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Abstract

Disease development and cell differentiation both involve dynamic changes; therefore,
the reconstruction of dynamic gene regulatory networks (DGRNs) is an important but
difficult problem in systems biology. With recent technical advances in single-cell RNA
sequencing (scRNA-seq), large volumes of scRNA-seq data are being obtained for
various processes. However, most current methods of inferring DGRNs from bulk
samples may not be suitable for scRNA-seq data. In this work, we present scPADGRN,
a novel DGRN inference method using time-series scRNA-seq data. scPADGRN
combines the preconditioned alternating direction method of multipliers with cell
clustering for DGRN reconstruction. It exhibits advantages in accuracy, robustness and
fast convergence. Moreover, a quantitative index called Differentiation Genes’
Interaction Enrichment (DGIE) is presented to quantify the interaction enrichment of
genes related to differentiation. From the DGIE scores of relevant subnetworks, we infer
that the functions of embryonic stem (ES) cells are most active initially and may
gradually fade over time. The communication strength of known contributing genes that
facilitate cell differentiation increases from ES cells to terminally differentiated cells. We
also identify several genes responsible for the changes in the DGIE scores occurring
during cell differentiation based on three real single-cell datasets. Our results
demonstrate that single-cell analyses based on network inference coupled with
quantitative computations can reveal key transcriptional regulators involved in cell
differentiation and disease development.

Author summary

Single-cell RNA sequencing (scRNA-seq) data are gaining popularity for providing
access to cell-level measurements. Currently, time-series scRNA-seq data allow
researchers to study dynamic changes during biological processes. This work proposes a
novel method, scPADGRN, for application to time-series scRNA-seq data to construct
dynamic gene regulatory networks, which are informative for investigating dynamic
changes during disease development and cell differentiation. The proposed method
shows satisfactory performance on both simulated data and three real datasets
concerning cell differentiation. To quantify network dynamics, we present a quantitative
index, DGIE, to measure the degree of activity of a certain set of genes in a regulatory
network. Quantitative computations based on dynamic networks identify key regulators
in cell differentiation and reveal the activity states of the identified regulators.
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Specifically, Bhlhe40, Msx2, Foxa2 and Dnmt3l might be important regulatory genes
involved in differentiation from mouse ES cells to primitive endoderm (PrE) cells. For
differentiation from mouse embryonic fibroblast cells to myocytes, Scx, Fos and Tcf12
are suggested to be key regulators. Sox5, Meis2, Hoxb3, Tcf7l1 and Plagl1 critically
contribute during differentiation from human ES cells to definitive endoderm cells.
These results may guide further theoretical and experimental efforts to understand cell
differentiation processes and explore cell heterogeneity.

Introduction 1

In systems biology, the reconstruction of dynamic gene regulatory networks (DGRNs) 2

has proven to be a crucial tool for understanding processes related to disease 3

development and cell differentiation, such as hematopoietic specification [1], T cell 4

activation [2], influenza infection, acute lung injury, and type 2 diabetes [3]. DGRNs 5

specify links between genes over time. By exploring the differences in dynamic networks, 6

researchers are able to comprehend the mechanisms causing complex diseases [3], etc. 7

Recently, large quantities of single-cell RNA sequencing (scRNA-seq) data have been 8

obtained for various biological processes due to advances in sequencing techniques [4–7]. 9

However, most current methods of inferring DGRNs for bulk samples may not be 10

suitable for scRNA-seq data. For example, methods involving ordinary differential 11

equations (ODEs) become invalid since the biological meaning of a sample changes from 12

the average for several cells in bulk data to the value for a single cell. Several individual 13

cells can be sequenced at once, causing the form of the gene expression data to change 14

from a single vector to several vectors, or a matrix. The cells sequenced at different 15

time points are different. It is not possible to describe the dynamics of a single cell 16

because that cell does not even exist at the next time point. However, the dynamics of 17

cells at the cluster level can be described by ODEs. This is a compromise approach to 18

exploring cell heterogeneity information based on single-cell data. 19

In this work, we present scPADGRN, a novel method of inferring DGRNs from 20

time-series scRNA-seq data. scPADGRN combines the preconditioned alternating 21

direction method of multipliers (PADMM) with cell clustering for DGRN reconstruction. 22

The cell clustering process includes ranking cells in accordance with their pseudotimes 23

and merging cells into clusters. Our optimization model considers network precision, 24

network sparsity and network continuity. The PADMM is used to solve the optimization 25

model to obtain the DGRN. Multiple matrices are updated, and three subproblems are 26

solved by the PADMM algorithm in each iteration. 27

Simulated data and three real datasets concerning cell differentiation have been used 28

to test the performance of scPADGRN. We propose a quantity called Differentiation 29

Genes’ Interaction Enrichment (DGIE) to quantify the changes in the interactions of a 30

certain set of genes in a DGRN. First, we chose genes involved in the same biological 31

processes or KEGG pathways to visualize subnetworks of DGRNs and computed their 32

DGIE scores. Then, we selected all genes known to contribute to the process of cell 33

differentiation and computed the corresponding DGIE scores. We also identified several 34

genes responsible for the drastic changes in the DGIE scores in each dataset. These 35

genes might be key regulators in cell differentiation. Our results demonstrate that 36

single-cell analyses based on network inference coupled with quantitative computations 37

can reveal key transcriptional regulators in cell differentiation and disease development. 38
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Materials and methods 39

Simulated datasets 40

In this section, we describe the simulation of cluster-specific data Y = [Y (1), · · · , Y (N)]. 41

First, we simulated the X1 values in time-series single-cell data X = [X1, · · · , XN ] using 42

the scRNA-seq simulation tool Splatter [12]. After setting appropriate numbers of genes 43

(m), cells (n) and cell clusters (r), we generated the initial gene expression data X1 44

using Splatter. Then, we constructed cluster-specific data Y (1) by merging vectors 45

(cells) belonging to the same cluster into a single vector, representing the gene 46

expression value of the cluster. The next step was to generate the Y (t), 2 ≤ t ≤ N . We 47

defined the dynamic network {A(1), · · · , A(N − 1)} in the form of random 0-1 matrices 48

and Y (t+ 1) = A(t)Y (t) + Y (t), 1 ≤ t ≤ N − 1. After these steps, cluster-specific data 49

Y = [Y (1), · · · , Y (N)] were obtained. 50

In the experiments on the simulated data, there were two main questions of concern: 51

how noise and the number of clusters r affect the network accuracy. To answer these 52

two questions, we conducted two separate experiments. In the first experiment, we set 53

the number of genes to 100, 200, 300, 400 and 500, individually. The number of cells 54

was set to 10 times the number of genes, and the number of clusters was equal to the 55

number of genes. We also set the number of time points to N = 5. Thus, we obtained 56

corresponding cluster-specific data Y = [Y (1), · · · , Y (N)]. Here, we considered the 57

noise to be independent and to follow a Gaussian distribution with a mean value of 58

