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Abstract 37 

Objective: Functional interconnections between brain regions define the ‘connectome’ which 38 

is of central interest for understanding human brain function, and is increasingly recognized in 39 

the pathophysiology of mental disorders. Previous resting-state functional magnetic resonance 40 

(rsfMRI) work has revealed changes in static connectivity related to age, sex, cognitive 41 

abilities and psychiatric symptoms, yet little is known how these factors may alter the 42 

information flow. The commonly used approach infers functional brain connectivity using 43 

stationary coefficients yielding static estimates of the undirected connection strength between 44 

two brain regions. Dynamic graphical models (DGMs) are a multivariate model with dynamic 45 

coefficients reflecting directed temporal associations between network nodes, and can yield 46 

novel insight into directed functional brain connectivity. Here, we aimed to validate the DGM 47 

method and determine information flow across the brain connectome and its relationship to 48 

age, sex, intellectual abilities and mental health. 49 

Methods: We applied DGM to investigate patterns of information flow in data from 984 50 

individuals from the Human Connectome Project (HCP) and 10,249 individuals from the UK 51 

Biobank.  52 

Results: Our analysis replicated previously reported patterns of directed connectivity in 53 

independent HCP and UK Biobank data, including that the cerebellum consistently receives 54 

information from other networks. We show robust associations between information flow and 55 

both age and sex for several connections, with strongest effects of age observed in the 56 

sensorimotor network. No significant effects where found for intellectual abilities or mental 57 

health. 58 

Discussion: Our findings support the use of DGM as a measure of directed connectivity in 59 

rsfMRI data and provide new insight into the shaping of the connectome during aging. 60 

 61 
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Introduction  63 

Although the rates and trajectories vary substantially between individuals and cognitive 64 

domains (Ardila, 2007), normal aging is primarily associated with a decline in most cognitive 65 

functions, including executive functions, attention, memory and perception (Riddle, 2007). 66 

Numerous studies have established pronounced age-related differences in brain network 67 

connections (Betzel et al., 2014; Cassady et al., 2019; Dørum et al., 2017; Geerligs, Renken, 68 

Saliasi, Maurits, & Lorist, 2015; Grady, Springer, Hongwanishkul, McIntosh, & Winocur, 69 

2006; Maglanoc, Kaufmann, van der Meer, et al., 2019; Meunier, Achard, Morcom, & 70 

Bullmore, 2009; Wang, Su, Shen, & Hu, 2012). However, so far mostly age-related network 71 

changes have been studied using static functional connectivity, where connectivity strengths 72 

are estimated from stationary coefficients and assumed not to change short-term during the 73 

period of scan. Dynamic functional connectivity (i.e., time-varying connectivity) has been 74 

studied to a lesser degree yet could yield new knowledge about connectivity direction, thereby 75 

supplementing approaches for static connectivity with insight into the information flow of 76 

neural activity, underlying processes related to cognitive functions and mental health 77 

(Hutchison et al., 2013). 78 

There are various approaches to estimate connectivity direction, often divided into 79 

effective connectivity and directed functional connectivity (K. Friston, Moran, & Seth, 2013). 80 

Effective connectivity refers to the causal influence that one node exerts over another 81 

(Bielczyk et al., 2019; K. J. Friston, 2011), while directed functional connectivity (dFC) 82 

denotes information flow between nodes by estimating statistical interdependence using 83 

measured blood-oxygen-level-dependent (BOLD) responses (Bielczyk et al., 2019). Recent 84 

work has provided evidence of changes in connectivity direction with age. For instance, one 85 

study noted posture-related changes in effective connectivity with elderly compared to 86 

younger participants showing higher effective connectivity between the prefrontal cortex 87 
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(PFC) and the motor cortex (MC) as measured using functional near-infrared spectroscopy 88 

(fNIRS) while standing (Huo et al., 2018). Studies have also reported age-related 89 

psychomotor slowing with higher effective connectivity (Michely et al., 2018), in addition to 90 

changes in effective connectivity in certain areas of the brain of elderly APOE ε4 carriers 91 

(Luo et al., 2019). It has also been shown that there are alterations in effective connectivity in 92 

the prefrontal cortex during emotion processing in individuals with autism spectrum disorders 93 

(Wicker et al., 2008), and disrupted effective connectivity in patients with externalizing 94 

behavior disorders (Shannon, Sauder, Beauchaine, & Gatzke-Kopp, 2009), schizophrenia 95 

(Schlösser et al., 2003) and depression (Lu et al., 2012; Rolls et al., 2018). Others have 96 

investigated effective connectivity in relation to psychedelics and found evidence for 97 

alterations in cortico-striato-thalamic-cortico loops in individuals given LSD (Preller et al., 98 

