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Network neuroscience has relied on a node-centric network model in which cells, populations,
and regions are linked to one another via anatomical or functional connections. This model cannot
account for interactions of edges with one another. Here, we develop an edge-centric network model,
which generates the novel constructs of “edge time series” and “edge functional connectivity” (eFC).
Using network analysis, we show that at rest eFC is consistent across datasets and reproducible
within the same individual over multiple scan sessions. We demonstrate that clustering eFC yields
communities of edges that naturally divide the brain into overlapping clusters, with regions in
sensorimotor and attentional networks exhibiting the greatest levels of overlap. We go on to show
that eFC is systematically and consistently modulated by variation in sensory input. In future work,
the edge-centric approach could be used to map the connectional architecture of brain circuits and
for the development of brain-based biomarkers of disease and development.

INTRODUCTION

Network science offers a promising framework for rep-
resenting and modeling neural systems across many spa-
tial scales [1]. From interconnected cells [2], to neuronal
populations [3, 4], to large-scale brain areas [5, 6], net-
work analysis has contributed insight into the topological
principles that govern nervous system organization and
shape brain function. These include small-world architec-
ture [7], the emergence of integrative hubs and rich clubs
[8–10], modular structure to promote specialized infor-
mation processing [11–13], and tradeoffs between these
features with the material and metabolic costs of wiring
the brain together [14, 15].

Central to these and other discoveries in network
neuroscience is a simple representation of the brain in
which neural elements and their pairwise interactions are
treated as the nodes and edges of a network, respectively
[16, 17]. This standard model is fundamentally node-
centric in that it treats neural elements (the nodes) as the
irreducible units of brain structure and function. This
emphasis on network nodes is further reinforced by the
types of analyses carried out on brain networks, which
tend to focus on properties of nodes or groups of nodes,
e.g. their centralities, community affiliations, etc. [18].

A limitation of the node-centric approach is that it can-
not capture potentially meaningful features or patterns
of interrelationships among edges. In other scientific do-
mains, prioritizing network edges, for example by model-
ing and analyzing edge-edge interactions as a graph, has
provided important insights into the organization and
function of complex systems [19–22]. In contrast, with
few exceptions [23], network neuroscience has remained
focused on nodal features and partitions, paralleling a
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rich history of parceling, mapping, and comparing corti-
cal and subcortical gray matter regions [24].

Here, we present a novel modeling framework for in-
vestigating functional brain network data from an edge-
centric perspective. Our approach can be viewed as a
temporal “unwrapping” of the Pearson correlation mea-
sure – the metric commonly used for estimating the
strength of functional connectivity between pairs of brain
regions [25] – thereby generating interpretable time series
for each edge that express fluctuations in its weight across
time.

Importantly, edge time series allow the estimation of
edge correlation structure, a construct we refer to as edge
functional connectivity (eFC). High eFC indexes strong
similarity in the co-fluctuation of two edges across time,
while low eFC indicates co-fluctuation patterns that are
largely independent. Here, we first demonstrate that eFC
is highly replicable given 30 minutes worth of data, is
stable within individuals across multiple scan sessions,
and is consistent across datasets. Next, we applied data-
driven clustering algorithms to eFC, which resulted in
partitions of the eFC network into communities of co-
fluctuating edges. Each community could be mapped
back to individual nodes, yielding overlapping regional
community assignments. We found that some nodes were
affiliated with relatively few communities, while nodes as-
sociated with sensorimotor and attentional networks par-
ticipated in disproportionately many communities. Fi-
nally, we compared the organization of eFC at rest and
during passive viewing of movies, and found that eFC
was consistently and reliably modulated by changes in
sensory input.

RESULTS

In this section we analyze edge functional connectiv-
ity (eFC) estimated using neuroimaging data from three
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FIG. 1. Derivation of edge functional connectivity (eFC) matrix. Each element of the eFC matrix is calculated based
on the fMRI BOLD activity time series from four nodes (brain regions). In panels a and d, we show four representative times
series from regions i, h, u, and v. Nodal FC (panel c; nFC) is typically calculated by standardizing (z-scoring) each time series,
performing an element-wise product (dot product) of time series pairs, and calculating the average value of a product time
series (actually the sum of each element divided by T −1, where T is the number of elements or observations in the time series).
To calculate eFC, we retain the vectors of element-wise products for every pair of regions. In panels b and e we show product
time series for the pairs {i, j} and {u, v}, respectively. The elements of these product time series represent the magnitude of
time-resolved co-fluctuation between region pairs (or edges in the nFC graph). We can calculate the magnitude of eFC by
performing an element-wise multiplication of the product time series and normalizing the sum by the squared root standard
deviations of both time series, ensuring that the magnitude of eFC is bounded to the interval [−1, 1]. The resulting value is
stored in the eFC matrix, shown in panel f.

independently acquired datasets: 100 unrelated subjects
from the Human Connectome Project (HCP; [26]), ten
subjects scanned ten times as part of the Midnight Scan
Club (MSC; [27]), and ten subjects scanned multiple
times as part of the Healthy Brain Network Serial Scan-
ning Initiative (HBN; [28]).

Edge functional connectivity

Many studies have investigated networks whose nodes
and edges represent brain regions and pairwise functional
interactions, respectively [5, 29]. Here, we extend this
framework to consider interactions not between pairs of
brain regions, but pairs of edges.

Extant approaches for estimating edge-edge connectiv-
ity matrices include construction of line graphs [20] or
calculating edge overlap indices [19]. While suitable for
sparse networks with positively-weighted edges, these ap-
proaches are less appropriate for functional neuroimag-
ing data, where networks are typically fully-weighted and

signed. Here, we introduce a method that is well-suited
for these types of data, operates directly on time series,
and is closely related to the Pearson correlation coeffi-
cient (typically used to assess strength of inter-regional
functional connections). We refer to the matrices ob-
tained using this procedure as “edge functional connec-
tivity” (eFC).

