that there is a single, permanently relevant frequency distribution of magnitudes that may be84

encountered is also much more doubtful. Moreover, recent evidence suggests that the encoding85

of economically relevant magnitudes (the size of monetary gains or losses, the probability of dif-86

ferent possible outcomes from a gamble, the length of the delay until a payment will be received)87

varies with changes in the frequency distribution of such quantities used in a particular experiment88

(Stewart et al., 2015).89

Hence we treat the collection of information about the currently relevant environmental fre-90

quency distribution, in order to appropriately adjust the encoding rule for new stimuli, and not91

simply the collection of information about the current individual stimulus, as part of the computa-92

tions that must be undertaken by the processing units that wemodel. Our definition of an efficient93

2 of 51

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted June 15, 2020. ; https://doi.org/10.1101/799064doi: bioRxiv preprint 

https://doi.org/10.1101/799064
http://creativecommons.org/licenses/by-nc-nd/4.0/


Manuscript submitted to eLife

coding scheme posits that it is desirable to economize both on the amount of information about94

the current contextual distribution that is used, as well as on the amount of information about95

the current stimulus that is used. We model both types of information collection as sampling pro-96

cesses: the information used about the contextual distribution is provided by a finite sample from97

that distribution, while the information used about the current stimulus is provided by a finite98

sample of binary responses to queries about that stimulus. We can then quantify the two types of99

resource constraint with which we are concerned as limits on the number of samples used of each100

of these types.101

In the case in which we assume no effective bound on the number of samples from the contex-102

tual distribution that can be used in encoding themagnitude of a new stimulus, our theory reduces103

to the kind of efficient coding theory considered by previous authors: for each possible contextual104

frequency distribution, new stimuli are encoded using a rule that is efficient (in the sense of max-105

imizing response accuracy, subject to a finite bound on the number of binary signals used to rep-106

resent an individual magnitude) for that particular distribution. And as we show, the predictions107

of our theory in this case are similar (at least in the limiting case of a large though finite number of108

binary signals) to those of the efficient coding theories proposed in previous work (Laughlin, 1981;109

Ganguli and Simoncelli, 2014; Wei and Stocker, 2015). If, instead, it is important to economize on110

the number of samples from the contextual distribution used to encode each new stimulus, we111

obtain a different result. In particular, we demonstrate that when this second consideration has a112

great enough weight, the optimal encoding rule corresponds to the DbS algorithm of Stewart et al.113

(2006).114

A second goal of our work is to test the relevance of these different possible models of efficient115

coding in the case of numerosity discrimination. Judgments of the comparative numerosity of two116

visual displays provide a test case of particular interest given our objectives. On the one hand, a117

long literature has argued that imprecision in numerosity judgments has a similar structure to psy-118

chophysical phenomena in many low-level sensory domains (Nieder and Dehaene, 2009; Nieder119

and Miller, 2003). This makes it reasonable to ask whether efficient coding principles may also120

be relevant in this domain. At the same time, numerosity is plainly a more abstract feature of vi-121

sual arrays than low-level properties such as local luminosity, contrast, or orientation, and so can122

be computed only at a later stage of processing. Moreover, processing of numerical magnitudes123

is a crucial element of many higher-level cognitive processes, such as economic decision making;124

and it is arguable that many rapid or intuitive judgments about numerical quantities, even when125

numbers are presented symbolically, are based on an “approximate number system” of the same126

kind as is used in judgments of the numerosity of visual displays (Piazza et al., 2007; Nieder and127

Dehaene, 2009). It has further been argued that imprecision in the internal representation of nu-128

merical magnitudes may underly imprecision and biases in economic decisions (Khaw et al., In129

Press;Woodford, In Press).130

It is well-known that the precision of discrimination between nearby numbers of items de-131

creases in the case of larger numerosities, in approximately the way predicted by Weber’s Law,132

and this is often argued to support of a model of imprecise coding based on a logarithmic transfor-133

mation of the true number (Nieder and Dehaene, 2009; Nieder and Miller, 2003). However, while134

the precision of internal representations of numerical magnitudes is arguably of great evolution-135

ary relevance (Butterworth et al., 2018; Nieder, 2020), it is unclear why a specifically logarithmic136

transformation of number information should be of adaptive value, and also whether the same137

transformation is used independent of context (Pardo-Vazquez et al., 2019; Brus et al., 2019). We138

report new experimental data on numerosity discrimination by human subjects, in the case of two139

different frequency distributions for the numerosity of the presented stimuli, and show both that140

the observed variation in discriminability over the stimulus range differs somewhat from the pre-141

dictions of a logarithmic coding model, and that it changes when the distribution of stimuli used142

in the experiment is different. We also compare the observed pattern of variation in discriminabil-143

ity with the predictions of our efficient coding theory, under a variety of assumptions about both144
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the performance measure and the weight assigned to economizing on the number of samples re-145

quired from the contextual distribution. We find that our data are most consistent with the DbS146

model, which is to say, to the predictions of an efficient coding theory for which the performance147

measure is the frequency of correct comparative judgments, and a substantial weight is placed on148

reducing the required number of samples from the contextual distribution.149

Results150

A general efficient sampling framework151

Weconsider a situation inwhich the objectivemagnitude of a stimuluswith respect to some feature152

can be represented by a quantity v. When the stimulus is presented to an observer, it gives rise to153

an imprecise representation r in the nervous system, on the basis of which the observer produces154

any required response. The internal representation r can be stochastic, with given values being155

produced with conditional probabilities p(r|v) that depend on the true magnitude. Here, we are156

more specifically concerned with discrimination experiments, in which two stimulus magnitudes157

v1 and v2 are presented, and the subject must choose which of the two is greater. We suppose158

that each magnitude vi has an internal representation ri, drawn independently from a distribution159

p(ri|vi) that depends only on the true magnitude of that individual stimulus. The observer’s choice160

must be based on a comparison of r1 with r2.161

One way in which the cognitive resources recruited to make accurate discriminations may be162

limited is in the variety of distinct internal representations that are possible. When the complexity163

of feasible internal representations is limited, there will necessarily be errors in the identification of164

the greater stimulus magnitude in some cases, even assuming an optimal decoding rule for choos-165

ing the larger stimulus on the basis of r1 and r2. One can then consider alternative encoding rules166

formapping objective stimulusmagnitudes to feasible internal representations. The answer to this167

efficient coding problem generally depends on the prior distribution f (v) from which the different168

stimulus magnitudes vi are drawn. The resources required for more precise internal representa-169

tions of individual stimulimay be economizedwith respect to either or both of twodistinct cognitive170

costs. The first goal of this work is to distinguish between these two types of efficiency concerns.171

One question that we can ask is wheter the observed behavioral responses are consistent with172

the hypothesis that the conditional probabilities p(r|v) are well-adapted to the particular frequency173

distribution of stimuli used in the experiment, suggesting an efficient allocation of the limited en-174

coding neural resources. The assumption of full adaptation is typically adopted in efficient coding175

formulations of early sensory systems (Laughlin, 1981; Wei and Stocker, 2017), and also more re-176

cently in applications of efficient coding theories in value-based decisions (Louie and Glimcher,177

2012; Polanía et al., 2019; Rustichini et al., 2017).178

There is also a second cost in which it may be important to economize on cognitive resources.179

An efficient coding scheme in the sense described above economizes on the resources used to180

represent each individual new stimulus that is encountered; however, the encoding and decoding181

rules are assumed to be precisely optimized for the specific distribution f (v) of stimuli that char-182

acterizes the experimental situation. In practice, it will be necessary for a decision maker to learn183

about this distribution in order to encode and decode individual stimuli in an efficient way, on the184

basis of experience with a given context. In this case, the relevant design problem should not be185

conceived as choosing conditional probabilities p(r|v) once and for all, with knowledge of the prior186

distribution f (v) from which v will be drawn. Instead, it should be to choose a rule that specifies187

how the probabilities p(r|v) in the case of an individual stimulus should adapt to the distribution188

of stimuli that have been encountered in a given context. It then becomes possible to consider189

how well a given learning rule economizes on the degree of information about the distribution190

of magnitudes associated with one’s current context that is required for a given level of average191

performance across contexts. This issue is important not only to reduce the cognitive resources192

required to implement the rule in a given context (by not having to store or access so detailed a193
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description of the prior distribution), but in order to allow faster adaptation to a new context when194

the statistics of the environment can change unpredictably (Młynarski and Hermundstad, 2019).195

Coding architecture196

We now make the contrast between these two types of efficiency more concrete by considering197

a specific architecture for internal representations of sensory magnitudes. We suppose that the198

representation ri of a given stimulus will consist of the output of a finite collection of n processing199

units, each ofwhich has only twopossible output states ("high" or "low" readings), as in the case of a200

simple perceptron. The probability that each of the units will be in one output state or the other can201

depend on the stimulus vi that is presented. We further restrict the complexity of feasible encoding202

rules by supposing that the probability of a given unit being in the "high" state must be given203

by some function �(vi) that is the same for each of the individual units, rather than allowing the204

different units to coordinate in jointly representing the situation in some more complex way. We205

argue that the existence ofmultiple units operating in parallel effectively allowsmultiple repetitions206

of the same "experiment", but does not increase the complexity of the kind of test that can be207

performed. Note that we do not assume any unavoidable degree of stochasticity in the functioning208

of the individual units; it turns out that in our theory, it will be efficient for the units to be stochastic,209

but we do not assume that precise, deterministic functioning would be infeasible. Our resource210

limits are instead on the number of available units, the degree of differentiation of their output211

states, and the degree to which it is possible to differentiate the roles of distinct units.212

Figure 1. Architecture of the sampling mechanism.Each processing unit receives noisy versions of theinput v, where the noisy signals are i.i.d. additiverandom signals independent of v. The output of theneuron for each sample is "high" (one) reading if
v − � > � and zero otherwise. The noisy percept ofthe input is simply the sum of the outputs of eachsample given by k.

Given such a mechanism, the internal rep-213

resentation ri of the magnitude of an individ-214

ual stimulus vi will be given by the collection of215

output states of the n processing units. A spec-216

ification of the function �(v) then implies con-217

ditional probabilities for each of the 2n possi-218

ble representations. Given our assumption of219

a symmetrical and parallel process, the num-220

ber ki of units in the "high" state will be a suf-221

ficient statistic, containing all of the informa-222

tion about the true magnitude vi that can be223

extracted from the internal representation. An224

optimal decoding rule will therefore be a func-225

tion only of ki, and we can equivalently treat226

ki (an integer between 0 and n) as the internal227

representation of the quantity vi. The condi-228

tional probabilities of different internal repre-229

sentations are then230

p(ki|vi) =
(

n
k

)

�(vi)ki (1 − �(vi))n−ki . (1)
The efficient coding problem for a given en-231

vironment, specified by a particular prior distribution f (v), will be to choose the encoding rule �(v)232

so as to allow an overall distribution of responses across trials that will be as accurate as possi-233

ble (according to criteria that we will elaborate further below). We can further suppose that each234

of the individual processing units is a threshold unit, that produces a "high" reading if and only235

if the value vi − �i exceeds some threshold �, where �i is a random term drawn independently236

on each trial from some distribution f� (Figure 1). The encoding function �(v) can then be imple-237

mented by choice of an appropriate distribution f� . This implementation requires that �(v) be a238

non-decreasing function, as we shall assume.239
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Limited cognitive resources240

One measure of the cognitive resources required by such a system is the number n of processing241

units thatmust produce an output each time an individual stimulus vi is evaluated. We can consider242

the optimal choice of f� in order tomaximize, for instance, average accuracy of responses in a given243

environment f (v), in the case of any bound n on the number of units that can be used to represent244

each stimulus. But we can also consider the amount of information about the distribution f (v)245

that must be used in order to decide how to encode a given stimulus vi. If the system is to be able246

to adapt to changing environments, it must determine the value of � (the probability of a "high"247

reading) as a function of both the current vi and information about the distribution f , in a way248

that must now be understood to apply across different potential contexts. This raises the issue of249

how precisely the distribution f associated with the current context is represented for purposes250

of such a calculation. A more precise representation of the prior (allowing greater sensitivity to251

fine differences in priors) will presumably entail a greater resource cost or very long adaptation252

periods.253

We can quantify the precision with which the prior f is represented by supposing that it is254

represented by a finite sample ofm independent draws, ṽ1,… , ṽm, from the prior (ormore precisely,255

from the set of previously experienced values, an empirical distribution that should after sufficient256

experience provide a good approximation to the true distribution). We further assume that an257

independent sample of m previously experienced values is used by each of the processing units258

(Figure 1). Each of the n individual processing units is then in the "high" state with probability259

�(vi; ṽ1,… , ṽm). The complete internal representation of the stimulus vi is then the collection of n260

independent realizations of this binary-valued randomvariable. Wemay suppose that the resource261

cost of an internal representation of this kind is an increasing function of both n and m.262

This allows us to consider an efficient coding meta-problem, in which for any given values (n, m),263

the function �(vi; ṽ1,… , ṽm) is chosen so as to maximize somemeasure of average perceptual accu-264

racy, where the average is now taken not only over the entire distribution of possible vi occurring265

under a given prior f (v), but over some range of different possible priors for which the adaptive266

coding scheme is to be optimized. We wish to consider how each of the two types of resource267

constraint (a finite bound on n as opposed to a finite bound on m) affects the nature of the pre-268

dicted imprecision in internal representations, under the assumption of a coding scheme that is269

efficient in this generalized sense, and then ask whether we can tell in practice how tight each of270

the resource constraints appears to be.271

Efficient sampling for a known prior distribution272

We first consider efficient coding in the case that there is no relevant constraint on the size of m,273

while n instead is bounded. In this case, we can assume that each time an individual stimulus vi274

must be encoded, a large enough sample of prior values is used to allow accurate recognition of275

the distribution f (v), and the problem reduces to a choice of a function �(v) that is optimal for each276

possible prior f (v).277

Maximizing mutual information278

The nature of the resource-constrained problem to be optimized depends on the performance279

measure that we use to determine the usefulness of a given encoding scheme. A common as-280

sumption in the literature on efficient coding has been that the encoding scheme maximizes the281

mutual information between the true stimulus magnitude and its internal representation (Ganguli282

and Simoncelli, 2014; Polanía et al., 2019; Wei and Stocker, 2015). We start by characterizing the283

optimal �(v) for a given prior distribution f (v), according to this criterion. It can be shown that for284

large n, the mutual information between � and k (hence the mutual information between v and k)285

is maximized if the prior distribution f̂ over � is Jeffreys’ prior (Clarke and Barron, 1994)286

f̂ (�) = 1
�
√

�(1 − �)
, (2)
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also known as the arcsine distribution. Hence, the mapping �(v) induces a prior distribution f̂ over287

� given by the arcsine distribution (Figure 2a, right panel). Based on this result, it can be shown288

that the optimal encoding rule �(v) that guarantees maximization of mutual information between289

the random variable v and the noisy encoded percept k is given by (see Appendix 1)290

�(v) =
[

sin
(�
2
F (v)

)]2
, (3)

where F (v) is the CDF of the prior distribution f (v).291

Accuracy maximization for a known prior distribution292

So far, we have derived the optimal encoding rule to maximize mutual information, however, one293

may ask what the implications are of such a theory for discrimination performance. This is impor-294

tant to investigate given that achieving channel capacity does not necessarily imply that the goals295

of the organism are also optimized (Park and Pillow, 2017). Independent of information maximiza-296

tion assumptions, here we start from scratch and investigate what are the necessary conditions297

for minimizing discrimination errors given the resource-constrained problem considered here. We298

solve this problem for the case of two alternative forced choice tasks, where the average probability299

of error is given by (see Appendix 2)300

E[error] = ∬ Perror [�(v1), �(v2)]f̂ (�1)f̂ (�2) d�1d�2, (4)
where Perror[] represents the probability of erroneously choosing the alternative with the lowest301

value v given a noisy percept k (assuming that the goal of the organism in any given trial is to302

choose the alternative with the highest value). Here, we want to find the density function f̂ (�) that303

guarantees the smallest average error (Eq. 4). The solution to this problem is (Appendix 2)304

f̂ (�) = 1
�
√

�(1 − �)
, (5)

which is exactly the same prior density function over � that maximizes mutual information (Eq. 2 ).305

Crucially, please note that we have obtained this expression based onminimizing the frequency of306

erroneous choices and not themaximization ofmutual information as a goal in itself. This provides307

a further (and normative) justification for why maximizing mutual information under this coding308

scheme is beneficial when the goal of the agent is to minimize discrimination errors (i.e., maximize309

accuracy).310

Optimal noise for a known prior distribution311

Based on the coding architecture presented in Figure 1, the optimal encoding function �(v) can then312

be implemented by choice of an appropriate distribution f� . It can be shown that discrimination313

performance can be optimized by finding the optimal noise distribution f� (Appendix 3) (McDonnell314

et al., 2007)315

f�(v) =
�
2
sin[�(1 − F (� − v))]f (� − v). (6)