2019). Changes in effective connectivity have also been observed in relation to episodic 99 

simulation and social cognition (Pehrs, Zaki, Taruffi, Kuchinke, & Koelsch, 2018), as well as 100 

memory function in a neurodevelopmental sample (Riley et al., 2018). However, how the 101 

information flow between nodes in the functional brain connectome is associated as a whole 102 

with age, sex, cognition and mental health has yet to be delineated. 103 

Dynamic graphical models (DGM) is a form of Dynamic Bayesian Networks, which 104 

describes the instantaneous directed relationships between nodes (Bilmes, 2010; Schwab et 105 

al., 2018). From this, one can study the spatiotemporal arrangement of links in the network, 106 

defined here as the directionality between a node pair. This statistical method can give a 107 

meaningful characterization of the dynamic connectivity between network nodes. Initial 108 

implementation and validation of the approach in resting-state functional magnetic resonance 109 

(rsfMRI) data from mice (N=16) and humans (N=500) (Schwab et al., 2018) suggested 110 

consistent default mode network (DMN) influence on cerebellar, limbic and 111 

auditory/temporal networks, in addition to a stable mutual relationship between visual medial 112 
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(VM) and visual lateral (VL) networks in human rsfMRI. Here, we aimed to replicate these 113 

findings using independent data from the Human Connectome Project (HCP, (Van Essen et 114 

al., 2013)) and the UK Biobank (Sudlow et al., 2015). In addition, we extended the analysis to 115 

examine if there were associations between dFC and age, age², sex, intellectual abilities and 116 

mental health measures. We tested these associations for every connection of the directed 117 

network (edge-level analysis), and on node-level by assessing associations with network 118 

balance (the number of output connections divided by the number of input connections, for a 119 

given node).  120 

 121 

Methods 122 

Study samples 123 

HCP: The HCP consortium is funded by the National Institutes of Health (NIH) led by 124 

Washington University, University of Minnesota, and Oxford University. HCP is undertaking 125 

a systematic effort to map macroscopic human brain circuits and their relationship to behavior 126 

in a large population of young healthy adults (Van Essen et al., 2013). HCP participants are 127 

drawn from a healthy population born in Missouri, in the age range of 22–35 years, where a 128 

proportion of the subjects included are adult twins and their non-twin siblings (Van Essen et 129 

al., 2013). The adult sample consists of 1200 subjects. Exclusion criteria include having 130 

siblings with severe neurodevelopmental disorders, documented neuropsychiatric or 131 

neurologic disorders. Furthermore, individuals with illnesses such as diabetes or high blood 132 

pressure and twins born prior to 34 weeks’ gestation and non-twins born prior to 37 weeks’ 133 

gestation were excluded (Van Essen et al., 2013). The participants went through an MRI 134 

protocol, in addition to extensive behavioral assessment outside the scanner, in the domains of 135 

cognitive, emotional, motor, and sensory functions (Van Essen et al., 2013). All participants 136 
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provided signed informed consent. Washington University Institutional Review Board 137 

approved the study (Glasser et al., 2016).  138 

UK Biobank: The UK Biobank initiative is a large-scale biobank prospective cohort 139 

established by the Medical Research Council and Wellcome Trust (Collins, 2012), and funded 140 

by the UK Medical Research Council, Wellcome Trust, Department of Health, British Heart 141 

Foundation, Diabetes UK, Northwest Regional Development Agency, Scottish Government, 142 

and Welsh Assembly Government (Sudlow et al., 2015). This population-based study 143 

examines the influence of genetic and environmental factors and the occurrence of disease in 144 

participants included in the age range of 40-69 years old, recruited from 2006-2010 and 145 

assessed at 22 centers throughout the UK (Sudlow et al., 2015). The study has recruited 146 

500 000 subjects, where 100 000 are going to be included as an MRI subgroup (Miller et al., 147 

2016). Further, participants filled out questionnaires about lifestyle, family, as well as medical 148 

history in addition to completing a variety of physical measures (Sudlow et al., 2015). In 149 

addition, a subset of participants filled in a mental health questionnaire (MHQ) online. All 150 

participants provided signed informed consent. UK Biobank was approved by the National 151 

Health Service National Research Ethics Service (ref 11/NW/0382, (Health Research 152 

Authority, 2016)).   153 

 154 

MRI acquisition  155 

MR data was collected by the study teams of HCP and UK Biobank.  156 

HCP: MRI data from the HCP study was collected using a customized 3T Siemens 157 

Skyra with a 32-channel receive head coil at Washington University, US. Resting- state 158 

blood-oxygen-level-dependent (BOLD) fMRI data was collected for each subject using a 159 

T2*-weighted BOLD echo-planar imaging (EPI) sequence with the following parameters: 160 

TR/TE/FA = 720ms/33.1ms/52°; voxel size, 2.0×2.0×2.0 mm, MB=8, BW = 2290 Hz/Px, in-161 
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plane FOV = 208 × 180 mm, fat sat, 1200 volumes; scan time ≈ 15min per rsfMRI session (in 162 

total 4 rsfMRI sessions = 4800 volumes)(Smith et al., 2013). A T1-weighted 3D MPRAGE, 163 

sagittal sequence with the following pulse sequence parameters was obtained: repetition time 164 