Beginning with regional time series, calculating eFC
can be accomplished in three steps, starting by z-scoring
the time series (Fig. 1a,d). Next, for all pairs of brain
regions, we calculate the element-wise product of their
z-scored time series (Fig. 1b,d). This results in a new set
of time series, referred to as “edge time series,” whose
elements represent the instantaneous co-fluctuation mag-
nitude for pairs of brain regions and whose average
across time is equal to the Pearson correlation coeffi-
cient (Fig. 1c). These values are positive when activity of
two regions fluctuates in the same direction at precisely
the same moment in time (although we note that this
co-fluctuation time series could easily be calculated at
non-zero lags, as well), are negative when activity fluctu-
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FIG. 2. Organization of edge functional connectivity (eFC). (a) Force-directed layout of eFC matrix (largest connected
component). Nodes in this graph represent edges in the traditional nodal functional connectivity (nFC) matrix. Here, nodes
are colored according to whether the corresponding edge fell within or between cognitive systems. Within-system edges are
encircled in black. (b) eFC matrix in which rows and columns correspond to pairs of brain regions (see Fig. 1 for details of how
this matrix was generated). (c) Two-dimensional histogram of relationship between eFC and the product of edges’ respective
nFC weights. (d) Two-dimensional histogram of relationship between eFC and the surface area of the quadrilateral defined by
the four nodes. (e) Mean eFC among edges where both edges fall between systems (between), where one edge falls within and
the other between systems (mixture), and where both edges fall within systems (within). (f ) Mean eFC among edges within
sixteen cognitive systems.

ates in opposite directions, and zero when activity fluc-
tuates close to baseline. Importantly, the magnitude of
these edge time series are not systematically related to
in-scanner motion (Fig. S1). The third and final step

involves calculating the scalar product between pairs of
edge time series. When repeated over all pairs of edges,
the result is an edge-by-edge matrix, whose elements we
normalize to the interval [−1, 1] (Fig. 1f and Fig. 2a). See
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Materials and Methods for additional details on eFC
construction.

While eFC is, to our knowledge, a novel construct,
we note that the first two steps in calculating eFC are
the same as those used to calculate nodal FC (nFC); the
mean value of any co-fluctuation time series is simply the
Pearson correlation coefficient. Whereas subsequent sec-
tions investigate the organization of eFC, the remainder
of this section is spent grounding eFC by comparing it
with more familiar measurements.

Given that eFC is mathematically related to nFC, we
first asked whether it was possible to approximate eFC
using estimates of nFC. This is an important question;
while the calculation of eFC can be implemented effi-
ciently, performing certain operations on the eFC ma-
trix can prove computationally expensive (it is a fully-
weighted [N(N −1)/2×N(N −1)/2] matrix, where N is
the number of brain regions; Fig. 2b). Perhaps the sim-
plest means of comparison is to relate the weight of the
edge connection between region pairs {i, j} and {u, v}
with the product of those edges in the nFC matrix. Es-
sentially this comparison assesses whether eFC contains
additional information above and beyond nFC. We found
that, as expected, these two measures were correlated
(r = 0.71; p < 10−15; Fig. 2c), but were nonetheless not
identical. This observation indicates that, while there ex-
ists some shared variance, eFC contains information not
obviously accounted for by nFC. We note, also, that the
weights of eFC are similar across three independently ac-
quired datasets (Fig. S2) and irrespective of whether or
not we performed global signal regression (Fig. S3).

Next, we asked whether eFC exhibits any clear spatial
dependence, as nFC is known to decay as a function of
Euclidean distance [30, 31]. This requires computing a
spatial relationship between two pairs of brain regions;
hence the traditional metric of Euclidean distance is in-
sufficient. Instead, we assessed the spatial dispersion of
eFC with the surface area of the quadrilateral formed by
the centroids of the brain region pairs. We found ev-
idence of a weak negative relationship between surface
area and eFC (r = −0.056, p < 10−15; Fig. 2d), sug-
gesting that unlike traditional nFC, whose connection
weights are more strongly influenced by spatial relation-
ships of brain areas to one another [30–32], eFC is less
constrained by the brain’s geometry.

Finally, we asked whether eFC bears the imprint of
nFC communities – brain regions whose activity is highly
correlated with members of its own community, but
weakly or anti-correlated with members of other com-
munities [6, 11–13]. We asked whether the magnitude of
eFC of within-community connections was distinguish-
able from that of between-community connections. To
address this question we classified every edge in the nFC
network according to whether it fell within or between
communities [33], resulting in three possible combina-
tions of connections in the eFC graph: eFC could link
two edges that both fell within a community, two edges
that both fell between communities, or an edge that fell

within to an edge that fell between. In general, we found
that eFC was significantly stronger for within-community
edges compared to the other two categories (Fig. 2e). In-
terestingly, we found eFC could be distinguished further
by dividing within-community edges by cognitive system
[33] (Fig. 2f).

Collectively, these results suggest that, while eFC is
related to existing concepts previously applied to nFC,
eFC also caputures unique signal components and ex-
hibits unique architectural features above and beyond
those observed in nFC. These observations motivate fur-
ther exploration of eFC and its organization as a network.

Edge functional connectivity is stable within
individuals

In the previous section we described the procedure
for calculating eFC and related it to several well-known
properties of nFC. In this section, we test the robustness
of eFC to scan duration, i.e. how much data is required
before eFC stabilizes, and also test whether eFC is stable
across repeated scans of the same individual.

To address these questions we leveraged the within-
subject design of the MSC dataset. For each subject,
we aggregated their fMRI data across all scan sessions
and estimated a single eFC matrix. Then, we randomly
and uniformly sampled smaller amounts of data (25 sam-
ples per subject) and estimated eFC, which we compared
against the aggregated eFC matrix. Similar to other
studies [34], we found that with small amounts of data
eFC was highly variable (Fig. 3a). However, we observed
a monotonic increase in similarity as a function of time,
so that with 30 minutes of data, the similarity was much
greater (r = 0.88). This is of practical significance; like
traditional nFC, it implies that eFC estimated using data
from short scan sessions may not deliver accurate repre-
sentations of an individuals’ edge network organization.

