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Abstract
Single-cell RNA sequencing has been widely used by biology researchers. There are many analysis tools
developed accordingly. However, almost all of them use log transformation in the process of normalization, which
may result in system bias on global features of datasets. It is considered that they may not be suitable for
researchers who expect local and detailed features of datasets, such as rare cell population and independent
expressed genes. In this study, we developed a method called t-SNE transformation to replace log transformation.
We found that it can well respond to some specific bio-markers in real datasets. When the cluster number was
changed, t-SNE transformation was steadier than log transformation. Further study showed that clustering after
t-SNE transformation detected the residual cells more accurately after majority cells of one type were removed
manually. It was also sensitive to a highly-variated independent gene added artificially. In conclusion, t-SNE
transformation is an alternative normalization for detecting local features, especially interests arouse in cell types
with rare populations or highly-variated but independently expressed genes.

Introduction 1

Single-cell RNA-sequencing (scRNA-seq) has been developed since 2009 [21]. It has become one of the most 2

potent RNA-sequencing techniques to describe transcriptomic information stored in every cell of samples. It is 3

often used to analyze global features including general cell types, their relationships within [1] and structural or 4

functional alterations during certain biological processes [4, 25]. It can be operated by various analyzing tools 5

such as Seurat [18], SC3 [13] or Monocle [22]. 6

Most of the tools for analyzing scRNA-seq data use log transformation in normalization [5]. It underestimated 7

the means of low expressed genes [15] as well as their derivations [7, 10]. The outcomes of log-transformation are 8

the clustering results that are more tended to high expressed genes [7]. It covered some information determined 9

by low expressed genes. Considering the high sparsity of scRNA-seq datasets, low expressed genes may be caused 10

by their high Gini index [11]. As a result, log transformation decreases the power of clustering to detect them. 11

In addition, the functions of cells and genes vary greatly in different biological processes, so analyzing local 12

features of datasets becomes essential in certain biology studies as well. In the high-dimensional space by genes, 13

local features of scRNA-seq data can refer to subtle cell types related to the specific biological process [6]. For 14

instance, cells with high stemness in adults’ intestine account for only less than one percent [6]. Another example 15

is the rare existence of chemotherapy-resistant cancer cells in tumor tissues [3]. In sample space, when the 16
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expression matrix is transposed, local features become the pattern that is made up of a limited number of genes 17

essential for certain biological processes. For example, expression of Ascl1 can inhibit neural stem cells from 18

differentiating into retinal ganglion cell [2]. Pdx1 and Sox9 can determine whether the gut stem cells differentiate 19

into epithelia in different parts of pancreas while removing one of them can cause the alternation of 20

morphology [20]. What is more, by transfecting one or few transcription factors, researchers can reprogram cells 21

from one type to another, such as Mesp1, Tbx5, Gata4, Nkx2.5 and Baf60c, transferring fibroblasts into cardiac 22

progenitor cells [14]. Theoretically, it is the expression of these genes that can respond to environmental changes. 23

So their correlation with other genes should be pretty low. However, the population structure of cells in tissues 24

tested by scRNA-seq is often complex. Numerous genes express differently, generate strong multi-collinearity, of 25

which the variation outweigh the rare but essential genes. If their correlation is low enough, such relevant genes 26

are hard to be detected. 27

In this study, in order to satisfy the interests of researchers in local features of scRNA-seq data, we attempt to 28

increase the sensitivity of scRNA-seq data analysis. The t-distributed stochastic neighbor embedding (t-SNE) is 29

a candidate way to solve the problems considering its three functions: manifold learning, multiple Gaussian 30

kernels and reducing dimension [16]. Manifold creates new spaces that contain the relationship within cells. It 31

induces normalization to aim at the direct distance between cells rather than scaling gene expressions. So it 32

avoids the occurrence of overestimating semantic information of features. Multiple Gaussian kernel methods can 33

solve the problem of clustering heterogeneous density data [12,23] by introducing various θ to fit different 34

clusters. It also maintains the local relationship when reducing dimension. And it also keeps the local 35

relationship when reducing dimension [23].Although t-SNE is considered as a dimension reduction method, the 36

dimension of outcomes is not restricted to be lower than that of original space. Therefore, t-SNE transformation 37

is defined to refer mapping data to space with the same dimension of the original space by the rule of t-SNE. 38