(TR)/echo time (TE)/flip angle (FA) = 2.4ms/2.14ms/8°; voxel size = 0.7 × 0.7 × 0.7 mm, 165 

FOV: 88×224×224, iPAT=2, scan time = 7min 40 sec. The T1-weighted image was used for 166 

registration to the EPI data in the present study. rsfMRI data were collected over 2 days 167 

divided into 4 rsfMRI sessions where the scanning session took 1 hour each of the days, 168 

including task fMRI (Glasser et al., 2016). 169 

 UK Biobank: MR data from the UK Biobank study was collected with a 3T standard 170 

Siemens Skyra using a 32-channel receive head coil at Newcastle and Cheadle Imaging 171 

Centre in the UK. Resting- state blood-oxygen-level-dependent (BOLD) fMRI data was 172 

collected for each subject using a T2*-weighted BOLD echo-planar imaging (EPI) sequence 173 

with the following parameters: TR/TE/FA = 735ms/39ms/52°; voxel size, 2.4×2.4×2.4 mm, 174 

MB=8, R=1, no iPAT, fat sat, 490 volumes; scan time = 6min 10 sec. A T1-weighted 3D 175 

MPRAGE, sagittal sequence with the following pulse sequence parameters was obtained: 176 

repetition time (TR)/echo time (TE)/flip angle (FA) = 2.0ms/2.01ms/8°; voxel size = 1.0 × 1.0 177 

× 1.0 mm, FOV: 208×256×256, in-plane acceleration iPAT=2, scan time = 5 min. The T1-178 

weighted image was used for registration to the EPI data in the present study. The entire MRI 179 

protocol took 31 minutes in effective scan time (Miller et al., 2016).  180 

 181 

MRI preprocessing 182 

HCP: Processed HCP data was obtained from the HCP database 183 

(https://ida.loni.usc.edu/login.jsp), were we downloaded the released PTN 1200-subjects 184 

package. The HCP project processed the data through their pipeline, which is specifically 185 

made for HCP high-quality data (Glasser et al., 2013). Their preprocessing comprised image 186 
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processing tools, based on Smith et al. (2013), with minimal-preprocessing according to 187 

Glasser et al. (2013). In addition, areal-feature-based alignment and the multimodal surface 188 

matching algorithm was applied for inter-subject registration of the cerebral cortex (Glasser et 189 

al., 2013; Robinson et al., 2014). Further, artefacts were removed by means of FIX (FMRIB’s 190 

ICA-based X-noisiefier, (Griffanti et al., 2014; Salimi-Khorshidi et al., 2014)), and ICA 191 

(independent component analysis, (Beckmann & Smith, 2004)) while dual regression was 192 

used for further processing of timeseries, these steps are described in more detail below. HCP 193 

structural data was manually quality checked while the fMRI data went through a built in 194 

quality control pipeline where estimates including voxel-wise temporal standard deviation 195 

(tSD), temporal SNR (tSNR), movement rotation and translation were computed (Marcus et 196 

al., 2013). In addition, the BIRN Human QA tool was used (Glover et al., 2012; Marcus et al., 197 

2013). 184 subjects were reconstructed using an earlier version of the HCP data 198 

reconstruction software, while 812 subjects were run through a later edition, and 7 subjects 199 

was processed using a mixture of the two methods. Further, the data was temporally 200 

demeaned and variance normalized (Beckmann & Smith, 2004). Next, fMRI datasets were 201 

submitted to a group ICA, a data driven analysis technique used to discover independently 202 

distributed spatial patterns that represent source processes in the data (Beckmann & Smith, 203 

2004). ICA extracts spatially independent components, a set of spatial maps and associated 204 

time courses, by use of blind signal source separation and linear decomposition of fMRI data 205 

(McKeown et al., 1998; McKeown & Sejnowski, 1998). MIGP (MELODIC’s Incremental 206 

Group-PCA) from 468 subjects were used to generate group-PCA that was used for the 207 

group-ICA utilizing FSL’s Multivariate Exploratory Linear Optimized Decomposition into 208 

Independent Components (MELODIC) tool (Beckmann & Smith, 2004; Hyvärinen, 1999), 209 

where 25 components were extracted and used for further processing. ICA was applied in 210 

grayordinate space (Glasser et al., 2013). Dual regression was applied to estimate specific 211 
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spatial maps and corresponding time series from the group ICA for each subject (Beckmann 212 

& Smith, 2004; Filippini et al., 2009). As Schwab et al. (2018) showed consistency in dFC 213 

between rsfMRI sessions, we included data from all 4 rsfMRI sessions in our analysis and as 214 

such dual regression was applied on the subjects that had completed all four rsfMRI sessions.   215 

