
Fast and precise single-cell data analysis using
hierarchical autoencoder
Duc Tran1, Hung Nguyen1, Bang Tran1, Carlo La Vecchia2, Hung N. Luu3,4, and Tin
Nguyen1,*

1Department of Computer Science and Engineering, University of Nevada Reno, Reno, NV, USA
2Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy
3Division of Cancer Control and Population Sciences, Hillman Cancer Canter, University of Pittsburgh Medical
Center, Pittsburgh, PA, USA
4Department of Epidemiology, University of Pittsburgh Graduate School of Public Health, Pittsburgh, PA, USA
*tinn@unr.edu

Abstract: A primary challenge in single-cell RNA sequencing (scRNA-seq) studies comes from the massive amount of data and
the excess noise level. To address this challenge, we introduce a hierarchical autoencoder that reliably extracts representative
information of each cell. In an extensive analysis, we demonstrate that the approach vastly outperforms state-of-the-art techniques
in many research sub-fields of scRNA-seq analysis, including cell segregation through unsupervised learning, visualization of
transcriptome landscape, cell classification, and pseudo-time inference.

Advances in microfluidics and sequencing technologies
have allowed us to monitor biological systems at single-cell
resolution.1, 2 This comprehensive decomposition of complex
tissues holds enormous potential in developmental biology
and clinical research.3–5 However, the ever-increasing number
of cells, technical noise, and high dropout rate pose significant
computational challenges in scRNA-seq analysis.6–8 These
challenges affect both analysis accuracy and scalability, and
greatly hinder our capability to extract the wealth of informa-
tion available in single-cell data.

To detach noise from informative biological signals, we
have developed a new analysis framework, called single-cell
Decomposition using Hierarchical Autoencoder (scDHA),
that consists of two core modules (Figure 1a). The first
module is a non-negative kernel autoencoder that provides
a non-negative, part-based representation of the data. Based
on the weight distribution of the encoder, scDHA removes
genes or components that have insignificant contribution to
the representation. The second module is a Stacked Bayesian
Self-learning Network that is built upon the Variational Au-
toencoder9 to project the data onto a low dimensional space
(see Online Methods). Using this informative and compact
representation, many analyses can be performed with high ac-
curacy and tractable time complexity (mostly linear or lower
complexity).

In one joint framework, the scDHA software package con-
ducts cell segregation through unsupervised learning, dimen-
sion reduction and visualization, cell classification, and time-
trajectory inference. We will show that scDHA outperforms
state-of-the-art methods in all four sub-fields.

Cell segregation. Defining cell types through unsupervised
learning is considered the most powerful application of
scRNA-seq.7 This has led to the creation of a number of
atlas projects,10, 11 which aim to build the references of all
cell types in model organisms at various developmental stages.

We assess the performance of scDHA in clustering using
24 scRNA-seq datasets with known cell types (see Online
Method for details of each dataset). The true class infor-
mation of these datasets is only used a posteriori to assess
the results. We compare scDHA with four methods that are
widely used for single-cell clustering: SC3,12 SEURAT,13

SINCERA,14 and CIDR.15 We also include k-mean as the
reference method.

Since the true cell types are known in these datasets, we
use adjusted Rand index (ARI)16 to assess the performance of
the six clustering methods. Figure 1b shows the ARI values
obtained for each dataset, as well as the average ARI and
their variance. scDHA outperforms all other methods by not
only having the highest average ARI, but also being the most
consistent method. The average ARI of scDHA across all 24
datasets is 0.83 with very low variability. The second best
method, CIDR, has an average ARI of only 0.5. Kruskal-
Wallis test also indicates that the ARI values of scDHA are
significantly higher than the rest with a p-value of 10−9.

To perform a more comprehensive analysis, we calculate
the normalized mutual information (NMI) and Jaccard index
(JI) for each method (Supplementary Section 1 and Tables 1–
3). Regardless of the assessment metrics, scDHA consistently
outperforms all other methods. At the same time, scDHA is
also the fastest among the six methods (Figure 1c and Supple-
mentary Table 4) with an average running time of two minutes
per analysis. For the Macosko dataset with 44 thousand cells,
scDHA finishes the analysis in less than five minutes. On the
contrary, it takes CIDR more than two days (3000 minutes) to
finish the analysis of this dataset. In summary, scDHA outper-
forms other clustering methods in terms of both accuracy and
scalability.

Dimension reduction and visualization. Dimension reduc-
tion techniques aim at representing high-dimensional data in
a low-dimensional space while preserving relevant structure

.CC-BY-NC 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted October 25, 2019. ; https://doi.org/10.1101/799817doi: bioRxiv preprint

https://doi.org/10.1101/799817
http://creativecommons.org/licenses/by-nc/4.0/

(a)

Raw Input Normalized Data

N
or

m
al

iza
tio

n

En
co

de
r

De
no

is
in

g

En
co

de
r

Denoised
Data

Applications

Compressed
Data

i ii iii iv
Classification

Visualization Pseudo-time
Inference

Clustering

(b)

Macosko Campbell Chen Baron (H) Montoro Lake Zeisel Romanov

Klein Segerstolpe Muraro Baron (M) Xin Camp (L) Kolodziejczyk Usoskin

Camp (B) Darmanis Wang Patel Pollen Deng Goolam Yan

p = 1e−09

0.0

0.2

0.4

0.6

0.8

1.0

Overall

Method

scDHA

SC3

SEURAT

SINCERA

CIDR

k−means

Method

A
R

I

(c)

●●●●●●●●●●●●●●●●●●● ● ● ● ● ●

●●●●●●●●●
●●

●●

●●
●●●●

● ●
●

●

●

●●●●●●●●●●●
●●●●

●●●● ● ● ●
●

●

●●●●●●●●●●●
●●●●

●●●●

● ●

●

●

●

●●●●●●●●●●●
●●●●

●●●●

●

●

●

●

●

●●●●●
●●●●●●

●
●●●

●●●
●

●
●

●

●

●

1000

2000

3000

0 10000 20000 30000 40000
Number of Sample

T
im

e
(m

in
ut

e)
(d)