Results 39

Consequences of clustering after t-SNE or log transformation 40

In order to display the consequences of t-SNE or log transformation, we used three real datasets in GEO 41

database. They are GSE81682 related to mice hematopoiesis conducted by Nestorowa [17], GSE99235 from cells 42

in mice lung conducted by Vanlandewijck [9], and GSE107552 of human pluripotent stem cells conducted by 43

Han [8]. All the datasets were clustered by k-NN clustering methods in Seurat after t-SNE or log transformation 44

process into 21, 14 and 23 types correspondingly. The results were different in these three datasets (fig.1A-B). In 45

order to analyze how the results were relevant to biology knowledge, we chose gold standard biomarkers of 46

specific cell types in three datasets. In the dataset of Nestorowa, we used Gata2 referring to 47

erythrocyte-megakaryocyte precursor cells (Pre-EM) and Elane referring to mature granulocytes. In the dataset 48

of Vanlandewijck, we used Cd68 referring to macrophages and Col2a1 referring to chondrocyte. In the dataset of 49

Han, we used APOA1 referring to adipose lineage cells and ACTC1 referring to muscular lineage cells [8]. Given 50

that there are many cell types in one clustering result, how each of them response to one biomarker can be 51

measured by receiver operating characteristic (ROC). The power of clustering after transformation were 52

evaluated by the maximum area under ROC curves (AUROC). In the dataset of Nestorowa, after log 53

transformation, cell cluster 3 had the maximum AUROC to Elane while cell cluster 15 had the maximum 54

AUROC to Gata2. But all of them were less than their counterparts – cell cluster 11 and cluster 17 after t-SNE 55

transformation. In the dataset of Vanlandewijck, cell cluster 6 had the maximum AUROC to Cd68 while cell 56

cluster 11 had the maximum AUROC to Col2a1. They were also lower than their counterparts. In the dataset of 57

Han, the maximum AUROC to APOA1 of cell clusters after the two transformation were similar but that to 58

ACTC1 was higher after t-SNE transformation. So clustering after t-SNE transformation were more specific and 59

sensitive to certain bio-markers (Fig.1C). 60

In addition, due to the difficulty of finding perfect parameters within few attempts, researchers have to adjust 61

the parameters to generate different cluster results. It means that every possible result may have a chance to be 62

selected to approach varied aims of researchers. Considering this uncertainty, we clustered the cells of each 63

dataset into 12 to 32 groups and calculated their responses to given biomarkers with maximum AUROC 64

respectively (Supp Fig. 1). Notably, in Nestorowa’s and Vanlandwijck’s, the results of maximum AUROCs of 65
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almost all clusters (Elane, Gata2 in Nestorowa and Cd68, Col2a1 in Vanlandewijck) increased after t-SNE 66

transformation (Supp Fig. 1). In the dataset of Han, the maximum AUROCs of all clusters also increased or 67

remain similar after t-SNE transformation, especially for ACTC1 (Supp Fig. 1). 68

Therefore, these results suggested that clustering results after t-SNE transformation could infer different 69

information from those after log transformation, and they were relevant to existed biology knowledge. 70

Clustering after t-SNE transformation was steady when cluster number changed 71

In order to investigate the mechanisms of t-SNE transformation, we analyzed how the clustering makes the 72

decision when the clustering number is changed after different transformation methods. This performance is 73

named as steady of clustering in this study. It is originated from the adjusted rand index (ARI), which calculates 74

the similarity of a clustering result to its counterpart when clustering number increase or decrease by 1. When 75

the steady is low, it indicates that the division of a large group into balanced subgroups after clustering number 76

is changed. Otherwise, a higher steady indicates the isolation of a small number of cells. Obviously, high steady 77

suggested the methods being sensitive to local features of datasets. In this study, the three datasets were 78

clustered into 12 to 32 groups described previously. The results demonstrated that the steady of clustering after 79

t-SNE transformation were higher than those after log transformation significantly (Fig.2). Therefore, t-SNE 80

transformation should make clustering focus on local features. 81

t-SNE transformation was sensitive to rare cell populations 82

One of the characteristics of clustering oriented local features is that it is sensitive to rare cell populations. It 83

meets the requirements of specific biological studies. With the same k.para and clustering numbers, the minimum 84

populations of cells in clustering results after t-SNE transformation were smaller than those after log 85

transformation (Table.1). The numbers were close to the limitation of k-NN clustering with k.para being 7. The 86

populations of the rare cells can be interpreted biologically. For example, in the dataset of Han, there is a 87

subpopulation with only ten cells highly expressed LAMA4, the marker of trophoblasts [19], after t-SNE 88

transformation (Supp Fig.2). In the visualization of UMAP, they are isolated from other cells in a large scale 89