UK Biobank: Processed data was accessed from the UK Biobank study team under 216 

accession code 27412. The Biobank preprocessing comprised image processing tools, largely 217 

acquired from FSL (http://fsl.fmrib.ox.ac.uk), and complied with the pre-processing steps 218 

done as part of the HCP pipeline, including motion correction using MCFLIRT, grand-mean 219 

intensity normalisation of the 4D dataset by a single multiplicative factor, high pass temporal 220 

filtering and distortion correction (Alfaro-Almagro et al., 2018). The EPI unwarping step 221 

included alignment to the T1, where the unwarped data is written out in native fMRI space, 222 

while the transform to T1 space is written out independently (Alfaro-Almagro et al., 2018). 223 

FMRIB’s Linear Image Registration tool (FLIRT) was used to register fMRI volumes to the 224 

T1-weighted image (Mark Jenkinson, Bannister, Brady, & Smith, 2002; M.  Jenkinson & 225 

Smith, 2001). Boundary based registration (Greve & Fischl, 2009) was used in a final step to 226 

refine the registration of the EPI and structural image. The ICA+FIX and dual regression 227 

procedure corresponds to what we reported for HCP above. For the UK Biobank sample, 228 

4100 fMRI datasets were submitted to a group ICA, where 25 components where extracted 229 

from the ICA and used for further analysis. A FIX classifier for UK Biobank imaging data 230 

was hand trained on 40 Biobank rsfMRI datasets for removal of artefacts (Alfaro-Almagro et 231 

al., 2018). As for quality assessment, part of the UK Biobank imaging pipeline entails 232 

assessment of the T1-weighted images, which includes automated classification by use of 233 

machine learning (Alfaro-Almagro et al., 2018). If a T1-weighted image has been classified as 234 

having serious issues, the dataset has not been used in this study.  235 

 236 
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Included participant data 237 

HCP: From the HCP data release, four subjects were excluded due to missing information 238 

about mean relative motion and 15 individuals were excluded due to missing information in 239 

cognitive or mental health data, yielding data from a total of 984 individuals aged 22-37 years 240 

(mean: 28.7 years, sd: 3.71 years, 52.8% females) for the analysis on all HCP subjects. Out of 241 

those, data from 495 individuals were not included by Schwab et al. (2018) and were included 242 

for an additional replication analysis (mean: 28.6 years, sd: 3.72 years, 49.5% females).   243 

UK Biobank: From the UK Biobank data release, we started out with 16,975 subjects, where 244 

we excluded subjects with a diagnosed neurological or psychiatric disorder (N=1,319) as well 245 

as 5,082 subjects missing information on mean relative motion, cognitive and mental health 246 

data, and 325 subjects that had a different number of volumes than in the standard protocol, 247 

yielding data from a total of 10,249 individuals aged 40-70 years (mean: 55.4 years, sd: 7.37 248 

years, 53.8% females). 249 

 250 

Network analysis 251 

For both HCP and UKB sample, we accessed the time series of decompositions performed 252 

with 25 independent components. In each sample, we chose ten resting-state networks (RSNs) 253 

that had the highest spatial correlation with the ten RSNs reported by Smith et al. (2009), and 254 

in line with the procedure used in Schwab et al. (2018). These RSNs comprised default mode 255 

(DMN), cerebellar (Cer), visual occipital (VO), visual medial (VM), visual lateral (VL), right 256 

frontoparietal (FPR), left frontoparietal (FPL), sensorimotor (SM), auditory (Au), and 257 

executive control (Ex) networks. The timeseries for the ten RSNs were mean centered so that 258 

each timeseries for each node had a mean of zero. Finally, utilizing the DGM package v1.7.2 259 

in R we estimated dFC from individual level RSN time series. RSNs will henceforth be 260 

referred to as network “nodes” as we estimated temporal connectivity between RSNs. 261 
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 262 

Statistical analysis  263 

For both HCP and UK Biobank data, we performed logistic regressions for every connection 264 

of the directed network using directed connectivity as the response variable and testing for 265 

associations with age, age², sex, intellectual abilities, mental health, motion and scanner site. 266 

We refer to this as edge-level analysis. Furthermore, we assessed input and output 267 

connections for a given network together, to examine the balance between a network’s sent 268 

and received information. As such we calculated the ratio between the number of output 269 

connections and the number of input connections for a given node, and we refer to this as 270 

node-level analysis. To avoid inducing missing values when the denominator is 0, we added 271 

0.5 to the dominator and nominator of dFC before taking the ratio (Sankey, Weissfeld, Fine, 272 

& Kapoor, 1996). We performed linear regression using this balance as a dependent variable 273 

and the same independent variables as used on the edge-level. All p-values were Bonferroni 274 

corrected for a number of 90 analyses on the edge-level and for 10 analysis on the node-level. 275 