●
●

●

●
●●

●

● ● ●

●

●
●

●●
●●●
●

●

●

●
● ●

●

●

●
●●●

●●
●●
●
●

●

●
●

● ●

●

●

●
●

●

●
●

●●
●

●
●● ●

●
●

●

●
●
●●●●

●●
●

●

●

● ●●
●●

●
●
●
●

●
●

●

●
●

●

●●● ●
●
●●
●

● ●●
●●

●●
● ●

●●●
●

●
●
●

● ●

●
●●

●

●

●
●

●●● ●
●● ●
●●

●

●●
●

●
● ●●

●

● ●

●
●

● ●●
●
●●

●

●

●

●
●

●
● ●●●●
●●●

●●
●●

●
●
●●●●

●
●

●

●
●●●●●●●● ●

●●

●

●
●●●

●
● ●

●●●
●
●●

●

●● ●

●

●● ● ●● ●
●

●
●
● ●

● ●
●

●

●
●●

●●
●

●
●

●
●

●● ●●●
●

●

●
●

●●
●

●

●●
●●●

●
●●

●
●

●●
●●
●●

●●
● ●

●●
●

● ●●
● ●

●
●

●

●●
●

●

●
●●

●
●

●
● ●

●
●

●

● ●
●

●
●

● ●
●

●

●●●●●
●

●●●

●●
●●●

●
●

●

●

●
● ●

●
●

●

●●●●●●● ●●●
●● ●

●

●
●●

●
●

●●●
●●

●●
●

●
●●

●

●
●

●●●
●

●●●●
●

●

●
●

●
●●

●●

●
●

●
●●

●

●

●
●

●

●
●●●

●
●

●●

●●
●

●●●●●●●
●

●●
●
●

●●
●●●●

●
●●

●●●●●●●
●

●
●

●
●

●●

●
●●●
●●

●
●●

●

●
●●

●

●
●

●

●●●●
●●●●

●

●

●

●●●

●

●●●●● ●●●●●●●● ●●●
●●●●●
●●
●●●●●
●

●
●
●

●●●
●●●
●●

●
●

●
●

●
●●●●●

●●●

●

●
●●●

●

●
●●●

●

●●●● ●
●

●●●●
●●

●
●●

●

●

●
●●●●

●●
●

●

●

●
●

●

●
●●●

●
●

●
●

●

●

●

●●●●
●

●

●●●

●

●
●

●

●

●

●●
●

●

●

●

●

●

●

●
●

●
●

●●● ●

●

●●● ●●

●

●

●

●
●

●
●

●

●

●●
●●

●●● ●
●

●

●●●
●

●● ●●●

●●

●

●
●

●
●

●

● ●

●●

● ●

●

●●

●●
●

●

●●

●
●

●●

●

●

●

●●

●

●

●

●●
●●

●

●
●

●

●

●

●

●
●

●

●
●

●●
●●●

●

●

●

●

●

●
●●
●

●
●

●
●

●

●
●●

●●

Silhouette = 0.81Silhouette = 0.81Silhouette = 0.81

scDHA1

sc
D

H
A

2

●

●
●●

●● ●

●
●●

●

●

●

●●
●

●

●

●
●

●

●

●
●

●

●
●●

● ●

●

●●
●

●●
●

●

●●
● ●

●●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●●

● ●

●

●

●
●●

●●

●●

●

●

●●

●●●

●
●

●

●
●

●

●

●

●
●

●
●

●

●●●

●

●●●
●

●
●●

●●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●
●
●

●●

●
●

● ●
●

●

●
●

●

●

●●

●

●
●

●

●

●

●
●

●

●●

●
●
●●●

●

●●

●
● ●

●

●

●

●

●

●●
●● ● ●

●●
●

●

●

●

●

●
●

●

●

●

●●

●
●

●
●

●

●
●●

●

●●

●

●
●●

●

●

●

●
●

●

●

●●●
●

●

●

●
●

●

●● ●
● ●

●
●

●
●

●
●

●

●

●●
●●

●

●

●
●

●
●●

●●
● ●

●

●

●

●

●
●
●

●
● ●

●

●

●●

●

●

●

●

●

●
●

●

●●●●●
●

●
●

● ●

●●

●
●

●

●●

●

●

●

●

●
●●

●
●

●

●

●●

●

●

●

●●●
●

●
●

●
●

●

●

●

●

●●●

●

●

●
●●

●
●
●●

● ●

●

●

●
●

●

●

●

●●
●●

●

●●● ●

●
●

●

●●
●

●

●

●●

●
●●
●

●●
●●

●●

●

●

●

●
●

●

●

●●

●

●
●●

●

●●

●

●

●
●

●

●

●
●

●●

● ●

●
●

●

●
●

●
●

●

●

●

●

●

●
●
●●

●
●

●●
●

● ●

●

●
●●
●

●
●

●
● ●

●

●

●
●

●

●
●

●

●●

● ●

●
●

●

●
●

●
●

●

●

●

●

●

●●
●

●
●

●

●●●
●●●

● ●
●

●

● ●

●

●

●

●

●

●
●

●
●

●
●

●●
●

●

●

●

●

●

●

●

●

●

● ●
●

●
●

●

●

●●

●
●

●

●

●

●
●

●

●●

●

●

●

●●
●

●
●

●

●

●

●

●

●

●

● ●●

●

●

●

●
●

●
●

●
●●

●
●

●
●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●●
●

●

●

●

●
●

●
●

●

●

●●
●●

●

●

●
●

●

●

●
●

●

●

●
● ●

●
●

●

●

●
●

●

●

●

●
●

●
●

●●

●

●
●

●

●
●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

● ●
●● ●

●

●

●

●
●

●

●
●

●

●●●
●

●
●

●

● ●

●
●

●
●

●

●

●●

●

●

●

●
●

●
●

●

● ●

●

●

●

●
●

●

● ●

●

●

●

●
●

●●

●

●

●●

●

●
●
●

●●

●

●

●

●

●

●

●

●

Silhouette = 0.3Silhouette = 0.3Silhouette = 0.3

PCA1

P
C

A
2

●
●●
●

●●
●

●●

●

●●

●

●

●
●●

●
●

●
●

●●

● ●
●

●●
●●

●●

●

● ●
●●●
●
●

●
●

●
●

●
●●

●
●

●● ●●
●

●

●
●
●
●

●
●
●

●
●●
●

●●
●●

●

●
●

●

●●●

●
●

●

●

●
●

●

●●●●

●

●
●

●

●

●

●
●

●

●
●

●● ●
●

●● ●● ●
●

●
●

● ●

●●●
●

●●
●

●

● ●
●

●●

●
● ●

●

●
●●
●●

● ●

●

●●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●
●

●

●

●●
●

●●

●

●

●

●

●

● ●
●●

●
●

●

●
●

●

●

●

●

●● ●
●

●

●
●

●

●

●

●

●

● ●
●●

●
●

●

●

●

●
●

●

●

●●

●
●
●

●●
●

●

●

●●
●

● ●
●●

●
●
●

●●

●●

●
●
●

●●

●

●

●

●

●

●●
●

●
●

●●

●

●

●

●
●

●

●
● ● ●

●

●

●
● ●

●

●

●
●

●

●

●

●
●●●

●

●

●
● ●

●

●●

●●

●

●
●

● ●
●

●
●●

●●

●

●
●

●
●

●
●

●

● ●●●

●

●
● ●

●

●

●● ●
●●

●● ● ●●
●

●●
●●

●

●

●

●
●

●

●

●
●
●●

●
●

● ●

●

●
●●

●

●●●
●

●

● ●

●●
●●

●

● ●
●
●●

●
●

●

●
●

●

●

●●● ●

●
●●● ●

●●

●
●

●

●
●●

●●
●●

●
●

●

●
● ● ●

●

●●

●

●

●

●
●

●

●

●

● ●
● ●●

● ●●
●

●

●●

●

●
●

●
●

●

● ●

●●
●

●
●

●
●

●●●
●●
●●
●

●

●

●

●

●

●
●

●●

●

●
●

●

●●●●

●

●●
●●

●

●

●

●

●

●
●

●●
●

●
●

●

●
●

●

●
●●

●

●
●

●

●

●
●

●

●

●

●
●

●

●

●
●●

●

●●●

●●
●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●
● ●

●

●

●●
●

●

●
●●

●

●

●
●

●

●●

●

●
●

●

●

●
●

●
●

●
●

●

●

●

●
●
●

●

● ●

●●●

●

● ●

●

●
●

●●
●

●

●
●●

●●

●
●

●

●

●

●●

●●

●
●

●

●
●

●
●

●

●
●

●
●

●

●

●
●

●●
●
●●

●

●

●

●
●

●

● ●

●
●●

●

●
●

●
●● ●

●
●

●
●●

●
●

●

●
●●

●● ●
●

●●

●●
●●

●●
●

●●
●

●
●

●●
●●

●

●

●
●●

●

●
●●●

●●

●
●●●

●● ●
● ●

●

●

●●●●

●
●

●

●

●
●●●●

Silhouette = 0.43Silhouette = 0.43Silhouette = 0.43

t−SNE1

t−
S

N
E

2

●

●●●●●●
●●●

●

●
●●●●●
●●●●

●●
●●
●

●●●●

●●
●
●
●●●
●

●●●●
●●●
●●

●●●●●●●●
●

●●●
●●●●●●

●

●●●●
●●

●
●

●●●
●●
●●

●

●●●●●●
●●
●●●

●
●●

●●
●
● ●

●●●
●●●●

●
●●●

●●
●

●
●●●●

●
●●

●
●●●●
●●

●●●
●●
●●●●● ●

●●●
●●

●

●

●
●●

●
● ●

●

●
●

●●
●

●
●●● ●●●●●

●

●

●

●
●

●●●
●●●●●●

● ●

●

●

●●
●

●

●

●
●●

●

●
●

●

●
●●●● ●●●

●
●
●

●
● ●● ●●● ●

●
●

●

●
●●
●

●
●●
●●●●

●●● ●●

●●
●●

●●

●
●●●●

●

●

●
●●

●

●

●

●
●●

●●
●●

●
●

●
●

●
●

●
●●●
●

●●
●●●●●
●
● ●

●

●●●●●
●

●
●● ●

●
●
●●
●

●●●
●●

●●●●
●●●

●●●
●●●

●●

●
●

●

●●

●●●
●

● ●
●

●●
●
●

●●
●

●
●
●●●
●●
●
●●

●●
●●●●●●

●
●
●

●●●●
●●●
●

●● ●
●●
●●●

●

●●

●

●
●

●●●
●●●

●●
●

●
●●

●●
●●

●●
●●●
●●
●
●●

●

●
●
●●●
●

●
●
●●●●

●

●●●
●

●
●●●●

●
●

●
●

●
●●
●

●
●

●
●

●
●●●●●●●
●

●

●

●
●●
●●●

●
●

●

● ●
●
●●

●
●●

●●
●

●
●

●
●●

●
●●

●
●● ●●●

●●●●●●● ●● ●●
●

●●

●
●

●
●

●●●●
●●●

●●●

●

●
●

●
●

●

●
●●●●

●
●● ●●●

●●

●
●●

●

●
●●●●●

●
●

●●● ●
●

●
●
●●

●
●

●●

●

●

●

●
●

●● ●
●

●●●

●

●
●

●

●●●●●

●
● ●●

●●

●●
●

●

●
●●
●
●
●
●●
●
●●

●

●

●●

●●●●●
●●●
●●

● ●
●

●

●●● ●●

●
●
●

●

●●●●●
●
●

●

●
●

●●
●

●●
●●●●

●
●●●

●●

●●●●●

●
●●
●

●
●●
●●● ●

●●
●

●

●●●●
●

●
●●

●●
●●

●
●

●
●

●

●●●●
●●

●
●●

●
●●
●

Silhouette = 0.54Silhouette = 0.54Silhouette = 0.54

UMAP1

U
M

A
P

2

Kolodziejczyk Cell Types ● ● ●2i a2i lif

●
●

●

●

●

●

●

●

●●

●
●●●

●

●●
●

●

●

●

●
●●

●

●

●

●
●

●

●
●

●

●
●●

●

●

●
●

●

●●
●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

● ●

●
●

●

●●

●●

●

●

●
●●●

●

●

●

●

●

●

●

●

●●● ●●

●

●

●

●

●●

●

●

●
●

●

●●

●

●

●

● ●

●

●

●

●

● ●
●

●

●●●

●

●

●●
●●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●
●●

●

●

●

●
●

●

●

●

●

●

●

●

●●● ●●●
●●

●

●
●●

●

●
●

●

●

●

●

●●
●●

●

●●
●

●

●●
●

●●

●●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●●
●

●

●

●●●
●

●

●

●

●

●

●●
●
●

●

●
●

● ●●●●

●

●●
●

●

●

●●

●

●
●●

●
●

● ●

●

●●●
●

●●
●

●

●

●
●

●

●

●●●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●●●

●

●●
●

●

●

●

●

●●
●●

●

●

●

●

●

●
●●

●

●

●

●●

●●

●

●
●●
●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●
●

●●●

●
●

●●●

●●●

●

●●

●●

●
●

●

●

●

●
●●

●

●

●

●

●●●

●

●

●

●

●●

●

●

●

●

●

●
●

●
●●

●
●●●

●

●
●
●

●

●
●

●

●
●●

●

●●

●●

●

●●●●
●

●

●

●

●
●

●

●

●

●●

●●

●

●
●●●
●

●

●

●●●●

●

●

●

●●
●

●

●

●
●

●

●

●

●●
●

●

●

●●●
●●

●●

●

●

●

●

●

●
●●●●

●

●●
●
●
●

●

●
●

●
●

●●
●
●

●

●

●
●

●
●●

● ●●●

●

●
●●

●

●

●●
●

●●●●●

●

●

●

●
●●

●

●

●

●

●

●●●

●

● ●●●
●●

●

●

●

●

●

●
●

●

●●
●

●

●

●

●●

●●

●

●●
●

●

●

●

●

●

●
●

●●

●●

●

●

●

●

●

●

●

●

●
●

●
●●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●
●●

●

●

●

●

●

●
●

●

●

●

●
●

●
●●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●●

●

●●
●

●

●
●

●

●●●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●●
●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●●