µ = 0 and a standard deviation of σ = 0.01, 0.02 or 0.05. By adding noise to the 59

cluster-specific data Y = [Y (1), · · · , Y (N)], we obtained noisy cluster-specific datasets. 60

In the second experiment, we set the number of genes to 200 and 400. The number 61

of cells was set to 10 times the number of genes, and the number of clusters was varied 62

from 40 to 200 and from 40 to 400, separately. The number of time points was again set 63

to N = 5. 64

Three real datasets 65

Three time-series scRNA-seq datasets concerning cell differentiation were obtained 66

from [8], with pseudotimes inferred by Monocle [9]. Dataset 1 was derived from mouse 67

embryonic stem cells (ES cells) differentiating to primitive endoderm (PrE) cells [5]. A 68

total of 356 cells, which were sequenced at 0, 12, 24, 48 and 72 h, were used. Dataset 2 69

was derived from mouse embryonic fibroblast cells differentiating to myocytes [6]. A 70

total of 405 cells were sequenced at days 0, 2, 5, and 22. Dataset 3 contains data from 71

758 cells sequenced at 0, 12, 24, 36, 72 and 96 h. Dataset 3 was derived from human ES 72

cells differentiating to definitive endoderm cells [7]. For all three real data examples, 73

reference networks from the Transcription Factor Regulatory Network database 74

(http://www.regulatorynetworks.org) were used to validate the inferred networks. 75

DGRN reconstruction 76

In this work, we propose a novel DGRN inference method called scPADGRN. The 77

framework of scPADGRN is shown in Fig 1. Two main steps are needed to infer DGRNs. 78

First, we cluster scRNA-seq data for different cells based on cell pseudotrajectories to 79

convert single-cell-level data into cluster-level data. Details on the cell clustering process 80

are provided in Fig 2. Second, the PADMM method is used to solve the optimization 81

problem with the reshaped data. Fig 3 shows a flowchart of the PADMM algorithm. 82
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Fig 1. Framework of scPADGRN. (a) Time-series scRNA-seq data. Several cells
are sequenced at each time point. (b) Time-series cluster-specific RNA-seq data. The
same clusters exist at each time point. (c) Optimization problem and algorithm. Three
features of DGRNs are considered in the optimization problem: precision, sparsity and
continuity. The PADMM method is used to solve the optimization problem. (d)
Network changes during specific biological processes. The purple nodes represent the
genes involved in the same biological processes. Several links change during a given
process. (e) DGIE scores for quantifying the network differences and identifying
regulators. The nodes shown in pink are functional genes (fg). The nodes shown in
green are other genes (og). The DGIE score measures the activity state of the
functional genes. The blue and purple links are used to compute the DGIE scores. In
this toy model, the DGIE score increases over time since the interactions of the
functional genes become more intense. The circled gene, fg3, is the identified key
transcriptional regulator.

Fig 2. Clustering process for data conversion. (a) Time-series scRNA-seq data
Et, 1 ≤ t ≤ 3. Several cells are sequenced at each time point. (b) Corresponding
scRNA-seq data Xt, 1 ≤ t ≤ 3, under pseudotimes. The cells are arranged on a
pseudotime line. (c) Time-series cluster-specific data. The same clusters exist at each
time point on the real timeline.

Fig 3. Flowchart of the PADMM method. The processes include inputting the
cluster-specific data Y (1), · · · , Y (N), initializing the variables, and updating the
A(t), 1 ≤ t ≤ N − 1. The PADMM algorithm is used to solve all three subproblems in
each iteration.

Data conversion: from single-cell-level data to cluster-level data 83

First, we introduce the time-series scRNA-seq data. The time-series scRNA-seq data are 84

denoted by Et, 1 ≤ t ≤ N, representing matrices of gene expression values at N different 85

time points. The Et, 1 ≤ t ≤ N, are mt × nt numerical matrices whose rows represent 86

the genes (features) and whose columns represent the cells (samples) at time t. Element 87

(Et)ij of Et is the expression value of the i-th gene in the j-th cell at time t. Generally, 88

the genes at each time point are identical. Namely, their features are identical, and the 89

number of features is m1 = m2 = · · · = mN = m. In contrast, the cells at each time 90

point are totally different individuals. Usually, the number of samples ni is not equal to 91

nj if i 6= j. 92

In Fig 2, an example with three time points is used to illustrate the two steps of 93

data conversion. The first step is to acquire the pseudotrajectory information of all cells 94

and rank the cells at each real time point from early to late stages in accordance with 95

their pseudotimes. Namely, we realign the columns of Et, 1 ≤ t ≤ N . The reshaped 96

data are denoted by Xt, 1 ≤ t ≤ N . Mature technologies such as Monocle [9] can be 97

employed to infer the cell pseudotrajectories. As part of this step, we project the cells 98

on the real timeline to cells on a pseudotime line. 99

The second step is to cluster the cells on the pseudotime line into clusters on the real 100

timeline. In detail, the conversion process includes the following operations. We set the 101

number of clusters r equal to the minimum of the numbers of cells nt, 1 ≤ t ≤ N . For 102

the realigned Xt, we compute the distance between the gene expression vectors of every 103

pair of adjacent cells. Then, we take the largest nt − r distances among the obtained 104

nt − 1 distances and link their corresponding cells. We consider linked cells to belong to 105

the same cluster. In this way, r ordered clusters are obtained. For the r ordered clusters 106

of Xt, we use yj(t) to denote the gene expression of the j-th cluster at time t. yj(t) is a 107
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column vector consisting of the row means of the matrix composed of the cells in the 108

j-th cluster at time t. 109

We adopt the notation Y (t) = [y1(t), · · · , yk(t)], 1 ≤ t ≤ N , where the 110

Y (t), 1 ≤ t ≤ N, are m× r matrices representing the gene expression levels of the r 111

clusters at time t. Through these steps, we convert the time-series single-cell data 112

X = [X1, · · · , XN ] into time-series cluster-specific gene expression data 113

Y = [Y (1), · · · , Y (N)]. 114

Since the cells at each time point are different, it is difficult to describe the 115

expression dynamics at the single-cell level. For example, suppose that cell 1 is 116

sequenced at t1 and cell 2 is sequenced at t2, where t1 < t2. Cell 1 will be destroyed 117

upon being sequenced at t1. Therefore, cell 1 does not correspond to any cells at t2. 118