Remarkably, this result is independent of the number of samples n available to encode the input316

variable, and generalizes to any prior distribution f (recall thatF is defined as its cumulative density317

function).318

This result reveals three important aspects of neural function and decision behavior: First, it319

makes explicit why a system that evolved to code information using a coding scheme of the kind320

assumed in our frameworkmust be necessarily noisy. That is, we do not attribute the randomness321

of peoples’ responses to a particular set of stimuli or decision problem to unavoidable randomness322

of the hardware used to process the information. Instead, the relevant constraints are assumed323

to be the limited set of output states for each neuron, the limited number of neurons, and the324

requirement that the neurons operate in parallel (so that each one’s output state must be statis-325

tically independent of the others, conditional on the input stimulus). Given these constraints, we326
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Figure 2. a) Schematic representation of our theory. Left: example prior distribution f (v) of values v encountered in the environment. Right:Prior distribution in the encoder space (Eq. 2) due to optimal encoding (Eq. 3). This optimal mapping determines the probability � of generatinga "high" or "low" reading. The ex-ante distribution over � that guarantees maximization of mutual information is given by the arcsinedistribution (Eq. 2). b) Encoding rules �(v) for different decision strategies under binary sampling coding: accuracy maximization (blue), rewardmaximization (red), DbS (green dashed). c)Mutual information I(v, k) for the different encoding rules as a function of the number of samples n.As expected I(v, k) increases with n, however the rule that results in the highest loss of information is DbS. d) Discriminability thresholds d(log-scaled for better visualization) for the different encoding rules as a function of the input values v for the prior f (v) given in panel a. e)Graphical representation of the perceptual accuracy optimization landscape. We plot the average probability of correct responses for the large nlimit using as benchmark a Beta distribution with parameters a and b. The blue star shows the average error probability assuming that f (�) isthe arcsine distribution (Eq. 2), which is the optimal solution when the prior distribution f in known. The blue open circle shows the averageerror probability based on the encoding rule assumed in DbS, which is located near the optimal solution. Please note that when formally solvingthis optimization problem, we did not assume a priori that the solution is related to the beta distribution. We use the beta distribution in thisfigure just as a benchmark for visualization. Detailed comparison of performance for finite n samples is presented in Appendix 7.

show that it is efficient for the operation of the neurons to be random. Second, it shows how the327

nervous system may take advantage of these noisy properties by reshaping its noise structure to328

optimize decision behavior. Third, it shows that the noise structure can remain unchanged irre-329

spective of the amount of resources available to guide behavior (i.e., the noise distribution f� does330

not depend on n, Eq. 6). Please note however, that this minimalistic implementation does not331

directly imply that the samples in our algorithmic formulation are necessarily drawn in this way.332

We believe that this implementation provides a simple demonstration of the consequences of lim-333

ited resources in systems that encode information based on discrete stochastic events (Sharpee,334

2017). Interestingly, it has been shown that this minimalistic formulation can be extended to more335

realistic population coding specifications (Nikitin et al., 2009).336

Efficient coding and the relation between environmental priors and discrimination337

The results presented above imply that this encoding framework imposes limitations on the abil-338

ity of capacity-limited systems to discriminate between different values of the encoded variables.339

Moreover, we have shown that error minimization in discrimination tasks implies a particular340

shape of the prior distribution of the encoder (Eq. 5) that is exactly the prior density that maxi-341

mizes mutual information between the input v and the encoded noisy readings k (Eq. 5, Figure 2a342

right panel). Does this imply a relation between prior and discriminability over the space of the343
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encoded variable? Intuitively, following the efficient coding hypothesis, the relation should be that344

lower discrimination thresholds should occur for ranges of stimuli that occur more frequently in345

the environment or context.346

Recently, it was shown that using an efficiency principle for encoding sensory variables (e.g.,347

with a heterogeneous population of noisy neurons (Ganguli and Simoncelli, 2016)) it is possible to348

obtain an explicit relationship between the statistical properties of the environment andperceptual349

discriminability (Ganguli and Simoncelli, 2016). The theoretical relation states that discriminability350

thresholds d should be inversely proportional to the density of the prior distribution f (v). Here,351

we investigated whether this particular relation also emerges in the efficient coding scheme that352

we propose in this study.353

Remarkably, we obtain the following relation between discriminability thresholds, prior distri-
bution of input variables, and the number of limited samples n (Appendix 4):

d = 1
√

n�f (v)

∝ 1
f (v)

(7)
Interestingly, this relationship between prior distribution and discriminability thresholds holds em-354

pirically across several sensory modalities (Appendix 4), thus once again demonstrating that the355

efficient coding framework that we propose here seems to incorporate the right kind of constraints356

to explain observed perceptual phenomena as consequences of optimal allocation of finite capac-357

ity for internal representations.358

Maximizing the expected size of the selected option (fitness maximization)359

Until now, we have studied the case when the goal of the organism is to minimize the number of360

mistakes in discrimination tasks. However, it is important to consider the case when the goal of361

the organism is to maximize fitness or expected reward (Pirrone et al., 2014). For example, when362

spending the day foraging fruit, one must make successive decisions about which tree has more363

fruits. Fitness depends on the number of fruit collectedwhich is not a linear function of the number364

of accurate decisions, as each choice yields a different amount of fruit.365

Therefore, in the case of reward maximization, we are interested in minimizing reward loss366

which is given by the following expression367

E[v(chosen)] = ∫ ∫ f (v1, v2)[P1(�(v1), �(v2))v1 + P2(�(v1), �(v2))v2] dv1dv2, (8)
where Pi(�(v1), �(v2)) is the probability of choosing option i when the input values are v1 and v2.368

Thus, the goal is to find the encoding rule �(v) which guarantees that the amount of reward loss is369

as small as possible given our proposed coding framework.370

Here we show that the optimal encoding rule �(v) that guarantees maximization of expected371

value is given by372

�(v) = sin
[

�
2
⋅ c ∫

v

−∞
f (ṽ)2∕3dṽ

]2

, (9)
where c is a normalizing constantwhich guarantees that the expressionwithin the integral is a prob-373

ability density function (Appendix 5). The first observation based on this result is that the encoding374

rule for maximizing fitness is different from the encoding rule that maximizes accuracy (compare375

Eqs. 3 and 9), which leads to a slight loss of information transmission (Figure 2c). Additionally, one376

can also obtain discriminability threshold predictions for this new encoding rule. Assuming a right-377

skewed prior distribution, which is often the case for various natural priors in the environment378

(e.g., like the one shown in Figure 2a), we find that discriminability for small input values is lower379

for reward maximization compared to perceptual maximization, however this pattern inverts for380

higher values (Figure 2d). In other words, when we intend to maximize reward (given the shape381
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of our assumed prior, Figure 2a), the agent should allocate more resources to higher values (com-382

pared to the perceptual case), however without completely giving up sensitivity for lower values,383

as these values are still encountered more often.384

Efficient sampling with costs on acquiring prior knowledge385

In the previous section, we obtained analytical solutions that approximately characterize the op-386

timal �(v) in the limit as n is made sufficiently large. Note however that we are always assuming387

that n is finite, and that this constrains the accuracy of the decision maker’s judgments, while m is388

instead unbounded and hence no constraint.389

The nature of the optimal function �(vi; ṽ1,… , ṽm) is different, however, when m is small. We390

argue that this scenario is particularly relevant when full knowledge of the prior is not warranted391

given the costs vs benefits of learning, for instance, when the system expects contextual changes392

to occur often. In this case, as we will formally elaborate below, it ceases to be efficient for � to vary393

only gradually as a function of vi, rather thanmoving abruptly from values near zero to values near394

one (Appendix 6). In the large-m limiting case, the distributions of sample values (ṽ1,… , ṽm) used395

by the different processing units will be nearly the same for each unit (approximating the current396

true distribution f (v)). Then if � were to take only the values zero and one for different values of397

its arguments, the n units would simply produce n copies of the same output (either zero or one)398

for any given stimulus vi and distribution f (v). Hence only a very coarse degree of differentiation399

among different stimulus magnitudes would be possible. Having � vary more gradually over the400

range of values of vi in the support of f (v) insteadmakes the representationmore informative. But401

when m is small (e.g., because of costs vs benefits of accurately representing the prior f ), this kind402

of arbitrary randomization in the output of individual processing units is no longer essential. There403

will already be considerable variation in the outputs of the different units, even when the output of404

each unit is a deterministic function of (vi; ṽ1,… , ṽm), owing to the variability in the sample of prior405

observations that is used to assess the nature of the current environment. As we will show below,406

this variability will already serve to allow the collective output of the several units to differentiate407

betweenmany gradations in themagnitude of vi, rather than only being able to classify it as "small"408

or "large" (because either all units are in the "low" or "high" states).409

Robust optimality of Decision by Sampling410

Because of the way in which sampling variability in the values (ṽ1,… , ṽm) used to adapt each unit’s411

encoding rule to the current context can substitute for the arbitrary randomization represented412

by the noise term �i (see Figure 1), a sharp reduction in the value of m need not involve a great loss413

in performance relative to what would be possible (for the same limit on n) if m were allowed to be414

unboundedly large (Appendix 7). As an example, consider the case in whichm = 1, so that each unit415

j ’s output state must depend only the value of the current stimulus vi and one randomly selected416

draw ṽj from the prior distribution f (v). A possible decision rule that is radically economical in this417

way is one that specifies that the unit will be in the "high" state if and only if vi > ṽj . In this case,418

the internal representation of a stimulus vi will be given by the number ki out of n independent419

draws from the contextual distribution f (v) with the property that the contextual draw is smaller420

than vi, as in the model of decision by sampling (DbS) (Stewart et al., 2006). However, it remains to421

be determined to what degree it might be beneficial for a system to adopt such coding strategy.422

In any given environment (characterized by a particular contextual distribution f (v)), DbSwill be423

equivalent to an encoding process with an architecture of the kind shown in Figure 1, but in which424

the distribution f� = f (v) (compare to the optimal noise distribution f� for the full prior adaptation425

case in Eq. 6). This makes �(v) vary endogenously depending on the contextual distribution f (v).426

And indeed, the way that �(v) varies with the contextual distribution under DbS is fairly similar to427

the way in which it would be optimal for it to vary in the absence of any cost of precisely learn-428

ing and representing the contextual distribution. This result implies that �(v) will be a monotonic429

transformation of a function that increases more steeply over those regions of the stimulus space430
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where f (v) is higher, regardless of the nature of the contextual distribution. We consider its perfor-431

mance in a given environment, from the standpoint of each of the possible performance criteria432

considered for the case of full prior adaptation (i.e., maximize accuracy or fitness), and show that it433

differs from the optimal encoding rules under any of those criteria (Figure 2b-d). In particular, here434

we show that using the encoding rule employed in DbS results in considerable loss of information435

compared to the full-prior adaptation solutions (Figure 2c). An additional interesting observation436

is that for the strategy employed in DbS, the agent appears to be more sensitive for extreme input437

values, at least for a wide set of skewed distributions (e.g., for the prior distribution f (v) in Fig-438

ure 2a, the discriminability thresholds are lower at the extremes of the support of f (v)). In other439

words, agents appear to be more sensitive to salience in the DbS rule. Despite these differences,440

here it is important to emphasize that in general for all optimization objectives, the encoding rules441

will be steeper for regions of the prior with higher density. However, mild changes in the steepness442

of the curves will be represented in significant discriminability differences between the different443

encoding rules across the support of the prior distribution (Figure 2d).444

While the predictions of DbS are not exactly the same as those of efficient coding in the case445

of unbounded m, under any of the different objectives that we consider, our numerical results446

show that it can achieve performance nearly as high as that of the theoretically optimal encoding447

rule; hence radically reducing the value of m does not have a large cost in terms of the accuracy of448

the decisions that can be made using such an internal representation (Appendix 7 and Figure 2e).449

Under the assumption that reducing either m or n would serve to economize on scarce cognitive450

resources, we formally proof that it might well be most efficient to use an algorithm with a very451

low value of m (even m = 1, as assumed by DbS), while allowing n to be much larger (Appendix 6,452

Appendix 7).453

Crucially, here it is essential to emphasize that the above-mentioned results are derived for the454

case of a particular finite number of processing units n (and a corresponding finite total number455

of samples from the contextual distribution used to encode a given stimulus), and do not require456

that nmust be large (Appendix 6, Appendix 7).457

Testing theories of numerosity discrimination458

Our goal now is to compare back-to-back the resource-limited coding frameworks elaborated above459

in a fundamental cognitive function for human behavior: numerosity perception. We designed460

a set of experiments that allowed us to test whether human participants would adapt their nu-461

merosity encoding system to maximize fitness or accuracy rates via full prior adaptation as usually462

assumed in optimal models, or whether humans employ a "less optimal" but more efficient strat-463

egy such as DbS, or the more established logarithmic encoding model.464

In Experiment 1, healthy volunteers (n=7) took part in a two-alternative forced choice numeros-465

ity task, where each participant completed ∼2,400 trials across four consecutive days (methods).466

On each trial, they were simultaneously presented with two clouds of dots and asked which one467

contained more dots, and were given feedback on their reward and opportunity losses on each468

trial (Figure 3a). Participants were either rewarded for their accuracy (perceptual condition, where469

maximizing the amount of correct responses is the optimal strategy) or the number of dots they470

selected (value condition, where maximizing reward is the optimal strategy). Each condition was471

tested for two consecutive days with the starting condition randomized across participants. Cru-472

cially, we imposed a prior distribution f (v) with a right-skewed quadratic shape (Figure 3b), whose473

parametrization allowed tractable analytical solutions of the encoding rules �A(v), �R(v) and �D(v),474

that correspond to the encoding rules for Accuracy maximization, Reward maximization, and DbS,475

respectively (Figure 3e and methods). Qualitative predictions of behavioral performance indicate476

that the accuracy maximization model is the most accurate for trials with lower numerosities (the477

most frequent ones), while the reward-maximization model outperforms the others for trials with478

larger numerosities (trials where the difference in the number of dots in the clouds, and thus the479

potential reward, is the largest, Figure 2d and Figure 3f). In contrast, the DbS strategy presents480
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Figure 3. Experimental design, model simulations and recovery. a) Schematic task design of Experiments 1 and 2. After a fixation period (1-2s)participants were presented two clouds of dots (200ms) and had to indicate which cloud contained the most dots. Participants were rewardedfor being accurate (Perceptual condition) or for the number of dots they selected (Value condition) and were given feedback. In Experiment 2participants collected on correctly answered trials a number of points equal to a fixed amount (Perception condition) or a number equal to thedots in the cloud they selected (Value condition) and had to reach a threshold of points on each run. b) Empirical (grey bars) and theoretical(purple line) distribution of the number of dots in the clouds of dots presented across Experiments 1 and 2. c) Distribution of the numerositypairs selected per trial. d) Synthetic data preserving the trial set statistics and number of trials per participant used in Experiment 1 wasgenerated for each encoding rule (Accuracy (left), Reward (middle), and DbS (right)) and then the latent-mixture model was fit to each generateddataset. The figures show that it is theoretically possible to recover each generated encoding rule. e) Encoding function �(v) for the differentsampling strategies as a function of the input values v (i.e., the number of dots). f) Qualitative predictions of the three models (blue: Accuracy,red: Reward, green: Decision by Sampling) on trials from experiment 1 with n = 25. Performance of each model as a function of the sum of thenumber of dots in both clouds (left), the absolute difference between the number of dots in both clouds (middle) and the ratio of the number ofdots in the most numerous cloud over the less numerous cloud (right).
Figure 3–Figure supplement 1. Model recovery for � fixed.