For the HCP data, we used the age-adjusted NIH Toolbox Cognition Total Composite 276 

Score as a measure of cognitive abilities, and the gender and age adjusted T-score of the 277 

Achenbach Adult Self-Report, Syndrome Scales and DSM-Oriented Scale (ASR) as a 278 

measure of mental health for the HCP participants. In addition, we calculated the mean of the 279 

relative motion across the 4 rsfMRI runs to get a sum score of motion and the statistical 280 

models tested in HCP thus included age, age², sex, COG, ASR and motion where age is 281 

defined as poly(age,2).  282 

For UK Biobank, we used the Fluid Intelligence score (UKB field: 20016, which 283 

consisted of the sum of the number of correct answers given to 13 fluid intelligence items) 284 

where we controlled for age on Fluid Intelligence before using the residuals in the analysis as 285 

a measure of cognitive abilities for participants in the UK Biobank sample. Further, we 286 
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inferred mental health by performing a principal component analysis (PCA) on 14 items of 287 

the online MHQ available for 154,607 participants with less than 3 missing values on the 288 

included items (Figure 1). We imputed missing values in R using the missMDA package 289 

(Josse & Husson, 2016) and subsequently performed the PCA using the “prcomp” function. 290 

The first PC, often referred to as the p-Factor or pF (Caspi et al., 2013), explained 27.02% of 291 

the variance. This component related mostly to depression/anxiety items. Given recent 292 

indications that psychopathology may not be explained by a single dimension (Mallard et al., 293 

2019), we also included the second principal component, which explained 11.94% of the 294 

variance. We refer to this component as pF2, and this component related mostly to psychosis 295 

items. The statistical models tested in UK Biobank thus included age, age², sex, fluid 296 

intelligence, pF, pF2, motion and scanning site where age is defined as poly(age,2).  297 

 298 

299 
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Figure 1: Principal component analysis (PCA) of mental health questionnaire from UK 300 

Biobank. We used the first two principal components as proxies of general psychopathology, 301 

referred to as “pF” and “pF2”.  302 

 303 

Results  304 

We uncovered the same pattern of dFC between networks as previously reported (Fig 2a, 305 

Schwab et al., 2018), when using only data from independent subjects that were not used in 306 

Schwab et al. (2018) (Fig 2b) and likewise when using all available HCP data (Fig 2c). The 307 

cerebellar and auditory network appeared to be mostly a receiver in terms of directional 308 

information flow in the network.  309 

 310 

Figure 2: Average directed connectivity matrices across subjects for HCP data showing the 311 

proportions of edges in a) data previously reported by Schwab et al 2018, b) independent 312 

data, c) all available data (a+b; slight differences in sample size due to differences in 313 

exclusion criteria). The legend shows the 10 RSNs included in the analysis, where the y-axis 314 

indicates the sender node, while the x-axis refers to the same nodes but here they are 315 

receivers.  316 
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318 
Figure 3: Directed connectivity matrices showing the effects of age (a), age² (b), sex (c), 319 

intellectual abilities (d), mental health (e) and motion (f) on directed connectivity. The 320 

analysis was performed in all available HCP data (N=984, 22-37 years). Significant edges 321 

following Bonferroni correction are marked as X. The y-axis indicates the sender node, while 322 

the x-axis refers to the receiving node. The colors reflect the z-value for the corresponding 323 

effects where red indicates a positive association and blue a negative association.  324 

 325 

Significant effects of sex and motion on directed connectivity 326 

Analysis of edge-wise associations of dFC with age, age², sex, intellectual abilities, mental 327 

health and motion in the full HCP sample (N=984) yielded significant effects after Bonferroni 328 

correction (Figure 3). The findings show that compared to women, the VM in men receives 329 

less information in general from the other nodes (fig.3; SI tables 1a-b provides z-scores and 330 

corresponding p-values). Furthermore, the cerebellar node in men compared to women more 331 

often received information from the other networks, the opposite of what was found for VM. 332 

In addition, motion had significant impact on directed connectivity between the CER-VM and 333 

for edges involving the cerebellar network, whereas age, age², intellectual abilities and mental 334 

health, were not significantly associated with directed connectivity at the edge-level. 335 