●

●●

●

●

●

●

●

●

●●

●

●●

●●

●
●

●●

●

●

●●
●

●
●

●

●

●
●

●
●

●

●

●

●●

●●

●

●

●●

●
●

●

●

●

●

●

●

●

●●

●●

●
●

●

●

●●

●

●

●
●

●

●●

●

●

●

●

●●
●

●

●

●
●

●

●

●

●

●

●

●●●●

●

●

●

●●

●

●

●
●

●

●

●●

●

● ●

●●

●

●

●

●

●●

●
●

●●
●●

●

●

●

●
●

●

●

●

●●

●●

●

●

●

●

●

●

●
●●

●

●

●

● ●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●●
●

●
●●

●

●

●

●
●

●

●

●

●●

●●●

●

●

●

●

●

●

●
●

●

●

●

●
●

●●

●

●

●

●

●

●
●●

●

●

●

●●●

●

●

●

●
●

●

●

●

●●

●

●

●
●

●

●

●●

● ●

●●●

●

●

●

●

●

●

●

●●

●

●

●●

●

●

●●

●

●

●●

●

●
●

●

●

●

●
●
●●
●
●

●●

●

●
●

●

●

●

●
●

● ●

●

●●
●●
●●●●●●●
●

●
●

●

●
● ●

●

●

●● ●
●

●

●●
●
●

●

●

●

●
●

●●

●

●
●●

●
●

●● ●

●

●

●●

●

●

●

●

●
●
●

●

●
●

●
●●

●
●●●

●

●
●●●● ●●

●
●
●● ●

●
●●

●

●●
●●●●
●

●

●

●

●

●

●
●●
●

●

●

●●●
●●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●
●

●

●
●

●

● ●

●

●

●

●
●
●

●

●● ●
●

●●
●

●

●●
●

●

●

●

●

●

●
●

●
●

●
●

●

●

●

●

●

●●
●

●
●

●●●

●

●

●

●
●
●
●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●●

●

● ●●

●
●

●

●

●

●
●

●

●

●

●

●

●
●●

●

●●

●

●●
●●

●
●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●
●●

●●

●

●

●

●●

●

●

●

●

●

●

●

●●

●

●
●● ●

●

●

●

●

●

●

●

●

●

●●

●

● ●

●

●●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●
●●

●
●
●

●

●

●

●
●

●

●

●

●

●

●

● ●

●

●

●●●
●

●

●

●

●●

●

●

●
●
●

● ●

●
●

●

●

●

●

●●

●

●

● ●●

●

●

●

●

●

●

●●

●

●
●●

●

●
●

●
●

●

●

●
●

●

●●

●
●

●

●

●●

●

●
●

●●

●

●

●

●●

●

●

● ●

●

●
●

●

●

●
●

●

●

●●
●
●

●

●

●

●

●

●

●

●

● ●

●

●

●●

●

●

●●

●
●

●

●

●
●

●

●
●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●●
●

●

●

●
●

●

●
●

●

●
●

●●

●

●

● ●

●
●

●
●

●
●
●

●

●

●
●

●

●

●

●

●

● ●

●
●

●
●●●● ●

●

●

●

●●

● ●

●

●

●

●

●

●

●●

●

●

●

●●●●

●

●
●

●●●

●

●●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●
●

●
●

●

●

●

●
●

●

● ●

●

●●●

●

●

●

●

●
●

●

●

●

● ●

●

●● ●

●

● ●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●
●

● ●

●

●

●

●

●

●

●●

●

●

●

●●●●

●

●

●
●

●●

●●

●
●

●●

●

●●●●●

●
●

●●
●

●

●●

●

●

●

●

●

●●

●

●

●

●

●●

●
●

●

●

●

●

●

●●
●

●●
●

●

●●●

●

●●

●●●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●

●
●

●●

● ●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

● ●

●

●●

●

●

●

●●
●

●

●●

●
●
●

●

●

●

●

●
●

●

●

● ●
●

●

●

●
●

●

● ●

●

●●
●

●
●

●● ●●

●

●

●

● ●

●

●●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●●●
●●

●●

●

●●

●

●

●

●●

●

●

●
●

●

●

●●

●

●

●

●●

●

●

●●●

●

●
●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●
●

●●

●

●
●

●

●

●

●●
●●●●

●

●

●

●
●

●

●

●

●

●●●●● ●

●

●

●

●

●

●

● ●●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●●

●

●
●
●
●

●

●●

● ●●

●

●
●●●●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●
●●

●

●

●

●●

●
●

●

●

●

●●

●

●

●

●

●

●

●
●

● ●

●

●

●

●

●●
●●
●●

●

●●●

●

●

●

● ●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●
●

●●

●

●●

●

●

●

●●

●

●

●

●
●●

●

●●●●

●

●

●●●
●

●

●●

●

●

●

●

●
●● ●

●

●

●●
●●●
●

●

●

●●●

Silhouette = 0.66Silhouette = 0.66Silhouette = 0.66

scDHA1

sc
D

H
A

2 ●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●
●

●

●

●●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●
●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

● ●
●
●

●
●

●

●

●

●

●

●

●

● ●

●

●
●

●

●

●

●

●

●

●

●

●●

●

● ●

●

●

●

●

●● ●
●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●
●

●

●
●

●

●
●

●

●

●

●
●

●

●●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●
●
●

●
●

●

●

●

●

●

●
●

●
●

● ●

●

●
●

●

●

●

●

●

● ●●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●
●

●●

●

●●
● ●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●
●

●

●
●

●

●●

●

●

●
●

●

●
●

● ● ●
●

●●●

●

●
●●

●

●●
●

●

●

●

●●

●

●

●

●

●

●

●● ●
●

●

●

●

●

●

●

●
●

●
●

●
●

●
●●

●●

●

●

●

●

●

●
●

●
●

●

●

●

●
●

●
●

●

●●
●

●

●

●

●

●

●
●

●

●

●●

●

●
●●●

●

●

●
●●●

●

●
●

●

●●
●

●

● ●
●

●

● ●
●

●

●

●
●

●● ●

●

●

●●

●

●

●

●

●
●

●
●

●

●
●

●

●
●

●

●

●

●
●

●

●

●

●

●

●● ●
●

●

●
●

●

●

●
●●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

● ●
●

●

●
●

●

●

●

●

●

●

● ●

●

●
●

●

●

●

●

●

●

●
● ●

●

●● ●

●
●

●
●

●

●●

●

●

●

●

●
●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

● ●

●

●
●

●

●

●
●

●

●●
●

●
●

●

●

●

●
●

●
●

●

●

●●

●

●

●
●

●

●

●
●
●●
●●

●

● ●●
●

●

●

●

●
●

●●
●

●
●

●
●●

●

●
●●

●
●

●
●

●

●

●

●

●

●●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●
●

●

●●●
●

●

●

●●

●

●

●

●
●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●
●

●

●
●

●
●●

●

●

●

●
●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●
●

●

●

●
●●

●

● ●

●

●

●

●

●

●
●●●

●●

●

●●

●
●

● ●

●●

●

●●●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

● ●

●

●●
●

●

●

●

● ●

● ●

●●

●

●

● ●

●
●

●

●

●

●

●

●
●

●

●

● ●●
●

●

●●

●

●

●●

●

●

●●
● ●

●

●

●

●
●

●

●

● ●

● ●●

●

●

●

●

●

●
●

●●

●

●
●

●
● ●●

●
●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●
●

●● ●
●

●

●

●

●

●

●

●

●

●

●

●

●

● ●
●

●

●
● ●

●

●

●

●●
● ●

●●

●

●
●●

●
●

●●

●●

● ●
●

●

●

●

●

● ●
●●

●
●

●

●
●

●
●

●

●

●

●

●

●
● ●

●

●

●
● ●●

●●

●

●●
●

●

●

●
●

●

●

●●
●

●

●
●

●

●

● ●
●

●

●

●

●

●

●
●

●●●
●

●

●

●

●

●●

●

●

●
●

●
●

●

●

●

●●

●

●

●●

● ●

●

●

●●

●

●
●

●●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●
●●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