One feasible solution is to describe the dynamics at the cluster level; in this way, little 119

information about cell heterogeneity is lost. 120

Optimization of DGRN 121

The expression dynamics of the i-th gene can be described by the following ODE: 122

dY Ti (t)

dt
= fi(Y1(t), · · · , Ym(t), Pi(t)) =

m∑
j=1

pij(t)vij(t) (1)

where Yi(t) is a continuous vector in time t, representing the i-th row of Y (t). Yi(t) 123

represents the expression level of the i-th gene. vij(t) and pij(t) denote the reaction and 124

the reaction rate, respectively, from the j-th gene to the i-th gene at time t. Pi(t) is a 125

parameter set. 126

To construct the DGRN, we need to search for the optimal parameter set Ω = ∪
t
Pi(t) 127

in Eq (1). This problem can be converted into the problem of finding a set Ω to fit the 128

simulation results to the experimental results. We consider the augmentation of 129

cluster-specific data between two adjacent time points. Let the sequencing times be 130

denoted by tr, and let tr = 1, 2, · · · , N . The optimization problem is as follows: 131

min
pij(t)∈Pi(t)

J(pij) =
1

2
||(∆Y Ti (tr))

(exp) − (∆Y Ti (tr))
(sim)||22

s.t.
dY Ti (t)

dt
= fi(Y1(t), · · · , Ym(t), Pi(t)) =

m∑
j=1

pij(t)vij(t).
(2)

The objective of problem (2) is to optimize the augmentation of the gene expression 132

of the i-th gene at time tr, and it is a nonlinear dynamic optimization problem (DOP), 133

which is one of the most difficult types of optimization problems to solve. To simplify 134

this problem, we presume that the interactions among genes between two adjacent 135

discrete time points tr and tr + 1 are linear. We use a piecewise linearization technique 136

to approximate Eq (1): 137

dY Ti (t)

dt
|t∈[tr,tr+1] = [Y T1 (t), · · · , Y Tm (t)] ·ATi (tr) = Y T (t) ·ATi (tr), (3)

where Ai(tr) is the i-th row of the m×m matrix A(tr). Thus, the optimization 138

problem (2) is converted into 139
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min
Ai(tr)

1

2
||(∆Y Ti (tr))

(exp) − (∆Y Ti (tr))
(sim)||22

s.t.
dY Ti (t)

dt
|t∈[tr,tr+1] = [Y T1 (t), · · · , Y Tm (t)] ·ATi (tr) = Y T (t) ·ATi (tr),

(4)

where ∆Y Ti (tr) is the difference in gene expression between tr and tr + 1. (·)(exp) and 140

(·)(sim) denote the experimental and simulated results, respectively. 141

The objective of problem (4) is to optimize the parameters of the dynamics of the 142

i-th gene at time tr. In the next step, we sum all m genes and all N time points 143

simultaneously. 144

min
A(1),··· ,A(N−1)

L =
N−1∑
tr=1

m∑
i=1

1

2
||(∆Y Ti (tr))

(exp) − (∆Y Ti (tr))
(sim)||22. (5)

With Eq (3), we also have the following approximation: 145

∆Y Ti (tr) = Y Ti (tr + 1)− Y Ti (tr) ≈ Y T (tr) ·ATi (tr).

Then, the objective function L in problem (5) can be written as 146

L =
N−1∑
tr=1

m∑
i=1

1

2
||(∆Y Ti (tr))

(exp) − (∆Y Ti (tr))
(sim)||22

=
1

2

N−1∑
tr=1

m∑
i=1

||[Y Ti (tr + 1)− Y Ti (tr)]− Y T (tr)A
T
i (tr)||22

=
1

2

N−1∑
tr=1

||[(Y T1 (tr + 1)− Y T1 (tr)), · · · , (Y Tm (tr + 1)− Y Tm (tr))]

− Y T (tr)[A
T
1 (tr), · · · , ATm(tr)]||2F

=
1

2

N−1∑
tr=1

||Y T (tr + 1)− Y T (tr)− Y T (tr)A
T (tr)||2F

=
1

2

N−1∑
tr=1

||Y (tr + 1)− Y (tr)−A(tr)Y (tr)||2F

=
1

2

N−1∑
t=1

||Y (t+ 1)− Y (t)−A(t)Y (t)||2F .

(6)

In the DGRN {A(1), · · · , A(N − 1)}, the nodes stand for genes, and the links stand 147

for gene regulatory relationships between genes. The DGRN is a directed dynamic 148

network whose positive and negative links correspond to activation and suppression 149

relationships, respectively. Usually, DGRNs are sparse and continuous. In other words, 150

most parameters in problem (5) will be zero, and the differences between the network 151

states at two adjacent time points should be slight. Therefore, we define the following 152

optimization problem: 153
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min
A(1),··· ,A(N−1)

1

2

N−1∑
t=1

‖[Y (t+ 1)− Y (t)]−A(t)Y (t)‖2F + α
N−1∑
t=1

‖A(t)‖1

+ β
N−2∑
t=1

‖A(t+ 1)−A(t)‖1,

(7)

where the first term evaluates the precision of problem (5), the second term is the 154

L1-norm of the dynamic network to guarantee the sparsity of the network, and the third 155

term imposes the continuity assumption on the dynamic network states at consecutive 156

time points. Both sparsity and continuity need to be considered in biological 157

networks [3]. The parameters α and β are tuning parameters that control the penalties 158

for sparsity and continuity, respectively. 159

PADMM Algorithm 160

There are N − 1 matrices that need to be optimized in problem (7). We use the 161

alternating descent method to iteratively solve the problem. In each iteration, we 162

update the N − 1 matrices sequentially. For each matrix A(t), 1 ≤ t ≤ N − 1, we update 163

A(t) while keeping the other N − 2 matrices fixed. 164

In the k-th iteration, for the update of A(t), 1 ≤ t ≤ N , there are three different 165

cases, each corresponding to a different subproblem. 166

• Subproblem 1 167

When t = 1, there are three terms in the objective function. 168

A(1)k+1 = argmin
A(1)

1

2
‖A(1)Y (1)− [Y (2)− Y (1)]‖2F + α‖A(1)‖1

+ β‖A(2)k −A(1)‖1.
(8)

• Subproblem 2 169

When t = 2, ..., N − 2, there are four terms in the objective function. 170

A(t)k+1 = argmin
A(t)

1

2
‖A(t)Y (t)− [Y (t+ 1)− Y (t)]‖2F + α‖A(t)‖1

+ β‖A(t+ 1)k −A(t)‖1 + β‖A(t)−A(t− 1)k‖1.
(9)

• Subproblem 3 171

When t = N − 1, there are three terms in the objective function. 172

A(N − 1)k+1 = argmin
A(N−1)

1

2
‖A(N − 1)Y (N − 1)− [Y (N)− Y (N − 1)]‖2F

+ α‖A(N − 1)‖1 + β‖A(N − 1)−A(N − 2)k‖1.
(10)

The PADMM is a variation of the alternating direction method of multipliers 173

(ADMM, [11]). Before introducing the PADMM, we present the ADMM algorithm for 174

solving these three subproblems. The scaled ADMM [11] is employed here since it is a 175

more convenient form. 176
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For subproblem 1, first, we convert it into ADMM form: 177

min
A(1),B(1),C(1)

1

2
‖A(1)Y (1)− [Y (2)− Y (1)]‖2F + α‖B(1)‖1 + β‖A(2)k −D(1)‖1

s.t. B(1)−A(1) = 0, D(1)−A(1) = 0.