VO

DMN

VM

VL

FPR

FPL

SM

Cer

Au

Ex

VODMNVM VL FPRFPL SM Cer Au Ex
Receiving

S
en

di
ng

−6
−3
0
3
6

z−score

a) Effects of age

VO

DMN

VM

VL

FPR

FPL

SM

Cer

Au

Ex

VODMNVM VL FPRFPL SM Cer Au Ex
Receiving

S
en

di
ng

−6
−3
0
3
6

z−score

b) Effects of age² 

X
X

X
X

X

X
X

X
X
X
X

X

X

VO

DMN

VM

VL

FPR

FPL

SM

Cer

Au

Ex

VODMNVM VL FPRFPL SM Cer Au Ex
Receiving

S
en

di
ng

−6
−3
0
3
6

z−score

c) Effects of sex

VO

DMN

VM

VL

FPR

FPL

SM

Cer

Au

Ex

VODMNVM VL FPRFPL SM Cer Au Ex
Receiving

S
en

di
ng

−6
−3
0
3
6

z−score

d) Effects of COG

VO

DMN

VM

VL

FPR

FPL

SM

Cer

Au

Ex

VODMNVM VL FPRFPL SM Cer Au Ex
Receiving

S
en

di
ng

−6
−3
0
3
6

z−score

e) Effects of ASR

X

X
X
X
X

X
X

X
X

VO

DMN

VM

VL

FPR

FPL

SM

Cer

Au

Ex

VODMNVM VL FPRFPL SM Cer Au Ex
Receiving

S
en

di
ng

−6
−3
0
3
6

z−score

f) Effects of motion

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted October 10, 2019. ; https://doi.org/10.1101/799593doi: bioRxiv preprint 

https://doi.org/10.1101/799593


16 

 336 

Node-level analysis reveals significant effects of age and sex on directed connectivity 337 

Next, we assessed network balance. In line with results from the edge-wise analyses, we 338 

found that sex was significantly associated with node balance of the VM network (t = 6.59, 339 

PBonf =.038), with this network having more outputs than inputs in males, rendering this node 340 

to send more information in males compared to females (Fig. 4a). In addition, there was a 341 

significant relationship between the VM node and age (t = 2.9, PBonf <.001), where we 342 

observed a higher balance with higher age, indicating that VM sends more information with 343 

higher age. Further, when looking at the overall balance for the FPR we found that this node 344 

sends more information to other nodes in females compared to males (t = -3.34, PBonf =.009; 345 

Fig.4b). Additionally, the cerebellar network revealed a significant effect of sex where the 346 

cerebellar network in females gives more information to other networks, compared to males 347 

(Fig 4c; t = -4.27, PBonf <.001). 348 

349 
Figure 4: Significant age and sex differences in node balance in (a) VM, (b) FPR and (c) Cer 350 

for HCP (N=984). The y-axis indicates the balance for the node (if it generally sends or 351 

receives information to the other nodes), while the x-axis shows the age span for the subjects.  352 

 353 

Similar investigations in older individuals revealed effects of age, sex, motion and scanner on 354 

dFC  355 

Next, we employed the same analysis approach using UK Biobank data (age range: 40-70 356 

years). We partly replicated the pattern of dFC between networks as previously reported by 357 
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Schwab et al. (2018). Whereas the characteristic of the Au network to have many input 358 

connections as found in HCP data did not replicate, UK Biobank data confirmed this pattern 359 

for the cerebellum, as well as a bidirectionality of the VM-VL edge with these nodes having a 360 

reciprocal information flow (Fig. 5).  361 

Edge-wise analysis of dFC alterations related to age, sex, cognition, psychopathology, 362 

motion and scanning site is illustrated in Figure 5 (SI tables 2a-e provides z-scores and 363 

corresponding p-values for UK Biobank data).  364 

365 

Figure 5: A) Average directed connectivity matrix and corresponding effects of age, age², sex, 366 

Fluid Intelligence, pF, pF2, motion and scanner for UK Biobank (N=10,249, 40-70 years). 367 

Significant edges following Bonferroni correction are marked as X. B) chord diagrams that 368 

display only the significant effects of age, age2, sex, motion and scanner for the UK Biobank 369 

sample. The colors of the arrows reflect the z-value for the corresponding effects where red 370 

indicates a positive association and blue a negative association. The arrow heads in the 371 

circular plots indicate direction (receiver or sender). 372 

 373 
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We found a significant effect of age on edge-wise information flow with a positive 374 

association for the VL, FPR and the cerebellar network, with these nodes giving more 375 

information to the DMN with higher age. Further, with higher age the DMN gives more 376 

information to the VL and Cer network, while the Ex receives more information from the 377 

FPR, FPL and the SM (Fig.5; see SI for further details). Moreover, SM receives less 378 

information in general from the other nodes and this node sends less information input in the 379 

information flow with the cerebellar and auditory networks with higher age. In addition, VM 380 

showed a pattern of less output connections, sending less information to the cerebellar 381 

network and there was also a decrease in information flow from VO to FPL, VL-FPL and 382 

FPR-FPL, and for the DMN and VL to the auditory network. In addition, there was an effect 383 

of age², from CER to the FPR node.  384 

Also, there was widespread significant associations between dFC and sex (fig.5; see SI 385 

for further details), where the FPR, FPL, SM, CER, Au and Ex nodes in males more often 386 

receive information in general from the other nodes compared to females. The opposite was 387 

found for VO-VM, and there was bidirectional dFC between DMN and CER with reduced 388 

information flow in both directions observed in males. In addition, there was a reciprocal 389 

mutual relationship between the DMN and VM, with increased information flow in both 390 

directions with higher age. Also, the DMN received more information input from Au and VO 391 

in aging, while the SM node sent more information to the VO while the VL received more 392 

information from the VO, SM and Cer with higher age.  393 

 394 

Node-level analysis reveals significant effects of age and sex in directed connectivity 395 