(Supp Fig.3). 90

However, whether there were trophoblasts or any other rare cell types in the sample were not verified with the 91

biology experiment in this study. Considering this, we removed majorities of cells in existed types in datasets of 92

Nestorowa and Han instead. It created artificial rare cell populations with strong confidence consequently. 93

Herein, only 15 granule-monocyte lineage cells (Elane+, cluster 4 and 11 after t-SNE transformation) in 94

Nestorowa’s dataset and 15 adipose lineage cells (APOA1-high, cluster 4 after t-SNE transformation) in Han’s 95

dataset were left for analyzing use. The UMAP showed that Elane and APOA1 high expressed cells aggregated 96

and separated from other cell populations after t-SNE transformation (Fig.3A). They corresponded to group 14 97

in GSE81682 and group 11 GSE107552 (Supp. Fig 4). Meanwhile, they were merged into other cell types after 98

log transformation with no cell groups’ specific expression (Fig.3A, Supp Fig.4). It was demonstrated by the 99

larger maximum AUROC corresponding to the specific gene marker after t-SNE transformation (Fig.3B). In 100

addition, when we changed the cluster number, clustering responded to the two markers (Elane or APOA1) more 101

accurately (Fig.3C,Supp Fig 4). And the cell populations with highest expressed Elane or APOA1 in the 102

corresponding dataset were significantly similar to group of primary residual cells (Fig.3D). As a result, the 103

potential of detecting rare cell populations after t-SNE transformation is more powerful. 104

t-SNE transformation is sensitive to independent but highly-variated genes 105

The local features of datasets also mean the pattern consisted of limited genes. According to the mathematical 106

description of t-SNE transformation, it centralizes cells based on their direct distance. t-SNE transformation will 107

consider the variation contributed by rare genes. On the contrary, because log transformation is a concave 108

function, variation in large scale on one gene will be reduced dramatically. In addition, if the variation of an 109

independent gene is similar to the sum of variation of genes that correlated with each other, it will be reduced 110

much more after log transformation. 111
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In order to obtain a clear view, we add an artificial gene served as a relevant virtual biomarker to all datasets. 112

It follows a uniform distribution from 0 to half of the maximum gene expression. The visualization showed cells 113

distributed according to the expression of artificial genes after t-SNE transformation, but those after log 114

transformation did not perform the same tendency (Fig.4A). The artificial gene also expressed differentially in 115

different subpopulations (Fig.4B). It was shown in Heatmap of the differential expressed gene (Supp Fig.5). 116

Sankey diagram and Heatmap also illustrate the dramatic changes of the t-SNE transformation after adding 117

artificial gene (Supp Fig.6). Expectedly, clustering response to artificial gene was much higher after t-SNE 118

transformation in all datasets (Fig.4C,Supp Fig.7). After log transformation, all the maximum AUROC for 119

artificial genes were closed to 0.5, suggesting clustering results were not correlated to the artificial gene. In 120

general, t-SNE transformation is sensitive to independent but highly variated genes. 121

Obviousely, in the dataset of Nestorowa, a cluster highly expressing Gata2 was detected accurately in group 122

17 after t-SNE transformation, which is relavent to cell fate commitment of megakaryoerithrocyte lineage (Fig. 123

1B). It almost failed after log-transformation because of expression of Gata2 may be independent to other genes 124

describing the route of erythrocyte maturation. 125

Discussion 126

In this study, we developed an algorithm called t-SNE transformation based on t-SNE for normalizing scRNA-seq 127

data. We compared its performance with log transformation by using three real datasets (GSE81682, GSE99235, 128

GSE107552) downloaded from GEO database. We found that the clustering after t-SNE transformation not only 129

responded better to certain golden standard biomarkers, but also perform a steadier state than that after log 130

transformation even when the clustering parameters were changed. In addition, the t-SNE transformation made 131

detection of residual cells more accurate after deleting the majority of specific cell types from the original 132

datasets. Further study also showed that when adding an artificial gene that expressed independently to the real 133

genes, the t-SNE transformation was sensitive to it while log transformation was not. 134