● ●

●

●

●

●

●

●

●

●

●

●

● ●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●
● ●

●

●

●

●● ●

●

●

● ●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

● ●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●●

●●

●

●

●

●
●

●

●

●

●

●
●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●
●

●

●

●

●
●

●

●
●

●

●

●

●

●

●
●

●

●

●

●
●

●
●

●

●●
●

●

●

●

●
●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●●

●

●

● ●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●
●
●

●

●

●●

●●
●

●●

●

●

●

●

●

●

●

●

●
●●

●●

●

●

●
●

●

●
●●

●

●

●
●

●

●
●● ●

●●

●

●
●

●

●

●
●

●
●

●●

●

●

●

●

●

●
●

●
●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

● ●

●

●

●

●

●

●

●●

●

●

●

●
● ●●

●

●

●
●

●
●

●
●

●
●
●●

●

●
●

●
●

●

●
●

●●●●

●

● ●

●

●

●

●

●●

●
●

●

●

●●

● ●

●

●

●
●

●

●

●

●

●
●●

●

●●
●

●

●●

●
● ●

●●

●

● ●●

●●

●

●

●
●

●

●

●

●● ●

●

●
●

●
●

●

●

●
●

●

●

●

●●

●
●

●
●

●
●
●

●

●
●

●

●

● ●

●

●

● ●
●

●

●

●

●

●

●

●
●●

●

●

●
●

●
●

●

●
●

●

●

●

●

●
●

●

●
●

●

●

●
●

●

●

●

●●

●
●

● ●

●

●

●

●●●
●
●

●
●

●

●

●

●●

●

●

●

●●

●
●

●
●

●●●
●●

●●
●

●

●

●●
●

●●●●

●

●

●

●
●

●

● ●●

●

●
●●

●

●

●

●

● ●

●
● ●

●

●

●

●

●
●

●

●

●

●

●

● ●

● ●

●

●

●
●

●
●

●
●

●

●

●
●
●

●

●

● ●

●
●

●
●

●

● ●
●

●

●

●

●

●
●

●

●

●

●

●

●●
●● ●

●

●

●

●

●

●

●

● ●
●

●

●
●

●●

●

●

●

●●●

●

●

●

●

●●
●

●●

●

●

●●
●

●

●
●

●
●
●●

●●
●

●

●

●

●

●
●

●●
●

●

●

●●

●●

●

●

● ●

●
●

●

●
●●

●
●

●

●

●

●

●

●

●
●●
●

●

●

●
●

●
●● ●

●

●

●

●
●

●●

●●

●

●
●

●

●

●
●

●

●●

●

●

●

●

●

●
●

●

●
●

●

● ●●

●

●

●
●

●
●

●

●
●

●

●

●

●

●
●
●

●

●

●
●

●

●

●●
●

●
●

● ●

●

●
●

●

●

●●

●

●

●

●
●

●

● ●

●

●
●

●●●

Silhouette = −0.22Silhouette = −0.22Silhouette = −0.22

PCA1

P
C

A
2

●

●

● ●
●

●

●

●

● ●

●●●●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●
●

●●● ●

●

●

●
●

●

● ●
●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●
●
●

●

●

●

●

●

●

●
●

●
●

●
●

●

●
●

●

●

●

●

●

●

●
●

●

●
● ●

●

●

●

●

●

●

●

●

●
●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●
●

●●

●

●
●●

● ●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●●●● ●● ●

●

● ●
●
●●

●

●

●●
●
● ●

●

●

●●

●

●

●

●

●

● ●
●●

●

●

●
●

●

●
●

● ●

●
●●●

●

●●●
●

●●●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●● ●● ●
●

●

●
●

●
●
●

●

●

●●●●
●

● ●
●

●●
●
●

●●●●
●

●
●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●
●●●

●
●

●

● ●●
●
●

●

●

●
●

●
●

●

●

●

●

●●
● ●

●
●

●

●

●

●●●

●

● ●
●

●
●

●
●● ●

● ●

●

●
●●●

●
●●

●●

●

●

●
● ●

●

●●

●
●

● ●●

●

●

●

●

●●

●

●

●●

● ●
●

●

●

●

●●
●

●
●

●

●
●●

●

●
●

●
●

●
●

●

●●
●

●

●●
●

●

●

●

●

●
●

●
●

●●

●
●

●

●●

●

●

●
●

●●

●●

●

●●
●

●

●

●

●

●

●

●
●●

●●

●
●

●

●

●
●

●

●

●●●●
● ●

●
●

●
●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●
●●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●●

●

●
●

● ●
●

●

●

●

●

●

●●●●
●

●

●

●

● ●

●

●

●

●

●

●●

●

●●

●
●

● ●
●

●

●

●

●●●

●

●

●

●

●

●

●

●
●

●
●

●
●

●

●

●
●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●
● ●●●

●

●

●●

●

●
●

●

●

● ●

●

●

●●

●

●●

●●

●●

●●

●

●
●●

●

●
●

●

●

●
●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●●

●
●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●● ●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

● ●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●
●

●

●

●
●

●
●

●

●

● ●
●

●

●

●
●

●

●

●

●

●
●

●

●

●

●
●●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●
●

●

●

●
●●

●

●

●
●

●

●

●●

●

●

●

●
●

● ●

●

●

●

●

●

●●

●

●

●

●

●

●

●● ●

●

●
●

●

●

●

●

●

●●

●

●

●●
●●

●

●

●
●

●
●

●

●●

●

●

●

●
●

●
●

●● ●

●

●
●

●

● ●
●●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●● ●

●●

●

●

●

●

●

●

●

●

●●

●

●●

●

●
●

●

●

●

●●●

●

●●

●

●

●

●

●

●

●

●

●

● ●

●● ●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●●
●

●
●

●

●

●

●

●

●

●

●

●
●●

●
●

●

●
●

●

●

●

●

●

●

●

●

● ●

●

●

●
●●

●

●
●

●

● ●

●

●

●

●

●

●

●
●
●

●

●

●

●

●

●

●

● ●

●
●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

● ●

●●

●

●

●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●●

●
●

●●

●

●

●

●

●

●

●

●

●

● ●

●

●

●●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●●

●

●

●●

●

●

●

●

●

●

●

●

●

●●●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●
●

● ●

●

● ●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●
●

●
●●

●

●

●

●
●

●●

●

●

●

●

●

●

●
●

●

●●

●
●

●

●

●●

●●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●
●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●
●

●
●●

●

●

●

●

●

●
●

● ●
●

●

●

●
●

●

●●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

● ●
●

●●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●●

●

●

●

●
●

●●

●

●

●●

●

●

● ●

●

●

●●

●

●
●

●
●

●

●●

●●
● ●

●
●

●

●

●

●

●

●●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●
●●

●

●
●●

●

●●

●●●

●●
●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●●

●

●●

●

●

●

●
●

●

●
●

●

●

●

●

●

●
●

● ●
●

●

●

●●

●

●

●

● ●

●

●

●

●

●
●

●

●
●

●

●

●
●

●

●

●

●
●

●●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●●

●●

●●

●

●●

●

●

● ●
●

●

●

●●

●

●

●●

●

●

●

●

●

●

●

●

●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

● ●

●

●●

●

●●

●

●
●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●●●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●●

●

●

●
●
●

●

●●

●

●

●

●

●

●●
● ●

●

●

● ●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●●

●●●

●

● ●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●●

●

●

●●
●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●●

●
●●

●

●

●

●●●

Silhouette = 0.01Silhouette = 0.01Silhouette = 0.01

t−SNE1

t−
S

N
E

2

●

●

●

●
●●

●

●

●
●

●●●● ●
●
●

●

●

●

●

●

●●

●

● ●

●
●

●
●

●

●

●

●
●●
●

●

●
●

●

●

●

●

●
●

●

●

●
●

●●

●
●

●

●
●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

● ●●

●

●

●

●

●
●●

●

●
●

●

●

●

●
●

●
●

●

●

● ●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●
●●
●●

●●

●

●
●

●

●

●

●

● ●●●

●

●

●
●

●

●

●

●

●

● ● ●

●

●

● ●●●

●
●

●

●●

●

●●

●

●

●●

●

●

●
●

●
● ●

●
●●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●●

●

●
●

●

●

●

●
●
●

●

●

●
●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●
●

●
●●

●

●

●

●

●

●

●

●●

●
●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●●●●

●

●

●

●

●

●●●

●

●

●

●●

●
●

●

●
●

●●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●●

●●
●

●

●

●●●

●●
●

●

●
●

●●

●●

●

●

●

●

●●

●

●

●

●

●
●●

●●

●

●

●●

●

●

●

●

●

●
●

●

●

●●●●
●

●

●
●
●

●

●●●

●●●
●

●
●

●

●

●

●●●●

●

●

●

● ●

●

●

●

●

●●

●
●

●

●●●●
● ●

●

●●●●

●

●
●

●

●●

●

●

●

●

●

●

●●●● ●

●

●●
●●●

●●

●

●

●

●

●

●●●
●●

●

●●

●

●●

●

●

●

●●

●
●●

●

●

●

●
●

●
●●

●

●

●●

●

●●

●

●

●

●●
●

●
●

●
●
●

●
●

●

●●●●

●

●

●

●

●

●

●

●

●●●

●

●
●

●

●

●

●

● ●

●

●

●●

●

●

●

●

●●

●●
●

●●●

●

●

●●

●

●

●●● ●●

●

●

●

●
●

●

●
●

●●●●● ●
●●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

● ●

● ●●

●

●

●

●

● ●●●
●

●
●●

●●

●

●●

●

●●●

●

●

●

●
●●●●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●●

●

●
●

●

● ●●

●

●●●

●

●

●

●●

●

●

●

●●

●
●

●
● ●

● ● ●●● ●
●

●

●

●

●

●

●
●

●

●●

●

●

● ●

●

●●

●
●

●●

●

● ●

●

●

● ●

●
●

●●

●
●●

●●

●●
●●

●
●

●●

●

●●
●

●

●●
●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●●

●
●

●

●
●

●

●

●

●

● ●

●

●

●

●

●●

●●

●●●

●

●

●

●
●

●

●

●
●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●
●

●

●
●

●

●

●

●

●

●
●

●

●●

●
●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●●

●

●

●

●
●

●
●

●

●●

●

●

●
●

●

●

●●

●

●

●
●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●●

●

●

●●

●●

●

●

●

●
●

●

●

●●

●

●

●

●
●

●

●

●
●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●●

●

●●

●

●
●

●

●

●

●●●

●

●●

●

●

●

●

●

●

●

●

●

●●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
● ●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●
●

●

●

●

●

●

●
●

●

●

●

●●
●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

● ●●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●● ●

●

●

●

●

●

●

●

●

●
● ●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●●

●●

●

●

●

●

●●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●
●

●

●
●●

● ●

●

●
●

●

●

●

●

●●

●

●

●●
●

● ●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

● ●

●

●

●

●●

●

●

●

●●

●

●
●

●
●

●

●

●●
●

●

●

●

●

●

●

●

●

●●●

●

●
●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

● ●

●

●

● ●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●●

● ●

●

●

●

●

●

●

●●

● ●

●

●●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

● ●

●

●

●

●●●●

●

●
●

●
●●

●

●

●

●

●
●

●

●

●
●

●
●●

●

●

●

●

●

●

●

●●

●

●

●

●●

●

●●

●

●
●

●

●

●

●

●

●●

●
●

●
●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●
●

●● ●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

● ●

●

●

● ●●

● ●

●

●●
●●

●

●

● ●

●

●

●● ●
●

●●

●

●
●
●●

●

●●

●●
●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●●

●●

●
●

●

●

●

●
●

●

●●
●

●

●
●
●

●

●●

●●● ●

●

●●

●
●

●

●

●
●

●
●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●●

●

●●● ●●

●
●

●

●●

●

●

●

●
●

●

●

●
●

●

●

● ●
●

●

●

●

●●

●

●

●

●

●●

●

●

●

●
●

●
●

●

●

●

●●

● ●
●

●● ●

●

●
● ●

●

●●
● ●

● ●

●

●
●

●
●

●●

●●

●●

●

●●

●

●

●
●

●
●

●●●
●● ●●

● ●●

●

●
●

●

●

●●●
●

●● ●
●

●
●

●

●

●

●

●
●● ●

●

●
●

●
●

●

●

●
●

●

●

●

●●

● ●
●● ●●
●

●
●

●●

●

●

●

● ●
●●

●

●●
●

●

●
● ●

●

●

●
●

●

●

●
●
●

●

●

●

● ●

● ●● ●
●

●●

●
●

●

●

●

●

●
●

●
●●

●
●

●
● ●

●

●●●●●

●

●

● ●●
●

●
●

●

●

●●
●

●●
●
●

●

● ●
●

●
●

●
●

●
●

●

●
●

●

●

●

●

●

●

●

●

●●

●● ●
●

●

●

●
● ●

●
●

●
●

●

●●

●

●

●

●

●
●

●
●

●●●

● ●●●●

●

●

●

●

●

● ● ●

●

●

●

●

●●

●●

●

●●
●

●●

●
●●

●

●
●●●

●

●

●
●

●

●
●

●

●
●●

●

●

●●

●

●
● ●

●

●

●
●●

●

●●

●

●

●

●●

●
●●

●

●●
●●●

Silhouette = 0.24Silhouette = 0.24Silhouette = 0.24

UMAP1

U
M

A
P

2

Segerstolpe Cell Types ● ● ● ● ● ● ●acinar alpha beta delta ductal gamma PSC

(e)