Next, we examined the reliability of eFC over multiple
scan sessions. That is, if we imaged an individual on sep-
arate days, would their eFC on those days be more similar
to each other than to that of a different individual? The
MSC dataset is well-poised to address this question; in
the MSC dataset ten individuals were imaged ten times
(30 minute resting-state runs). For all subjects and for
all datasets, we estimated eFC and calculated the pair-
wise similarity (Pearson correlation) between all pairs of
subjects and scans. We found eFC to be highly reliable
in the MSC dataset, where the mean within-subject sim-
ilarity was r = 0.50 ± 0.10 compared to r = 0.27 ± 0.07
between subjects (Fig. 3b,c). In Fig. 3d, we show the
results of applying multi-dimensional scaling to the sim-
ilarity matrix from Fig. 3b. Note that scans from the
same subject, distinguished by color, are located near
one another in this low-dimensional approximation. We
found similar results in the HBN and HCP datasets (see
Fig. S4).

Collectively, these findings suggest that eFC is a reli-
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FIG. 3. Intra- and inter-subject similarity of eFC across scan sessions. All panels from this figure were generated
using data from the Midnight Scan Club. (a) Correlation session-averaged eFC matrices with eFC estimated using different
amounts of data; mean value shown as black line. (b) Similarity of eFC within and between subjects. Each block corresponds
to data from a single subject; subjects are also identifiable by the color of the rectangle alongside each bock. (c) Violin plots
of within- and between-subject similarity values from the matrix shown in panel b. (d) Scan sessions plotted according to
coordinates generated by performing a two-dimensional multi-dimensional scaling analysis of the matrix in panel b. Note that
scans from the same subject (shown here with the same color) are located near each other.

able marker of an individual, provided that it was esti-
mated using enough data. This observation serves as an
important validation of eFC, and suggests that eFC may
be useful in future applications as substrate for biomarker
generation [35] and “fingerprinting” [36], i.e. mapping
the connectional features that can accurately distinguish
individuals from one another versus those features that
are shared across individuals.

The overlapping community structure of human
cerebral cortex

The previous two sections related eFC to existing con-
cepts based on nFC and showed that it can be a reliable
marker of an individual’s brain organization. In this sec-
tion, we show that eFC can provide novel neuroscientific
insight. Specifically, we leverage eFC to partition brain
regions into overlapping communities.

While many studies have investigated the brain’s com-
munity structure [6, 11, 13, 37–39], most have relied on
methodology that forces each brain region into one and
only one community. However, partitioning brain regions
into non-overlapping communities clashes with evidence
suggesting that any given aspect of cognition and behav-
ior requires contributions from regions that span mul-
tiple nodally-defined communities and systems [40, 41].
Non-overlapping nodal partitions are hence inconsistent
with the notion that functional contributions of brain re-
gions are massively overlapping, with regions becoming
dynamically engaged and recruited into functional cir-
cuits with shifting demands imposed by varying internal
and external states [42]. Accordingly, a more flexible
definition of communities that matches more closely the
multifunctional nature of brain regions is needed [43].

One strategy is to derive overlapping communities, al-
lowing brain regions to be affiliated with multiple com-

munities at the same time. While deriving overlap-
ping communities can be challenging when using nFC,
doing so using eFC is straightforward. Clustering the
eFC graph assigns each edge in the network to a non-
overlapping edge community. Each edge is also associ-
ated with two brain regions (the nodes it connects). Thus
edge community assignments can be mapped back onto
individual brain regions and because every region is as-
sociated with N − 1 edges, each of which can maintain
a different community assignment, every region can have
multiple community affiliations.

In this section, we cluster eFC matrices to discover
overlapping communities in human cerebral cortex. More
specifically, we use a modified k -means to partition the
eFC graph into non-overlapping communities and map
the edge assignments back to individual nodes. We note
that, in general, other community detection algorithms
could be used in place of k -means; our decision to use this
algorithm was practically motivated, as k -means exhib-
ited significantly faster runtimes than other algorithms,
e.g. modularity maximization [44] and Infomap [45],
which have been used extensively in previous work to de-
rive communities in both functional and structural brain
networks.

In Fig. 4 we show representative communities obtained
with k = 10 (See Fig. S6 for examples with different num-
bers of communities). To demonstrate that the commu-
nities capture meaningful variance in our data, we show
the edge co-fluctuation time series, the eFC matrix, and
the community co-assignment matrix reordered accord-
ing to the derived communities (Fig. 4a,b,c). Here, the
elements of the co-assignment matrix represent the prob-
ability that two edges were assigned to the same commu-
nity across partitions as we varied the number of com-
munities from k = 2 to k = 20.

While the communities detected here are defined at the
level of edges rather than nodes, they naturally project
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FIG. 4. Edge communities. We applied similarity-based clustering to eFC from the HCP dataset. Here, we show results
with the number of clusters fixed at k = 10. (a) Here, we reordered edge time series according to the detected community
assignments. In this panel, horizontal lines divide communities from each other. The colors to the left of the time series plots
identify each of the ten communities. (b) We also reordered the rows and columns of the eFC matrix to highlight the same ten
communities. Note that, on average, within-community eFC is greater than between-community eFC. (c) We calculated the
probability that pairs of edges (node pairs) were co-assigned to the same community. Here, we show the co-assignment matrix
with rows and columned reordered according to community assignments. Note that, in general, the range of co-assignment
probabilities goes to 1. Here, we truncate the color limits to emphasize the 10-community partition (In Fig. S5 we show the
same co-assignment matrix at different values of k and with non-truncated color limits). We present two visualizations of the
edge communities projected back to brain regions (nodes). In d, we depict overlapping communities in matrix form. Each
column in this matrix represents one of ten communities. For each community and for each node, we calculated the proportion
of all edges assigned to that community that included that node as one of its endpoints (“stubs”), indicated by the color and
brightness of each cell. Dark colors indicate few edges; bright colors indicate many (e) Topographic distribution of communities.
Note that many of the communities resemble known intrinsic connectivity networks. However, because the communities here
are allowed to overlap, it is possible for nodes associated with a particular intrinsic connectivity network to participate in
multiple edge communities.

edge communities back onto brain regions. This was ac-
complished by extracting the edges associated with each
community, determining which nodes were at the end-
points of each edge (the “stubs”), and counting the num-
ber of times that each node was represented in this stub

list. We show these results in matrix form in Fig. 4d. In
this panel, rows and columns represent nodes and edge
communities, with nodes ordered according to the canon-
ical system labels described in [33]. Bright-colored cells
indicate that the corresponding node contributes many
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of its edges to a given community, while dark-colored
cells indicate that the node contributes few or none of its
edges. Note that, because a node’s edges can be assigned
to different communities, we can think of that node as
contributing to many communities. As a clear example,
consider the bottom two system labels in Fig. 4d, which
represent nodes traditionally assigned to the visual sys-
tem. Here, we find that edges associated with those vi-
sual nodes are spread out over the first four communities.