Figure 3–Figure supplement 2. Discriminability differences between the different encoding rules.
Figure 3–Figure supplement 3. Model recovery with both � and n as free parameters.

markedly different performance predictions, in line with the discriminability predictions of our for-481

mal analyses (Figure 2c,d).482

In our modelling specification, the choice structure is identical for the three different sampling483

models, differing only in the encoding rule �(v) (methods). Therefore, answering the question of484

which encoding rule is the most favored for each participant can be parsimoniously addressed485

using a latent-mixture model, where each subject uses �A(v), �R(v) or �D(v) to guide their decisions486

(methods). Before fitting this model to the empirical data, we confirmed the validity of our model487

selection approach through a validation procedure using synthetic choice data (Figure 3d, Figure 3–488

Figure Supplement 1, and methods).489

12 of 51

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted June 15, 2020. ; https://doi.org/10.1101/799064doi: bioRxiv preprint 

https://doi.org/10.1101/799064
http://creativecommons.org/licenses/by-nc-nd/4.0/


Manuscript submitted to eLife

After we confirmed that we can reliably differentiate between our competing encoding rules,490

the latent-mixture model was initially fit to each condition (perceptual or value) using a hierarchi-491

cal Bayesian approach (methods). Surprisingly, we found that participants did not follow the ac-492

curacy or reward optimization strategy in the respective experimental condition, but favored the493

DbS strategy (proportion that DbS was deemed best in the perceptual pDbSfavored = 0.86 and value494

pDbSfavored = 0.93 conditions, Figure 4). Importantly, this population-level result also holds at the in-495

dividual level: DbS was strongly favored in 6 out of 7 participants in the perceptual condition, and496

7 out of 7 in the value condition (Figure 4–Figure Supplement 1). These results are not likely to be497

affected by changes in performance over time, as performance was stable across the four consecu-498

tive days (Figure 4–Figure Supplement 2). Additionally, we investigated whether biases induced by499

choice history effectsmay have influenced our results (Abrahamyan et al., 2016; Keung et al., 2019;500

Talluri et al., 2018). Therefore, we incorporated both choice- and correctness-dependence history501

biases in our models and fitted the models once again (methods). We found similar results to the502

history-free models (pDbSfavored = 0.87 in accuracy and pDbSfavored = 0.93 in value conditions, Figure 4c).503

At the individual level, DbS was again strongly favored in 6 out of 7 participants in the perceptual504

condition, and 7 out of 7 in the value condition (Figure 4–Figure Supplement 1).505

In order to investigate further the robustness of this effect, we introduced a slight variation in506

the behavioral paradigm. In this new experiment (Experiment 2), participants were given points on507

each trial and had to reach a certain threshold in each run for it to be eligible for reward (Figure 3a508

and methods). This class of behavioral task is thought to be in some cases more ecologically valid509

than trial-independent choice paradigms (Kolling et al., 2014). In this new experiment, either a510

fixed amount of points for a correct trial was given (perceptual condition) or an amount equal to511

the number of dots in the chosen cloud if the response was correct (value condition). We recruited512

a new set of participants (n=6), who were tested on these two conditions, each for two consecutive513

days with the starting condition randomized across participants (each participant completed 2,560514

trials). The quantitative results revealed once again that participants did not change their encoding515

strategy depending on the goals of the task, with DbS being strongly favored for both perceptual516

and value conditions (pDbSfavored = 0.999 and (pDbSfavored = 0.91, respectively; Figure 4a), and these517

results were confirmed at the individual level where DbS was strongly favored in 6 out of 6 par-518

ticipants in both the perceptual and value conditions (Figure 4–Figure Supplement 1). Once again,519

we found that inclusion of choice history biases in this experiment did not significantly affect our520

results both at the population and individual levels. Population probability that DbS was deemed521

best in the perceptual (pDbSfavored = 0.999) and value (pDbSfavored = 0.90) conditions (Figure 4–Figure522

Supplement 1), and at the individual level DbS was strongly favored in 6 out of 6 participants in523

the perceptual condition and 5 of 6 in the value condition (Figure 4–Figure Supplement 1). Thus,524

experiments 1 and 2 strongly suggest that our results are not driven by specific instructions or525

characteristics of the behavioral task.526

As a further robustness check, for each participant we grouped the data in different ways across527

experiments (Experiments 1 and 2) and experimental conditions (perceptual or value) and investi-528

gatedwhich samplingmodel was favored. We found that irrespective of how the datawas grouped,529

DbS was the model that was clearly deemed best at the population (Figure 4) and individual level530

(Figure 4–Figure Supplement 3). Additionally, we investigated whether these quantitative results531

specifically depended on our choice of using a latent-mixturemodel. Therefore, we also fitted each532

model independently and compared the quality of the model fits based on out-of-sample cross-533

validation metrics (methods). Once again, we found that the DbS was favored independently of534

experiment and conditions (Figure 4).535

One possible reason why the two experimental conditions did not lead to differences could be536

that, after doing one condition for two days, the participants did not adapt as easily to the new537

incentive rule. However, note that as the participants did not know of the second condition before538

carrying it out, they could not adopt a compromise between the two behavioral objectives. Never-539

theless, we fitted the latent-mixture model only to the first condition that was carried out by each540
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Figure 4. Behavioral results. a) Bars represent proportion of times an encoding rule (Accuracy (A, blue), Reward (R, red), DbS (D, green)) wasselected by the Bayesian latent-mixture model based on the posterior estimates across participants. Each panel shows the data grouped foreach and across experiments and experimental conditions (see titles on top of each panel). The results show that DbS was clearly the favoredencoding rule. The latent vector � posterior estimates are presented in Figure 4–Figure Supplement 8. b) Difference in LOO and WAIC betweenthe best model (DbS (D) in all cases) and the competing models: Accuracy (A), Reward (R) and Logarithmic (L) models. Each panel shows the datagrouped for each and across experimental conditions and experiments (see titles on top of each panel). c) Behavioral data (black, error barsrepresent s.e.m. across participants) and model predictions based on fits to the empirical data. Data and model predictions are presented forboth the perceptual (left panels) or value (right panels) conditions, and excluding (top panels) or including (bottom) choice history effects.Performance of data model predictions are presented as function of the sum of the number of dots in both clouds (left), the absolute differencebetween the number of dots in both clouds (middle) and the ratio of the number of dots in the most numerous cloud over the less numerouscloud (right). Results reveal a remarkable overlap of the behavioral data and predictions by DbS, thus confirming the quantitative resultspresented in panels a and b.
Figure 4–Figure supplement 1. Latent mixture model fits for each participant.

Figure 4–Figure supplement 2. Performance across time.
Figure 4–Figure supplement 3. Individual level fit of the latent mixture model combining data across experiments and experimental conditions.

Figure 4–Figure supplement 4. Model comparison based on leave-one-out cross-validation metrics.
Figure 4–Figure supplement 5. Reation times are similar in the perceptual and value conditions.

Figure 4–Figure supplement 6. Behavior and model predictions as a function of sum and difference in dots.
Figure 4–Figure supplement 7. Model fit for the first experimental condition of each participant.

Figure 4–Figure supplement 8. Latent vector � posterior estimates.
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participant. We found once again that DbS was the best model explaining the data, irrespective541

of condition and experimental paradigm (Figure 4–Figure Supplement 7). Therefore, the fact that542

DbS is favored in the results is not an artifact of carrying out two different conditions in the same543

participants.544

We also investigated whether the DbS model makes more accurate predictions than the widely545

used logarithmic model of numerosity discrimination tasks (Dehaene, 2003). We found that DbS546

still made better out of sample predictions than the log-model (Figure 4b, Figure 5f,g). Moreover,547

these results continued to hold after taking into account possible choice history biases (Figure 4–548

Figure Supplement 4). In addition to these quantitative results, qualitatively we also found that549

behavior closely matched the predictions of the DbS model remarkably well Figure 4c), based on550

virtually only 1 free parameter, namely, the number of samples (resources) n. Together, these re-551

sults provide compelling evidence that DbS is the most likely resource-constrained sampling strat-552

egy used by participants in numerosity discrimination tasks.553

Recent studies have also investigated behavior in tasks where perceptual and preferential deci-554

sions have been investigated in paradigms with identical visual stimuli (Dutilh and Rieskamp, 2016;555

Polanía et al., 2014;Grueschow et al., 2015). In these tasks, investigators have reported differences556

in behavior, in particular in the reaction times of the responses, possibly reflecting differences in557

behavioral strategies between perceptual and value-based decisions. Therefore, we investigated558

whether this was the case also in our data. We found that reaction times did not differ between559

experimental conditions for any of the different performance assessments considered here (Fig-560

ure 4–Figure Supplement 5). This further supports the idea that subjects were in fact using the561

same sampling mechanism irrespective of behavioral goals.562

Here it is important to emphasize that all sampling models and the logarithmic model of nu-563

merosity have the same degrees of freedom (performance is determined by n in the sampling564

models and Weber’s fraction � in the log model, methods). Therefore, qualitative and quantitative565

differences favoring the DbS model cannot be explained by differences in model complexity. It566

could also be argued that normal approximation of the binomial distributions in the sampling de-567

cision models only holds for large enough n. However, we find evidence that the large-n optimal568

solutions are also nearly optimal for low n values (Appendix 7). Estimates of n in our data are in569

general n ≈ 21 (Table 1) and we find that the large-n rule is nearly optimal already for n = 15 (Ap-570

pendix 7). Therefore the asymptotic approximations should not greatly affect the conclusions of571

our work.572

Dynamics of adaptation573

Up to now, fits and comparison across models have been done under the assumption that the574

participants learned the prior distribution f (v) imposed in our task. If participants are employing575

DbS, it is important to understand the dynamical nature of adaptation in our task. Note that the576

shape of the prior distribution is determined by the parameter � (Figure 5b, Eq. 10 in methods).577

First, we made sure based on model recovery analyses that the DbS model could jointly and accu-578

rately recover both the shape parameter � and the resource parameter n based on synthetic data579

(Figure 3–Figure Supplement 3). Then we fitted this model to the empirical data and found that580

the recovered value of the shape parameter � closely followed the value of the empirical prior with581

a slight underestimation (Figure 5a). Next, we investigated the dynamics of prior adaptation. To582

this end, we ran a new experiment (Experiment 3, n=7 new participants) where we set the shape583

parameter of the prior to a lower value compared to Experiments 1-2 (Figure 5b, methods). We584

investigated the change of � over time by allowing this parameter to change with trial experience585

(Eq. 18, methods) and compared the evolution of � for Experiments 1 and 2 (empirical � = 2) with586

Experiment 3 (empirical � = 1, Figure 5b). If participants show prior adaption in our numerosity dis-587

crimination task, we hypothesized that the asymptotic value of � should be higher for Experiments588

1-2 than for Experiment 3. First, we found that for Experiments 1-2, the value of � quickly reached589

an asymptotic value close to the target value (Figure 5c). On the other hand, for Experiment 3590
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Figure 5. Prior adaptation analyses. a) Estimation of the shape parameter � for the DbS model by grouping the data for each and acrossexperimental conditions and experiments. Error bars represent the 95% highest density interval of the posterior estimate of � at the populationlevel. The dashed line shows the theoretical value of �. b) Theoretical prior distribution f (v) in Experiments 1 and 2 (� = 2, purple) and 3 (� = 1,orange). The dashed line represents the value of � of our prior parametrization that approximates the DbS and log discriminability models. c)Posterior estimation of �t (Eq. 18) as a function of the number of trials t in each daily session for Experiments 1 and 2 (purple) and Experiment 3(orange). The results reveal that, as expected, �t reaches a lower asymptotic value �. Error bars represent ±1 s.d. of 3,000 simulated �t valuesdrawn from the posterior estimates of the HBM (see methods). d) Difference in the � parameter between Experiments 1-2 and Experiment 3based on the posterior parameter estimates of the HBM. This analysis reveals a significant difference (PMCMC = 0.006). Error bars represent the95% highest density interval of the posterior differences in the HBM. e) Behavioral data (black) and model fit predictions of the DbS (green) andLog (yellow) models. Performance of each model as a function of the sum of the number of dots in both clouds (left), the absolute differencebetween the number of dots in both clouds (middle) and the ratio of the number of dots in the most numerous cloud over the less numerouscloud (right). Error bars represent s.e.m. f) Difference in LOO and WAIC between the best fitting DbS (D) and logarithmic encoding (Log) model.
g) Population exceedance probabilities (xp, left) and protected exceedance probabilities (pxp, right) for DbS (green) vs Log (yellow) of a Bayesianmodel selection analysis (Stephan et al., 2009): xpDbS = 0.99, pxpDbS = 0.87. These results provide a clear indication that the adaptive DbS explainsthe data better than the Log model.

Figure 5–Figure supplement 1. Performance across trial experience.
Figure 5–Figure supplement 2. Quantitative and dynamical analysis of adaptation over time

the value of � continued to decrease during the experimental session, but slowly approaching its591

target value. This seemingly slower adaptation to the shape of the prior in Experiment 3 might592

be explained by the following observation. The prior parametrized with � = 1 in Experiment 3, is593

further away from an agent hypothesized to have a natural numerosity discrimination based on594

a log scale (� = 2.58, Figure 5b and methods), which is closer in value to the shape of the prior in595
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Experiments 1 and 2 (� = 2). This result is in line with previous DbS studies showing that adaptation596

to "unnatural" priors in decision tasks is slower (Stewart et al., 2015) and may require many more597

trials or training experience than it is possible in laboratory experiments. Irrespective of these con-598

siderations, the key result to confirm our adaptation hypothesis is that the asymptotic value of � is599

lower for Experiment 3 compared to Experiments 1 and 2 (PMCMC = 0.006; Figure 5c,d). Additionally,600

we found that this DbS model again provides more accurate qualitative and quantitative out of601

sample predictions than the log model (Figure 5e,f).602

We further investigated evidence for adaptation using an alternative quantitative approach.603

First, we performed out of sample model comparisons based on the following models: (i) the604

adaptive-� model, (ii) free-� model with alpha free but non-adapting over time, and (iii) fixed-�605

model with � = 2. The results of the out of sample predictions revealed that the best model was606

the free-� model, followed closely by the the adaptive-� model (ΔLOO = 1.8) and then by fixed-�607

model (ΔLOO = 32.6). However, we did not interpret the apparent small difference between the608

adaptive-� and free-�model as evidence for lack of adaptation, given that the more complex adap-609

tive model will be strongly penalized after adaptation is stable. That is, if adaptation is occurring,610

then the adaptive-� only provides a better fit for the trials corresponding to the adaptation period.611

After adaptation the adaptive-� should provide a similar fit than the free-� model, however with612

a larger complexity that will be penalized by model comparison metrics. Therefore, to investigate613

the presence of adaptation, we took a closer quantitative look at evolution of the fits across trial614

experience. We computed the average trial-wise predicted Log-Likelihood (by sampling from the615

hierarchical Bayesian model) and compared the differences of this metric between the competing616

models and the adaptive model. We hypothesized that if adaptation is taking place, the adaptive-�617

model would have an advantage relative to the free-� model at the beginning of the session, with618

these differences vanishing towards the end. On the other hand, the fixed-� should roughly match619

the adaptive-� model at the beginning and then become worse over time, but these differences620

should stabilize after the end of the adaptation period. The results of these analyses support our621

hypotheses (Figure 5–Figure Supplement 2), thus providing further evidence of adaptation, high-622

lighting the fact that the DbS model can parsimoniously capture adaptation contextual changes in623

a continuous and dynamical manner.624

Discussion625

The brain is a metabolically expensive inference machine (Hawkes et al., 1998; Navarrete et al.,626

2011). Therefore it has been suggested that evolutionary pressure has driven it to make produc-627

tive use of its limited resources by exploiting statistical regularities (Attneave, 1954; Laughlin, 1981).628

Here, we incorporate this important – often ignored – aspect in models of behavior by introducing629

a general framework of decision-making under the constraints that the system: (i) encodes infor-630

mation based on binary codes, (ii) has limited number of samples available to encode information,631

and (iii) considers the costs of both contextual adaptation.632

Under the assumption that the organism has fully adapted to the statistics in a given context,633

we show that the encoding rule thatmaximizesmutual information is the same rule thatmaximizes634

decision accuracy in two-alternative decision tasks. However, note that there is nothing privileged635

about maximizing mutual information, as it does not mean that the goals of the organism are636

necessarily achieved (Park and Pillow, 2017). In fact, we show that if the goal of the organism is637

instead to maximize the expected value of the chosen options, the system should not rely on max-638

imizing information transmission to fulfill this goal and must give up a small fraction of precision639

in information coding. Here, we derived analytical solution for each of these optimization objec-640

tive criteria, emphasizing that these analytical solutions were derived for the large-n limiting case.641

However, we have provided evidence that these solutions continue to be more efficient relative642

to DbS for small values of n, and more importantly, they remain nearly optimal even at relatively643

low values of n, in the range of values that might be relevant to explain human experimental data644

(Appendix 7).645
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Another key implication of our results is that we provide an alternative explanation to the usual646

conception of noise as themain cause of behavioral performance degradation, where noise is usu-647

ally artificially added to models of decision behavior to generate the desired variability (Ratcliff648

and Rouder, 1998;Wang, 2002). On the contrary, our work makes it formally explicit why a system649

that evolved to encode information based on binary codes must be necessarily noisy, also reveal-650

ing how the system could take advantage of its unavoidable noisy properties (Faisal et al., 2008)651

to optimize decision behavior (Tsetsos et al., 2016). Here it is important to highlight that this con-652

clusion is drawn from a purely homogeneous neural circuit – in other words, a circuit in which all653

neurons have the same properties (in our case, the same threshold activation thresholds). This654

is not what is typically observed, as neural circuits are typically very heterogeneous. However, in655

the neural circuit that we consider here, it could mean that the firing thresholds can vary across656

neurons (Orbán et al., 2016), which could be used by the system to optimize the required variabil-657

ity of binary neural codes. Interestingly, it has been shown in recent work that stochastic discrete658

events also serve to optimize information transmission in neural population coding (Ashida and659

Kubo, 2010; Nikitin et al., 2009; Schmerl and McDonnell, 2013). Crucially, in our work we provide660

a direct link of the necessity of noise for systems that aim at optimizing decision behavior under661

our encoding and limited-capacity assumptions, which can be seen as algorithmic specifications662

of the more realistic population coding specifications mentioned above (Nikitin et al., 2009). We663

acknowledge that based on the results of our work, we cannot confirm whether this is the case for664

higher order neural circuits, however, we leave it as an interesting theoretical formulation, which665

could be addressed in future work.666

Interestingly, our results could provide an alternative explanation of the recent controversial667

finding that dynamics of a large proportion of LIP neurons likely reflect binary (discrete) coding668

states to guide decision behavior (Latimer et al., 2015; Zoltowski et al., 2019). Based on this poten-669

tial link between our and their work, our theoretical framework generates testable predictions that670

could be investigated in future neurophysiological work. For instance, noise distribution in neural671

circuits should dynamically adapt according to the prior distribution of inputs and goals of the or-672

ganism. Consequently, the rate of “step-like” coding in single neurons should also be dynamically673

adjusted (perhaps optimally) to statistical regularities and behavioral goals.674

Our results are closely related to Decision by Sampling (DbS), which is an influential account675

of decision behavior derived from principles of retrieval and memory comparison by taking into676

account the regularities of the environment, and also encodes information based on binary codes677

(Stewart et al., 2006). We show that DbS represents a special case of our more general efficient678

sampling framework, that uses a rule that is similar to (though not exactly like) the optimal en-679

coding rule that assumes full (or costless) adaptation to the prior statistics of the environment.680