Method

scDHA

PCA

t−SNE

UMAP

p = 6.9e−08

0.0

0.2

0.4

0.6

Method

S
ilh

ou
et

te

Figure 1. Overview of scDHA architecture and analysis performance on 24 scRNA-seq datasets. (a) Schematic overview of scDHA and
applications: cell segregation through unsupervised learning, visualization, pseudo-temporal ordering, and cell classification. (b) Clustering
performance of scDHA, SC3, SEURAT, SINCERA, CIDR, and k-means measured by adjusted Rand index (ARI). The first 24 panels show
the ARI values obtained for individual datasets while the last panel shows the average ARIs and their variance (vertical segments). (c)
Running time of the clustering methods, each using 10 cores. scDHA is the fastest among the six methods. (d) Color-coded representation of
the Kolodziejczyk and Segerstolpe datasets using scDHA, PCA, t-SNE, and UMAP (from left to right). For each representation, we report the
silhouette index, which measures the cohesion among the cells of the same type, as well as the separation between different cell types. (e)
Average silhouette values (bar plot) and their variance (vertical lines). scDHA significantly outperforms other dimension reduction methods
by having the highest silhouette values (p = 6.9×10−8 using Kruskal-Wallis test).

2/10

.CC-BY-NC 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted October 25, 2019. ; https://doi.org/10.1101/799817doi: bioRxiv preprint

https://doi.org/10.1101/799817
http://creativecommons.org/licenses/by-nc/4.0/

of the data. Non-linear methods,17 including Isomap,18 Dif-
fusion Map,19 t-SNE,20 and UMAP,21 have been recognized
as efficient techniques to avoid overcrowding due to the large
number of cells, while preserving the local data structure.
Among these, t-SNE is the most commonly used technique
while UMAP is a recent method. Here we demonstrate that
scDHA is more efficient than both t-SNE and UMAP, as well
as the classical principal component analysis (PCA) in visu-
alizing single-cell data. We test the four techniques on the
same 24 single-cell datasets described above. Again, cell type
information is not given as input to any algorithm.

The top row of Figure 1d shows the color-coded represen-
tations of the Kolodziejczyk dataset, which consists of three
mouse embryo stem cells: 2i, a2i, and lif. The classical PCA
simply rotates the orthogonal coordinates to place dissimi-
lar data points far apart in the two-dimensional (2D) space.
In contrast, t-SNE focuses on representing similar cells to-
gether in order to preserve the local structure. In this analysis,
t-SNE mistakenly splits each of the two classes 2i and a2i
into two smaller groups, and lif class into three groups. The
transcriptome landscape represented by UMAP is similar to
that of t-SNE, in which UMAP also mistakenly splits cells
of the same types into smaller groups. In contrast, scDHA
provides a clear representation of the data, in which cells of
the same type are grouped together and cells of different types
are well-separated.

The lower row of Figure 1d shows the visualization of the
Sergerstolpe dataset (human pancreas). The landscape of
UMAP and t-SNE are better than that of PCA. In both repre-
sentations, the cell types are separable. However, the cells are
overcrowded and many cells from different classes overlap. In
addition, the alpha and gamma cells are mistakenly split into
smaller groups. For this dataset, scDHA again better repre-
sents the data by clearly showing the transcriptome landscape
with separable cell types.

To quantify the performance of each method, we calculate
the silhouette index (SI)22 of each representation using true
cell labels. This metric measures the cohesion among the
cells of the same type and the separation among different cell
types. For both datasets shown in Figure 1d, the SI values
of scDHA are much higher than those obtained for PCA, t-
SNE, and UMAP. The visualization and SI values of the 22
other datasets are shown in Supplementary Figures 1–6 and
Table 5. The average SI values obtained across the 24 datasets
are shown in Figure 1e. Overall, scDHA consistently and
significantly outperforms other methods (p = 6.9×10−8).
Cell classification. De novo identification of cell types and
building comprehensive atlases are a problem of unsupervised
learning. Once the cellular subpopulations have been deter-
mined and validated, classification techniques can be used to
determine the composition of new datasets by classifying cells
into discrete types. We assess scDHA’s classification capabil-
ity by comparing it with four methods that are dominant in
machine learning: XGBoost,23 Random Forest (RF),24 Deep
Learning (DL),25 and Gradient Boosting Machine (GBM).26

Baron (H)

Segerstolpe

Muraro

Xin

Wang

p = 3e−09

0.0

0.2

0.4

0.6

0.8

1.0

Overall

Method

scDHA

XGB

RF

DL

GBM

Method

A
cc

ur
ac

y

Figure 2. Classification accuracy of scDHA, XGBoost, Random
Forest (RF), Deep Learning (DL), Gradient Boosted Machine (GBM)
using 5 human pancreatic datasets. In each scenario (row), we use
one dataset as training and the rest as testing, resulting in 20 train-
predict pairs. The accuracy values of scDHA are significantly higher
than those of other methods (p = 3×10−9 using Kruskal-Wallis).

We test these methods using five datasets: Baron (8,569
cells), Segerstolpe (2,209 cells), Muraro (2,126 cells), Xin
(1,600 cells), and Wang (457 cells). All five datasets are
related to human pancreas and thus have similar cell types.
In each analysis scenario, we use one dataset as training and
then classify the cells in the remaining four datasets. For
example, we first train the model on Baron and then test it
on Segerstolpe, Muraro, Xin, and Wang. Next, we train the
model on Segerstolpe and test on the rest, etc. The accuracy of
each method is shown in Figure 2 and Supplementary Table 7.

Overall, scDHA is accurate across all 20 combinations
with accuracy ranging from 0.88 to 1. Compared to other
methods, scDHA is superior with an average accuracy of
0.96 for scDHA compared to 0.77, 0.69, 0.43, and 0.72 for
XGB, RF, DL, and GBM, respectively. In addition, scDHA
is very consistent, while the performance of existing methods
fluctuates from one analysis to another, especially when the
testing dataset is much larger than the training dataset. For
example, when the testing set (Baron) is 20 times larger than
the training set (Wang), the accuracy of existing methods is
close to 30%, while scDHA achieves an accuracy of 0.93.
A Kruskal-Wallis test also confirms that the accuracy values
of scDHA are significantly higher than the rest (p = 3×
p = 10−9). Regarding time complexity, scDHA is the fastest
with an average running time of two minutes per analysis
(Supplementary Figure 7).
Time-trajectory inference. Cellular processes, such as cell
cycle, proliferation, differentiation, and activation,27, 28 can be
modeled computationally using trajectory inference methods.
These methods aim at ordering the cells along developmental

3/10

.CC-BY-NC 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted October 25, 2019. ; https://doi.org/10.1101/799817doi: bioRxiv preprint

https://doi.org/10.1101/799817
http://creativecommons.org/licenses/by-nc/4.0/

(a) scDHA Monocle (b) scDHA Monocle

Yan

t−SNE1

t−
S

N
E

2

t−SNE1

t−
S

N
E

2

R2 = 0.93R2 = 0.93R2 = 0.93

zygote

2cell

4cell

8cell

16cell

blast

Pseudo Time

R2 = 0.84R2 = 0.84R2 = 0.84

zygote

2cell

4cell

8cell

16cell

blast

Pseudo Time

zygote 2cell 4cell 8cell 16cell blast

(c) (d)

Goolam

t−SNE1

t−
S

N
E

2

t−SNE1

t−
S

N
E

2

R2 = 0.79R2 = 0.79R2 = 0.79

2cell

4cell

8cell

16cell

blast

Pseudo Time

R2 = 0.6R2 = 0.6R2 = 0.6

2cell

4cell

8cell

16cell

blast

Pseudo Time

2cell 4cell 8cell 16cell blast

(e) (f)

Deng

t−SNE1

t−
S

N
E

2

t−SNE1

t−
S

N
E

2

R2 = 0.93R2 = 0.93R2 = 0.93

zygote

2cell

4cell

8cell

16cell

blast

Pseudo Time

R2 = 0.84R2 = 0.84R2 = 0.84

zygote

2cell

4cell

8cell

16cell

blast

Pseudo Time

zygote 2cell 4cell 8cell 16cell blast

Figure 3. Pseudo-time inference of three mouse embryo development datasets (Yan, Goolam, and Deng) using scDHA and Monocle. (a)
Visualized time-trajectory of the Yan dataset in the first two t-SNE dimensions using scDHA (left) and Monocle (right). (b) Pseudo-temporal
ordering of the cells in the Yan dataset. The horizontal axis shows the inferred time for each cell while the vertical axis shows the true
developmental stages. (c,d) Time-trajectory of the Goolam dataset. Monocle is unable to estimate the time for most cells in 8-cell, 16-cell,
and blast (colored in gray). (e,f) Time-trajectory of the Deng dataset. Monocle is unable to estimate the pseudo time for most blast cells.

trajectories. Among a number of trajectory inference tools,
Monocle,29 TSCAN,30 and Slingshot31 are considered state-
of-the-art and are widely used for pseudo-temporal ordering.
Here we test scDHA and these methods using three mouse
embryo development datasets: Yan, Goolam, and Deng. The
true developmental stages of these datasets are only used a
posteriori to assess the performance of the methods.