As described above, different scRNA-seq data analysis tools are applied to meet diversified research objectives. 135

It will benefit the whole field of scRNA-seq study if algorithm designers can provide specific tools targeted 136

certain research purposes. Not only its evaluation level would be judged by the statistic assessment criterion, but 137

also its preferential target dataset should be clarified. In this study, t-SNE transformation is designed for aims to 138

local features: cell types with rare population and highly variated independent features. 139

Since the mechanisms of t-SNE is an analogy of sigmoid normalization in supervised machine learning, 140

samples can aggregate to different cluster centers after t-SNE transformation. It means that if a small group of 141

cells is far away from the general population, they will aggregate with each other and form a more detectable 142

cluster center than those without t-SNE transformation. That is also the reason why the isolation of small 143

subpopulations is prior to the division of a large population cell group after t-SNE transformation. When the 144

clustering number increased, the results become steadier. Expectedly, we detected 10 Cd68 positive cells in 145

GSE99235 and 10 LAMA4 positive cells in GSE107552 after t-SNE transformation while log transformation 146

failed to detect them. We also detected the artificial rare population cell types which were generated by removing 147

most of cells in one of main types in datasets. According to a tool developed by Christoph Hafemeister 148

https://satijalab.org/howmanycells based on negative binomial distribution, the possibility of detection should be 149

less than 5 150

Besides, cell types in datasets may be different from each other semantically, which means that each of them 151

can be marked by numerous genes. If they are relevant to the aims of studies, log transformation will work well 152

since it overestimates the sematic variation of transcriptome. It still cannot meet the requirements of certain 153

biological studies such as discovering the new functional cell types or critical regulation genes. Supposed that the 154

artificial gene generated in this study is an essential candidate for particular biology processes, it may be ignored 155

when applying the log transformation. In addition, Cd68 was high variated between blood and non-blood cells in 156

the dataset of Vanlandewijck but was underestimated by log transformation. Considering this, we suggest that 157

t-SNE transformation can be a solution to solve this problem. 158

It is the characteristics of t-SNE transformation that are sensitive to local features rather than the advantage. 159

It is not only decided by various aims of biology studies, but also by considering the high noise in scRNA-seq 160

datasets. The noise may be generated from the library construction process or during the sequencing procedure. 161
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It may also generate highly variated independent genes or the cell types with rare populations and cause pseudo 162

positive results. In this situation, the efficiency and accuracy of t-SNE transformation could be undermined while 163

log transformation should be better than t-SNE transformation. because of this, t-SNE transformation can be 164

used in a prior study of a project rather than a systemic summary. Its results should also be verified by other 165

biological experiments. 166

In conclusion, t-SNE transformation is a normalization method for local features. It is suitable for the study 167

dedicated to finding rare population cell types or highly variated but independent genes. Log transformation 168

could not provide enough information under this condition. 169

Methods 170

Data quality control, preprocessing and log normalization were discribed in supplementary methods 171

t-SNE transformation 172

As its name, t-SNE transformation was derived from t-SNE [16]. In detail, the mathematic process can be 173

described below: 174

The possibility of linkage between cell i (xi) and cell j (xj) is defined as:

p(i,j) =
D(i,j)∑

j 6=k D(i,k)
(1)

where D(i,j) is the distance between cell i and cell j before transformation. 175

Similarly, the possibility between cells after t-SNE transformation is defined as:

q(i,j) =
d(i,j)∑

j 6=k d(i,k)
(2)

where d(i,j) is the distance between cell i and cell j after transformation. 176

In t-SNE, D is in high dimension, while d is in low dimensions such as 2-D or 3-D for dimension reduction or 177

visualisation [16]. In this study, t-SNE transformation changes the dimension of d equal to that of D. It is the 178

main difference from t-SNE to t-SNE transformation. 179

Because the denominators are different in different cells, to simplify this, they can be replaced by the total
sum of distances between all samples.

p(i,j) =
D(i,j)∑

l 6=k D(l,k)
(3)

q(i,j) =
d(i,j)∑

l 6=k d(l,k)
(4)