Its augmented Lagrangian is 178

Lρ(A(1), B(1), D(1), U(1),W (1))

=
1

2
‖A(1)Y (1)− [Y (2)− Y (1)]‖2F + α‖B(1)‖1 + β‖A(2)k −D(1)‖1

+
ρ

2
‖B(1)−A(1) + U(1)‖2F −

ρ

2
‖U(1)‖2F +

ρ

2
‖D(1)−A(1) +W (1)‖2F

− ρ

2
‖W (1)‖2F .

The iterations are as follows: 179



A(1)k+1 =[(Y (2)− Y (1)) · Y (1)T + ρk(B(1)k + U(1)k +D(1)k

+W (1)k)] · [Y (1)Y (1)T + 2ρkI]−1

B(1)k+1 = Sα/ρk(A(1)k − U(1)k)

U(1)k+1 = U(1)k +B(1)k −A(1)k

D(1)k+1 = Sβ/ρk(A(1)k −W (1)k −A(2)k) +A(2)k

W (1)k+1 = W (1)k +D(1)k −A(1)k

,

where the soft thresholding operator S is defined as 180

Sκ(a) =


a− κ a > κ

0 |a| ≤ κ
a+ κ a < −κ

.

For subproblem 2, we convert it into ADMM form: 181

min
A(t),B(t),C(t),D(t)

1

2
‖A(t)Y (t)− [Y (t+ 1)− Y (t)]‖2F + α‖A(t)‖1 + β‖A(t+ 1)−A(t)‖1

+ β‖A(t)−A(t− 1)‖1
s.t. B(t)−A(t) = 0, C(t)−A(t) = 0, D(t)−A(t) = 0.

Its augmented Lagrangian is 182

Lρ(A(t), B(t), C(t), D(t), U(t), V (t),W (t))

=
1

2
‖A(t)Y (t)− [Y (t+ 1)− Y (t)]‖2F + α‖A(t)‖1 + β‖A(t+ 1)−A(t)‖1

+ β‖A(t)−A(t− 1)‖1 +
ρ

2
‖B(t)−A(t) + U(t)‖2F −

ρ

2
‖U(t)‖2F

+
ρ

2
‖C(t)−A(t) + V (t)‖2F −

ρ

2
‖V (t)‖2F +

ρ

2
‖D(t)−A(t) +W (t)‖2F

− ρ

2
‖W (t)‖2F .
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The iterations are as follows: 183



A(t)k+1 =[(Y (t+ 1)− Y (t)) · Y (t)T + ρk(B(t)k + U(t)k + C(t)k + V (t)k

+D(t)k +W (t)k)] · [Y (t)Y (t)T + 3ρkI]−1

B(t)k+1 = Sα/ρk(A(t)k − U(t)k)

U(t)k+1 = U(t)k +B(t)k −A(t)k

C(t)k+1 = Sβ/ρk(A(t)k − V (t)k −A(t− 1)k) +A(t− 1)k

V (t)k+1 = V (t)k + C(t)k −A(t)k

D(t)k+1 = Sβ/ρk(A(t)k −W (t)k −A(t+ 1)k) +A(t+ 1)k

W (t)k+1 = W (t)k +D(t)k −A(t)k

.

Subproblem 3 is similar to subproblem 1. When t = N − 1, 184



A(N − 1)k+1 =[(Y (N)− Y (N − 1)) · Y (N − 1)T + ρk(B(N − 1)k + U(N − 1)k

+ C(N − 1)k + V (N − 1)k)] · [Y (N − 1)Y (N − 1)T + 2ρkI]−1

B(N − 1)k+1 = Sα/ρk(A(N − 1)k − U(N − 1)k)

U(N − 1)k+1 = U(N − 1)k +B(N − 1)k −A(N − 1)k

C(N − 1)k+1 = Sβ/ρk(A(N − 1)k − V (N − 1)k −A(N − 2)k) +A(N − 2)k

V (N − 1)k+1 = V (N − 1)k + C(N − 1)k −A(N − 1)k

.

With some adjustments to the ADMM described above, one can use the PADMM to 185

achieve a faster computation speed. Proper preconditioning processes are applied for 186

the computation of A(t), 1 ≤ t ≤ N − 1. 187

The form of the iterations of A(t), 1 ≤ t ≤ N − 1, arises from
∂Lρ
∂A(t) = 0. Consider 188

t = 1 (subproblem 1) as an example. 189

∂Lρ(A(1), B(1), D(1), U(1),W (1))

∂A(1)

=A(1) · [Y (1)Y (1)T + 2ρI]− (Y (2)− Y (1)) · Y (1)T

− ρ(B(1) + U(1) +D(1) +W (1))

=0

is equivalent to 190

A(1) · [Y (1)Y (1)T + 2ρI]

=(Y (2)− Y (1)) · Y (1)T + ρ(B(1) + U(1) +D(1) +W (1)).
(11)

Usually, in the ADMM, the update A(1) of takes the form 191

A(1) = [(Y (2)− Y (1)) · Y (1)T + ρ(B(1) + U(1) +D(1) +W (1))] · [Y (1)Y (1)T + 2ρI]−1.

With the proposed preconditioning, ,we add −2ρA(1) to both sides of Eq (11). As the 192

result, 193

A(1) =[(Y (2)− Y (1)) · Y (1)T + ρ(B(1) + U(1)

+D(1) +W (1)− 2A(1))] · [Y (1)Y (1)T ]+,
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where (M)+ denotes the general inverse of the matrix M , in case M is singular. 194

Similarly, we can obtain the PADMM iterations of A(t), 1 ≤ t ≤ N − 1 for all 195

subproblems as follows: 196

A(t)k+1 =



[(Y (t+ 1)− Y (t)) · Y (t)T + ρ(B(t)k + U(t)k +D(t)k

+W (t)k − 2A(t)k)] · [Y (t)Y (t)T ]+
t = 1

[(Y (t+ 1)− Y (t)) · Y (t)T + ρ(B(t)k + U(t)k + C(t)k

+ V (t)k +D(t)k +W (t)k − 3A(t)k)] · [Y (t)Y (t)T ]+
1 < t < N

[(Y (t)− Y (t− 1)) · Y (t− 1)T + ρ(B(t− 1)k + U(t− 1)k

+ C(t− 1)k + V (t− 1)k − 2A(t− 1)k)] · [Y (t− 1)Y (t− 1)T ]+
t = N

.