In particular, we show that DbS might well be the most efficient sampling algorithm, given that681

a reduction in the full representation of the prior distribution might not come at a great loss in682

performance. Interestingly, our experimental results (discussed in more detail below) also provide683

support for the hypothesis that numerosity perception is efficient in this particular way. Crucially,684

DbS automatically adjusts the encoding in response to changes in the frequency distribution from685

which exemplars are drawn in approximately the right way, while providing a simple answer to the686

question of how such adaptation of the encoding rule to a changing frequency distribution occurs,687

at a relatively low cost.688

On a related line of work, Bhui and Gershman (2018) develop a similar, but different specifica-689

tion of DbS, in which they also consider only a finite number of samples that can be drawn from690

the prior distribution to generate a percept, and ask what kind of algorithm would be required to691

improve coding efficiency. However, their implementation differs from ours in various important692

ways (see Appendix 8 for a detailed discussion). One of the main distinctions is that they consider693

the case in which only a finite number of samples can be drawn from the prior and show that a vari-694

ant of DbS with kernel-smoothing is superior to its standard version. However, a key difference to695

our implementation is that they allow the kernel-smoothed quantity (computed by comparing the696
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input v with a sample ṽ from the prior distribution) to vary continuously between 0 and 1, rather697

than having to be either 0 or 1 as in our implementation (Figure 1). Thus, they show that coding698

efficiency can be improved by allowing a more flexible implementation of the coding scheme for699

the case when the agent is allowed to draw few samples from the prior distribution (Appendix 8).700

On the other hand, we restrict our framework to a coding scheme that is only allowed to encode701

information based on zeros or ones, where we show that coding efficiency can be improved rel-702

ative to DbS only under a more complete knowledge of the prior distribution, where the optimal703

solutions can be formally derived in the large-n limit. Nevertheless, we have shown that even un-704

der the operation of few sampling units, the optimal rules will be still superior to the standard DbS705

(if the agent has fully adapted to the statistics of the environment in a given context), even when a706

few number of processing units are available to generate decision relevant percepts.707

We tested these resource-limited coding frameworks in non-symbolic numerosity discrimina-708

tion, a fundamental cognitive function for behavior in humans and other animals, which may have709

emerged during evolution to support fitness maximization (Nieder, 2020). Here, we find that the710

way in which the precision of numerosity discrimination varies with the size of the numbers being711

compared is consistent with the hypothesis that the internal representations on the basis of which712

comparisons are made are sample-based. In particular, we find that the encoding rule varies de-713

pending on the frequency distribution of values encountered in a given environment, and that this714

adaptation occurs fairly quickly once the frequency distribution changes.715

This adaptive character of the encoding rule differs, for example, from the common hypothe-716

sis of a logarithmic encoding rule (independent of context), which we show fits our data less well.717

Nonetheless, we can reject the hypothesis of full optimality of the encoding rule for each distribu-718

tion of values used in our experiments, even after subjects have had extensive experience with a719

given distribution. Thus, a possible explanation of why DbS is the favoredmodel in our numerosity720

task is that accuracy and rewardmaximization requires optimal adaptation of the noise distribution721

based on our imposed prior, requiring complex neuroplastic changes to be implemented, which722

are in turn metabolically costly (Buchanan et al., 2013). Relying on samples from memory might723

be less metabolically costly as these systems are plastic in short time scales, and therefore a rel-724

atively simpler heuristic to implement allowing more efficient adaptation. Here it is important to725

emphasize, as it has been discussed in the past (Tajima et al., 2016; Polanía et al., 2015), that for726

decision-making systems beyond the perceptual domain, the identity of the samples is unclear. We727

hypothesize, that information samples derive from the interaction of memory on current sensory728

evidence depending on the retrieval of relevant samples to make predictions about the outcome729

of each option for a given behavioral goal (therefore also depending on the encoding rule that730

optimizes a given behavioral goal).731

Interestingly, it was recently shown that in a reward learning task, a model that estimates val-732

ues based on memory samples from recent past experiences can explain the data better than733

canonical incremental learning models (Bornstein et al., 2017). Based on their and our findings,734

we conclude that sampling frommemory is an efficient mechanism for guiding choice behavior, as735

it allows quick learning and generalization of environmental contexts based on recent experience736

without significantly sacrificing behavioral performance. However, it should be noted that relying737

on such mechanisms alone might be suboptimal from a performance- and goal-based point of738

view, where neural calibration of optimal strategies may require extensive experience, possibly739

via direct interactions between sensory, memory and reward systems (Gluth et al., 2015; Saleem740

et al., 2018).741

Taken together, our findings emphasize the need of studying optimal models, which serve as742

anchors to understand the brain’s computational goals without ignoring the fact that biological743

systems are limited in their capacity to process information. We addressed this by proposing a744

computational problem, elaborating an algorithmic solution, and proposing a minimalistic imple-745

mentational architecture that solves the resource-constrained problem. This is essential, as it helps746

to establish frameworks that allow comparing behavior not only across different tasks and goals,747
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but also across different levels of description, for instance, from single cell operation to observed748

behavior (Marr, 1982). We argue that this approach is fundamental to provide benchmarks for749

human performance that can lead to the discovery of alternative heuristics (Qamar et al., 2013;750

Gardner, 2019) that could appear to be in principle suboptimal, but that might be in turn the opti-751

mal strategy to implement if one considers cognitive limitations and costs of optimal adaptation.752

We conclude that the understanding of brain function and behavior under a principled research753

agenda, which takes into account decision mechanisms that are biologically feasible, will be essen-754

tial to accelerate the elucidation of the mechanisms underlying human cognition.755

Methods and Materials756

Participants757

The study tested young healthy volunteers with normal or corrected-to-normal vision (total n=20,758

age 19-36 years, 9 females: n=7 in experiment 1, 2 females; n=6 new participants in experiment 2, 3759

females; n=7 new participants in experiment 3, 4 females). Participants were randomly assigned to760

each experiment and no participant was excluded from the analyses. Participants were instructed761

about all aspects of the experiment and gave written informed consent. None of the participants762

suffered from any neurological or psychological disorder or took medication that interfered with763

participation in our study. Participants received monetary compensation for their participation764

in the experiment partially related to behavioral performance (see below). The experiments con-765

formed to the Declaration of Helsinki and the experimental protocol was approved by the Ethics766

Committee of the Canton of Zurich (BASEC: 2018-00659).767

Experiment 1768

Participants (n=7) carried out a numerosity discrimination task for four consecutive days for ap-769

proximately one hour per day. Each daily session consisted of a training run followed by 8 runs of770

75 trials each. Thus, each participant completed ∼2,400 trials across the four days of experiment.771

After a fixation period (1-1.5s jittered), two clouds of dots (left and right) were presented on the772

screen for 200ms. Participants were asked to indicate the side of the screen where they perceived773

more dots. Their response was kept on the screen for 1 second followed by feedback consisting of774

the symbolic number of dots in each cloud as well as themonetary gains and opportunity losses of775

the trial depending on the experimental condition. In the value condition, participants were explic-776

itly informed that each dot in a cloud of dots corresponded to 1 Swiss Franc (CHF). Participantswere777

informed that they would receive the amount in CHF corresponding to the total number of dots on778

the chosen side. At the end of the experiment a random trial was selected and they received the779

corresponding amount. In the accuracy condition, participants were explicitly informed that they780

could receive a fixed reward (15 Swiss Francs (CHF)) for each correct trial. This fixed amount was781

selected such that it approximately matched the expected reward received in the value condition782

(as tested in pilot experiments). At the end of the experiment, a random trial was selected and783

they would receive this fixed amount if they chose the cloud with more dots (i.e. the correct side).784

Each condition lasted for two consecutive days with the starting condition randomized across par-785

ticipants. Only after completing all four experiment days, participants were compensated for their786

time with 20 CHF per hour, in addition to the money obtained based on their decisions on each787

experimental day.788

Experiment 2789

Participants (n=6) carried out a numerosity discrimination task where each of four daily sessions790

consisted of 16 runs of 40 trials each, thus each participant completed ∼2,560 trials. A key differ-791

ence with respect to Experiment 1 is that participants had to accumulate points based on their792

decisions and had to reach a predetermined threshold on each run. The rules of point accumula-793

tion dependedon the experimental condition. In the perceptual condition, a fixed amount of points794

was awarded if the participants chose the cloudwithmore dots. In this condition, participants were795
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instructed to accumulate a number of points and reach a threshold given a limited number of tri-796

als. Based on the results obtained in Experiment 1, the threshold corresponded to 85% of correct797

trials in a given run, however the participants were unaware of this. If the participants reached this798

threshold, they were eligible for a fixed reward (20 CHF) as described in Experiment 1. In the value799

condition, the number of points received was equal to the number of dots in the cloud, however,800

contrary to experiment 1, points were only awarded if the participant chose the cloud with the801

most dots. Participants had to reach a threshold that was matched in the expected collection of802

points of the perceptual condition. As in Experiment 1, each condition lasted for two consecutive803

days with the starting condition randomized across participants. Only after completing all the four804

days of the experiment, participants were compensated for their time with 20 CHF per hour, in805

addition to the money obtained based on their decisions on each experimental day.806

Experiment 3807

The design of Experiment 3 was similar to the value condition of Experiment 2 (n=7 participants)808

and was carried out over three consecutive days. The key difference between Experiment 3 and809

Experiments 1-2 was the shape of the prior distribution f (v) that was used to draw the number of810

dots for each cloud in each trial (see below).811

Stimuli statistics and trial selection812

For all experiments, we used the following parametric form of the prior distribution813

f (v) = c(1 − v)� , (10)
initially defined in the interval [0,1] for mathematical tractability in the analytical solution of the814

encoding rules �(v) (see below), with � > 0 determining the shape of the distribution, and c is a815

normalizing constant. For Experiments 1 and 2 the shape parameter was set to � = 2, and for816

Experiment 3 was set to � = 1. i.i.d. samples drawn from this distribution where thenmultiplied by817

50, added an offset of 5, and finally were rounded to the closest integer (i.e., the numerosity values818

in our experiment ranged from vmin = 5 to vmin = 55). The pairs of dots on each trial were determined819

by sampling from a uniform density window in the CDF space (Eq. 10 is its corresponding PDF).820

The pairs of dots in each trial were selected with the conditions that, first, their distance in the CDF821

space was less than a constant (0.25, 0.28 and 0.23 for Experiments 1, 2 and 3 respectively), and822

second, the number of dots in both clouds was different. Figure 3c illustrates the probability that823

a pair of choice alternatives was selected for a given trial in Experiments 1 and 2.824

Power analyses and model recovery825

Given that adaptation dynamics in sensory systems often require long-term experience with novel826

prior distributions, we opted for maximizing the number of trials for a relatively small number of827

participants per experiment, as it is commonly done for this type of psychophysical experiments828

(Brunton et al., 2013; Stocker and Simoncelli, 2006; Zylberberg et al., 2018). Note that based on the829

power analyses described below, we collected in total ∼45,000 trials across the three Experiments,830

which is above the average number of trials typically collected in human studies.831

In order to maximize statistical power in the differentiation of the competing encoding rules,832

we generated 10,000 sets of experimental trials for each encoding rule and selected the sets of833

trials with the highest discrimination power (i.e. largest differences in Log-Likelihood) between the834

encoding models. In these power analyses, we also investigated what was the minimum number835

of trials that would allow accurate generative model selection at the individual level. We found836

that ∼1,000 trials per participant in each experimental condition would be sufficient to predict ac-837

curately (P>0.95) the true generativemodel. Based on these analyses, we decided to collect at least838

1,200 trials per participant and condition (perceptual and value) in each of the three experiments.839

Model recovery analyses presented in Figure 3d illustrate the result of our power analyses (see840

also Figure 3–Figure Supplement 1).841
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Apparatus842

Eyetracking (EyeLink 1000 Plus) was used to check the participants fixation during stimulus presen-843

tation. When participants blinked or move their gaze (more than 2° of visual angle) away from the844

fixation cross during the stimulus presentation the trial was canceled (only 212 out of 45,600 trials845

were canceled, i.e., < 0.5% of the trials). Participants were informed when a trial was canceled and846

were encouraged not to do so as they would not receive any reward for this trial. A chinrest was847

used to keep the distance between the participants and the screen constant (55cm). The task was848

run using Psychtoolbox Version 3.0.14 on Matlab 2018a. The diameter of the dots varied between849

0.42° and 1.45° of visual angle. The center of each cloud was positioned 12.6° of visual angle hor-850

izontally from the fixation cross and had a maximum diameter of 19.6° of visual angle. Following851

previous numerosity experiments (Berg et al., 2017; Izard and Dehaene, 2008), either the average852

dot size or the total area covered by the dots was maintained constant in both clouds for each853

trial. The color of each dot (white or black) was randomly selected for each dot. Stimuli set were854

different for each participant but identical between the two conditions.855

Encoding rules and model fits856

The parametrization of the prior f (v) (Eq. 10) allows tractable analytical solutions of the encoding857

rules �A(v), �R(v) and �D(v), that correspond to Accuracy maximization, Reward maximization, and858

DbS, respectively:859

�A(v) = sin
[�
2
(1 − (1 − v)�+1)

]2 (11)
860

�R(v) = sin
[�
2
(1 + (v − 1)((1 − v)�)2∕3)

]2 (12)
861

�D(v) = 1 − (1 − v)�+1 (13)
Graphical representation of the respective encoding rules is shown in Figure 3e for Experiments862

1 and 2. Given an encoding rule �(v), we now define the decision rule. The goal of the decision863

maker in our task is always to decide which of two input values v1 and v2 is larger. Therefore, the864

agent choses v1 if and only if the internal readings k1 > k2. Following the definitions of expected865

value and variance of binomial variables, and approximating for large n (see Appendix 2), the prob-866

ability of choosing v1 is given by867

Pchoose v1 ≈ Φ
⎛

⎜

⎜

⎜

⎜

⎝

�1 − �2
√

�1(1−�1)+�2(1−�2)
n

⎞

⎟

⎟

⎟

⎟

⎠

(14)

where Φ() is the standard CDF, and �1 and �2 are the encoding rules for the input values v1 and v2,868

respectively. Thus, the choice structure is the same for all models, only differing in their encoding869

rule. The three models generate different qualitative performance predictions for a given number870

of samples n (Figure 3f).871

Crucially, this probability decision rule (Eq. 14) can be parsimoniously extended to include po-872

tential side biases independent of the encoding process as follows873

Pchoose v1 ≈ Φ
⎛

⎜

⎜

⎜

⎜

⎝

�1 − �2
√

�1(1−�1)+�2(1−�2)
n

+ �0

⎞

⎟

⎟

⎟

⎟

⎠

(15)

where �0 is the bias term. This is the base model used in our work. We were also interested in874

studying whether choice history effects (Abrahamyan et al., 2016; Talluri et al., 2018) may have in-875

fluence in our task, thus possibly affecting the conclusions that can be drawn from the basemodel.876
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Therefore, we extended this model to incorporate the effect of decision learning and choices from877

the previous trial878

Pchoose v1 ≈ Φ
⎛

⎜

⎜

⎜

⎜

⎝

�1 − �2
√

�1(1−�1)+�2(1−�2)
n

+ �0 + �Lat−1rt−1 + �Chat−1

⎞

⎟

⎟

⎟

⎟

⎠

, (16)

where at−1 is the choice made on the previous trial (+1 for left choice and -1 for right choice) and879

rt−1 is the “outcome learning” on the previous trial (+1 for correct choice and -1 for incorrect choice).880

�L and �Ch capture the effect of decision learning and choice in the previous trial, respectively.881

Given that the choice structure is the same for all three sampling models considered here, we882

can naturally address the question of what decision rule the participants favor via a latent-mixture883

model. We implemented this model based on a hierarchical Bayesian modelling (HBM) approach.884

The base-rate probabilities for the three different encoding rules at the population level are repre-885

sented by the vector �, so that �m is the probability of selecting encoding rulemodelm. We initialize886

the model with an uninformative prior given by887

� ∼ Dirichlet (1m=1, 1m=2, 1m=3) .
This base-rate is updated based on the empirical data, where we allow each participant s to draw888

from each model categorically based on the updated base-rate889

ms ∼ Categorical (�) ,
where the encoding rule � for model m is given by890

�m,s =

⎧

⎪

⎨

⎪

⎩

�A, m = 1
�R, m = 2
�D, m = 3

The selected rule was then fed into equations 15 or 16 to determine the probability of selecting a891

cloud of dots. The number of samples n was also estimated within the same HBM with population892

mean � and standard deviation � initialized based on uninformative priors with plausible ranges893

�n ∼ Uniform(1, 1000)
�n ∼ Uniform(0.01, 1000)

allowing each participant s to draw from this population prior assuming that n is normally dis-
tributed at the population level

ns ∼ Normal(�n, �n)
Similarly, the latent variables � in equations equations 15 and 16 were estimated by setting popu-894

lation mean �� and standard deviation �� initialized based on uninformative priors895

�� ∼ Uniform(−10, 10)
�� ∼ Uniform(0.01, 100)

allowing each participant s to draw from this population prior assuming that � is normally dis-
tributed at the population level

�s ∼ Normal(�� , ��)
In all the results reported in Figure 3 and Figure 4, the value of the shape parameter of the896

prior was set to its true value � = 2. The estimation of � in Figure 5a was investigated with a similar897

hierarchical approach, allowing eachparticipant to sample from thenormal population distribution898

with uninformative priors over the population mean and standard deviation899

�� ∼ Uniform(0.01, 20)
�� ∼ Uniform(0.0001, 100)
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The choice rule of the standard logarithmic model of numerosity discrimination is given by900