Let p ' q and sum of KL divergence of all vectors in p from corresponding vectors in q is used as cost
function:

C = KL(p|q) =
∑

i

∑
j

p(i,j)log
p(i,j)

q(i,j)
(5)

Then the Gaussian kernel is introduced to D(i,j):

D(i,j) = e−
‖xi−xj‖

2

2θ2 (6)

where xi is genes expression vector of cell i 180

And the Cauchy kernel is introduced to d(i,j):

d(i,j) = 1
1 + ‖yi − yj‖2 (7)

5/14

.CC-BY-NC 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted October 9, 2019. ; https://doi.org/10.1101/799288doi: bioRxiv preprint 

https://doi.org/10.1101/799288
http://creativecommons.org/licenses/by-nc/4.0/


where yi is the location of cell i after t-SNE transformation. 181

In this situation, the cost function for Gradient descending become:

δC

δy(i)
= 4

∑
(p(i,j) − q(i,j))(yi − yj)

1
1 + ‖yi − yj‖2 (8)

In gradient descending, y(0) is initialised randomly. Then:

y(t) = y(t−1) + ϑ
δC

δy(i)
+ α(t)(y(t−1) − y(t−2)) (9)

where ϑ is learning rate and α(t) is a function of t to make C does not fall into the local minimum. 182

According to those descriptions, libraries of t-SNE transformation are the same as t-SNE written by 183

Maarten [16]. Considering the cost of time, we ran it in MATLAB 2017a. Its codes were downloaded from 184

https://lvdmaaten.github.io/tsne/. Unlike dimensionality reduction with t-SNE, ’no_dim’ (final dimension) in 185

the function was set the same as ’initial_dim’ (initial dimension). Then the results were written to csv file for 186

further analysis. 187

Comparing clustering performance 188

Clustering response to biomarkers 189

To investigate whether clustering was relevant to some exist or potential biological knowledge, we chose some 190

standard gold biomarkers as indicators and test whether they matched one of the cell groups in clustering results. 191

In Nestorowa, they were Gata2, the marker of Megakaryocyte–erythroid progenitor cells (pre-ME) and Elane, the 192

marker of Granulocytes. In Vanlandewijck, they were Cd68 the marker of dust cells and Col2a1, the marker of 193

chondrocytes. In Han, they were APOA1, the marker of adipose lineage cells and ACTC1, the marker of muscular 194

lineage cells [8]. In supervised clustering, receiver operating characteristic (ROC) can be used as an evaluation of 195

classification with features. The more area under ROC curve (AUROC), the more correct classification response 196

to the feature [24]. Similarly, it can also be used to evaluate how the clustering responses to specific markers. 197

Herein, it was defined as the maximum AUROC in all cell types detected by clustering. All the cluster results 198

were assessed by maximum AUROC on biomarkers above under the clustering conditions mentioned previously. 199

Furthermore, because users are not certain of the best clustering parameters in their own studies, 200

investigation of clustering performance should consider more parameters. So we divided cells in these three 201

datasets into 12 to 32 groups after log or t-SNE transformation to involve more possible clustering results. The 202

responses of all clustering results to corresponding biomarkers listed above were calculated with the maximum 203

AUROC and shown in boxplot. 204

Steady of clustering 205

Given the cluster number is the essential parameter of clustering, we defined the steady of clustering as: 206

Considering A is a clustering result, steady of clustering of A refers the average of its similarities to the 207

clustering results whose cluster number were one more and less than that of A. In this study, the clustering 208

similarity is defined as the adjusted rand index (ARI) [13]: 209

ARI =
∑

ij( nij
2 )− [

∑
ij( aij

2 )
∑

ij( bij
2 )]/( n

2 )
1
2 [

∑
ij( aij

2 ) +
∑

ij( bij
2 )]− [

∑
ij( aij

2 )
∑

ij( bij
2 )]/( n

2 )
(10)

where i and j represent sets of cells in clustering result with different method or parameter, nij = |i ∩ j|, 210

ai =
∑

j nij , bj = _inij , and ( a
b ) means the binomial coefficient. 211

In this study, this performance was assessed when cells in datasets were divided into 12 to 32 groups. The 212

result with every cluster number in one dataset can generate one steady of clustering. All the results were 213

displayed with line-plot and boxplot. 214
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Sensitivity to the rare population 215