The [Y (t)Y (t)T ]+, 1 ≤ t ≤ N, are unchanged in all iterations; therefore, they can be 197

stored as constants. Hence, the PADMM can save N matrix inversion computations in 198

every iteration except the first. Singular value decomposition is used to compute the 199

general inverses of the [Y (t)Y (t)T ]+, 1 ≤ t ≤ N . Proper preconditioning makes the 200

computation of the matrix inverses easier while maintaining an equivalent precision. 201

Details on the theoretical results can be found in [10]. 202

Parameter selection 203

• Algorithm parameters 204

The number of clusters r is set to the minimum among the numbers of cells at all 205

time points. When t = 1, we take A(t), U(t), V (t) and W (t) as zero matrices and B(t), 206

C(t) and D(t) as random matrices. A maximum number of iterations M and a relative 207

error threshold ε are set. Iteration is terminated when the maximum number of 208

iterations M is reached or when max
i=1,··· ,N−1

‖A(i)k+1−A(i)k‖
‖A(i)k‖ < ε. The parameter ρ is 209

chosen such that ρk+1 = ρk/2. For details on the algorithm parameters, please refer 210

to [11]. 211

• Model selection 212

The chosen model parameters α and β strongly affect the network structure. 213

Bayesian information criterion (BIC) can be used to optimize the parameters α and 214

β [3]. Let L∗ denote the objective function of optimization problem (7). 215

We formulate the BIC optimization problem as follows: 216

min
α,β∈Λ

BIC(α, β) = ln(L∗(α, β))− ln(
N−1∑
t=1

Dim(A(t))),

where Λ = {α0, ..., αl}. Here, αi+1 = αiρ, i = 0, ..., l − 1, with 0 < ρ < 1. Dim(·) 217

denotes the dimensionality of the argument in parentheses, and we consider this quantity 218

to take non-negative values, as follows: Dim(A(t)) = ..., where δ > 0 is a threshold. 219

• Choice of network thresholds 220

Once the weighted adjacent matrices are computed, different network thresholds may 221

lead to different network structures. We assume that the first network state of the 222

dynamic network has the same average degree as the reference network, whose links 223

have been confirmed by biological experiments. 224
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Analysis of network differences 225

DGIE scores for measuring changes in the interactions of a certain set of 226

genes in a DGRN 227

To quantify the differences in the dynamic network states over time, we propose the 228

DGIE score. Suppose that we want to study the progress of cell differentiation. Let the 229

DGRN states be denoted by Gt = (Vt, Et), 1 ≤ t ≤ N − 1, where N − 1 is the number of 230

network states. Suppose that the vertex set is V = ∪
1≤t≤N−1

Vt. We divide the vertex set 231

V into two disjoint subsets V(1) and V(2). V(1) is the set of genes that are known to 232

contribute to processes related to cell differentiation, including cell growth, proliferation, 233

and development. This information is available in gene annotation databases, such as 234

Metascape [14]. Another possible choice for V(1) is to select genes that belong to the 235

same pathway. In this case, the DGIE scores can help identify the activation states of 236

this pathway. After V(1) is determined, V(2) is the set of the remaining genes. 237

We define the DGIE score as 238

DGIEt =

|Et(V(1))|+|Et(V(1),V(2))|
|V(1)|
|Et(Vt)|
|V |

,

where 1 ≤ t ≤ N − 1 and DGIEt is an N − 1-dimensional array. Et(V(1)) is the edge set 239

of the subgraph whose vertex set is V(1) in the t-th network state of the DGRN. 240

Et(V(1), V(2)) is the edge set of the bigraph whose vertex sets are V(1) and V(2) in the 241

t-th network state of the DGRN. | · | is the number of elements of a set. The 242

denominator |Et(Vt)|V in the definition of DGIEt is the ratio of the number of links in Gt 243

to the number of genes in V , and it is used to alleviate the effects caused by different 244

numbers of links at different time points. The numerator
|Et(V(1))|+|Et(V(1),V(2))|

|V(1)|
in the 245

definition of DGIEt is the ratio of the sum of the number of links in V(1) and the 246

number of links between V(1) and V(2) to the number of genes in V(1). The definition of 247

DGIEt mainly concerns the sum of the number of links in V(1) and the number of links 248

between V(1) and V(2). To minimize the effects of parameters such as |V(1)|, |Et(V(1))| 249

and |V |, we define DGIEt as shown above to measure the communication ability of the 250

genes in V(1). 251

Local differences: dynamic subnetworks and DGIE scores for specific 252

biological processes 253

Extracting subnetworks from a DGRN is an efficient way to clearly see the network 254

differences. We choose genes related to the same biological process or pathway and 255

extract their corresponding subnetworks. By comparing these subnetworks with the 256

reference network, one can easily see the corresponding network differences from the 257

subnetworks themselves, including changes in interactions and directions. 258

Then, we can compute the DGIE scores of the subnetworks and look for invariant 259

characteristics. For real data applications, we focus here on subnetworks related to ES 260

cell differentiation processes. 261

Global differences: DGIE scores of all known contributing genes 262

For the biological processes described by DGRNs, for example, differentiation from 263

mouse ES cells to PrE cells, many genes contribute to related tasks, such as the 264

regulation of embryonic development, the determination of cell fate, cell cycle 265

regulation, and the encoding of de novo DNA methyltransferases. Information about 266
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gene annotation can help to identify these known contributing genes. With these 267

contributing genes as V1, computing the DGIE scores enables us to learn more about 268

changes in the communication strength of these genes. 269

Identifying key regulators responsible for changes in DGIE scores 270

To investigate the mechanisms underlying drastic changes in DGIE scores, it is 271

important to identify the genes which are responsible for those changes. By removing 272

one gene from V(1) at a time, we can observe the resulting changes in the DGIE scores. 273

If the removed gene is irrelevant to the changes in the DGIE scores, the DGIE scores 274

should still drastically vary. On the other hand, if the DGIE scores are almost identical 275

at each time point after the removal of a certain gene, then this gene should be 276

considered responsible for the originally observed variations. Furthermore, with the 277

removal of a combination of genes (a complex), the standard deviation of the DGIE 278

scores at all time points may also be reduced to a rather low level. In this case, the 279

removed complex is our target. The method of complex identification involves the 280

following steps. First, the differentiation-related genes are ranked in accordance with 281

their ability to reduce the standard deviation of the DGIE scores. Then, the first 282

d, d = 1, 2, · · · , genes in the ranked list are taken as a complex, and the DGIE scores 283

after the removal of this complex are calculated. This process is repeated until the 284

standard deviation of the DGIE scores no longer decreases. The corresponding complex 285

is what we are looking for. 286

After identifying the complex responsible for the changes in the DGIE scores for 287

each dataset, we can then investigate the role of complexes in DGRNs. We extract links 288

adjacent to these genes at each time point and draw the corresponding differential 289

network. By comparing the differential network with the reference network, some of the 290

links can be confirmed to be biologically meaningful. The links without such 291

confirmation are the links that we predict to be crucial to the biological process. 292