Further, we examined network balance in UK Biobank data. Here we found that age and sex 396 

were significantly associated with node balance of the auditory network, with this node 397 

sending more information to the other nodes in females compared to males (t = -5.5, PBonf 398 
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<.001; Fig.6a), and the same relationship was found for the FPL node (t = -3.41, PBonf =.006). 399 

In addition, there was a significant effect of age in both Au (t = 4.05, PBonf <.001) and FPL (t 400 

= 3.11, PBonf =.02), with these two nodes giving more information to the other nodes with 401 

higher age. Also, the Ex network showed a significant age and sex association, sending less 402 

information to the other nodes with higher age (t = -4.17, PBonf <.001) and in males (t = -6.47, 403 

PBonf <.001; Fig.6c). The VO network showed the same pattern in relation to aging (t = -3.73, 404 

PBonf =.002), but the sex effects were here the opposite of what was found for the Ex network, 405 

with the VO node showing a pattern of sending more information to the other nodes in males 406 

compared to females (t = 4.33, PBonf <.001; Fig.6d). Further, the SM sends more information 407 

with higher age (t = 7.12, PBonf <.001; fig.6e), and the VM network display significant sex 408 

effects, with the balance indicating that this node sends more information to the other nodes 409 

in males compared to females (t = 6.23, PBonf <.001; Fig.6g). In addition, there was a 410 

significant association between age² and balance of the FPR network (t = -2.95, PBonf =.03; 411 

Fig.6f).  412 

Taken together, these findings indicate overall that nodes tend to send more 413 

information in females, except when it comes to the visual networks, where these networks 414 

send more information in males. We did not find any significant associations between node 415 

balance and pF or cognitive test performance. 416 
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417 
Figure 6: (a) Significant association of node balance with age and sex effects in (a) Au, (b) 418 

FPL, (c) Ex, and (d) VO. Significant age difference in node balance for (e) SM, significant 419 

age² difference in node balance of (f) FPR and significant sex difference in node balance of 420 

(g)VM.  421 

 422 
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Discussion   423 

The aim of the current study was to test for associations between dFC and age, age², sex, 424 

cognitive abilities and mental health between core brain networks after validating the 425 

approach in the HCP data (Schwab et al. (2018)). We performed the analysis in healthy 426 

participants from two large public cohorts that differed in their age range (HCP: 22-37 years, 427 

n= 984, UK Biobank: 40-70 years, n=10,249).  428 

We replicated the patterns of dFC between networks in the HCP sample as previously 429 

reported in Schwab et al. (2018). Both the HCP and UK Biobank samples confirmed that the 430 

cerebellar network receives mostly rather than emits information from several other networks. 431 

Further, the visual areas VM and VL showed a bi-directionality in the information flow of 432 

their connectivity, with effects particularly pronounced in UK Biobank. Whereas the 433 

previously reported (Schwab et al., 2018) patterns that the auditory network mostly receives 434 

information from others replicated in the independent HCP analyses in the present study, 435 

similar patterns were not observed in UK Biobank data. These differences may be attributable 436 

to sample specific differences, such as the differences in the age range or differences in the 437 

decomposition of the Au network.   438 

We observed marked effects of age on dFC in UK Biobank sample. For example, the 439 

sensorimotor network generally received little information from other networks with higher 440 

age in the 40-70 years age range. This is particularly interesting given that dysconnectivity of 441 

sensorimotor networks has previously been associated with schizophrenia (Cheng et al., 2015; 442 

T. Kaufmann et al., 2015), and apparent aging of the brain appears a key characteristic in 443 

schizophrenia (Hajek et al., 2019; Tobias Kaufmann et al., 2019; Schnack et al., 2016), 444 

making it of interest to delineate how age-related effects play a part in healthy aging as well 445 

as mental disorders.  446 
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Overall, most age effects were in the direction of decreased reception with higher age. 447 

However, two connections showed a bi-directional relationship with age with decreased 448 

connectivity flow in both directions between these nodes (Cer-SM, Au-SM). Additionally, 449 

two connections of the DMN increased bi-directionally with age (Cer-DMN, DMN-VL). Of 450 

note, increased static connectivity between the cerebellum and the DMN with age has 451 

previously been reported in a study comparing a group of young to a group of old individuals 452 

(Dørum et al., 2017). While connectivity was lower in the young group during rest, it was 453 

higher in the young group during task load (Dørum et al., 2017), which is in line with the 454 

established decline of DMN variability in old age (Maglanoc, Kaufmann, Jonassen, et al., 455 