The overlapping nature of communities is made clearer
in Fig. 4e, in which communities are represented topo-
graphically. The edges associated with the same visual
nodes are all involved in communities 1, 2, 3, and 4 to
some extent, thereby linking the visual system to multi-
ple other brain systems. In community 1, for example,
edges incident upon nodes in the visual and somatomo-
tor systems are clustered together, whereas in community
3, edges are incident upon visual and default mode net-
work nodes are assigned to the same community. There
are other clear examples of this phenomenon involving
other brain systems, including communities 8 and 9 and
communities 5 and 10, which are dominated by edges
incident upon the same somatomotor and default mode
nodes, respectively.

Previous descriptions of the brain’s community struc-
ture have relied upon node-centric network representa-
tions and standard detection algorithms that force brain
regions into non-overlapping communities [6, 11]. Even
those approaches that have used overlapping methods to
detect communities still relied on node-centric network
representations, limiting the ability to draw inferences
about the functional roles of network edges [46]. Viewed
as a whole, these previous analyses reinforce a perspec-
tive in which brain function and community structure are
both non-overlapping, with each community subtending
a unique functional repertoire not shared by others. Our
approach accommodates overlapping communities, cor-
responding to a view of brain function in which edge in-
teractions engender polyfunctionality at the level of the
node, naturally leading to functional roles that span tra-
ditional system boundaries.

Sensorimotor systems participate in
disproportionately many communities

In the previous section, we showed that the human
cerebral cortex could be partitioned into overlapping
communities based on its edge correlation structure. This
observation leads to a series of additional questions. For
instance, which brain areas participate in many commu-
nities? Which participate in few? If we changed the scale
of inquiry – the number of detected communities – do the
answers to these questions change? Do the answers de-
pend on which dataset we analyze? In this section we
explore these questions in detail.

At a coarse level, one strategy for assessing community
overlap is to simply count the number of different commu-

nities to which each nodes’ edges are assigned [46]. These
results, however, can be misleading – a brain region with
100 connections divided equally between two communi-
ties would have the same overlap as a brain region with
99 edges in one community and 1 edge in another. A
more appropriate measure that accounts for the distri-
bution of edge community assignments is a normalized
entropy – a measurement that indexes the uniformity of
a distribution. Intuitively, as the distribution of edge
community assignments approaches uniformity its nor-
malized entropy is close to 1; when edges are assigned to
a single community normalized entropy is closer to 0 (See
Materials and Methods). We calculated normalized
entropy for every brain region while varying the number
of communities from k = 2 to k = 20. In this section we
focus on results with k = 10.

In general, we found that normalized entropy, a mea-
sure of community overlap, was greatest within sensori-
motor and attentional systems, in contrast with previous
reports [46]. In Fig. 5a,b,c we show results based on our
analysis of HCP data (see Fig. S7 for corresponding plots
using MSC and HBN datasets and Fig. S8 for normalized
entropy maps at different values of k). Among the sys-
tems with the lowest normalized entropy were regions
traditionally associated with control and default mode
networks (Fig. 5c).

Past studies that applied non-overlapping community
detection algorithms to node-centric FC have used mea-
sures like the participation coefficient [47] to identify
brain regions whose connectivity patterns span commu-
nity boundaries [10, 39, 48, 49]. In particular, these stud-
ies have identified brain regions located within fronto-
parietal and cingulo-opercular association cortices as can-
didate “hubs.” Here, using an alternative method for
defining overlapping communities, we find evidence of
substantial overlap in sensorimotor and attentional sys-
tem and less overlap in control and default mode sys-
tems. These observations suggest that, while control and
default mode networks are relatively stable in their com-
munication patterns, sensorimotor and attentional net-
works are flexible and can adapt their communication
partners to meet ongoing cognitive demands. While the
new methodology presented here can be immediately de-
ployed and applied to investigate changes in overlapping
community structure with cognitive, developmental, and
disease state, understanding how overlapping communi-
ties reconfigure to form grander, higher-order structures
in a network, e.g. cores and peripheries [37, 50, 51], re-
mains an important open question for future studies.

Edge functional connectivity is modulated by
changes in sensory input

In the previous sections, we demonstrated that eFC is
a reliable marker of an individual and that by clustering
eFC we naturally obtain overlapping communities. We
leveraged this final observation to demonstrate that pri-
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FIG. 5. Edge community entropy and overlap. (a) Topographic distribution of normalized entropies. Normalized entropy,
in this case, measures the uniformity of a node’s community assignments across all communities and serves as a measure of
overlap. In general, higher entropy corresponds to greater levels of overlap. (b) Brain systems associated with the highest levels
of normalized entropy. These include visual, attentional, somatmotor, and temporo-parietal systems. (c) Entropy values for
all brain systems. (d) Here, we highlight communities in which somatomotor (red) and visual (blue) systems are represented.

mary sensory and attentional systems participate in dis-
proportionately more communities than association cor-
tices. While illuminating, these analyses were carried
out using data collected during task-free conditions, i.e.
at rest. Analogous to previous studies documenting the
effect of task on nodal FC, we expect that eFC is also
modulated by task load. In this section, we explore the
effect of passive movie-watching on eFC.

To address this question, we analyzed fMRI data
from the Healthy Brain Network Serial Scanning Initia-
tive recorded during rest and while watching the movie
“Raiders of the Lost Ark.” The movie data was divided
into six successive scan sessions, which we further trun-
cated by retaining the first 420 samples so that the du-
ration matched that of the HBN resting scans, of which
we retained the first six for the sake of balance. Then we
estimated group-averaged eFC separately for each of the
movie and rest scans.