The rare cell populations were created by deleting majorities of one cell type with concrete function in datasets of 216

Nestorowa and Han randomly. They had been detected by clustering after both transformations with original 217

datasets. Specifically, they are Granulo-monocytes lineage cells in the dataset of Nestorowa and Apidose lineage 218

cells in the dataset of Han to 15. Both of them occupied over 10% population in the corresponding dataset. After 219

that, we used the same methods and parameters described above and tested how clustering response to Elane or 220

APOA1, the markers of corresponding cell lineages, with ROC. We also tested this characteristic of clustering 221

when cluster numbers were set from 12 to 32. As well as comparing the response of every clustering with different 222

cluster number to Elane or APOA1 correspondingly, the similarities between cell types with max AUROC of 223

these two markers to corresponding residue cells were calculated with the Jaccard Index: 224

Jac(i, j) = |i ∩ s|
|i ∪ s|

(11)

where i is cell type with the maximum AUROC to the corresponding biomarker (Elane or APOA1) in clustering 225

results and s is residual cells. 226

All the results were shown with boxplot. 227

Sensitivity to high variated but independent gene 228

An artificial gene was added to the original datasets and evaluated how they affected clustering results after log 229

or t-SNE transformation. The artificial gene followed unique distribution and expressed randomly in cells. After 230

that, we used the same transformation and clustering methods described above. Then we tested how clustering 231

response to this artificial gene with ROC under the conditions with cluster number set from 12 to 32. All the 232

maximum AUROC of every clustering results were shown in boxplot. 233

Statistics 234

All the significance of difference was calculated with Kruskal-Walli test. Pair comparisons used Dunnet’s test. 235

P-value was adjusted by the false discovery rate (FDR). The significance level was 0.05. 236

Additional information 237

All authors do not have competing interests. 238

References 239

1. M. Baron, A. Veres, S. L. Wolock, A. L. Faust, R. Gaujoux, A. Vetere, J. H. Ryu, B. K. Wagner, S. S. 240

Shen-Orr, A. M. Klein, D. A. Melton, and I. Yanai. A single-cell transcriptomic map of the human and 241

mouse pancreas reveals inter- and intra-cell population structure. Cell Syst, 3(4):346–360 e4, 2016. 242

2. J. A. t. Brzezinski, E. J. Kim, J. E. Johnson, and T. A. Reh. Ascl1 expression defines a subpopulation of 243

lineage-restricted progenitors in the mammalian retina. Development, 138(16):3519–31, 2011. 244

3. S. Ebinger, E. Z. Ozdemir, C. Ziegenhain, S. Tiedt, C. Castro Alves, M. Grunert, M. Dworzak, C. Lutz, 245

V. A. Turati, T. Enver, H. P. Horny, K. Sotlar, S. Parekh, K. Spiekermann, W. Hiddemann, A. Schepers, 246

B. Polzer, S. Kirsch, M. Hoffmann, B. Knapp, J. Hasenauer, H. Pfeifer, R. Panzer-Grumayer, W. Enard, 247

O. Gires, and I. Jeremias. Characterization of rare, dormant, and therapy-resistant cells in acute 248

lymphoblastic leukemia. Cancer Cell, 30(6):849–862, 2016. 249

4. J. A. Farrell, Y. Wang, S. J. Riesenfeld, K. Shekhar, A. Regev, and A. F. Schier. Single-cell reconstruction 250

of developmental trajectories during zebrafish embryogenesis. Science, 360(6392), 2018. 251

7/14

.CC-BY-NC 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted October 9, 2019. ; https://doi.org/10.1101/799288doi: bioRxiv preprint 

https://doi.org/10.1101/799288
http://creativecommons.org/licenses/by-nc/4.0/


5. C. Feng, H. Wang, N. Lu, T. Chen, H. He, Y. Lu, and X. M. Tu. Log-transformation and its implications 252

for data analysis. Shanghai Arch Psychiatry, 26(2):105–9, 2014. 253

6. D. Grun, A. Lyubimova, L. Kester, K. Wiebrands, O. Basak, N. Sasaki, H. Clevers, and A. van 254

Oudenaarden. Single-cell messenger rna sequencing reveals rare intestinal cell types. Nature, 255