2019; Mowinckel, Espeseth, & Westlye, 2012). Thus, changes in direction with age may also 456 

depend on task load, which will need to be explored in future studies. Finally, when 457 

examining dFC on the node-level, we observed in the HCP sample that the VM receives less 458 

information in early adulthood (20-40 years), and that the SM sends more information input 459 

later in life (40-70 years) in the UK Biobank sample.   460 

The marked pattern of more inputs than outputs of the cerebellum, which replicated 461 

across samples, showed significant sex differences at the edge- and node-level. Males 462 

expressed this receiver pattern stronger than females. In contrast, the pattern of more inputs 463 

than outputs of the VM appeared stronger in females, as observed at the edge- and node-level 464 

in HCP data and at the node-level in UK Biobank data. There was also a pronounced effect of 465 

sex on dFC in the sensorimotor network in UK Biobank data, with males showing a more 466 

marked pattern of dFC compared to females on the edge-level. Prior research has reported 467 

increased connectivity in males in the sensorimotor network in resting-state (Scheinost et al., 468 

2015) and both increased and decreased down regulation between males and females while 469 

participants were performing a motor task (Lissek et al., 2007). These sex effects yield insight 470 

into how sex factors into information flow of large-scale brain networks and can be of help in 471 
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giving a better understanding of the connectome in general and also for sex differences found 472 

in symptom onset and burden in mental disorders.  473 

Whereas our results revealed distinct effects of age and sex on dFC, none of our 474 

analyses identified significant relations with individual differences in cognitive test 475 

performance or mental health. However, other studies looking at patient groups in relation to 476 

psychiatric disorders have observed alterations in connectivity direction with mental health 477 

(Lu et al., 2012; Rolls et al., 2018; Schlösser et al., 2003; Shannon et al., 2009; Wicker et al., 478 

2008) and it should be noted that all included individuals in our study were healthy and thus 479 

the variations related to mental health was small, making it difficult to detect associations. 480 

Also, the tools taken to assess mental health may to some degree also have had an impact on 481 

the null findings. The MHQ in UK Biobank was taken a long time after the scanning and it 482 

may thus not be a solid marker of the state at the participants’ time of scanning. Likewise, due 483 

to differences in available data, we used different approaches for measuring mental health, 484 

estimating two principal components in UK Biobank and utilizing a sum score in the HCP 485 

data. Also, the ASR item used to measure psychiatric and life function in HCP may not be 486 

specific enough as it represents a sum score of a range of domains extending to depression 487 

and anxiety, aggressive behavior, attentional problems and hyperactivity, personality traits, 488 

psychotic and abnormal behavior, risk taking and impulsivity, somatic complaints, and 489 

substance use. 490 

 491 

Limitations  492 

There are limitations in the current study. The data was processed in different pipelines and 493 

we thus chose not to analyze the two samples together as would have been of interest for 494 

studying age effects across the lifespan. While we observed various patterns across the two 495 

independent cohorts, there were also marked differences that might be partly attributable to 496 
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confound effects, such as variability in the ICA decompositions, scanning site and motion. Of 497 

note, while confounders showed significant effects on dFC, they are unlikely to explain the 498 

main findings. For example, the reported pattern of the cerebellum was observed in both HCP 499 

and UK Biobank data, yet only in HCP data the cerebellum also showed motion confounds. 500 

Moreover, DGM estimates connections binary, which may have rendered the association 501 

analyses less sensitive. In addition, DGM requires high-quality fMRI data with a low TR and 502 

benefits from a high number of observations. The long scan duration needed to acquire such 503 

data may have increased the chance that participants may fall asleep while they are being 504 

scanned. This is especially a challenge for the HCP project were participants are in the MRI 505 

scanner for a long time period (Glasser et al., 2018; Liu et al., 2018).  The lack of variation 506 

and low number limited the ability to investigate association with cognitive and mental health 507 

measures. Future research, involving patients with psychiatric disorders may reveal if and 508 

how information flow is associated with disorders or related to specific symptoms.  509 

 510 

Conclusions 511 

In conclusion, using the rsfMRI data from extended HCP as well as the UK Biobank samples 512 

we replicated several of the directed connectivity patterns from the original HCP analysis 513 

(Schwab et al., 2018). In particular we observed a marked characteristic of the cerebellar 514 

network to receive directed edges from many areas, and the visual areas VM and VL showed 515 

a bi-directionality in the information flow of their connectivity. Further, there was widespread 516 

age and sex effects on information flow, where strong age effects where observed in the 517 

sensorimotor network. Our findings support the use of DGM as a measure of directed 518 

connectivity in rsfMRI data and uncovered new insight into the shaping of the connectome in 519 

aging. Future studies should examine dFC in other samples and look at directional changes in 520 

connectivity in relation to clinical populations and in broader age ranges.  521 
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