Figure 3a shows the Yan dataset in the first two t-SNE com-
ponents. The smoothed lines shown in each panel indicate
the time-trajectory of scDHA (left) and Monocle (right). The
trajectory inferred by scDHA accurately follows the true de-
velopmental stages: it starts from zygote, going through 2cell,
4cell, 8cell, 16cell, and then stops at the blast class. On the
contrary, the trajectory of Monacle goes directly from zygote

to 8cell before coming back to 2cell. Figure 3b shows the
cells ordered by pseudo-time. The time inferred by scDHA
is strongly correlated with the true developmental stages. On
the other hand, Monocle fails to differentiate between zygote,
2cell, and 4cell. To quantify how well the inferred trajectory
explains the developmental stages, we also calculate the R-
squared. scDHA outperforms Monocle by having a higher
R-squared (0.93 compared to 0.84).

Figure 3c,d show the results of the Goolam dataset. scDHA
correctly reconstructs the time-trajectory whereas Monocle
fails to estimate pseudo-time for 8cell, 16cell, and blast cells
(colored in gray). Monocle assigns an “infinity” value for
these cell classes. Figure 3e,f show the results obtained for
the Deng dataset. Similarly, the time-trajectory inferred by

4/10

.CC-BY-NC 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted October 25, 2019. ; https://doi.org/10.1101/799817doi: bioRxiv preprint

https://doi.org/10.1101/799817
http://creativecommons.org/licenses/by-nc/4.0/

scDHA accurately follows the developmental stages whereas
Monocle could not estimate the time for half of the cells. The
results of TSCAN and Slingshot are shown in Supplementary
Figures 8, 9). scDHA outperforms all three methods by having
the highest R-squared values in every single analysis.

In summary, we have introduced a powerful framework for
scRNA-seq data analysis. We have shown that the framework
can be utilized for both upstream and downstream analyses,
including de novo clustering of cells, visualizing the transcrip-
tome landscape, classifying cells, and inferring pseudo-time.
We demonstrate that scDHA outperforms state-of-the-art tech-
niques in each research sub-field. Although we focus on
single-cell as an example, scDHA is flexible enough to be
adopted in a range of research areas, from cancer to obesity
to aging to any other area that employs high-throughput data.

Online Method

Data and pre-processing
The 24 single-cell datasets used in our data analysis
are described in Table 1. We download the Montoro
dataset from Broad Institute Single Cell Portal (por-
tals.broadinstitute.org/single cell/study/SCP163/airway-
epithelium), and the other 23 datasets from the website
of Hemberg Group at the Sanger Institute (hemberg-
lab.github.io/scRNA.seq.datasets). We removed samples
with ambiguous label from these datasets. Specifically, we
removed cells with label “zothers” from Chen, “Unknown”
from Camp (Brain), “dropped” from Wang, and “not
applicable” from Segerstolpe. The only processing step we
did is to perform log transformation (base 2) to rescale the
data if the range of the data is larger than 100.

Software package and setting
In our analysis, we followed the instruction and tutorial pro-
vided by the authors of each software package. We used the
default parameters of each tool to perform the analysis.

For clustering, we compared scDHA with SC3, SEURAT,
SINCERA, CIDR, and k-means. We used the following
packages: i) SC3 version 1.10.1 from Bioconductor,
ii) SEURAT version 2.3.4 from CRAN, iii) CIDR ver-
sion 0.1.5 from github (github.com/VCCRI/CIDR), iv)
SINCERA script provided by Hemberg group (scrnaseq-
course.cog.sanger.ac.uk/website/biological-analysis.html),
and v) stats for k-means in conjunction with PCA implemen-
tation available in the package irlba version 2.3.3 from CRAN.
For k-means, we used the first 100 principal components
for clustering purpose. In contrast to the other five methods,
k-means cannot determine the number of clusters. Therefore,
we also provided the true number of cell types for k-means.
In addition, since k-means often converges to local optima,
we ran k-means using 1,000 different sets of starting points
and then chose the partitioning with the smallest squared
error.

For dimension reduction and visualization, we used the
following packages: i) irlba version 2.3.3 from CRAN for

PCA, ii) Rtsne version 0.15 from CRAN for t-SNE, and iii)
python package umap-learn version 0.3.9 from Anaconda
python distribution for UMAP. UMAP python package is run
through a wrapper in R package umap version 0.2.2.

For classification, we compared scDHA with XGBoost,
Random Forest (RF), Deep Learning (DL), and Gradient
Boosting Machine (GBM). We used the R package H2O ver-
sion 3.24.0.5 from CRAN. This package provides the imple-
mentation of XGBoost, RF, DL, and GBM. All models were
run with 5-fold cross validation for better accuracy.

For time-trajectory inference, we compared scDHA with
Monocle, TSCAN, and Slingshot. We used the following
packages: i) R package Monocle3 version 0.1.1 from github
(github.com/cole-trapnell-lab/monocle3), ii) TSCAN version
1.20.0 from Bioconductor, and iii) Slingshot version 1.3.1
from Bioconductor.

scDHA Pipeline
scDHA requires an expression matrix M as input, in which
rows represent cells and columns represents genes/transcripts.
scDHA pipeline for sc-RNA sequencing data analysis con-
sists of two core modules (Figure 1a). The first module is a
non-negative kernel autoencoder that provides a non-negative,
part-based representation of the data. Based on the weight
distribution of the encoder, scDHA removes genes or compo-
nents that have insignificant contribution to the representation.
The second module is a Stacked Bayesian Self-learning Net-
work that is built upon the Variational Autoencoder9 to project
the data onto a low dimensional space. In short, for exam-
ple clustering application, the input data is normalized and
insignificant genes are filtered to account for noises from
technical variability. Processed data is then projected to low
dimension latent space using a deep-learning approach and
then clustered using k nearest neighbors spectral clustering.
The detail of each step is described below.

Data normalization and gene filtering
To reduce the technical variability coming from sequencing
technologies for each cell, the expression data is normalized
to range from 0 to 1 for each cell as follow:

Ii j =
Mi j−min(Mi.)

max(Mi.)−min(Mi.)

This normalization also helps speed up convergence of the
projection model in the next step.

The normalized input data is then passed through an 1-
layer autoencoder to filter out insignificant genes/features.
Autoencoder is a self learning model, where the input data
learn from itself. In short, autoencoder consists of two part:
encoder and decoder. Data is processed through encoder to
generate a much lower dimension data, and decoder uses this
data to infer back the original data. Optimizing this process
would enable output of the encoder to be used as a repre-
sentation of original data. Based on the weights distribution
of the encoder, genes with highest weight variance are se-
lected for next step. High variability in weights means the

5/10

.CC-BY-NC 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted October 25, 2019. ; https://doi.org/10.1101/799817doi: bioRxiv preprint

https://portals.broadinstitute.org/single_cell/study/SCP163/airway-epithelium
https://portals.broadinstitute.org/single_cell/study/SCP163/airway-epithelium
https://portals.broadinstitute.org/single_cell/study/SCP163/airway-epithelium
https://hemberg-lab.github.io/scRNA.seq.datasets
https://hemberg-lab.github.io/scRNA.seq.datasets
https://github.com/VCCRI/CIDR
https://scrnaseq-course.cog.sanger.ac.uk/website/biological-analysis.html
https://scrnaseq-course.cog.sanger.ac.uk/website/biological-analysis.html
https://github.com/cole-trapnell-lab/monocle3
https://doi.org/10.1101/799817
http://creativecommons.org/licenses/by-nc/4.0/

Table 1. Description of the 24 single-cell datasets used to assess the performance of computational methods. The first two columns describe
the name and tissue while the next three columns show the number of samples, number of cell types, and accession ID.

Dataset Tissue Samples Classes Accession ID Reference

1. Yan Human Embryo Development 90 6 GSE36552 Yan et al., 201332

2. Goolam Mouse Embryo Development 124 5 E-MTAB-3321 Goolam et al., 201633

3. Deng Mouse Embryo Development 268 6 GSE45719 Deng et al., 201434

4. Pollen Human Tissues 301 11 SRP041736 Pollen et al., 201435

5. Patel Human Tissues 430 5 GSE57872 Patel et al., 20145

6. Wang Human Pancreas 457 7 GSE83139 Wang et al., 201636

7. Darmanis Human Brain 466 9 GSE67835 Darmanis et al., 201537

8. Camp (Brain) Human Brain 553 5 GSE75140 Camp et al., 201538

9. Usoskin Mouse Brain 622 4 GSE59739 Usoskin et al., 201539

10. Kolodziejczyk Mouse Embryo Stem Cells 704 3 E-MTAB-2600 Kolodziejczyk et al., 201540

11. Camp (Liver) Human Liver 777 7 GSE81252 Camp et al., 201741

12. Xin Human Pancreas 1,600 8 GSE81608 Xin et al., 201642

13. Baron (Mouse) Mouse Pancreas 1,886 13 GSE84133 Baron et al., 201643

14. Muraro Human Pancreas 2,126 10 GSE85241 Muraro et al., 201644

15. Segerstolpe Human Pancreas 2,209 14 E-MTAB-5061 Segerstolpe et al., 201645

16. Klein Mouse Embryo Stem Cells 2,717 4 GSE65525 Klein et al., 201546

17. Romanov Mouse Brain 2,881 7 GSE74672 Romanov et al., 201747

18. Zeisel Mouse Brain 3,005 9 GSE60361 Zeisel et al., 20154

19. Lake Human Brain 3,042 16 phs000833.v3.p1 Lake et al., 201648

20. Montoro Human Pancreas 7,193 7 GSE103354 Montoro et al., 201849

21. Baron (Human) Human Pancreas 8,569 14 GSE84133 Baron et al., 201643

22. Chen Mouse Brain 12,089 46 GSE87544 Chen et al., 201750

23. Campbell Mouse Barin 21,086 21 GSE93374 Campbell et al., 201751

24. Macosko Mouse Retina 44,808 12 GSE63473 Macosko et al., 201552

gene contributes a meaningful information to some specific
latent features, which is more useful for data representation.
Moreover, using our strategy prevents the case of selecting
genes with high variance but only within the same group of
cells (highly correlated genes). Gene filtering removes the
noise come from insignificant genes as well as speeds up the
running time significantly.