Pchoose v1 = Φ
(

log
(

v1
)

− log
(

v2
)

�
√

2

)

, (17)
where � is the internal noise in the logarithmic space. Thismodel was extended to incorporate bias
and choice history effects in the same way as implemented in the sampling models. Here we em-
phasize that all sampling and log models have the same degrees of freedom, where performance
is mainly determined by n in the sampling models and Weber’s fraction � in the log model, and
biases are determined by parameters �. For all above-mentioned models, the trial-by-trial likeli-
hood of the observed choice (i.e. the data) given probability of a decision was based on a Bernoulli
process

yt,s ∼ Bernoulli(Pchoose v1 )
where yt,s ∈ {0, 1} is the decision of each participant s in each trial t. In order to allow for prior901

adaptation, the model fits presented in Figure 3 and Figure 4 were fit starting after a fourth of the902

daily trials (corresponding to 150 trials for experiment 1 and 160 trials for experiment 2) to allow903

for prior adaptation and fixing the shape parameter to its true generative value � = 2.904

The dynamics of adaptation (Figure 5) were studied by allowing the shape parameter � to evolve905

through trial experience using all trials collected on each experiment day. This was studied using906

the following function907

�t = � + �e−t∕� , (18)
where � represents a possible target adaptation value of �, t is the trial number, and �, � determine908

the shape of the adaptation. Therefore, the encoding rule of the DbS model also changed trial-to-909

trial910

�tD(v) = 1 − (1 − v)
�t+1. (19)

Adaptation was tested based on the hypothesis that participants initially use a logarithmic dis-911

crimination rule (Eq. 17) (this strategy also allowed improving identification of the adaptation dy-912

namics). Therefore, Eq. 18 was parametrized such that the initial value of the shape parameter913

(�t=0) guaranteed that discriminability between the DbS and the logarithmic rule was as close as914

possible. This was achieved by finding the value of � in the DbS encoding rule (�D) that minimizes915

the following expression916

T
∑

t=1

⎡

⎢

⎢

⎢

⎣

⎛

⎜

⎜

⎜

⎝

�D
(

v1,t
)

− �D
(

v2,t
)

√

�D
(

v1,t
) (

1 − �D
(

v1,t
))

+ �D
(

v2,t
) (

1 − �D
(

v2,t
))

⎞

⎟

⎟

⎟

⎠

−
(

log
(

v1,t
)

− log
(

v2,t
))

⎤

⎥

⎥

⎥

⎦

2

, (20)

where v1,t and v2,t are the numerosity inputs for each trial t. This expression was minimized based917

on all trials generated in Experiments 1-3 (note that minimizing this expression does not require918

knowledge of the sensitivity levels � and n for the log and DbSmodels, respectively). We found that919

the shape parameter value that minimizes Eq. 20 is � = 2.58. Based on our prior f (v) parametriza-920

tion (Eq. 10), this suggests that the initial prior is more skewed than the priors used in Experiments921

1-3 (Figure 5b). This is an expected result given that log-normal priors – typically assumed in nu-922

merosity tasks – are also highly skewed. We fitted the � parameter independently for Experiments923

1-2 and Experiments 3 but kept the � parameter shared across all experiments. If adaptation is tak-924

ing place, we hypothesized that the asymptotic value � of the shape parameter � should be larger925

for Experiments 1-2 compared to Experiment 3.926

Posterior inference of the parameters in all the hierarchical models described above was per-927

formed via theGibbs sampler using theMarkovChainMonteCarlo (MCMC) technique implemented928

in JAGS. For eachmodel, a total of 50,000 samples were drawn from an initial burn-in step and sub-929

sequently a total of new 50,000 samples were drawn for each of three chains (samples for each930

chain were generated based on a different random number generator engine, and each with a dif-931

ferent seed). We applied a thinning of 50 to this final sample, thus resulting in a final set of 1,000932
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samples for each chain (for a total of 3,000 pooling all 3 chains). We conducted Gelman–Rubin tests933

for each parameter to confirm convergence of the chains. All latent variables in our Bayesian mod-934

els had R̂ < 1.05, which suggests that all three chains converged to a target posterior distribution.935

We checked via visual inspection that the posterior population level distributions of the final MCMC936

chains converged to our assumed parametrizations. When evaluating different models, we are in-937

terested in the model’s predictive accuracy for unobserved data, thus it is important to choose a938

metric for model comparison that considers this predictive aspect. Therefore, in order to perform939

model comparison, we used amethod for approximating leave-one-out cross-validation (LOO) that940

uses samples from the full posterior (Vehtari et al., 2016). These analyses were repeated using an941

alternative Bayesian metric: the WAIC (Vehtari et al., 2016).942
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Table 1. Resource parameter n fits.
Model

Experiment Condition History effects nAccuracy nReward nDbS1 V not included 15.24 ± 3.09 17.54 ± 3.98 24.40 ± 5.16
2 V not included 22.48 ± 2.43 27.58 ± 3.81 35.40 ± 3.44
1 P not included 15.19 ± 3.99 17.84 ± 4.85 24.64 ± 6.59
2 P not included 20.99 ± 1.59 24.22 ± 1.93 33.54 ± 2.45
1 P/V not included 15.33 ± 3.41 17.25 ± 4.45 24.15 ± 5.75
2 P/V not included 21.30 ± 0.96 25.27 ± 1.99 33.90 ± 1.51
1/2 V not included 18.56 ± 2.04 22.05 ± 2.73 29.52 ± 3.25
1/2 P not included 17.91 ± 2.09 20.66 ± 2.59 28.62 ± 3.51
1/2 P/V not included 17.93 ± 1.87 21.03 ± 2.46 28.58 ± 3.04
1 V included 15.50 ± 3.13 17.50 ± 3.91 24.68 ± 5.08
2 V included 22.92 ± 2.37 28.07 ± 3.73 36.18 ± 2.91
1 P included 15.41 ± 3.81 17.96 ± 4.88 24.70 ± 6.62
2 P included 21.57 ± 1.71 24.88 ± 2.17 34.37 ± 2.93
1 P/V included 15.16 ± 3.55 17.43 ± 4.39 24.30 ± 5.94
2 P/V included 21.80 ± 0.92 25.81 ± 1.86 34.60 ± 1.40
1/2 V included 18.86 ± 2.07 22.48 ± 2.75 29.85 ± 3.17
1/2 P included 18.15 ± 2.17 21.11 ± 2.72 29.01 ± 3.47
1/2 P/V included 18.22 ± 1.93 21.34 ± 2.50 29.12 ± 3.12

Fits of the resource parameter for the Accuracy, Reward and Decision by Sampling (DbS) models
including data across experiments and conditions (Perceptual (P) or Value (V)) either including or
ignoring choice history effects. The values represent the mean ± SD of the posterior distributions
at the population level for parameter n. Note that Reward and in particular the DbS encoding
models require a higher number of resources than the Accuracy model, which is coherent with the
fact that the Accuracy model allocates its resources to maximize efficiency, therefore reducing the
number of resources needed to reach a given accuracy. DbS has the highest values of n because
it is the most inefficient model.
Table 1–source data 1.
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Appendix 11077

Infomax coding rule1078

We assume that the subjective perception of an environmental variable with value v is de-
termined by n independent samples of a binary random variable, i.e. outcomes are either
"high" (ones) or "low" (zeros) readings. Here, the probability � of a “high” reading is the same
on each draw, but can depend on the input stimulus value, via the function �(v). Addition-
ally, we assume that the input value v on a given trial is an independent draw from some
prior distribution f (v) in a given environment or context (with F (v) being the corresponding
cumulative distribution function). As we mentioned before, the choice of � (i.e. encoding
of the input vale) depends on v. Now suppose that the mapping �(v) (the encoding rule)
is chosen so as to maximize the mutual information between the random variable v and
the subjective value representation k. The mutual information is computed under the as-
sumption that v is drawn from a particular prior distribution f (v), and �(v) is assumed to be
optimized for this prior. The mutual information between v and k is defined as

I(v, k) = H(k) −H(k|v), (21)
where the marginal entropyH(k) quantifies the uncertainty of the marginal response distri-
bution P (k), andH(k|v) is the average conditional entropy of k given v. The output distribu-
tion is given by

P (k) = ∫v∈V
P (k|v)f (v)dv, (22)

where f (v) is defined as the input density function. For the encoding framework that we con-
sider here which is given by the binomial channel, the conditional probability mass function
of the output given the input is

P (k|v) =
(

n
k

)

�(v)k(1 − �(v))n−k, k ∈ [0, 1,… , n]. (23)
Thus, we have all the ingredients to write the expression of the mutual information

I(v, k) = H(k) −H(k|v)

= −
n
∑

k=0
P (k)logP (k)

−

(

−∫v∈V
f (v)

n
∑

k=0
P (k|v)logP (k|v) dv

)

(24)
We then seek to determine the encoding rule �(v) that solves the optimization problem

f ind C = max
{�(v)}

I(v, k). (25)
It can be shown that for large n, the mutual information between � and k (hence the mutual
information between v and k) is maximized if the prior distribution over � is the Jeffreys
prior (Clarke and Barron, 1994)

Beta(�; 0.5, 0.5) = 1
�
√

�(1 − �)
, (26)

also known as the arcsine distribution. Hence, the mapping �(v) induces a prior distribution
over � given by the arcsine distribution. This means that for each v, the encoding function
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�(v)must be such that
F (v) = ∫

�(v)

0

1

�
√

�̃(1 − �̃)
d�̃

= 2
�
arcsin(

√

�(v)). (27)
Solving for � we finally obtain the optimal encoding rule

�(v) =
[

sin
(�
2
F (v)

)]2
. (28)
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Appendix 21130

Accuracy maximization for a known prior distribution1131

Here we derive the optimal encoding rule when the criterion to be maximized is the prob-
ability of a correct response in a binary comparison task, rather than mutual information
as in Appendix 1. As in Appendix 1, we assume that the prior distribution f (x) from which
stimuli are drawn is known, and that the encoding rule is optimized for this particular dis-
tribution. (The case in which we wish the encoding rule to be robust to variations in the
distribution from which stimuli are drawn is instead considered in Appendix 6.) Note that
the objective assumed here corresponds to maximization of expected reward in the case
of a perceptual experiment in which a subject must indicate which of two presented magni-
tudes is greater, and is rewarded for the number of correct responses. (In Appendix 5, we
instead consider the encoding rule that would maximize expected reward if the subject’s
reward is proportional to the magnitude selected by their response.)

1132

1133

1134

1135

1136

1137

1138

1139

1140

1141

1142

As above, we assume encoding by a binomial channel. The encoded value (number of
“high” readings) is given by k, which is consequently an integer between 0 and n. This is a
random variable with a binomial distribution with expected value and variance given by

E
[k
n
|�
]

= � Var
[k
n
|�
]

=
�(1 − �)

n
(29)

Suppose that the task of the decisionmaker is to decidewhich of two input values v1 and v2 islarger. Assuming that v1 and v2 are encoded independently, then the decisionmaker choses
v1 if and only if the internal readings k1 > k2 (here we may suppose that the probability
of choosing stimulus 1 is 0.5 in the event that k1 = k2). Thus, the probability of choosingstimulus 1 is:

1143

1144

1145

1146

1147

1148

1149

1150

1151

1152

1153

P
(

k1
n
>
k2
n
|v1, v2

)

+ 1
2
P
(

k1
n
=
k2
n
|v1, v2

)

. (30)
In the case of large n, we can use a normal approximation to the binomial distribution to
obtain

(

k1
n
−
k2
n

)

∼ N
(

�1 − �2,
�1(1 − �1) + �2(1 − �2)

n

)

(31)
and hence the probability of choosing v1 is given by

Pchoose v1 ≈ Φ

⎛

⎜

⎜

⎜

⎝

�1 − �2
√

�1(1−�1)+�2(1−�2)
n

⎞

⎟

⎟

⎟

⎠

, (32)

whereΦ(⋅) is the standard CDF. Thus the probability of an incorrect choice (i.e. choosing the
item with the lower value) is approximately

1154

1155

1156

1157

1158

1159

1160

1161

1162

1163

1164

1165

1166

1167

1168

Perror ≈ Φ

⎛

⎜

⎜

⎜

⎝

−
|�1 − �2|

√

�1(1−�1)+�2(1−�2)
n

⎞

⎟

⎟

⎟

⎠

(33)

Now, suppose that the encoding rule, together with the prior distribution for v (the same for
both inputs, that are independent draws from the prior distribution) results in an ex-ante
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distribution for � (same for both goods) with density function f̂ (�). Then the probability of
error is given by

1169

1170

1171

1172

1173

1174

1175

1176

Perror ≈ ∫ ∫ Φ

⎛

⎜

⎜

⎜

⎝

−
|�1 − �2|

√

�1(1−�1)+�2(1−�2)
n

⎞

⎟

⎟

⎟

⎠

f̂ (�1)f̂ (�2) d�1d�2 (34)

Our goal is to evaluate Eq. 34 for any choice of the density f̂ (�). First, we fix the value of �1and integrate over �2:

∫

1

0
Φ

(

−
|�1 − �2|

√

�1(1 − �1) + �2(1 − �2)

√

n

)

f̂ (�2) d�2

= ∫

�1

0
Φ

(

−
�2 − �1

√

�1(1 − �1) + �2(1 − �2)

√

n

)

f̂ (�2) d�2

+ ∫

1

�1

Φ

(

−
�1 − �2

√

�1(1 − �1) + �2(1 − �2)

√

n

)

f̂ (�2) d�2 (35)
with �2 = �1 +√

2n�1(1 − �1)z, the expression above then becomes
≈ ∫

0

−�1
√

n
√

2�1(1−�1)

Φ(z)f̂ (�1)

[
√

2�1(1 − �1)
√

n

]

dz

+ ∫

(1−�1)
√

n
√

2�1(1−�1)

0
Φ(−z)f̂ (�1)

[
√

2�1(1 − �1)
√

n

]

dz

≈
[

2∫

0

−∞
Φ(z)dz

]

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏟
>0

f̂ (�1)

√

2�1(1 − �1)
√

n (36)

Then we can integrate over �1 to obtain:
Perror ≈

2
√

n� ∫ f̂ (�1)2
√

(�1(1 − �1)) d�1. (37)
This problem can be solved using the method of Lagrange multipliers:

∫
√

�(1 − �)f̂ (�)2d� + �(∫ f̂ (�) − 1)

=∫ (
√

�(1 − �)f̂ (�)2 + �f̂ (�))d� − �

=∫ (�, f̂ , �) d� − � (38)
We now calculate the gradient

)
)f̂

= 2f̂
√

(�(1 − �)) + � (39)
and then find the optimum for f̂ by setting

2f̂
√

(�(1 − �)) + � = 0 (40)
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then solving for f̂ to obtain
f̂ = −�

2
√

�(1 − �)
. (41)

Taken into consideration our optimization constraint, it can be shown that

∫

1

0

1
√

�(1 − �)
= 1
�

and therefore this implies:
1
�
= −�

2
thus requiring:

−� = 2
�
.

Replacing � in Eq. 41 we finally obtain
f̂ (�) = 1

�
√

�(1 − �)
(26 revisited)

Thus the optimal encoding rule is the same (at least in the large-n limit) in this case as
when we assume an objective of maximummutual information (the case considered in Ap-
pendix 1), though here we assume that the objective is accurate performance of a specific
discrimination task.
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Appendix 31230

Optimal noise for a known prior distribution1231

Interestingly, we found that the fundamental principles of the theory independently de-
veloped in our work are directly linked to the concept of suprathreshold stochastic reso-
nance (SSR) discovered about two decades ago. Briefly, SSR occurs in an array of n identical
threshold non-linearities, each of which is subject to independently sampled random addi-
tive noise (Figure 1 in main text). SSR should not be confused with the standard stochastic
resonance (SR) phenomenon. In SR, the amplitude of the input signal is restricted to val-
ues smaller than the threshold for SR to occur. On the other hand, in SSR random draws
from the distribution of input values can exist above threshold levels. Using the simplified
implementational scheme proposed in our work, it can be shown that mutual information
I(v, k) can be also optimized by finding the optimal noise distribution. This is important as
it provides a normative justification as for why sampling must be noisy in capacity-limited
systems. Actually, SSR was initially motivated as a model of neural arrays such as those
synapsing with hair cells in the inner ear, with the direct application of establishing the
mechanisms by which information transmission can be optimized in the design of cochlear
implants (Stocks et al., 2002). Our goal in this subsection is to make evident the link be-
tween the novel theoretical implications of our work and the SSR phenomenon developed
in previous work (Stocks et al., 2002; McDonnell et al., 2007), which should further justify
our argument of efficient noisy sampling as a general framework for decision behavior, cru-
cially, with a parsimonious implementational nature.