In general, we found that eFC during movie-watching
was highly correlated with eFC estimated during rest
(Fig. 6a). Across all six movie scans, the mean correla-
tion with resting eFC was r = 0.55±0.02. When we com-
pared the pairwise similarity of all movie-watching scans
with rest, we found that similarity of eFC was greater
within a given task than between tasks (Fig. 6b). To

better understand what was driving this effect, we com-
puted the element-wise difference between the average
movie and rest eFC matrices. While eFC differences were
widespread, the most pronounced effects were associated
with two specific communities (Fig. 6c), one of which ex-
hibited a decrease in its within-module eFC, while they
both decreased eFC with respect to each other. These
communities, interestingly, consisted of edges associated
with somatomotor and visual systems (Fig. 6d).

The differences in the connection weights of eFC be-
tween movie-watching and rest strongly suggested that
the overall modular structure and the locations of high
and low cluster overlap might also differ between condi-
tions, as well. To test this, we used the same clustering
algorithm described earlier to partition node pairs into
non-overlapping clusters and, based on these clusters,
calculated each node’s cluster overlap as a normalized en-
tropy. We found that compared to rest, entropy increased
during movie-watching (p < 0.01), indicating more over-
lap between communities (Fig. 6e), and that the brain-
wide pattern of entropy also differed (Fig. 6f). These
differences could be attributed to increased entropy in
association cortices, with control and default areas in-
creasing by the greatest amount, on average (Fig. 6,g,h).

Collectively, these results suggest that, like nFC, eFC
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FIG. 6. Effect of passive movie-watching on eFC. (a) Two-dimensional histogram of eFC estimated at rest with eFC
estimated during movie-watching. (b) Similarity of whole-brain eFC estimated at rest with movie-watching. Note that within-
condition similarity is greater for both conditions. (c) Community-averaged differences in eFC. Communities 5 and 6 are
associated with the largest magnitude differences, on average. Note: these are communities estimated from HBN data and are
not identical to those shown in Fig. 4 and estimated from HCP data. (d) Topographic distribution of communities 5 and 6. Note
that these communities involve edges associated with visual and somatomotor systems. (e) Averaged differences in community
overlap (normalized entropy). (f ) Similarity of whole-brain normalized entropy estimated at rest with movie-watching. (g)
Violin plot showing system-specific differences in normalized entropy. Note that some of the greatest increases in entropy are
concentrated with control and default mode networks. (h) Topographic distribution of differences in entropy.

is reconfigurable and can be modulated by sensory in-
puts and ongoing task demands. The observed changes
in eFC, which implicated two clusters associated both
with somatomotor and visual systems, is in close agree-
ment with past studies of passive movie-watching that
documented changes in activity and nFC in similar areas
[52, 53]. We also found increased overlap in areas as-
sociated with control and default mode networks, which
agrees with other recent studies reporting that activity
throughout these areas, and in default mode in particu-
lar, is sensitive to movie narrative structure [54] and com-
prehension [55]. An important area of future research in-
volves systematically assessing the effect of different cog-
nitively demanding tasks on eFC.

DISCUSSION

Here, we presented a network model of human cere-
bral cortex that focused on edge-edge interactions. The
network formed by these interactions, a construct we re-
ferred to as edge functional connectivity (eFC), was simi-
lar across datasets and more similar within subjects than
between. When clustered, eFC provided a natural es-
timate of overlapping community structure. We found

that the amount of overlap varied across the cortex, but
peaked in sensorimotor and attention networks. Lastly,
we showed that eFC and community overlap varied sys-
tematically during passive viewing of movies.

Edge-centric perspective on
functional network organization

Node-centric representations have dominated the field
of network neuroscience and have served as the basis for
nearly every discovery within that field [1]. As a result,
alternative ways of representing functional neuroimag-
ing data have not been thoroughly explored. The edge-
centric representation shifts focus away from dyadic rela-
tionships between nodal activations and onto the interac-
tions between edges (the similarity in their patterns of co-
fluctuation, a potential hallmark of communication), in-
stead. While similar models have been explored in other
scientific domains [19–22], they require as input sparse
node-node connectivity matrices and are poorly suited
for continuous-valued time series data, making them sub-
optimal representations of dynamic neural data.

Here, we developed a novel edge-centric representa-
tion of functional neuroimaging data that operates di-
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rectly on observed time series. Our method for estimat-
ing connection weights between edges can be viewed as
a temporal “unwrapping” of the familiar Pearson cor-
relation – the measure frequently used to estimate the
magnitude of nFC between pairs of brain regions [25].
Whereas the Pearson correlation coefficient calculates the
time-averaged co-fluctuation magnitude for node pairs,
we simply omit the averaging step, yielding “edge time
series,” which represent the co-fluctuation magnitude be-
tween two nodes at every instant in time. This simple
step enables us to track fluctuations in edge weight across
time and, critically, can be related to one another dyadi-
cally, creating an entirely new network, edge-centric rep-
resentation of nervous system architecture.

At its most basic level, edge time series are measuring
instantaneous co-fluctuations between the activity of two
brain regions. However, if we interpret edge time series
as a temporal unwrapping of nFC, which is thought to
reflect the aggregate effect of communication processes
between neural elements [56, 57], then edge times se-
ries track, with unprecedented temporal resolution, the
communication patterns between distributed neural ele-
ments.

Overlapping communities extend our understanding
of system-level cortical organization

Here, we demonstrated that clustering eFC using com-
munity detection methods naturally leads to communi-
ties that overlap when mapped back to the level of brain
regions and nodes. Because eFC reflects interactions be-
tween edges, and because we interpret edge time series
as time-resolved estimates of inter-regional communica-
tion, edge communities can be viewed as reflecting the
brain’s circuit-level architecture. This is in contrast to
nodal communities, which reflect similarity in regional
activation patterns.

Past investigations of cortical organization have fo-
cused almost exclusively on non-overlapping communities
[6, 11, 12, 38, 39]. The decision to define communities
in this way is partially motivated by interpretability but
also by limitations of the methods used to detect commu-
nities, which assign nodes to one community, only [44, 45]
(although application of community detection methods
to time-varying or multi-layer networks can overcome this
to some extent [58–60]). This current view of communi-
ties has been profoundly successful. It provides a low-
dimensional description of the brain [61], it can be used
to define node roles and to detect hubs [47, 62], and can
be applied to both anatomical [63] and functional net-
works [64] with equal success.