Stacked Bayesian Auto-encoder

A modified version of Variational Autoencoder (VAE, theo-
rized by Kingma et. al.9), Stacked Bayesian Auto-encoder
(Figure 4), is used as dimension reduction method. In brief,
VAE model has the same basic structure as normal auto-
encoder, which is a self learning model, and consists of two
components: encoder and decoder. Input data is processed
using encoder to generate representative latent variables z
with much smaller number of features compared to input. The
original data then can be inferred from compressed data using
decoder. By training the model to minimize the different be-
tween inferred and original data, the middle bottle neck layer
can be viewed as the projections of input onto a low dimen-
sion space and used for other tasks such as clustering. In VAE
case, instead of a deterministic z for each data point, VAE

mapped input to distribution with means µ and variance σ2,
z is sampled from this distribution (Figure 4), z ∼ N(µ,σ2).
By adding randomness in generating z, VAE can prevent over-
fitting case, where auto-encoder is big enough to map every
single data point to z without learning generalized represen-
tation of data. The formulation of this architecture could be
written like this:

E = SELU(IW E)
µ = EW µ

σ = EW σ

z ∼ N(µ,σ2)
Ī = D = SELU(zW D)

where E, D, represent encoder, decoder layer respectively. µ ,
σ , z are mean, variance and sampled latent layer. The input I
is the filtered matrix from previous step. Ī is the reconstruction
of I.

In our model, to further ensure the accuracy of inferred dis-
tribution, multiple latent spaces are sampled from Gaussian
distributions with means µ and variances σ2 (Figure 4) using
reparameterization trick,9 z = µ +σ ∗N(0,1). The reparam-
eterization trick is introduced to make sure that model can
backpropagate, due to fact that z sampling process is non-

6/10

.CC-BY-NC 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted October 25, 2019. ; https://doi.org/10.1101/799817doi: bioRxiv preprint

https://doi.org/10.1101/799817
http://creativecommons.org/licenses/by-nc/4.0/

differentiable and its gradient cannot be backpropagated. We
keep the model size small to avoid over-fitting and force the
network to learn the important features from the input data.
Also, restricting the size of hidden layer will converge cells
from the same group into similar latent space manifold. How-
ever, the size of the hidden layer needs to be sufficient to keep
the latent variables disentangled.

To train our model, we used AdamW 53 as optimizer and
adapt two stage training scheme:54 (i) a Warm-up process
which uses only reconstruction loss, and (ii) the VAE stage, in
which the Kullback-Leibler loss is also considered to ensure
the normal distribution of latent variables z. The warm-up
process prevents model from ignoring reconstruction loss
and only focusing on Kullback-Leibler loss which makes
it fail to learn good representations of the individual data
points. This process also helps the training of VAE model less
sensitive to the initialized weights. For faster convergence
speed and better accuracy, scaled exponential linear unit55

(SELU) is used as activation function. After finishing the
training stage, the input data is processed through encoder to
generate representative latent variables of original data.

Cluster number prediction
The number of clusters is predicted based on two indices: (i)
the ratio of ”between sum of squares” over the ”total sum of
squares”:

Index 1 =
SSbetween, j

SStotal, j

and (ii) the increase of total within the sum of squares when
number of cluster increase:

Index 2 =
SSwithin, j−SSwithin, j−1

SSwithin, j−1

where j is number of cluster.
Bigger index 1 would means that members of one group

are far from center of other groups, which means they are
well separated. Index 2 is affected by the number of eigen-
vectors generated by spectral decomposition, which is equal
to number of cluster. We assumed that the addition of an
eigenvector that leads to the highest spike in the total within
sum of squares (which is undesirable) would be the number of
clusters. These indices are calculated by performing k-nearest
neighbor spectral clustering on a subset of samples over a
range of cluster number. Mean of the predictions from these
two indices is set to be the final number of cluster to input in
clustering function.

Clustering
k-nearest neighbor adaption of spectral clustering (k-nn SC)
is selected as clustering method to improve the accuracy when
dealing with non-spherical data distribution and still ensure
the fast running time. However, instead of using Euclidean
distance to determine the similarity between two samples,
Pearson correlation is used to improve stability of cluster

assignment. The different between k-nn SC and normal SC is
that the constructed affinity matrix of data points is a sparse
one with distance values for only k nearest neighbor of each
point, the rest are zero. The clustering process of k-nn SC is
consists of 4 steps: (i) constructing affinity matrix A for all
data points to use as input graph, (ii) generating Symmetric
normalized Laplacian matrix Lsym := I−D−

1
2 AD−

1
2 where D

is the degree matrix of the graph, A is the constructed affinity
matrix and I is identity matrix, (iii) calculating eigenvalues
for Laplacian matrix and select ones with smallest values,
generating eigenvectors corresponding to selected eigenvalues,
(iv) performing final clustering using k-means on generated
eigenvectors.

Because samples from the same group have been force
to have the similar manifolds, it is not necessary to perform
clustering on the entire dataset. Instead, for big dataset with
more than 5,000 samples, we sampled randomly 2,000 cells
and perform clustering on these, the rest of data was matched
back to clustering assignment using votes from their nearest
neighbors. This approach still ensures the high clustering
quality without compromising the speed of method (Figure 5).

Consensus clustering
To achieve higher accuracy and preventing the situation when
model converges to a local minimum, an ensemble of data
projection models is used. Data projection and clustering
process are repeated multiple times and each individual repli-
cate generated different projected data. Then, cluster pre-
dictions from all replicate are combined using the Weighted-
based meta-clustering (wMetaC) from package SHARP .56

wMetaC is conducted through 5 steps: (i) calculating cell-cell
weighted similarity matrix W , wi, j = si, j(1− si, j) where si, j
is the chance that cell i and j are in the same cluster, (ii) cal-
culating cell weight, which is the sum of all cell-cell weights
related to this cell, (iii) generating cluster-cluster similarity
matrix |C|x|C|, where C is the union of all the clusters obtain
in each individual replicates, (iv) performing hierarchical clus-
tering on cluster-cluster similarity matrix, and (v) determining
final results by voting scheme.

Visualization
To get a better visualization, log and z transformations are
applied to make the distribution of distances from one point
to its neighbors more uniform:

Di j =
log(Di j)−µlog(Di.)

σlog(Di.)

where D is a distance or similarity matrix between all samples,
Di. is row i-th.

After that, the probabilities pi j that proportionally to the
similarity between sample i and j could be computed as fol-
lows:

p j|i =
exp(Di j)

∑k 6=i exp(Dik)

7/10

.CC-BY-NC 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted October 25, 2019. ; https://doi.org/10.1101/799817doi: bioRxiv preprint

https://doi.org/10.1101/799817
http://creativecommons.org/licenses/by-nc/4.0/

Encoderx

var

mu

Decoderz x_
Decoderz x_

Figure 4. Stacked Bayesian Auto-encoder.

0

5

10

15

20

25

M
on

to
ro

Bar
on

 (H
um

an
)

Che
n

Cam
pb

ell

M
ac

os
ko

Dataset

T
im

e
(m

in
ut

e)

Voting

Enable

Disable

Figure 5. Running time of scDHA on big dataset with and without
applying voting strategy.

Our goal is to learn a 2-dimensional projection of data that
retain probabilities p as well as possible. The same transfor-
mation as above would be applied to this projected data to
generate probabilities q. We then minimize Kullback-Leibler
divergence of distribution Q from P:

KL(P||Q) = ∑
i6= j

pi j log
pi j

qi j

Classification
We know that processing data using scDHA would make the
biological relevant samples become more similar. Therefore,
we can use the processed data to classify new data using
available labeled data with better accuracy than using original
data. By combining new and old data together using our pro-
cessing pipeline, we can learn the underlying manifolds that
can represent both datasets to improve classification accuracy
and prevent overfitting when training the classifier. Classifi-
cation using scDHA could be conducted through steps: (i)
filtering new and labeled data using common genes from two
datasets and then combine to 1 matrix, (ii) processing data
using scDHA to get low dimension data, (iii) calculating dis-
tance from samples in new data to labeled data using Pearson
distance, and (iv) assigning cluster for new datasets using
group from labeled one using nearest neighbor classification.

Time trajectory inference

To infer a pseudo time trajectory for single cell data, we use
the compress data, output of our processing pipeline. Pearson
distance between all samples are calculated to determine their
similarities. We apply minimum spanning tree (MST) algo-
rithm on the graph with sample as vertices and distances as
edges to find the shortest path that goes through all the ver-
tices. Because the denoising and dimension reduction process
have already removed noise from the original data and made
cells from the same group get closer to each others, applying
MST algorithm on the graph would result to a path that pass
through all data points and connect each cluster to its nearest
neighbors. From this MST, pseudo time is determined by
distance from one point to the designated starting point.

Additional information

Acknowledgments

This work was partially supported by the National Aeronau-
tics and Space Administration (NASA) under Grant Number
80NSSC19M0170. Any opinions, findings, and conclusions
or recommendations expressed in this material are those of
the authors and do not necessarily reflect the views of any of
the funding agencies.

Author contributions

DT and TN conceived of and designed the approach. DT
implemented the method in R, performed the data analysis and
all computational experiments. BT and HN helped with data
preparation and some data analysis. HL and CLV provided
advice in method development. DT, HL and TN wrote the
manuscript. All authors reviewed the manuscript.

Competing financial interests

The authors declare that they have no competing financial
interests.

Corresponding author

Correspondence to: Tin Nguyen (tinn@unr.edu)

8/10

.CC-BY-NC 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted October 25, 2019. ; https://doi.org/10.1101/799817doi: bioRxiv preprint

https://doi.org/10.1101/799817
http://creativecommons.org/licenses/by-nc/4.0/

References

1. Saliba, A.-E., Westermann, A. J., Gorski, S. A. & Vogel,
J. Single-cell RNA-seq: advances and future challenges.
Nucleic Acids Research 42, 8845–8860 (2014).

2. Shields IV, C. W., Reyes, C. D. & López, G. P. Mi-
crofluidic cell sorting: a review of the advances in the
separation of cells from debulking to rare cell isolation.
Lab on a Chip 15, 1230–1249 (2015).

3. Wang, Y. & Navin, N. E. Advances and applications of
single-cell sequencing technologies. Molecular Cell 58,
598–609 (2015).

4. Zeisel, A. et al. Cell types in the mouse cortex and
hippocampus revealed by single-cell RNA-seq. Science
347, 1138–1142 (2015).