1232

1233

1234

1235

1236

1237

1238

1239

1240

1241

1242

1243

1244

1245

1246

1247

1248

1249

1250

Following our notation, each threshold device (we will call it from now on a neuron) can
be seen as the number of n resources available to encode an input stimulus v. Here, we
assume that each neuron produces a "high" reading if and only if v + � > �, where � is i.i.d.
random additive noise (independent of v) following a distribution function f� , and � is theminimum threshold required to produce a "high" reading. If we define the noise CDF as F� ,then the probability � of the neuron giving a "high" reading in response to the input signal
v is given by

�(v) = 1 − F�(� − v). (42)
It can be shown that the mutual information between the input v and the number of "high"
readings k for large n is given by (McDonnell et al., 2007)

I(v, k) ≈ 1
2
log2

(n�
2e

)

−DKL[f (v)||fJ (v)], (43)
where fJ is the Jeffreys prior (Eq. 26). Therefore, Jeffreys’ prior can also be derived making
it a function of the noise distribution f�

fJ (v) =
f�(� − v)

�
√

F�(� − v)[1 − F�(� − v)]
. (44)

Given that the first term in Eq. 43 is always non-negative, a sufficient condition for achieving
channel capacity is given by

f (v) = fJ (v) ∀v. (45)
Typically, the nervous system of any organism has little influence on the distribution of
physical signals in the environment. However, it has the ability to shape its internal signals to
optimize information transfer. Therefore, a parsimonious solution that the nervous system
may adopt to adapt to statistical regularities of environmental signals in a given context is to
find the optimal noise distribution f ∗� to achieve channel capacity. Note that this is differentfrom classical problems in communication theory where the goal is usually to find the signal
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distribution that maximizes mutual information for a channel. Solving Eq. 44 to find f�(v)one can find such optimal noise distribution
f ∗� (v) =

�
2
sin[�(1 − F (� − v))]f (� − v). (46)

A further interesting consequence of this set of results is that the ratio between the signal
PDF f (v) and the noise PDF f� is

f (v)
f�(� − v)

= 2
�sin[�(1 − F (v))]

. (47)
Using the definition given in Eq. 42 to make this expression a function of �, one finds the
optimal PDF of the encoder

f ∗(�) = 1
�
√

�(1 − �)
, (48)

which is once again the arcsine distribution (See equations 2 and 5 in main text).
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Appendix 41298

Efficient coding and the relation between environmental priors and
discrimination

1299

1300

1301

Appendix 4 Figure 113021303

Recently, it was shown that using an efficiency principle for encoding sensory variables,
based on population of noisy neurons, it was possible to obtain an explicit relationship
between the statistical properties of the environment (the prior) and perceptual discrim-
inability (Ganguli and Simoncelli, 2016). The theoretical relation states that discriminability
should be inversely proportional to the density of the prior distribution. Interestingly, this
relationship holds across several sensory modalities such as a) acoustic frequency, b) lo-
cal orientation, c) speed (figure adapted with permission from the authors Ganguli and
Simoncelli (2016)). Here, we investigate whether this particular relation also emerges in our
efficient sampling framework.

1304

1305

1306

1307

1308

1309

1310

1311

1312

We first show that we obtain a prediction of exactly the same kind from our model of
encoding using a binary channel, in the case that (i) we assume that the encoding rule is
optimized for a single environmental distribution, as in the theory ofGanguli and Simoncelli
(2014, 2016), and (ii) the objective that is maximized is either mutual information (as in the
theory of Ganguli and Simoncelli) or the probability of an accurate binary comparison (as
considered in Appendix 2).

1313

1314

1315

1316

1317

1318

Note that the expected value and variance of a binomial random variable are given by
E [r|�] = � Var [r|�] =

�(1 − �)
n

, (49)
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where we let here r ≡ k∕n. In Appendix 2, we show that if the objective is accuracy maxi-
mization, an efficient binomial channel requires that

�(v) =
[

sin
(�
2
F (v)

)]2
.

Thus, replacing �(v) in Eq. 49 implies the following relations
E [r|�] = sin2(!), Var [r|�] =

sin2(!)cos2(!)
n

, (50)
where we let here ! ≡ �

2
F (v). Discrimination thresholds d in sensory perception are de-

fined as the ratio between the precision of the representation and the rate of change in the
perceived stimulus

d ≡
√

Var [r|�]
E [r|�]′

. (51)
Substituting the expressions for expected value and variance in Eq. 50 results in

d = 1
2
√

n!′

= 1
√

n�f (v)
. (52)

Thus under our theory, this implies
d ∝ 1

f (v)
. (53)

This is exactly the relationship derived and tested by Ganguli and Simoncelli (2016).
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1343
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Our model instead predicts a somewhat different relationship if the encoding rule is
required to be robust to alternative possible environmental frequency distributions (the
case further discussed in Appendix 6). In this case, the robustly optimal encoding rule is
DbS, which corresponds to �(v) = F (v), rather than the relation 53. Substituting this into
Eqs. 49 and 51 yields the prediction

1347

1348

1349

1350

1351

d =

√

F (v)(1 − F (v))
√

n
⋅
1

f (v)
. (54)

instead of Eq. 52.
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1355
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One interpretation of the experimental support for the relation 53 reviewed by Ganguli
and Simoncelli (2016) could be that in the case of early sensory processing of the kind with
which they are concerned, perceptual processing is optimized for a particular environmen-
tal frequency distribution (representing the long-run experience of an organism or even
of the species), so that the assumptions used in Appendix 2 are the empirically relevant
ones. Even so, it is arguable that robustness to changing contextual frequency distributions
should be important in the case of higher forms of cognition, so that one might expect pre-
diction 54 to be more relevant for these cases; and indeed, our experimental results for the
case of numerosity discrimination are more consistent with Eq. 54 than with 52.
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One should also note that even in a case where Eq. 54 holds, if onemeasures discrimina-
tion thresholds over a subset of the stimulus space, over which there is non-trivial variation
in f (v), but F (v) does not change verymuch (because the prior distribution for which the en-
coding rule is optimized assigns a great deal of probability to magnitudes both higher and
lower than those in the experimental data set), then relation (54) restricted to this subset
of the possible values for v will imply that the relation (53) should approximately hold. This
provides another possible interpretation of the fact that the relation (53) holds fairly well in
the data considered by Ganguli and Simoncelli (2016).
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Appendix 51374

Maximizing expected size of the selected item (fitness maximization)1375

We now consider the optimal encoding rule under a different assumed objective, namely,
maximizing the expected magnitude of the item selected by the subject’s response (that is,
the stimulus judged to be larger by the subject), rather than maximizing the probability of
a correct response as in Appendix 2. While in many perceptual experiments, maximizing
the probability of a correct response would correspond to maximization of the subject’s
expected reward (or at least maximization of a psychological reward to the subject, who
is given feedback about the correctness of responses but not about true magnitudes), in
many of the ecologically relevant cases in which accurate discrimination of numerosity is
useful to an organism (Butterworth et al., 2018; Nieder, 2020), the decision maker’s reward
depends on howmuch larger one number is than another, and not simply their ordinal rank-
ing. This would also be true of typical cases in which internal representations of numerical
magnitudes must be used in economic decision making: the reward from choosing an in-
vestment with a larger monetary payoff is proportional to the size of the payoff afforded by
the option that is chosen. Hence it is of interest to consider the optimal encoding rule if we
suppose that encoding is optimized to maximize performance in a decision task with this
kind of reward structure.
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As in Appendix 1 and Appendix 2, we again consider the problem of optimizing the en-
coding rule for a specific prior distribution f (v) for themagnitudes thatmay be encountered,
and we assume that it is only possible to encode information via “high” or “low” readings.
The optimization problem that we need to solve is to find the optimal encoding function
�(v) that guarantees a maximal expected value of the chosen outcome, for any given prior
distribution f (v). Thus the quantity that we seek to maximize is given by

E[v(chosen)] = ∫ ∫ f (v1, v2) [P1(�(v1), �(v2))v1 + P2(�(v1), �(v2))v2] dv1dv2 (55)
where Pi(�1, �2) is the probability of choosing option i when the encoded values of the two
options are �1 and �2 respectively.

1392

1393

1394

1395

1396

1397

1398

1399

1400

1401

1402

We begin by noting that for any pair of input values v1, v2, the integrand in (55) can be
written as
P1(�(v1), �(v2))v1 + P2(�(v1), �(v2))v2 (56)
= max(v1, v2) − P1(�(v1), �(v2)) max(v2 − v1, 0) − P2(�(v1), �(v2)) max(v1 − v2, 0)

= max(v1, v2) − [P1(�(v1), �(v2))I(v2 > v1) + P2(�(v1), �(v2))I(v1 > v2)] |v1 − v2|

= max(v1, v2) − [P (error |�(v1), �(v2))I(v2 > v1) + P (error |�(v1), �(v2))I(v1 > v2)] |v1 − v2|
= max(v1, v2) − P (error |�(v1), �(v2)) |v1 − v2|,

where I(A) is the indicator function (taking the value 1 if statement A is true, and the value
0 otherwise), and P (error |�1, �2) is the probability of choosing the lower-valued of the two
options.

1403

1404

1405

1406

1407

1408

1409

1410

Substituting this last expression for the integrand in (55), we see that we can equivalently
write

E[v(chosen)] = E[max(v1, v2)] − ∫ ∫ f (v1, v2)P (error |�(v1), �(v2)) |v1 − v2| dv1dv2, (57)
where

E[max(v1, v2)] ≡ ∫ ∫ f (v1, v2) max(v1, v2) dv1dv2 (58)
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is a quantity which is independent of the encoding function �(v). Hence choosing �(v) to
maximize (55) is equivalent to choosing it to minimize

E[loss] = ∫ ∫ f (v1, v2)P (error |�(v1), �(v2)) |v1 − v2| dv1dv2. (59)

1411

1412

1413

1414

1415

1416

1417

1418

1419

1420

1421

1422

1423

1424

As previously specified, the probability of error given two internal noisy readings k1 and
k2 is given by

P (error) =
(

k1
n
−
k2
n
> 0|v1, v2

)

(60)

≈ Φ

⎛

⎜

⎜

⎜

⎝

�1 − �2
√

�1(1−�1)+�2(1−�2)
n

⎞

⎟

⎟

⎟

⎠

, (61)

where in this case we assume that v1 is the lower-valued option and v2 is the higher-valuedoption on any given trial. This implies that P (error) is very close to zero, except when |�1 −
�2| = (1∕

√

n). In this case we have

1425

1426

1427

1428

1429

1430

1431

1432

P (error) ≈ Φ

(

√

n
2

�1 − �2
√

�(1 − �)

)

where � ≡
�1 + �2
2

. (62)

1433

1434

1435

1436

As in the case of accuracymaximization, herewe assume that (v1, v2) are independent drawsfrom the same distribution of possible values f (v). Thus f (v1, v2) = f (v1)f (v2). Then fixing
v1 and integrating over all possible values of v2 in Eq. 59, the expected loss is approximately

1437

1438

1439

E[loss|v1] = ∫ f (v2)P (error|v2, v1)|v2 − v1| dv2 (63)
≈ ∫ f (v2)Φ

(

−
√

n
2

|�1 − �2|
√

�1(1 − �1)

)

|v2 − v1| dv2 (64)

≈ f (v1)∫ Φ

(

−
√

n
2
�′(v1)|v2 − v1|
√

�1(1 − �1)

)

|v2 − v1| dv2 (65)

≈ f (v1)∫

∞

−∞
Φ(−|z|)

[
√

2
n
�1(1 − �1)
�′(v1)

|z|

][
√

2
n
�1(1 − �1)
�′(v1)

]

dz (66)
≈ 4
n
f (v1)
�′(v1)2

[�1(1 − �1)]∫

∞

0
Φ(−z)z dz

⏟⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏟
1∕4

(67)

≈ 1
n
f (v1)
�′(v1)2

[�1(1 − �1)] (68)
where in Eq. 66 we have applied the change of variable

1440

1441

1442

1443

1444

z ≡ n
2

�′(v1)
�1(1 − �1)

(v2 − v1) (69)
and in the integral of Eq. 67 we have used

∫

∞

0
Φ(−z)z dz = 1

2
[

(z2 − 1)Φ(−z) − z�(−z)
]∞
0 (70)

= 1
2

[

0 − (−1
2
)
] (71)

= 1
4

(72)
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where �() is the standard normal PDF. Then integrating over v1, we have:

1445

1446

1447

1448

1449

1450

1451

1452

1453

E[loss] = 1
n ∫

f (v1)2

�′(v1)2
[�1(1 − �1)] dv1. (73)

Thus we want to find the encoding rule �(v) to minimize this integral given the prior f (v).
We now apply the change of variable �(v) ≡ sin2((v)), where (v) is an increasing function
with a range 0 ⩽ (v) ⩽ �

2
for all v. Then we have

�′(v) = 2 sin((v)) cos((v)) ′(v) (74)
= 2

√

�(v)(1 − �(v)) ′(v) (75)
and therefore we have

�(v)(1 − �(v))
�′(v)

= 1
4

1
 ′(v)

. (76)
This allows us to rewrite Eq. 73 as follows

E[loss] = 1
n ∫

f (v)2

 ′(v)2
. (77)

Now the problem is to choose the function (v) to minimize E[loss] subject to 0 ⩽ (v) ⩽ �
2
.

Equivalently, we can choose the function  ′(v) > 0 tominimize E[loss] subject to ∫  ′(v)dv ⩽ �
2
.

Defining '(v) ≡  ′(v), the optimization problem to solve is to choose the function '(v) to
min ∫

f (v)2

'(v)2
dv s.t. ∫ '(v) dv ⩽ �

2
(78)

1454

1455

1456

1457

1458

1459

1460

1461

1462

1463

1464

1465

1466

1467

1468

1469

1470

1471

1472

1473

1474

1475

1476

1477

Due to FOC, it can be shown that
f (v)2

'(v)3
= same for all v ⇒ '(v) ∼ f (v)2∕3. (79)

Note also that the constraint ∫ '(v) ⩽ �
2
must hold with equality, thus arriving at

1478

1479

1480

1481

1482

(v) = �
2
∫

v

−∞
f (ṽ)2∕3 dṽ

∫

∞

−∞
f (ṽ)2∕3 dṽ

. (80)

Therefore, we finally obtain the efficient encoding rule that maximizes the expected magni-
tude of the selected item

�(v) = sin

⎡

⎢

⎢

⎢

⎢

⎣

�
2
∫

v

−∞
f (ṽ)2∕3 dṽ

∫

∞

−∞
f (ṽ)2∕3 dṽ

⎤

⎥

⎥

⎥

⎥

⎦

2

(81)

1483

1484

1485

1486

1487

1488

1489

1490

1491
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Appendix 61492

Robust optimality of DbS among Encoding rules with m = 11493

Here we consider the nature of the optimal encoding function when the cost of increasing
the size of the sample of values from prior experience that are used to adjust the encoding
rule to the contextual distribution of stimulus values is great enough to make it optimal to
base the encoding of a new stimulus magnitude v on a single sampled value ṽ from the con-
textual distribution. (The conditions required for this to be the case are discussed further
in Appendix 7)

1494

1495

1496

1497

1498

1499

We assume that for each of the n independent processing units, the probability of a
"high" reading is given by �(v, ṽj), where ṽj is the draw from the contextual distribution by
processor j, and �(v, ṽ) is the same function for each of the processing units. The {ṽj} for j =
1, 2,… , n, are independent draws from the contextual distribution f (v).We further assume
that the function �(v, ṽ) satisfies certain regularity conditions. First, we assume that � is a
piecewise continuous function. That is, we assume that the v− ṽ plane can be divided into a
countable number of connected regions, with the boundaries between regions defined by
continuous curves; and that the function �(v, ṽ) is continuous in the interior of any of these
regions, though it may be discontinuous at the boundaries between regions. And second,
we assume that �(v, ṽ) is necessarily weakly increasing in v and weakly decreasing in ṽ. The
function is otherwise unrestricted.

1500

1501

1502

1503

1504

1505

1506

1507

1508

1509

1510

For any prior distribution f (v) and any encoding function �(v, ṽ), we can compute the
probability of an erroneous comparison when two stimulus magnitudes v1, v2 are indepen-dently drawn from the distribution f (v), and each of these stimuli is encoded using n ad-
ditional independent draws {ṽj} from the same distribution. Let this error probability be
denoted Pn(�; f ). We wish to find an encoding rule (for given n) that will make this error
probability as small as possible; however, the answer to this question will depend on the
prior distribution f (v). Hence we wish to find an encoding rule that is robustly optimal, in
the sense that it achieves the minimum possible value for the upper bound

P̄error(�) ≡ sup
f∈

Pn(�; f )

for the probability of an erroneous comparison. Here the class of possible priors  to con-
sidered is the set of all possible probability distributions (over values of v) that can be char-
acterized by an integrable probability density function f (v). (We exclude from consideration
priors in which there is an atom of probability mass at some single magnitude v, since in
that case there would be a positive probability of a situation in which it is not clear which
response should be considered “correct”, so that Perror is not well-defined.) Note that the cri-terion P̄error(�) for ranking encoding rules is not without content, since there exist encodingrules (including DbS) for which the upper bound is less than 1/2 (the error probability in the
case of a completely uninformative internal representation).

1511

1512

1513

1514

1515

1516

1517

1518

1519

1520

1521

1522

1523

1524

1525

1526

1527

1528

1529

1530

Let us consider first the case in which there is some part of the diagonal line along which
ṽ = v which is not a boundary at which the function �(v, ṽ) is discontinuous. Then we can
choose an open interval (vmin, vmax) such that all values v, ṽwith the property that both v and
ṽ lie within the interval (vmin, vmax) are part of a single region on which �(v, ṽ) is a continuousfunction. Then let �min be the greatest lower bound with the property that �(v, ṽ) ≥ �min forall v, ṽ lying within the specified interval, and similarly let �max be the lowest upper boundsuch that �(v, ṽ) ≤ �max for all values within the specified interval. Because of the continuityof �(v, ṽ) on this region, as the values vmin, vmax are chosen to be close enough to each other,the bounds �min, �max can be made arbitrarily close to one another.