Results 293

In this section, we report simulation experiments carried out to demonstrate the 294

effectiveness of the proposed algorithms. Then, we infer and analyze DGRNs based on 295

three real scRNA-seq datasets related to cell differentiation processes. 296

Numerical experiments on simulated data 297

Effects of noise level on network accuracy 298

The methods used to construct the simulated data are described in the materials and 299

methods section. Here, two algorithms, the ADMM and PADMM algorithms, were 300

tested. The runtime, numbers of iterations, reconstruction errors, and areas under the 301

receiver operating characteristic curves (AUCs) were calculated. Table 1 shows the 302

results for 300 and 500 genes. The complete results are listed in S1 Table. 303

From the results in Table 1 and S1 Table, reconstruction errors increase and AUCs 304

decrease as the noise level increases, as expected. There is little difference on AUC for 305

ADMM and PADMM while PADMM reduces runtime by 67.77% on average. From the 306

perspective of binary classification, these two algorithms are both capable of identifying 307

most links. 308
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Table 1. Effects of noise level on network accuracy.

gene number=300

Noise Method Time(s) #iteration
Reconstruction error AUC

t1 t2 t3 t4 t1 t2 t3 t4

0
ADMM 24.676 24 2.000 3.420 4.815 6.270 0.998 1.000 1.000 1.000

PADMM 9.854 32 2.000 3.420 4.815 6.270 0.998 1.000 1.000 1.000

0.01
ADMM 23.896 25 8.595 16.626 18.136 23.125 0.998 1.000 1.000 1.000

PADMM 9.006 30 8.608 16.744 18.235 23.220 0.998 1.000 1.000 1.000

0.02
ADMM 23.952 25 16.402 37.052 41.270 38.369 0.998 1.000 1.000 1.000

PADMM 8.511 28 16.422 37.328 41.522 38.461 0.998 1.000 1.000 1.000

0.05
ADMM 23.925 25 53.181 81.860 69.184 71.881 0.994 0.985 0.992 0.990

PADMM 8.550 28 53.430 82.395 69.383 72.058 0.994 0.984 0.992 0.990
gene number=500

Noise Method Time(s) #iteration
Reconstruction error AUC

t1 t2 t3 t4 t1 t2 t3 t4

0
ADMM 134.612 34 3.486 4.881 7.242 9.316 0.999 1.000 1.000 1.000

PADMM 34.831 32 3.486 4.881 7.242 9.316 0.999 1.000 1.000 1.000

0.01
ADMM 156.080 34 9.877 25.193 33.505 41.704 0.999 1.000 1.000 1.000

PADMM 37.173 30 9.877 25.187 33.494 41.693 0.999 1.000 1.000 1.000

0.02
ADMM 138.125 34 37.224 45.211 68.268 83.807 0.998 1.000 1.000 0.999

PADMM 35.510 30 37.212 45.196 68.250 83.788 0.998 1.000 1.000 0.999

0.05
ADMM 105.719 26 64.804 70.041 130.689 158.855 0.995 1.000 0.988 0.972

PADMM 35.457 28 64.871 70.079 130.933 158.895 0.995 1.000 0.988 0.972
Runtime shows that PADMM is faster than ADMM by 60.07%-76.12%. Reconstruction errors suggest that PADMM and
ADMM share the similar precision. AUC measures accuracy from the perspective of binary classification, and PADMM and
ADMM both perform well on AUC.

Effects of the number of cell clusters on network accuracy 309

We used two simulation datasets to examine the effects of the number of cell clusters. 310

The number of clusters r is crucial because a smaller r corresponds to a smaller number 311

of known variables. More specifically, the ratio of the number of known variables to the 312

number of unknown variables is Nmr
(N−1)mm = Nr

(N−1)m in problem (7). We need to know 313

the extent of the effect of the number of clusters. 314

The runtime, numbers of iterations, reconstruction errors and AUCs were computed. 315

Table 2 shows the results obtained for 200 genes with numbers of clusters ranging from 316

40 to 200. The complete results are listed in S2 Table. 317

As seen from the results in Table 2 and S2 Table, reconstruction errors increase and 318

AUCs decrease with a decreasing number of clusters. When the number of clusters 319

decreases to 2/5 of the number of genes (Table 2), the AUC remains above 0.99, which 320

is sufficiently high. When the number of clusters decreases to 1/10 of the number of 321

genes (with 400 genes), the AUC remains above 0.92, as shown in S2 Table. These 322

results show that both algorithms are able to identify most of the links in a DGRN with 323

a rather small number of clusters. The ADMM and PADMM algorithms both maintain 324

good precision, as shown in the simulation experiments. In addition, PADMM is faster 325

than ADMM by an average of 66.99%, as seen in Table 2. 326

As seen from the results of both simulation experiments, the ADMM and PADMM 327

are both able to identify links in dynamic networks despite the occurrence of noise and 328

a small number of clusters. However, the PADMM is superior to the ADMM in terms of 329

runtime. Therefore, for the real data analyses reported below, we used the PADMM. 330
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Table 2. Effects of cell cluster numbers on network accuracy.

gene number=200
Cluster

Method Time(s) #iteration
Reconstruction error AUC

number t1 t2 t3 t4 t1 t2 t3 t4

200
ADMM 8.921 25 1.533 1.828 2.996 4.172 1.000 1.000 1.000 1.000

PADMM 3.886 33 1.533 1.828 2.996 4.171 1.000 1.000 1.000 1.000

160
ADMM 5.819 17 8.990 8.627 8.852 9.023 1.000 1.000 1.000 1.000

PADMM 2.236 18 8.990 8.627 8.852 9.023 1.000 1.000 1.000 1.000

120
ADMM 5.080 17 12.748 12.541 12.573 12.523 1.000 1.000 1.000 1.000

PADMM 1.272 12 12.749 12.542 12.573 12.523 1.000 1.000 1.000 1.000

80
ADMM 5.317 17 15.460 15.614 15.329 15.408 0.995 0.998 0.997 0.999

PADMM 1.476 10 15.460 15.614 15.329 15.408 0.995 0.998 0.997 0.999

40
ADMM 4.982 17 17.658 17.777 17.812 17.784 0.970 0.979 0.984 0.984

PADMM 1.509 10 17.658 17.777 17.812 17.784 0.970 0.979 0.984 0.984
PADMM and PADMM can identify DGRNs accurately when the number of clusters are far less than the number of genes.
PADMM is faster than ADMM by 66.99% on average.

Applications to real scRNA-seq data 331

Dataset 1: mouse ES cells to PrE cells 332

In accordance with the described methods for inferring DGRNs, we obtained the DGRN 333

for dataset 1, as shown in S1 Fig. Furthermore, we visualized subnetworks of genes 334

involved in GO:0048863 stem cell differentiation. We selected genes that are involved in 335

both the reference network and the DGRN. Subnetworks with eight genes are shown in 336

Fig 4. 337

All network figures presented in this work were plotted using Cytoscape [13]. 338

Transcription factor (TF)-TF interactions confirmed by biological experiments are 339

marked in pink. Links marked with arrows and ‘T’ symbols represent positive and 340

negative interactions, respectively. In these subnetworks, RBPJ and ESRRB regulate 341

the other six genes without being regulated themselves. TRP53 and REST are activated 342

at all times. FOXH1 is suppressed beginning at 24 h. GATA4 is both activated and 343

suppressed beginning at 24 h. 344

Fig 4. Dataset 1: Subnetworks of DGRNs with genes in GO:0048863 stem
cell differentiation. Gene nodes are genes in GO:0048863. Pink links are TF-TF
interactions confirmed by biological experiments. Links with arrow and ’T’ are positive
and negative interactions, respectively.