5. Patel, A. P. et al. Single-cell RNA-Seq highlights intra-
tumoral heterogeneity in primary glioblastoma. Science
344, 1396–1401 (2014).

6. Eling, N., Morgan, M. D. & Marioni, J. C. Challenges
in measuring and understanding biological noise. Nature
Reviews Genetics 20, 536–548 (2019).

7. Kiselev, V. Y., Andrews, T. S. & Hemberg, M. Challenges
in unsupervised clustering of single-cell RNA-seq data.
Nature Reviews Genetics 20, 273–282 (2019).

8. Stegle, O., Teichmann, S. A. & Marioni, J. C. Computa-
tional and analytical challenges in single-cell transcrip-
tomics. Nature Reviews Genetics 16, 133–145 (2015).

9. Kingma, D. P. & Welling, M. Auto-Encoding Variational
Bayes. arXiv:1312.6114 [cs, stat] (2013). arXiv:1312.
6114.

10. Davie, K. et al. A single-cell transcriptome atlas of the
aging Drosophila brain. Cell 174, 982–998 (2018).

11. Rozenblatt-Rosen, O., Stubbington, M. J., Regev, A. &
Teichmann, S. A. The human cell atlas: from vision to
reality. Nature 550, 451–453 (2017).

12. Kiselev, V. Y. et al. SC3: Consensus Clustering of
Single-Cell RNA-Seq Data. Nature Methods 14, 483–
486 (2017).

13. Satija, R., Farrell, J. A., Gennert, D., Schier, A. F. &
Regev, A. Spatial Reconstruction of Single-Cell Gene
Expression Data. Nature Biotechnology 33, 495–502
(2015).

14. Guo, M., Wang, H., Potter, S. S., Whitsett, J. A. & Xu, Y.
SINCERA: A Pipeline for Single-Cell RNA-Seq Profiling
Analysis. PLOS Computational Biology 11, e1004575
(2015).

15. Lin, P., Troup, M. & Ho, J. W. K. CIDR: Ultrafast and ac-
curate clustering through imputation for single-cell RNA-
seq data. Genome Biology 18, 59 (2017).

16. Hubert, L. & Arabie, P. Comparing partitions. Journal of
Classification 2, 193–218 (1985).

17. Saeys, Y., Van Gassen, S. & Lambrecht, B. N. Compu-
tational flow cytometry: helping to make sense of high-
dimensional immunology data. Nature Reviews Immunol-
ogy 16, 449–462 (2016).

18. Tenenbaum, J. B., De Silva, V. & Langford, J. C. A
global geometric framework for nonlinear dimensionality
reduction. Science 290, 2319–2323 (2000).

19. Coifman, R. R. et al. Geometric diffusions as a tool
for harmonic analysis and structure definition of data:
Diffusion maps. Proceedings of the National Academy of
Sciences 102, 7426–7431 (2005).

20. Amir, E.-a. D. et al. viSNE enables visualization of
high dimensional single-cell data and reveals phenotypic
heterogeneity of leukemia. Nature Biotechnology 31, 545
(2013).

21. Becht, E. et al. Dimensionality reduction for visualizing
single-cell data using UMAP. Nature Biotechnology 37,
38–44 (2019).

22. Rousseeuw, P. J. Silhouettes: a graphical aid to the in-
terpretation and validation of cluster analysis. Journal
of Computational and Applied Mathematics 20, 53–65
(1987).

23. Chen, T. & Guestrin, C. XGBoost: A Scalable Tree Boost-
ing System. In Proceedings of the 22Nd ACM SIGKDD
International Conference on Knowledge Discovery and
Data Mining, KDD ’16, 785–794 (ACM, New York, NY,
USA, 2016).

24. Breiman, L. Random Forests. Machine Learning 45,
5–32 (2001).

25. LeCun, Y., Bengio, Y. & Hinton, G. Deep learning. Na-
ture 521, 436–444 (2015).

26. Friedman, J. H. Greedy Function Approximation: A
Gradient Boosting Machine. The Annals of Statistics 29,
1189–1232 (2001).

27. Tanay, A. & Regev, A. Scaling single-cell genomics from
phenomenology to mechanism. Nature 541, 331–338
(2017).

28. Etzrodt, M., Endele, M. & Schroeder, T. Quantitative
single-cell approaches to stem cell research. Cell Stem
Cell 15, 546–558 (2014).

29. Trapnell, C. et al. The dynamics and regulators of cell
fate decisions are revealed by pseudotemporal ordering of
single cells. Nature Biotechnology 32, 381–386 (2014).

30. Ji, Z. & Ji, H. TSCAN: Pseudo-time reconstruction and
evaluation in single-cell RNA-seq analysis. Nucleic Acids
Research 44, e117–e117 (2016).

31. Street, K. et al. Slingshot: cell lineage and pseudotime
inference for single-cell transcriptomics. BMC Genomics
19, 477 (2018).

32. Yan, L. et al. Single-Cell RNA-Seq Profiling of Human
Preimplantation Embryos and Embryonic Stem Cells.

9/10

.CC-BY-NC 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted October 25, 2019. ; https://doi.org/10.1101/799817doi: bioRxiv preprint

1312.6114
1312.6114
https://doi.org/10.1101/799817
http://creativecommons.org/licenses/by-nc/4.0/

Nature Structural & Molecular Biology 20, 1131–1139
(2013).

33. Goolam, M. et al. Heterogeneity in Oct4 and Sox2 Targets
Biases Cell Fate in 4-Cell Mouse Embryos. Cell 165, 61–
74 (2016).

34. Deng, Q., Ramsköld, D., Reinius, B. & Sandberg,
R. Single-Cell RNA-Seq Reveals Dynamic, Random
Monoallelic Gene Expression in Mammalian Cells. Sci-
ence 343, 193–196 (2014).

35. Pollen, A. A. et al. Low-Coverage Single-Cell mRNA Se-
quencing Reveals Cellular Heterogeneity and Activated
Signaling Pathways in Developing Cerebral Cortex. Na-
ture Biotechnology 32, 1053–1058 (2014).

36. Wang, Y. J. et al. Single-Cell Transcriptomics of the
Human Endocrine Pancreas. Diabetes 65, 3028–3038
(2016).

37. Darmanis, S. et al. A Survey of Human Brain Transcrip-
tome Diversity at the Single Cell Level. Proceedings
of the National Academy of Sciences 112, 7285–7290
(2015).

38. Camp, J. G. et al. Human Cerebral Organoids Reca-
pitulate Gene Expression Programs of Fetal Neocortex
Development. Proceedings of the National Academy of
Sciences 112, 15672–15677 (2015).

39. Usoskin, D. et al. Unbiased Classification of Sensory
Neuron Types by Large-Scale Single-Cell RNA Sequenc-
ing. Nature Neuroscience 18, 145–153 (2015).

40. Kolodziejczyk, A. A. et al. Single Cell RNA-Sequencing
of Pluripotent States Unlocks Modular Transcriptional
Variation. Cell Stem Cell 17, 471–485 (2015).

41. Camp, J. G. et al. Multilineage Communication Regu-
lates Human Liver Bud Development from Pluripotency.
Nature 546, 533–538 (2017).

42. Xin, Y. et al. RNA Sequencing of Single Human Islet
Cells Reveals Type 2 Diabetes Genes. Cell Metabolism
24, 608–615 (2016).

43. Baron, M. et al. A Single-Cell Transcriptomic Map of the
Human and Mouse Pancreas Reveals Inter-and Intra-Cell
Population Structure. Cell Systems 3, 346–360 (2016).

44. Muraro, M. J. et al. A Single-Cell Transcriptome Atlas
of the Human Pancreas. Cell Systems 3, 385–394 (2016).

45. Segerstolpe, t. et al. Single-Cell Transcriptome Profiling
of Human Pancreatic Islets in Health and Type 2 Diabetes.
Cell Metabolism 24, 593–607 (2016).

46. Klein, A. M. et al. Droplet barcoding for single-cell
transcriptomics applied to embryonic stem cells. Cell
161, 1187–1201 (2015).

47. Romanov, R. A. et al. Molecular Interrogation of Hy-
pothalamic Organization Reveals Distinct Dopamine
Neuronal Subtypes. Nature Neuroscience 20, 176–188
(2017).

48. Lake, B. B. et al. Neuronal Subtypes and Diversity Re-
vealed by Single-Nucleus RNA Sequencing of the Human
Brain. Science 352, 1586–1590 (2016).

49. Montoro, D. T. et al. A revised airway epithelial hierarchy
includes CFTR-expressing ionocytes. Nature 560, 319
(2018).

50. Chen, R., Wu, X., Jiang, L. & Zhang, Y. Single-Cell
RNA-Seq Reveals Hypothalamic Cell Diversity. Cell
Reports 18, 3227–3241 (2017).

51. Campbell, J. N. et al. A molecular census of arcuate
hypothalamus and median eminence cell types. Nature
Neuroscience 20, 484–496 (2017).

52. Macosko, E. Z. et al. Highly Parallel Genome-wide
Expression Profiling of Individual Cells Using Nanoliter
Droplets. Cell 161, 1202–1214 (2015).

53. Loshchilov, I. & Hutter, F. Decoupled Weight Decay
Regularization. In International Conference on Learning
Representations (2019).

54. Sønderby, C. K., Raiko, T., Maaløe, L., Sønderby,
S. K. & Winther, O. Ladder Variational Autoen-
coders. arXiv:1602.02282 [cs, stat] (2016). arXiv:1602.
02282.

55. Klambauer, G., Unterthiner, T., Mayr, A. & Hochreiter, S.
Self-Normalizing Neural Networks. arXiv:1706.02515
[cs, stat] (2017). arXiv:1706.02515.

56. Wan, S., Kim, J. & Won, K. J. SHARP: Single-cell RNA-
seq Hyper-fast and Accurate Processing via Ensemble
Random Projection. bioRxiv 461640 (2018).

10/10

.CC-BY-NC 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted October 25, 2019. ; https://doi.org/10.1101/799817doi: bioRxiv preprint

1602.02282
1602.02282
1706.02515
https://doi.org/10.1101/799817
http://creativecommons.org/licenses/by-nc/4.0/

	References