1531

1532

1533

1534

1535

1536

1537

1538

1539
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Now for any probabilities 0 ≤ � ≤ �′ ≤ 1, let Pmin(�, �′) be the quantity defined in Eq. 30,
when �1 = � and �2 = �′; that is, for any v1, v2 that are not equal to one another, Pmin(�, �′) isthe probability of an erroneous comparison if the units representing the smaller magnitude
each give a "high" reading with probability � and those representing the larger magnitude
each give a "high" reading with probability �′. Then the probability of erroneous choice Perrorwhen f (v) is a distribution with support entirely within the interval (vmin, vmax) is necessarilygreater than or equal to the lower bound Pmin(�min, �max). The reason is that for any v1, v2 inthe support of f (v), the probabilities

�i = ∫ �(vi, ṽ)f (ṽ)dṽ

will necessarily lie within the bounds �min ≤ �i ≤ �max for both i = 1, 2. Given these bounds,
the most favorable case for accurate discrimination between the two magnitudes will be
to assign the largest possible probability �max to units being on in the representation of
the larger magnitude, and the smallest possible probability �min to units being on in the
representation of the smaller magnitude. Since the lower bound Pmin(�min, �max) applies inthe case of any individual values v1, v2 drawn from the support of f (v), this same quantity is
also a lower bound for the average error rate integrating over the prior distributions for v1and v2.

1540

1541

1542

1543

1544

1545

1546

1547

1548

1549

1550

1551

1552

1553

1554

1555

1556

1557

1558

One can also show that as the two bounds �min, �max approach one another, the lower
bound Pmin(�min, �max) approaches 1/2, regardless of the common value that �min and �max bothapproach. Hence it is possible to make Pmin(�min, �max) arbitrarily close to 1/2, by choosing
values for vmin, vmax that are close enough to one another. It follows that for any bound Pminless than 1/2 (including values arbitrarily close to 1/2), we can choose a prior distribution
f (v) for which Perror is necessarily equal to Pmin or larger. It follows that in the case of a
function �(v, ṽ) of this kind, the upper bound P̄error(�) is equal to 1/2.

1559

1560

1561

1562

1563

1564

1565

In order to achieve an upper bound lower than 1/2, then, we must choose a function
�(v, ṽ) that is discontinuous along the entire line v = ṽ. For any such function, let us consider
a value v∗ with the property that all points (v, ṽ) near (v∗, v∗) with v > ṽ belong to one region
on which � is continuous, and all points near (v∗, v∗) with v < ṽ belong to another region.
Then under the assumption of piecewise continuity, �(v, ṽ)must approach some value �̄(v∗)
as the values (v, ṽ) converge to (v∗, v∗) from within the region where v > ṽ, and similarly
�(v, ṽ) must approach some value �(v∗) as the values (v, ṽ) converge to (v∗, v∗) from within
the region where v < ṽ.

1566

1567

1568

1569

1570

1571

1572

1573

It must also be possible to choose values vmin < v∗ < vmax such that all points (v, v) with
vmin < v < vmax are points on the boundary between the two regions onwhich � is continuous.Given such values, we can then define bounds �min, �max, �̄min, and �̄max, such that

�min ≤ �(v, ṽ) ≤ �max

for all vmin < v < ṽ < vmax, and
�̄min ≤ �(v, ṽ) ≤ �̄max

for all vmin < ṽ < v < vmax. Moreover, piecewise continuity of the function �(v, ṽ) implies
that by choosing both vmin and vmax close enough to v∗ we can make the bounds �min, �maxarbitrarily close to �(v∗), and make the bounds �̄min, �̄max arbitrarily close to �̄(v∗).

1574

1575

1576

1577

1578

1579

1580

1581

1582

1583

1584

1585

1586

Next, for any set of four probabilities 0 ≤ � ≤ �′ ≤ 1 and 0 ≤ �̄ ≤ �̄′ ≤ 1, let us define
P̂min(�, �

′; �̄, �̄′) ≡ E[Pmin(�(z1), �′(z2)) |z1 < z2], (82)
where

�(z) ≡ z�̄ + (1 − z)�, �′(z) ≡ z�̄′ + (1 − z)�′, (83)
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and z1, z2 are two independent random variables, each distributed uniformly on [0, 1]. Then
if �(v, ṽ) lies between the lower bound � and upper bound �′ whenever v < ṽ, and between
the lower bound �̄ and upper bound �̄′ whenever v > ṽ, then the probability � of a process-
ing unit representing the magnitude v giving a "high" reading will lie between the bounds
�(z) ≤ � ≤ �′(z), where z = F (v) is the quantile of v within the prior distribution. It follows
that in the case of any two magnitudes v1, v2 with v1 < v2, the probability of an erroneous
comparison will be bounded below by Pmin(�(z1), �′(z2)),where zi = F (vi) for i = 1, 2, since theprobability of a correct discrimination will be maximized by making the units representing
v1 give as few high readings as possible and the units representing v2 give as many high
readings as possible. Integrating over all possible draws of v1, v2, one finds that the quantity
P̂min(�, �

′; �̄, �̄′) defined in (82) is a lower bound for the overall probability of an erroneous
comparison, given that regardless of the prior f (v), the quantiles z1, z2 will be two indepen-dent draws from the uniform distribution on [0, 1].

1587

1588

1589

1590

1591

1592

1593

1594

1595

1596

1597

1598

1599

1600

1601

1602

1603

1604

1605

1606

1607

Now consider again an encoding function �(v, ṽ) of the kind discussed two paragraphs
above, and an interval of stimulus values (vmin, vmax) of the kind discussed there. For any priordistribution f (v) with support entirely contained within the interval (vmin, vmax), the probabil-ity of an erroneous comparison is bounded below by

Pn(�; f ) ≥ P̂min(�min, �max; �̄min, �̄max),

where the function P̂min is defined in (82). Moreover, by choosing the values vmin, vmax closeenough to v∗, we can make this lower bound arbitrarily close to P e(�(v∗), �̄(v∗)), where for
any probabilities �, �̄ we define

P e(�, �̄) ≡ P̂min(�, �; �̄, �̄). (84)
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1610

1611
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1616

1617

1618

1619

1620

Hence in the case of the encoding function considered, the upper bound P̄error(�) must
be at least as large as P e(�(v∗), �̄(v∗)). We further observe that the quantity P e(�, �̄) defined
in (84) is just the probability of an erroneous comparison in the case of an encoding rule
according to which

�(v, ṽ) = � if v < ṽ,

�(v, ṽ) = �̄ if v > ṽ.

Note that in the case of such an encoding rule, the probability of an erroneous comparison
is the same for all prior distributions, since under this rule all that matters is the distribution
of the quantile ranks of v and ṽ. It ismoreover clear that P e(�, �̄) is an increasing function of �
and a decreasing function of �̄. It thus achieves itsminimumpossible value if and only if � = 0
and �̄ = 1, in which case it takes the value PDbS

error , the probability of erroneous comparison in
the case of decision by sampling (again, independent of the prior distribution).
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1624
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1631

1632

1633

1634

1635

1636

Thus in the case that there exists any magnitude v∗ for which �(v∗) > 0, �̄(v∗) < 1, or
both, there exist priors f (v) for which Pn(�; f ) must exceed PDbS

error = P e(0, 1). Hence in order
to minimize the upper bound P̄error(�), it must be the case that �(v) = 0 and �̄(v) = 1 for all v.
But then our assumption that the encoding rule �(v, ṽ) is at least weakly increasing in v and
at least weakly decreasing in ṽ requires that

�(v, ṽ) = 0 for all v < ṽ,

�(v, ṽ) = 1 for all v > ṽ.

Thus the encoding rule must be the DbS rule, the unique rule for which P̄error(�) is no greaterthan PDbS
error .
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Appendix 71650

Sufficient conditions for the optimality of DbS1651

Here we consider the general problem of choosing a value of m (the number of samples
from the contextual distribution f (v) to use in encoding any individual stimulus) and an
encoding rule �(v; ṽ1,… , ṽm) to be used by each of the n processing units that encode the
magnitude of that single stimulus, so as to minimize the compound objective

P̄error(�) + K(m),

where P̄error is the upper bound on the probability of an erroneous comparison under the
encoding rule �, and K(m) is the cost of using a sample of size m when encoding each stim-
ulus magnitude. The value of n is taken as fixed at some finite value. (This too can be
optimized subject to some cost of additional processing units, but we omit formal analysis
of this problem.) We assume that K(m) is an increasing function of m, and can without loss
of generality assume the normalization K(0) = 0. In this optimization problem, we assume
that the only encoding functions � to be considered are ones that are piecewise continuous,
at least weakly increasing in v, and weakly decreasing in each of the ṽj .
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1666

For any value of m, let P ∗(m) be the minimum achievable value for P̄error(�). (Appendix 6illustrates how this kind of problem can be solved, for the case m = 1.) Then the optimal
value of m will be the one that minimizes P ∗(m) +K(m).

1667

1668

1669

We can establish a lower bound for P ∗(m) that holds for any m:
P ∗(m) ≡ inf

�(v;ṽ1 ,…,ṽm)
sup
f∈

Pn(�; f )

≥ sup
f∈

inf
�(v;ṽ1 ,…,ṽm)

Pn(�; f )

= sup
f∈

inf
�(v)

Pn(�; f ) ≡ P n. (85)
In the second line, we allow the function �(v; ṽ1,… , ṽm) to be chosen after a particular prior
f (v) has already been selected, which cannot increase the worst-case error probability. In
the third line, we note that the only thing thatmatters about the encoding function chosen in
the second line is themean value of �(v; ṽ1,… , ṽm) for each possiblemagnitude v, integrating
over the possible samples of size m that may be drawn from the specified prior; hence we
can more simply write the problem on the second line as one involving a direct choice of
a function �(v), which may be different depending on the prior f (v) that has been chosen.
The problem on the third line defines a bound P n that does not depend on m.
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A set of sufficient conditions for m = 1 to be optimal is then given by the assumptions
that

1682

1683

(a) P ∗(0) > P ∗(1) +K(1), and1684

(b) P ∗(1) − P < K(2) −K(1).1685

Condition (a) implies that m = 0 will be inferior to m = 1: the cost of a single sample is not so
large as to outweigh the reduction in P̄error(�) that can be achieved using even one sample.
Condition (b) implies thatm = 1will be superior to anym′ > 1. The lower bound (85), together
with our monotonicity assumption regarding K(m), implies that for any m′ > 1,

P ∗(1) − P ∗(m′) ≤ P ∗(1) − P < K(2) −K(1) ≤ K(m′) −K(1),

and hence that
P ∗(1) +K(1) < P ∗(m′) +K(m′).
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While condition (b) is stronger than is needed for this conclusion, the sufficient condi-
tions stated in the previous paragraph have the advantage that we need only consider opti-
mal encoding rules for the cases m = 0 and m = 1, and the efficient coding problem stated in
definition (85), in order to verify that the conditions are both satisfied. The efficient coding
problem for the case m = 1 is treated in Appendix 6, where we show that P ∗(1) = PDbS

error < 1∕2.Using the calculations explained in Appendix 2, we can provide an analytical approximation
to this quantity in the limiting case of large n.

1697

1698

1699

1700

1701

1702

1703

Equation 37 states that for any encoding rule �(v) and any prior distribution f (v), the
value of Perror for any large enough value of n will approximately equal

Pn(�; f ) ≈
2

√

n� ∫ f̂ (�̃)2
√

�̃(1 − �̃) d�̃, (37 revisited)
where f̂ (�) is the probability density function of the distribution of values for �(v) implied by
the function �(v) and the distribution f (v) of values for v. In the case of DbS, the probability
distribution over alternative internal representations ki (and hence the probability of error)is the same as in the case of an encoding rule �(v) = F (v), so that equation 37 can be applied.
Furthermore, for any prior distribution f (v), the probability distribution of values for the
quantile z = F (v) will be a uniform distribution over the interval [0, 1], so that f̂ (�) = 1 for all
�. It follows that

P DbS,lim
error ≈ 2

√

n� ∫

√

�̃(1 − �̃) d�̃ = 1
4

√

�
n
. (86)
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In the case that m = 0, instead, the same function �(v) must be used regardless of the
contextual distribution f (v). Under the assumption that �(v) is piecewise continuous, there
must exist a magnitude v∗ such that �(v) is continuous over some interval (vmin, vmax) con-taining v∗ in its interior. Let �min, �max be the greatest lower bound and least upper bound
respectively, such that

�min ≤ �(v) ≤ �max

for all vmin < v < vmax. The continuity of �(v) on this interval means that by choosing both
vmin and vmax close enough to v∗, we can make both �min and �max arbitrarily close to �(v∗).
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1720

1721

1722

1723

1724

1725

1726

1727

1728

By the same argument as in Appendix 6, for any prior distribution f (v) with support en-
tirely contained in the interval (vmin, vmax), the pair of stimulus magnitudes v1, v2 will have toimply �min ≤ �(v1), �(v2) ≤ �max with probability 1, and as a consequence the error probability
Pn(�; f )will necessarily be greater than or equal to the lower bound Pmin(�min, �max). By choos-ing both vmin and vmax close enough to v∗, we can make this lower bound arbitrarily close to
Pmin(�(v∗), �(v∗)) = 1∕2.Hence for any encoding rule �(v)withm = 0, the upper bound P̄error(�)cannot be lower than 1/2. It follows that P ∗(0) = 1∕2.

1729

1730

1731

1732

1733

1734

1735

Given this, condition (a) can alternatively be expressed as
PDbS
error + K(1) < 1∕2.

Note that ifK(1) remains less than 1/2 nomatter how large n is, this conditionwill necessarily
be satisfied for all large enough values of n, since (86) implies that PDbS

error eventually becomes
arbitrarily small, in the case of large enough n. (On the other hand, the condition can easily
be satisfied for some range of smaller values of n, even if K(1) > 1∕2 once n becomes very
large.)

1736

1737

1738

1739

1740

1741

1742

1743

1744

In order to consider the conditions under which condition (b) will also be satisfied, it is
necessary to further analyze the efficient coding problem stated in (85). We first observe
that for any prior f (v) ∈  and encoding rule �(v), the encoding rule can always be expressed
in the form �(v) = '(F (v)), where '(z) is a piecewise-continuous, weakly increasing function
giving the probability of a "high" reading as a function of the quantile z of the stimulus
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magnitude in the prior distribution. We then note that when this representation is used
for the encoding function in problem 85, the error probability Pn(�; f ) depends only on thefunction '(z), in a way that is independent of the prior f (v). Hence the inner minimization
problem in Eq. 85 can equivalently be written as

inf
'(z)

Pn('). (87)
This problem has a solution for the optimal '(z) for any number of processing units n, and
an associated value, that is independent of the prior f (v). Hence we can write the bound
defined in (85) more simply as

P n = inf'(z)
Pn('). (88)
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Condition (b) will be satisfied as long as the bound defined in (88) is not too much lower
than P DbS

error . In fact, this bound can be a relatively large fraction of P DbS
error .We consider the prob-

lem of the optimal choice of an encoding function �(v) for a known prior f (v) in Appendix 2.
In the limiting case of a sufficiently large n, substitution of equation 2 into 37 yields the
approximate solution

P lim
n ≈ 2

√

n�
1
�2

d�̃
√

�̃(1 − �̃)
= 2

√

n�3
. (89)

Thus as n is made large, the ratio P lim
n ∕P

DbS,lim
error converges to the value

P lim∕P DbS,lim
error = 8∕�2 = 0.81. (90)

This means that increases in the sample size m above 1 cannot reduce P ∗(m) by even 20
percent relative to P ∗(1), no matter how large the sample may be, whereas P ∗(1) may be
only a small fraction of P ∗(0) (as is necessarily the case when n is large). This makes it quite
possible for K(2) − K(1) to be larger than P DbS

error − P while at the same time P ∗(0) − P DbS
error islarger than K(1). In this case, the optimal sample size will be m = 1, and the optimal

encoding rule will be DbS.
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While these analytical results for the asymptotic (large-n) case are useful, we can also
numerically estimate the size of the terms P ∗(0), P , and P DbS

error in the case of any finite valuefor n. We have derived an exact analytical value for P ∗(0) = 1∕2 above. The quantity P DbS
error canbe computed through Monte Carlo simulation for any value of n. (Note that this calculation

depends only on n, and is independent of the contextual distribution f (v); we need only to
calculate Pn(') for the function '(z) = z.) The calculation of P n for a given finite value of n isinsteadmore complex, since it requires us to optimize Pn(') over the entire class of possiblefunctions '(z).