The dominant non-overlapping perspective of com-
munities has strongly influenced we think about brain
function. Because functional communities exhibit a
correspondence with patterns of task-evoked activity
[11, 65, 66], and because those patterns are stereotypi-
cal and reliably detected across multiple studies, we have

come to associate individual communities with specific
cognitive domains, labeling communities in reference to
their supposed function. For instance, it is not uncom-
mon to refer to communities as primarily processing vi-
sual information, enacting cognitive control, or perform-
ing attentional functions. This localization of brain func-
tion to communities, though likely a reasonable first-
order approximation, perpetuates a view of brain func-
tion in which brain areas, systems, and communities are
fundamentally unifunctional. Such a view, however, dis-
agrees with observations that many aspects of cognition
and behavior transcend these traditional community la-
bels, such that the same neural substrate can be activated
under different unrelated conditions.

The approach developed here is closely aligned with
this second view, in which brain areas and communities
exhibit highly degenerate functionality. Other studies
have investigated overlapping communities in nFC, where
communities represent clusters of activations [46, 67, 68].
Our approach, on the other hand, emphasizes clusters of
communication patterns and offers a novel and comple-
mentary perspective on communities. While we apply
edge-based clustering to functional MRI data, we note
that this method is general and could be applied to virtu-
ally any neural time series data, irrespective of its prove-
nance. Future work could pursue this possibility and in-
vestigate eFC in both scalp and intra-cranial EEG, MEG,
electrophysiological recordings [3], as well as microscopy
techniques [69], revealing novel organizational features of
brain networks at different spatiotemporal scales.

Limitations

In this study, we explore an edge-centric representa-
tion of human cerebral cortex. While this approach has
provided new insight into cortical organization, there are
several limitations worth discussing.

One of the most important limitations concerns the
estimation of edge time series from functional imaging
data. To calculate edge time series, we first z-score re-
gional time series. Here, the z-score is only appropriate
if the time series has a temporally invariant mean and
standard deviation [70]. If there is a sustained increase
or decrease in activity, e.g. the effect of a blocked task,
then the z-scoring procedure can result in a biased mean
and standard deviation, resulting in poor estimates of
fluctuations in activity. To minimize the likelihood of
this occurring, we focused on resting-state and movie-
watching data rather than blocked tasks. In future work,
investigation of task-evoked changes in eFC could be in-
vestigated with already common preprocessing steps, e.g.
constructing task regressors to remove the first-order ef-
fect of tasks on activity [71].

Another limitation concerns the scalability of eFC.
Calculating eFC given for a brain divided into N parcels
results in an eFC matrix of dimensions N(N−1)/2. This
means that an increase in the number of parcels results
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in a squared increase in the dimensionality of eFC; if
the number of parcels is large, then this can result in
large, fully-weighted matrices that require large amounts
of memory to store and manipulate. Here, we circum-
vented this issue by focusing on parcellations of the brain
into 100-, 200-, and 400-node parcellations [33]. In the fu-
ture, however, it may be necessary to explore dimension
reduction methods to retain the most relevant dimensions
for a given task or set of behaviors [72, 73].

Future directions

While eFC characterizes interactions between edges
rather than nodes, it can still be analyzed using the same
methods previously applied to nFC. We can detect its
hubs and communities [74], identify its central elements
[75], estimate edge gradients [76], and compare eFC con-
nection weights across individuals [36] and conditions [5].
On the other hand, eFC affords many new opportunities,
beginning with the edge time series used to estimate eFC.
Essentially, edge time series offer a moment-to-moment
assessment of how strongly two nodes (brain regions)
co-fluctuate with one another, providing an estimate of
time-varying nFC without the requirement that we spec-
ify a window [77–79]. This overcomes one of the main
limitations of sliding window estimates of time-varying
nFC, namely that the use of a window leads to a “blur-
ring” of events across time [80].

The eFC matrices, themselves, offer distinct advan-
tages, some of which were explored here. For instance,
partitions of eFC result in communities of edges, which
can be easily mapped back to brain regions, thereby
generating estimates of community overlap. We also
note that, though not explored here, similar edge-to-node
mappings can be performed using any network metric
estimated on eFC, rendering edge statistics more inter-
pretable and comparable to the more familiar network
metrics for nFC [18]. While the present community anal-
ysis was carried out on parcel-level time series, a simi-
lar approach could be applied to downsampled surface-
level time series to generate whole-brain functional at-
lases with overlapping system labels [6, 81] or applied
to specific brain areas and sub-systems for constructing
fine-grained overlapping atlases [82, 83].

eFC might also be particularly useful in applications
of machine learning and classification of neuroimaging
data [84, 85]. The dimensionality of the eFC matrix is
much greater than that of a typical nFC matrix. Some
of the added dimensions may be useful identifying mani-
folds along which subjects, clinical cohorts, or behaviors
naturally separate, enhancing classification accuracy [86].

Lastly, the edge-centric framework developed here
is not unique to functional MRI and can be easily
be extended to different imaging modalities, including
scalp/intracranial EEG or MEG , which making it possi-
ble to track seizure propagation at the level of edges [87].
Similar, the application of this approach to datasets re-

solving single neuron activity could uncover important
connection-level insight into circuit organization [3].

MATERIALS AND METHODS

Datasets

The Human Connectome Project (HCP) dataset [26]
included resting state functional data (rsfMRI) from 100
unrelated adult subjects (54% female, mean age = 29.11
± 3.67, age range = 22-36). The study was approved by
the Washington University Institutional Review Board
and informed consent was obtained from all subjects.
Subjects underwent four 15 minute rsfMRI scans over
a two day span. A full description of the imaging param-
eters and image prepocessing can be found in [88]. The
rsfMRI data was acquired with a gradient-echo EPI se-
quence (run duration = 14:33 min, TR = 720 ms, TE =
33.1 ms, flip angle = 52◦, 2 mm isotropic voxel resolution,
multiband factor = 8) with eyes open and instructions to
fixate on a cross. Images were collected on a 3T Siemens
Connectome Skyra with a 32-channel head coil.