525(7568):251–5, 2015. 256

7. C. Hafemeister and R. Satija. Normalization and variance stabilization of single-cell rna-seq data using 257

regularized negative binomial regression. bioRxiv, page 576827, 2019. 258

8. X. Han, H. Chen, D. Huang, H. Chen, L. Fei, C. Cheng, H. Huang, G. C. Yuan, and G. Guo. Mapping 259

human pluripotent stem cell differentiation pathways using high throughput single-cell rna-sequencing. 260

Genome Biol, 19(1):47, 2018. 261

9. L. He, M. Vanlandewijck, M. A. Mae, J. Andrae, K. Ando, F. Del Gaudio, K. Nahar, T. Lebouvier, 262

B. Lavina, L. Gouveia, Y. Sun, E. Raschperger, A. Segerstolpe, J. Liu, S. Gustafsson, M. Rasanen, 263

Y. Zarb, N. Mochizuki, A. Keller, U. Lendahl, and C. Betsholtz. Single-cell rna sequencing of mouse brain 264

and lung vascular and vessel-associated cell types. Sci Data, 5:180160, 2018. 265

10. S. C. Hicks, F. W. Townes, M. Teng, and R. A. Irizarry. Missing data and technical variability in 266

single-cell rna-sequencing experiments. Biostatistics, 19(4):562–578, 2018. 267

11. L. Jiang, H. Chen, L. Pinello, and G. C. Yuan. Giniclust: detecting rare cell types from single-cell gene 268

expression data with gini index. Genome Biol, 17(1):144, 2016. 269

12. S. Kausar, R. Mehmood, M. S. Iqbal, R. Bie, S. Ali, and Y. Shabir. Density peaks based clustering for 270

single-cell interpretation via multikernel learning. Procedia Computer Science, 147:71–76, 2019. 271

13. V. Y. Kiselev, K. Kirschner, M. T. Schaub, T. Andrews, A. Yiu, T. Chandra, K. N. Natarajan, W. Reik, 272

M. Barahona, A. R. Green, and M. Hemberg. Sc3: consensus clustering of single-cell rna-seq data. Nat 273

Methods, 14(5):483–486, 2017. 274

14. P. A. Lalit, M. R. Salick, D. O. Nelson, J. M. Squirrell, C. M. Shafer, N. G. Patel, I. Saeed, E. G. Schmuck, 275

Y. S. Markandeya, R. Wong, M. R. Lea, K. W. Eliceiri, T. A. Hacker, W. C. Crone, M. Kyba, D. J. Garry, 276

R. Stewart, J. A. Thomson, K. M. Downs, G. E. Lyons, and T. J. Kamp. Lineage reprogramming of 277

fibroblasts into proliferative induced cardiac progenitor cells by defined factors. Cell Stem Cell, 278

18(3):354–67, 2016. 279

15. A. T. Lun, K. Bach, and J. C. Marioni. Pooling across cells to normalize single-cell rna sequencing data 280

with many zero counts. Genome Biol, 17:75, 2016. 281

16. L. v. d. Maaten and G. Hinton. Visualizing data using t-sne. Journal of machine learning research, 282

9(Nov):2579–2605, 2008. 283

17. S. Nestorowa, F. K. Hamey, B. Pijuan Sala, E. Diamanti, M. Shepherd, E. Laurenti, N. K. Wilson, D. G. 284

Kent, and B. Gottgens. A single-cell resolution map of mouse hematopoietic stem and progenitor cell 285

differentiation. Blood, 128(8):e20–31, 2016. 286

18. R. Satija, J. A. Farrell, D. Gennert, A. F. Schier, and A. Regev. Spatial reconstruction of single-cell gene 287

expression data. Nat Biotechnol, 33(5):495–502, 2015. 288

19. N. Shan, X. Zhang, X. Xiao, H. Zhang, C. Tong, X. Luo, Y. Chen, X. Liu, N. Yin, Q. Deng, et al. Laminin 289

α4 (lama4) expression promotes trophoblast cell invasion, migration, and angiogenesis, and is lowered in 290

preeclamptic placentas. Placenta, 36(8):809–820, 2015. 291

20. H. P. Shih, P. A. Seymour, N. A. Patel, R. Xie, A. Wang, P. P. Liu, G. W. Yeo, M. A. Magnuson, and 292

M. Sander. A gene regulatory network cooperatively controlled by pdx1 and sox9 governs lineage 293

allocation of foregut progenitor cells. Cell Rep, 13(2):326–36, 2015. 294

8/14

.CC-BY-NC 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted October 9, 2019. ; https://doi.org/10.1101/799288doi: bioRxiv preprint 