1781

1782

1783

1784

1785

1786

1787

1788

Our approach is to estimate the minimum achievable value of Pn(') by finding the mini-
mum achievable value over a flexible parametric family of possible functions '(z).We spec-
ify the function ' in terms of the implied F̂ (�), the CDF for values of �(v). We let F̂ (�) be
implicitly defined by

[sin((�∕2)F̂ (�))]2 = g(�), (91)
where g(�) is a function of � with the properties that g(0) = 0, g(1) = 1, as required for F̂ (�)
to be the CDF of a probability distribution. More specifically, we assume that g(�) is a finite-
order polynomial function consistent with these properties, which require that it can be
written in the form

g(�) = �
[

1 + (� − 1)
(

g0 + g1� +…+ gp�p
)]

, (92)
where {g0,… , gp} are a set of parameters over which we optimize. Note that for a large
enough value of p, any smooth function can be well approximated by a member of this
family. At the same time, our choice of a parametric family of functions has the virtue that
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the CDF that corresponds to the optimal coding rule in the large-n limit belongs to this family
(regardless of the value of p), since this coding rule (equation 3) corresponds to the case
g0 = … = gp = 0 of equation 92.
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We computed via numerical simulations the best encoder function assuming g(�) to be
of order 5 (Eq. 92) for various finite values of n = [5, 10, 15, 20, 25, 30, 35, 40], and we define the
expected error of this optimal encoder for a given n to be P g

n (i.e., a lower bound for Pn withinthe family of functions defined by g). Our goal is to compare this quantity to the asymptotic
approximation P lim

n , in order to evaluate how accurate the asymptotic approximation is.

1809

1810

1811

1812
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Additionally, we also compute the value P DbS
error for each finite value of n through Monte

Carlo simulation (please note that P DbS
error is different from the quantity P DbS,lim

error defined in Eq.
86, that is only an asymptotic approximation for large n). Then, we can compare P DbS

error to thevalue predicted by the asymptotic approximations P DbS,lim
error and P lim

n .

1814

1815

1816

1817

Another quantity that is important to compute, in order to determine whether DbS can
be optimal when n is not too large, is the size of P ∗(0) relative to the quantities computed
above. Since P ∗(0) does not shrink as n increases, it is obvious that P ∗(0) is much larger
than the other quantities in the large-n limit. But how much bigger is it when n is small? To
investigate this, we compute the value of the ratio P ∗(0)∕P lim

n when n is small. This quantity
is given by

P ∗(0)
P lim
n

=

√

n�3

4
(93)
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Appendix 7 Figure 118281829

In Appendix 7-Figure 1, all error quantities discussed above are normalized relative to P lim
n .

The black dashed lines in both panels represent (P lim
n ∕P

lim
n ) = 1. The ratio of the asymp-

totic approximation for P DbS,lim
error relative to P lim

n is plotted with the red dashed lines, where
(P DbS,lim

error ∕P lim
n ) ≈ 1.23. Note that the sufficient conditions for DbS to be optimal can be stated

as

1830

1831

1832

1833

1834

(a) K(1) < P ∗(0) − P DbS
error , and1835

(b) K(2) −K(1) > P DbS
error − P n.1836

Therefore, Appendix 7-Figure 1 shows the numerical magnitudes of the expressions on the
right-hand side of both inequalities (normalized by the value of P lim

n ). The most important
result from the analyses presented in this figure is that even for small values of n, the right-
hand side of the first inequality (see right panel) will be a much larger quantity than the
right-hand side of the second inequality (see left panel). Thus it can easily be the case that
K(1) and K(2) are such that both inequalities are satisfied: it is worth increasing m from 0
to 1, but not worth increasing m to any value higher than 1. In this case, the optimal sample
size will be m = 1, and the optimal encoding rule will be DbS.
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Additionally, we found that the computations of P DbS
error for each finite value of n are slightlyhigher than P lim

n even for small n values (blue line in the left panel), but quickly reach the
asymptotic value P DbS,lim

error ∕P lim
n as n increases. Thus, even for small values of n, the asymp-

totic approximation of optimal performance for the case of complete prior knowledge is
superior than DbS. We also found that the computations of P g

n for each finite value of n can-not reduce P lim
n by even 5 percent for small n values (orange line in the left panel). Moreover,

P g
n quickly reached the asymptotic value P lim

n , thus suggesting that the asymptotic solution
is virtually indistinguishable from the optimal solution (at least based on the flexible fam-
ily of g functions) also for finite values of n, which crucially are in the range of the values
found to explain the data in the numerosity discrimination experiment of our study. Thus,
these results confirm that the asymptotic approximations used in our study are not likely
to influence the conclusions of the experimental data in our work.
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Appendix 81857

Relation to Bhui and Gershman (2018)1858

Bhui and Gershman (2018) also argue that an efficient coding scheme can be implemented
by a version of DbS. However, both the efficient coding problem that they consider, and the
version of DbS that they consider, are different than in our analysis, so that our results are
not implied by theirs.

1859

1860

1861

1862

Like us, Bhui and Gershman consider encoding schemes in which the internal represen-
tation rmust take one of a finite number of values. However, their efficient coding problem
considers the class of all encoding rules that assign one or another of N possible values
of r to a given stimulus v. In their discussion of the ideal efficient coding benchmark, they
do not require r to be the ensemble of output states of a set of n neurons, each of which
must use the same rule as the other units, and therefore consider a more flexible family of
possible encoding rules, as we explain in more detail below.
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The encoding rule that solves our efficient coding problem is stochastic; even under the
assumption that the prior f (v) is known with perfect precision (the case of unbounded m in
themore general specification of our framework, so that sampling error in estimation of this
distribution from prior experience is not an issue), we show that it is optimal for the prob-
abilities p(k|v) not to all equal either zero or one. The optimal rule within the more flexible
class considered by Bhui and Gershman is instead deterministic: each stimulus magnitude
v is assigned to exactly one category k with certainty. The boundaries between the set of
n+ 1 categories furthermore correspond to the quantiles (1∕(n+ 1), 2∕(n+ 1),… , n∕(n+ 1)) of
the prior distribution, so that each category is used with equal frequency. Thus the optimal
encoding rule is given by a deterministic function y(v), a non-decreasing step function that
takes n + 1 discrete values.
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Bhui and Gershman show that when there is no bound on m, the number of samples
from prior experience that can be used to estimate the contextual distribution — their op-
timal encoding rule for a given number of categories N — can be implemented by a form
of DbS. However, the DbS algorithm that they describe is different than in our discussion.
Bhui and Gershman propose to implement the deterministic classification y(v) by comput-
ing the fraction of the sampled values ṽ that are less than v. In the limiting case of an infinite
sample from the prior distribution, this fraction is equal to F (v) with probability one, and
y(v) is then determined by which of the intervals [0, 1∕N), [1∕N, 2∕N),… , [(N − 1)∕N, 1] the
quantile F (v) falls within. Thus whereas in our discussion, DbS is an algorithm that allows
each of our units to compute its state using only a single sampled value ṽj , the DbS algo-rithm proposed by Bhui and Gershman to implement efficient coding is one in which a large
number of sampled values are used to jointly compute the output states of all of the units
in a coordinated way.
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Bhui and Gershman also consider the case in which only a finite number of samples
(ṽ1,… , ṽm) can be used to compute the representation ki of a given stimulus magnitude vi,and ask what kind of rule is efficient in that case. They show that in this case a variant of
DbS with kernel-smoothing is superior to the version based on the empirical quantile of vi(which now involves sampling error). In this more general case, the variant DbS algorithms
considered by Bhui and Gershman make the representation ki of a given stimulus proba-
bilistic; but the class of probabilistic algorithms that they consider remains different from
the one that we discuss. In particular, they continue to consider algorithms in which the
category ki can be an arbitrary function of vi and a single set of m sampled values that is
used to compute the complete representation; they do not impose the restriction that kibe the number of units giving a "high" reading when the output state of each of n individ-
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ual processing units is computed independently using the same rule (but an independent
sample of values from prior experience in the case of each unit).
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The kernel-smoothing algorithms that they consider are based on a finite set of m pair-
wise comparisons between the stimulus magnitude vi and particular sampled values ṽj , theoutcomes of which are then aggregated to obtain the internal representation ki. However,they allow the quantity K(vi − ṽj) computed by comparing vi to an individual sampled value
to vary continuously between 0 and 1, rather than having to equal either 0 or 1, as in our
case (where the state of an individual unit must be either "high" or "low"). The quantities
K(vi − ṽj) are able to be summed with perfect precision, before the resulting sum is then
discretized to produce a final representation that takes one of onlyN possible values. Thus
an assumption that only finite-precision calculations are possible is made only at the stage
where the final output of the joint computation of the processors must be “read out”; the
results of the individual binary comparisons are assumed to be integrated with infinite pre-
cision. In this respect, the algorithms considered by Bhui and Gershman are not required
to economize on processing resources in the same sense as the class that we consider; the
efficient coding problem for which they present results is correspondingly different from
the problem that we discuss for the case in which m is finite.
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Figure 3–Figure supplement 1. Model recovery for � fixed. The latent-mixture model was fit to
synthetic data obtained by simulating 10 times each encoding rule on the trials from participants
of Experiment 1. This also means that we used the same number of trials per condition that each
participant experienced in our experiments. Each histogram shows the proportion (Prop) of the
recovered encoding rule for synthetic data from a) the accuracy maximizing encoding rule �A, b)the reward maximizing encoding rule �R, and c) decision by sampling �D. The latent mixture model
can accurately recover the underlying encoding rule. In this model the � parameter was set to 2.
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Figure 3–Figure supplement 2. Discriminability differences between the different encoding rules.
This figure illustrates the discriminability differences between the different encoding rules consid-
ered in this study. Each dot represents the discriminability value for a pair of numerosity values v1and v2 presented on a given trial to the participants in Experiment 1. For the sampling models, the
discriminability rule is defined as

�(v1) − �(v2)
√

�(v1)(1 − �(v1)) + �(v2)(1 − �(v2))
,

where � corresponds to the respective Accuracymaximizing (A), Rewardmaximizing (R) or Decision
by Sampling (D) encoding rules. For the logarithmic model (L) the discriminability rule is defined as

log(v1) − log(v2).

The color of each dot represents the log of the number of occurrences for the pairs of input values
v1 and v2. Note that the encoding values of the presented numerosities are different depending
on the encoding rule, which makes it possible to identify the participants’ encoding strategy. Also
note that for our imposed prior distribution, the DbS encoding rule is similar to the logarithmic
rule, which explains the smaller difference in the quantitative predictions between these twomod-
els. Nevertheless, DbS was always the model that provided the best quantitative and qualitative
predictions irrespective of incentivized goals.
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Figure 3–Figure supplement 3. Model recovery with both � and n as free parameters. Synthetic
data preserving the trial set statistics and number of trials per participant used in Experiment 1
was generated 100 times for each encoding rule with various values of � and n. A model for each
encoding rule was fit to the data using maximum likelihood estimators with � and n as free param-
eters. The histograms represent the proportion best fitting models for a) Accuracy, b) Reward and
c) DbS models. Results are shown for different values of � (top: � = 1, middle: � = 2 and bottom:
� = 3) and n (left: n = 15, middle: n = 25 and right: n = 35). While DbS is always well recovered,
the Accuracy and Reward models tend to be confounded with each other. d) This same synthetic
data was fit with its generating model with � and n as free parameters using maximum likelihood
estimators. Results are shown for different values of � (first and second columns: � = 1, third and
fourth columns: � = 2 and fifth and sixth columns: � = 3) and n (top: n = 35, middle: n = 25 and
right: n = 15). Error bars represent one standard deviation of the recovered parameter across
simulations. The parameters are well recovered by the respective generating model.
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Figure 4–Figure supplement 1. Latent mixture model fits for each participant. Individual level
fit of the latent mixture model excluding (top) or including (bottom) choice history effects for a)
Experiment 1 and b) Experiment 2. The panels on the far right shows the average fit for all the
participants of the given experiment. DbS is strongly favored for nearly all participants and clearly
favored across participants, irrespective of the experimental condition. Including choice and cor-
rectness information of previous trials hasminimal influence in the results of these analyses, which
rules out the influence of these effects on the decision rule used by the participants.
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Figure 4–Figure supplement 2. Performance across time. Behavioral performance (mean± s.e.m.
across participants) averaged over a moving window of 100 trials for a) Experiment 1, b) Experi-
ment 2 and c) Experiment 3. Each daily session took place between two dotted vertical lines. The
performance of the participants is stable during and between daily sessions. Therefore, the quan-
titative and qualitative results presented in themain text are not likely to be influenced by changes
in performance over time.
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Figure 4–Figure supplement 3. Individual level fit of the latent mixture model combining data
across experiments and experimental conditions. Individual level fit of the latent mixture model
combining data across both experimental conditions for Experiment 1 (top) and Experiment 2 (bot-
tom). b) Individual level fit of the latent mixture model combining data across both experimental
conditions and both experiments. Each panel shows the results excluding (top) or including (bot-
tom) choice history effects. The panels labeled "All participants" show the average fit for all the
participants of the given experiment. DbS is strongly favored irrespective of incentivized goals.
Including the previous trial effects has minimal influence on these results.
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Figure 4–Figure supplement 4. Model comparison based on leave-one-out cross-validation met-
rics. Quantitative comparison of the models including choice and correctness effects of previous
trials based on leave-one-out cross-validation metrics. a) Difference in LOO and WAIC between
the best model (DbS (D) in all cases) and the competing models: Accuracy (A), Reward (R) and Log-
arithmic (L) models. Each panel shows the data grouped for each and across experiments and
experimental conditions (see titles on top of each panel). Including the previous choice and cor-
rectness effects has only little influence on the results (compare with Figure 4b in main text). The
DbS model provides the best fit to the behavioral data.
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Figure 4–Figure supplement 5. Reation times are similar in the perceptual and value conditions.
Mean reaction times of participants in experiments 1 and 2 in the perceptual (red) and value (blue)
condition. Error bars represent s.e.m. across participants. Reaction times are presented as a
function of the sumof the number of dots in both clouds (left), the absolute difference between the
number of dots in both clouds (middle) and the ratio of the number of dots in the most numerous
cloud over the less numerous cloud (right). Non-parametric ANOVA tests revealed no significant
differences in any of these behavioral assessments (all tests P>0.4).

1929

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted June 15, 2020. ; https://doi.org/10.1101/799064doi: bioRxiv preprint 

https://doi.org/10.1101/799064
http://creativecommons.org/licenses/by-nc-nd/4.0/


Manuscript submitted to eLife

Figure 4–Figure supplement 6. Behavior and model predictions as a function of sum and dif-
ference in dots. a) Average behavior in both conditions of experiments 1 and 2 as a function of
the sum of the number of dots in both clouds (Sum Ndots) and the absolute difference between
the number of dots in both clouds (Difference Ndots). The data is binned as in Figure 4 but now
expanded in two dimensions. b) Predictions of each encoding rule model fit with only n as a free
parameter shown with the same scale as in a. c) Linear regression between the behavior for each
combination of Sum Ndots and Difference Ndots bins and the predictions of each model for the
same bins. DbS captures best the changes in behavior across bins of sum and absolute difference
of the number of dots in both clouds. This analysis should not be considered as a quantitative
proof, but as a qualitative inspection of the results presented in Figure 4.
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Figure 4–Figure supplement 7. Model fit for the first experimental condition of each participant.
Similar as in Figure 4a., bars represent proportion of times an encoding rule (Accuracy (A, blue),
Reward (R, red), DbS (D, green)) was selected by the Bayesian latent-mixture model based on the
posterior estimates across participants. Each panel shows the data grouped for each and across
experimental conditions and experiments (see titles on top of each panel). The latent-mixture
model was only fit to the first condition that was carried out by each participant. As the participants
did not know of the second condition before carrying it out, they could not adopt compromise
strategies between the two objectives. Therefore, the fact that DbS is favored in the results is not
an artifact of carrying out two different conditions in the same participants.
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Figure 4–Figure supplement 8. Latent vector � posterior estimates. Bars represent the posterior
distribution of the latent vector �, with each bar representing an encoding rule (Accuracy (A, blue),
Reward (R, red), DbS (D, green)). Results are presented for all (a) sessions and (b) only the first
condition carried out by each participant. DbS is consistently the most likely encoding rule.
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Figure 5–Figure supplement 1. Performance across trial experience. These plots represent the
performance of the participants as a function of the number of trials they have experienced during
the session. The performance of the participants (black, shaded area represents ±s.e.m. across
participants) was averaged over a moving window of 21 trials and is shown for experiment 1 (a)
experiment 2 (b) and experiment 3 (c). The blue line represents the performance predicted by
the �-adaptation model using the samemoving window average. The model provides a good fit to
average performance.
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Figure 5–Figure supplement 2. Quantitative and dynamical analysis of adaptation over time. To
further investigate the adaptation of the prior, we fit three model of varying complexity to the data
of experiments 1, 2 and 3. The Fixed-� model (blue) is defined with a fixed � = 2. The Free-�
model (red) allows the � parameter to vary across participants but is kept constant across time.
The Adaptative-� corresponds to the model presented in Figure 5 where the prior adapts as the
participants gains experiencewith the experimental distribution of dots. To allow a fair comparison
with the Free-� model, the � parameter, corresponding to the asymptotic value of the prior, was
free to vary across participants. The log-likelihood of each model on each trial were averaged over
a moving window of 100 trials and the log-likelihood of the Adaptative-� model was subtracted
for comparison. Vertical dashed lines represent 1, 2 and 3 times �, where � controls the rate of
adaptation in the Adaptative-� model. The Adaptative-� model provides a better fit for the first
trials (until around 2�), these trials correspond to the adaptation period where the � parameter
is changing in the Adaptative-� model (see Figure 5). After this point the Adaptative-� and Free-�
models provide a similar fit. This is to be expected as the function controlling the decay of � reaches
its asymptotic value, leaving the twomodel virtually identical. The Fixed-� provides overall a worse
fit, except for the early trials.
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