The Midnight Scan Club (MSC) dataset [27] included
rsfMRI from 10 adults (50% female, mean age = 29.1
± 3.3, age range = 24-34). The study was approved by
the Washington University School of Medicine Human
Studies Committee and Institutional Review Board and
informed consent was obtained from all subjects. Sub-
jects underwent 12 scanning sessions on separate days,
each session beginning at midnight. 10 rsfMRI scans per
subject were collected with a gradient-echo EPI sequence
(run duration = 30 min, TR = 2200 ms, TE = 27 ms, flip
angle = 90◦, 4 mm isotropic voxel resolution) with eyes
open and with eye tracking recording to monitor for pro-
longed eye closure (to assess drowsiness). Images were
collected on a 3T Siemens Trio.

The Healthy Brain Network Serial Scanning Initiative
(HBN) dataset [28] included rsfMRI and movie watching
(mwfMRI) data from 13 adults (54% female, mean age
= 30.3 ± 6.4, age range = 21-42). Three subjects of the
HBN dataset did not have enough non-outlier functional
scans (see quality control criteria below) to be meaning-
fully analyzed (non outlier scan percentage = 7%, 0%,
and 0%), and were excluded entirely from the current
study. This rendered the HBN dataset as 10 subjects
(50% female, mean age = 29.8 ± 5.3, age range = 23-37).
The study was approved by the Chesapeake Institutional
Review Board and informed consent was obtained from
all subjects. Subjects underwent 14 scanning sessions
over a 1-2 month period, in which 13 rsfMRI runs were
acquired per subject. On the 8th session, subjects viewed
the movie “Raiders of the Lost Ark” (Lucasfilm Ltd.,
1981) in six approximately 20 minute scans. The rsfMRI
and mvfMRI were acquired with a gradient-echo EPI se-
quence (run duration rsfMRI = 10:18 min, mvfMRI =
20 min per segment, TR = 1450 ms, TE = 40 ms, flip
angle = 55◦, 2.46x2.46x2.5 mm voxel resolution, multi-
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band factor = 3) with subjects instructed to keep their
eyes open and gazed directed towards a cross during the
fsMRI scan. Images were collected on a 1.5T Siemens
Avanto with a 32-channel head coil.

Image Preprocessing

HCP Functional Preprocessing

Functional images in the HCP dataset were minimally
preprocessed according to the description provided in
[88]. Briefly, these data were corrected for gradient dis-
tortion, susceptibility distortion, and motion, and then
aligned to a corresponding T1-weighted (T1w) image
with one spline interpolation step. This volume was
further corrected for intensity bias and normalized to
a mean of 10000. This volume was then projected to
the 32k fs LR mesh, excluding outliers, and aligned to
a common space using a multi-modal surface registra-
tion [89]. The resultant cifti file for each HCP sub-
ject used in this study followed the file naming pattern:
* REST{1,2} {L,R} Atlas MSMAll.dtseries.nii.

MSC and HBN Functional Preprocessing

Functional images in the MSC and HBN datasets
were preprocessed using fMRIPrep 1.3.2 [90], which is
based on Nipype 1.1.9 [91]. The following description
of fMRIPrep’s preprocessing is based on boilerplate dis-
tributed with the software covered by a “no rights re-
served” (CC0) license. Internal operations of fMRIPrep
use Nilearn 0.5.0 [92], ANTs 2.2.0, FreeSurfer 6.0.1, FSL
5.0.9, and AFNI v16.2.07. For more details about the
pipeline, see the section corresponding to workflows in
fMRIPrep’s documentation.

The T1-weighted (T1w) image was corrected for in-
tensity non-uniformity with N4BiasFieldCorrection
[93, 94], distributed with ANTs, and used as T1w-
reference throughout the workflow. The T1w-reference
was then skull-stripped with a Nipype implementation
of the antsBrainExtraction.sh workflow, using NKI as
the target template. Brain surfaces were reconstructed
using recon-all [95], and the brain mask estimated pre-
viously was refined with a custom variation of the method
to reconcile ANTs-derived and FreeSurfer-derived seg-
mentations of the cortical gray-matter using Mindboggle
[96]. Spatial normalization to the ICBM 152 Nonlinear
Asymmetrical template version 2009c [97] was performed
through nonlinear registration with antsRegistration,
using brain-extracted versions of both T1w volume and
template. Brain tissue segmentation of cerebrospinal
fluid (CSF), white-matter (WM) and gray-matter (GM)
was performed on the brain-extracted T1w using FSL’s
fast [98].

Functional data was slice time corrected using AFNI’s
3dTshift and motion corrected using FSL’s mcflirt

[99]. Fieldmap-less distortion correction was performed
by co-registering the functional image to the same-
subject T1w image with intensity inverted [100] con-
strained with an average fieldmap template [101], im-
plemented with antsRegistration. This was fol-
lowed by co-registration to the corresponding T1w us-
ing boundary-based registration [102] with 9 degrees of
freedom. Motion correcting transformations, field distor-
tion correcting warp, BOLD-to-T1w transformation and
T1w-to-template (MNI) warp were concatenated and ap-
plied in a single step using antsApplyTransforms us-
ing Lanczos interpolation. Several confounding time-
series were calculated based on this preprocessed BOLD:
framewise displacement (FD), DVARS and three region-
wise global signals. FD and DVARS are calculated for
each functional run, both using their implementations
in Nipype [103]. The three global signals are extracted
within the CSF, the WM, and the whole-brain masks.
The resultant nifti file for each MSC and HBN sub-
ject used in this study followed the file naming pattern
* space-T1w desc-preproc bold.nii.gz.

Image Quality Control

All functional images in the HCP dataset were re-
tained. The quality of functional images in the MSC
and HBN were assessed using fMRIPrep’s visual reports
and MRIQC 0.15.1 [104]. Data was visually inspected for
whole brain field of view coverage, signal artifacts, and
proper alignment to the corresponding anatomical image.
Functional data were excluded if greater than 25% of the
frames exceeded 0.2 mm framewise displacement [105].
Furthermore, functional data were excluded if marked
as an outlier (exceeding 1.5x inter-quartile range in the
adverse direction) in more than half of the following im-
age quality metrics (calculated within-dataset, across all
functional acquisitions): dvars, tsnr, fd mean, aor, aqi,
snr, and efc. Information about these image quality met-
rics can be found within MRIQC ’s documentation [106].