The DGIE scores of the genes in Fig 4 are shown in Fig 7(a). Datasets 1 and 3 345

describe differentiation processes for mouse and human ES cells, respectively. Therefore, 346

we chose GO:0048863 stem cell differentiation for dataset 1 and hsa04550 signaling 347

pathways regulating the pluripotency of stem cells for dataset 3, among other biological 348

processes and KEGG pathways that are less relevant to the differentiation of ES cells. 349

By observing the DGIE scores of genes in subnetworks, we may learn the activation 350

states of the corresponding biological processes and KEGG pathways. 351

Fig 7(a) and Fig 7(b) both show a decreasing tendency. As seen from the definition 352

of DGIE, the DGIE score measures the communication ability of a certain set of genes. 353

The observed decrease in the DGIE score indicates a decrease in the communication 354

ability of the cells involved in GO:0048863 stem cell differentiation. In other words, this 355

biological process becomes less activated over time. This result is consistent with the 356

biological phenomenon if we hypothesize that the differentiation of ES cells influences 357
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the communication ability of related genes and vice versa. According to textbooks on 358

cell biology, once ES cells begin to differentiate, they are no longer ES cells. The degree 359

of differentiation of the cells becomes higher at that time. Therefore, it is natural to 360

assume that the communication ability of these genes begins to fade since the cells 361

become increasingly dissimilar to ES cells as time goes by. The same decreasing 362

tendency is observed in both mouse and human ES cell differentiation, as shown in 363

Fig 7. 364

Next, we consider the process of the differentiation of mouse ES cells to PrE cells. 365

We take all known contributing genes as V1. The DGIE scores are shown in Fig 8 (a). 366

The observed increasing tendency suggests that the interactions within the genes in V1 367

and between V1 and V2 intensify over time. 368

In fact, the differentiation from ES cells to PrE cells is only an early stage of the 369

differentiation of stem cells into terminally differentiated cells. Similar increasing 370

tendencies are also observed in datasets 2 and 3. From the increasing tendency in Fig 8, 371

we can infer that functions that facilitate cell differentiation, including cell growth, 372

proliferation, and development, are gradually turned on. The DGIE score is a tool for 373

determining the activation states of functions at the molecular level. 374

S4 Fig shows boxplots of the DGIE scores when a gene or complex is removed from 375

V1. We identify four genes, BHLHE40, MSX2, FOXA2 and DNMT3L, as targets. 376

According to the gene annotation information available from the Metascape 377

database [14], BHLHE40 is involved in the control of the circadian rhythm and cell 378

differentiation. MSX2 may promote cell growth under certain conditions. DNMT3L is 379

crucial for embryonic development. Similar family members of FOXA2 regulate 380

metabolism and play a role in the differentiation of pancreas and liver cells in mice. It is 381

known that endoderm cells will differentiate into pancreas and liver cells. Thus, it is 382

also natural to infer that FOXA2 may play a key role in early ES cell differentiation 383

even before pancreas and liver cells are formed. 384

In addition, let T
(k)
t denote the set of genes with the top k largest degrees in the 385

DGRN at time t, with k = 10 and 50. We compare
|V(1)∩T

(k)
t |

|T (k)
t |

with |V1|
|V | . The results are 386

shown in S4 Table. In S4 Table(A), it is clear that differentiation-related genes are 387

denser among top-degree nodes, and top-degree nodes are usually regarded as possessing 388

higher influence in a complex network. 389

S7 Fig shows the differential network formed based on the union of links that appear 390

between the complex and other genes only once from 12 h to 72 h. Counts of the 391

confirmed links in the differential network are shown in S5 Table. The unconfirmed 392

links may play important roles in the biological process. 393

Dataset 2: mouse embryonic fibroblast cells to myocytes 394

For dataset 2, we visualized subnetworks of genes involved in GO:0061614 pri-miRNA 395

transcription by RNA. mi-RNA is hypothesized to regulate approximately one-third of 396

human genes; therefore, we are interested in how genes interact with others to facilitate 397

pri-miRNA transcription by RNA. Nine genes were selected, as shown in Fig 5. 398

Fig 5. Dataset 2: Subnetworks of DGRNs with genes in GO:0061614
pri-miRNA transcription by RNA. Gene nodes are genes in GO:0061614. Pink
links are TF-TF interactions confirmed by biological experiments. Links with arrow and
’T’ are positive and negative interactions, respectively.

In these subnetworks, ATF4, TGIF1, SP1, DDIT3 and FOSL2 are activated and 399

suppressed at all times. EGR1 is suppressed beginning at 5 days. MAF is both 400
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suppressed and activated beginning at 5 days. A full image of the DGRN states is 401

shown in S2 Fig. 402

The DGIE scores of all known contributing genes are shown in Fig 8(b). As in the 403

case of dataset 1, we perceive an increasing tendency of the DGIE scores over time. It is 404

worth mentioning that dataset 2 does not describe cell differentiation from ES cells 405

directly. Instead, it describes cell differentiation from less differentiated cells to 406

myocytes, which are terminally differentiated cells. 407

For the process of differentiation from ES cells to terminally differentiated cells, we 408

know that the DGIE scores increase from the ES cells to more highly differentiated cells, 409

such as the PrE cells in dataset 1. The DGIE scores also increase from less 410

differentiated cells (fibroblasts) to terminally differentiated cells (myocytes). Thus, it 411

would not be too bold to infer that the communication strength of the known 412

contributing genes increases from ES cells to terminally differentiated cells. Although 413

no biological experiments yet confirm this claim, we present this speculation from the 414

perspective of dynamic network analysis. 415

S5 Fig shows boxplots of the DGIE scores when a gene or complex is removed from 416

V(1). We identify three genes as key transcriptional regulators: Scx, Fos and Tcf12. 417

According to the gene annotation information available from the Metascape database, 418

Scx regulates collagen type I gene expression in cardiac fibroblasts and myofibroblasts. 419

Fos proteins regulate cell proliferation, differentiation, and transformation. Tcf12 is 420

expressed in many tissues, including skeletal muscle. 421

Dataset 3: human ES cells to definitive endoderm cells 422

Dataset 3 describes differentiation from human ES cells to definitive endoderm cells. As 423

in the case of dataset 1, we focused on biological processes or KEGG pathways that are 424

directly involved in stem cell differentiation. Therefore, we chose ten genes in hsa04550 425

signaling pathways regulating the pluripotency of stem cells for visualization. The 426

subnetworks are shown in Fig 6. 427

Fig 6. Dataset 3: Subnetworks of DGRNs with genes in hsa04550 signaling
pathways regulating pluripotency of stem cells. Gene nods are genes in
hsa04550 signaling pathways regulating pluripotency of stem cells. Pink links are
TF-TF interactions confirmed by biological experiments. Links with arrow and ’T’ are
positive and negative interactions, respectively.