https://doi.org/10.1101/799288
http://creativecommons.org/licenses/by-nc/4.0/


21. F. Tang, C. Barbacioru, Y. Wang, E. Nordman, C. Lee, N. Xu, X. Wang, J. Bodeau, B. B. Tuch, 295

A. Siddiqui, K. Lao, and M. A. Surani. mrna-seq whole-transcriptome analysis of a single cell. Nat 296

Methods, 6(5):377–82, 2009. 297

22. C. Trapnell, D. Cacchiarelli, J. Grimsby, P. Pokharel, S. Li, M. Morse, N. J. Lennon, K. J. Livak, T. S. 298

Mikkelsen, and J. L. Rinn. The dynamics and regulators of cell fate decisions are revealed by 299

pseudotemporal ordering of single cells. Nat Biotechnol, 32(4):381–386, 2014. 300

23. B. Wang, J. Zhu, E. Pierson, D. Ramazzotti, and S. Batzoglou. Visualization and analysis of single-cell 301

rna-seq data by kernel-based similarity learning. Nature methods, 14(4):414, 2017. 302

24. C. T. Weidemann and M. J. Kahana. Assessing recognition memory using confidence ratings and response 303

times. Royal Society open science, 3(4):150670, 2016. 304

25. B. Wu, C. An, Y. Li, Z. Yin, L. Gong, Z. Li, Y. Liu, B. C. Heng, D. Zhang, H. Ouyang, and X. Zou. 305

Reconstructing lineage hierarchies of mouse uterus epithelial development using single-cell analysis. Stem 306

Cell Reports, 9(1):381–396, 2017. 307

9/14

.CC-BY-NC 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted October 9, 2019. ; https://doi.org/10.1101/799288doi: bioRxiv preprint 

https://doi.org/10.1101/799288
http://creativecommons.org/licenses/by-nc/4.0/


Datasets Order of rarity log Transformation t-SNE transformation
GSE81682 1st 9 7
GSE81682 2nd 9 7
GSE81682 3rd 17 9
GSE99235 1st 22 7
GSE99235 2nd 32 7
GSE99235 3rd 44 10
GSE107552 1st 24 10
GSE107552 2nd 29 10
GSE107552 3rd 31 13

Table 1. Cell numbers in top 3 rarest population types

10/14

.CC-BY-NC 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted October 9, 2019. ; https://doi.org/10.1101/799288doi: bioRxiv preprint 

https://doi.org/10.1101/799288
http://creativecommons.org/licenses/by-nc/4.0/


Figure 1. kNN clustering after log transformation or t-SNE transformation. A: Clustering results
on UMAP visualization of datasets of Nestorowa, Vanlandewijck and Han after log or t-SNE transformation. B:
Sankey diagram displayed different clustering results between log and t-SNE transformation. C: ROC curves
demonstrated the responses of clustering to biomarker genes. Clusters with the maximum value and the maximum
area under curve were labelled. The larger number of areas displayed means higher accuracy of clustering
responding to biomarkers.
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Figure 2. Steady of clustering with different cluster numbers. Boxplot showed the statistic results of
clustering stability. Significance level: ***: adjusted p-value<0.001; **: adjusted p-value<0.01;
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Figure 3. Heatmaps of differential expressed genes after delete cells. A: Heatmaps showed differential
expressed genes between the cell types detected by k-NN clustering in Nestorowa after log or t-SNE transformation.
B: Heatmaps showed differential expressed genes between the cell types detected by k-NN clustering in Han after
log or t-SNE transformation. ***: adjusted p-value<0.001
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Figure 4. Clustering results and assessment of after log or t-SNE transformation when adding
the artificial gene in datasets. A: Feature plot of artificial gene on UMAP visualization after log or t-SNE
transformation in three datasets B: Violin plot showed artificial gene expression in different cell types after log
or t-SNE transformation in three datasets C: ROC curves showed the responses of clustering to artificial gene.
Curves were labeled by cell types with maximum area under the curve. D: Box plot showed the comparisons of
clustering responses for biomarkers between log and t-SNE transformation. ***: adjusted p-value<0.001
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