The subnetworks in Fig 6 show that POU5F1 and NANOG are activated and 428

suppressed at all times. According to the description of has04550, NANOG and its 429

downstream target genes promote self-renewal and pluripotency. SRF and FOXH1 430

begin to be activated at 24 h. A full image of the DGRN states is presented in S3 Fig. 431

Fig 7(b) shows the DGIE scores of the genes in Fig 6. For dataset 3, we focus on 432

hsa04550 signaling pathways regulating the pluripotency of stem cells. Fig 7(b) shows a 433

decreasing tendency, along with Fig 7(a). Once ES cells start to differentiate, the 434

communication ability of the genes in Fig 6 begins to fall. This finding suggests that the 435

activation degree of the regulation of stem cell pluripotency is reduced. 436

The DGIE scores of all contributing genes in the DGRN are shown in Fig 8(c). Like 437

datasets 1 and 2, dataset 3 also exhibits an increasing tendency of the DGIE scores. 438

Notably, dataset 3 describes the differentiation of human cells from ES cells. The results 439

help to confirm the conclusions drawn from datasets 1 and 2 with regard to the gradual 440

turn-on of the functions of all known contributing genes. 441

S6 Fig shows boxplots of the DGIE scores when a gene or complex is removed from 442

V(1). We identify Sox5, Meis2, Hoxb3, Tcf7l1 and Plagl1 as key regulators. 443
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According to the gene annotation information available from the Metascape 444

database, Sox5 is a member of the Sox family, which regulates embryonic development 445

and determines cell fate. Meis2 essentially contributes to developmental processes. 446

Hoxb3 is also involved in development. TCF7L1 plays a role in the regulation of cell 447

cycle genes and cellular senescence. Overexpression of Plagl1 during fetal development 448

causes transient neonatal diabetes mellitus. 449

The results in S4 Table(C) are similar to those in S4 Table(A), indicating that 450

differentiation-related genes are denser among top-degree genes. S9 Fig shows the 451

differential network of the identified complex, and the counts of the confirmed links in 452

the differential network are shown in S5 Table. 453

Fig 7. DGIE scores of processes/pathways that are directly related to ES
cell differentiation. Datasets 1 and 3 both describe cell differentiation from ES cells.
The decreasing tendencies of the DGIE scores indicate that the differentiation functions
of ES cells are most active initially and may gradually fade over time.

Fig 8. DGIE scores of all known contributing genes. The DGIE scores of all
known contributing genes indicate that the communication strength of known
contributing genes increases from ES cells to terminally differentiated cells.

Discussion 454

A dynamic network is a powerful tool for elucidating relationships that change over 455

time. With the increasing popularization of single-cell sequencing technology, 456

researchers are obtaining large quantities of time-series single-cell data, which are better 457

able to characterize biological processes than a single snapshot is. To reveal dynamic 458

changes based on time-series scRNA-seq data, we have proposed a novel method of 459

inferring DGRNs with directed links. To ensure that the results are practically and 460

biologically meaningful, we also incorporate the assumptions that the networks are 461

sparse and that consecutive network states are similar into the modeling. Our method, 462

with both the ADMM and PADMM algorithms, shows satisfactory performance on 463

simulated and real datasets. 464

The greatest obstacle when shifting the level of analysis from bulk data to 465

single-cell-level data lies in the fact that cells are ruined once sequenced by scRNA-seq 466

technology. For this reason, the dynamics at the single-cell level cannot be directly 467

established. Inspired by [15], we first order the cells by their pseudotimes and apply 468

clustering to the ordered cells to obtain groups that can be linked over time. In our 469

algorithm, we specify a number of groups that is equal to the minimum number of cells 470

across all time points in order to use the cell-level information to the greatest possible 471

extent. Because of the complexity of the biological processes, our method may be a 472

simple but compromised approach. The attempt to develop a better way to construct 473

and link cell-level data is an ongoing effort. In practice, when group-level data are 474

available, the proposed method can still be applied by skipping the ordering and 475

clustering steps. 476

In applications of real time-series scRNA-seq data, it is of interest to characterize 477

changes occurring during biological processes and identify the key regulators. Often, it 478

is difficult to identify these essential differences by inspecting the dynamic graphs 479

themselves (as shown in S1 Fig, S2 Fig, and S3 Fig). The proposed index DGIE serves 480

this purpose by measuring the network differences. In our real data analysis, results 481

obtained based on DGIE scores provide two major insights. First, the DGIE scores of 482
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the investigated subnetworks indicate that the differentiation functions of ES cells are 483

most active initially and may gradually fade over time. Second, the DGIE scores of all 484

known contributing genes indicate that the communication strength of known 485

contributing genes increases from ES cells to terminally differentiated cells. 486

Conclusion 487

In this work, we have presented scPADGRN, a novel DGRN inference method using 488

time-series scRNA-seq data. scPADGRN shows advantages in terms of accuracy, 489

robustness and fast convergence when implemented with the PADMM algorithm for 490

network inference using simulated datasets. 491

In real scRNA-seq data applications, scPADGRN can be used to visualize gene-gene 492

interactions among genes involved in the same biological process or KEGG pathway. 493

These regulation relationships may either persist or disappear. 494

To quantify network differences, a quantitative index called DGIE has been 495

presented. The DGIE score measures the communication ability of a certain set of 496

genes. At the local level, we have computed the DGIE scores of processes or pathways 497

that are directly related to ES cell differentiation. The decreasing tendency of the DGIE 498

scores indicates that the differentiation functions of ES cells are most active initially 499

and may gradually fade over time. At the global level, the DGIE scores of the three 500

investigated datasets all show the same increasing tendency, indicating that the 501

communication strength of the known contributing genes increases from ES cells to 502

terminally differentiated cells. We have identified a set of genes responsible for changes 503

in the DGIE scores during cell differentiation for each of the three single-cell datasets. 504

Our results affirm that single-cell analysis based on network inference coupled with 505

quantitative computations can be applied to infer the activity states of gene functions in 506

the process of differentiation from ES cells to terminally differentiated cells, thus 507

potentially revealing key transcriptional regulators involved in cell differentiation and 508

disease development. 509

In summary, our work provides three main contributions. First, we propose a new 510

method of inferring DGRNs using scRNA-seq data. Second, a quantitative index, DGIE, 511

is proposed to measure the communication ability of a certain set of genes in a DGRN; 512

this index can reflect the activity states of functions in which these genes play a role. 513

Third, key regulators of biological processes can be identified based on the DGIE scores. 514
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