Functional and Structural Networks Preprocessing

Parcellation Preprocessing

A functional parcellation designed to optimize both lo-
cal gradient and global similarity measures of the fMRI
signal [33] (Schaefer200 ) was used to define 200 areas
on the cerebral cortex. These nodes are also mapped
to the Yeo canonical functional networks [6]. For the
HCP dataset, the Schaefer200 is openly available in
32k fs LR space as a cifti file. For the MSC and HBN
datasets, a Schaefer200 parcellation was obtained for
each subject using a Gaussian classifier surface atlas [107]
(trained on 100 unrelated HCP subjects) and FreeSurfer’s
mris ca label function. These tools utilize the sur-
face registrations computed in the recon-all pipeline
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to transfer a group average atlas to subject space based
on individual surface curvature and sulcal patterns. This
method rendered a T1w space volume for each subject.
For use with functional data, the parcellation was resam-
pled to 2mm T1w space. This process could repeated for
other resolutions of the parcellation (i.e. Schaefer100 ).

Functional Network Preprocessing

The mean BOLD signal for each cortical node data
was linearly detrended, band-pass filtered (0.008-0.08
Hz) [105], confound regressed and standardized using
Nilearn’s signal.clean, which removes confounds or-
thogonally to the temporal filters [108]. The confound
regression employed [109] included 6 motion estimates,
time series of the mean CSF, mean WM, and mean
global signal, the derivatives of these nine regressors,
and the squares these 18 terms. Furthermore, a spike
regressor was added for each fMRI frame exceeding a
motion threshold (HCP = 0.25 mm root mean squared
displacement, MSC, HBN = 0.5 mm framewise displace-
ment). This confound strategy has been shown to be
relatively effective option for reducing motion-related ar-
tifacts [105]. Following this preprocessing and nuisance
regression, residual mean BOLD time series at each node
was recovered. eFC matrices for each subject were com-
puted and then averaged across subjects, to obtain a rep-
resentative eFC matrix for each dataset. This processing
was performed for both resting state and movie watching
data.

Edge graph construction

Constructing networks from fMRI data (or any neural
time series data) requires estimating the statistical de-
pendency between every pair of time series. The magni-
tude of that dependency is usually interpreted as a mea-
sure of how strongly (or weakly) those voxels are parcels
are functionally connected to each other. By far the most
common measure of statistic dependence is the Pearson
correlation coefficient. Let xi = [xi(1), . . . , xi(T )] and
xj = [xj(1), . . . , xj(T )] be the time series recorded from
voxels or parcels i and j, respectively. We can calculate
the correlation of i and j by first z-scoring each time se-
ries, such that zi = xi−µi

σi
, where µi = 1

T

∑
t xi(t) and

σi = 1
T−1

∑
t[xi(t)−µi] are the time-averaged mean and

standard deviation. Then, the correlation of i with j can
be calculated as: rij = 1

T−1
∑
t[zi(t) · zj(t)]. Repeating

this procedure for all pairs of parcels results in a node-by-
node correlation matrix, i.e. an estimate of FC. If there
are N nodes, this matrix has dimensions [N ×N ].

To estimate edge-centric networks, we need to modify
the above approach in one small but crucial way. Sup-
pose we have two z-scored parcel time series, zi and zj .
To estimate their correlation we calculate the mean their
element-wise product (not exactly the average, because

we divide by T−1 rather than T ). Suppose, instead, that
we never calculate the mean and simply stop after calcu-
lating the element-wise product. This operation would
result in a vector of length T whose elements encode the
moment-by-moment co-fluctuations magnitude of parcels
i and j. For instance, suppose at time t, parcels i and j
simultaneously increased their activity relative to base-
line. These increases are encoded in zi and zj as positive
entries in the tth position, so their product is also posi-
tive. The same would be true if i and j decreased their
activity simultaneously (because the product of negatives
is a positive). On the other hand, if i increased while j
decreased (or vice versa), this would manifest as a nega-
tive entry. Similarly, if either i or j increased or decreased
while the activity of the other was close to baseline, the
corresponding entry would be close to zero.

Accordingly, the vector resulting from the element-
wise product of zi and zj can be viewed as encoding
the magnitude of moment-to-moment co-fluctuations be-
tween i and j. An analogous vector can easily be cal-
culated for every pair of parcels (network nodes), result-
ing in a set of co-fluctuation (edge) time series. With

N parcels, this results in N(N−1)
2 pairs, each of length

T . From these time series we can estimate the sta-
tistical dependency for every pair of edges. We refer
to this construct as edge functional connectivity (eFC).
Let cij = [zi(1) · zj(1), . . . , zi(T ) · zj(T )] and cuv =
[zu(1)·zv(1), . . . , zi(T )·zj(T )] be the time series for edges
{i, j} and {u, v}, respectively. Then we can calculate eFC
as:

eFCij,uv =

∑
t cij(t) · cuv(t)√∑

t cij(t)
2
√∑

t cuv(t)
2
. (1)

Here, the denominator is necessary to bound eFC to the
interval [−1, 1].

Clustering algorithm

In general, eFC matrices are much larger than tradi-
tional nodal FC matrices. While most clustering algo-
rithms can be applied to hundreds or even thousands of
observations, estimating clusters for eFC (which consists
of tens of thousands of observations, each paired with at
least as many features), presents a computational chal-
lenge, especially if the aim is to explore the space of pos-
sible partitions. To address this issue and to cluster eFC,
we developed a simple two-step clustering procedure that
operates on a low-dimensional representation of the eFC
matrix.

First, we performed an eigendecomposition of the eFC
matrix, retaining the top 50 eigenvectors. These eigen-
vectors were rescaled to the interval [−1, 1] by dividing
each eigenvector by its largest magnitude element. Then
simply clustered the rescaled eigenvectors using a stan-
dard k-means algorithm with Euclidean distance. We
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varied the number of communities, k, from k = 2 to
k = 20, repeating the clustering algorithm 250 at each
value. We retained as a representative partition the one
with the greatest overall similarity to all other partitions.
We note that the edge time series can be clustered di-
rectly and that, in general, the results were highly similar
(Fig. S9).

Community overlap metrics

The clustering algorithm partitioned edges into non-
overlapping clusters. That is, every edge {i, j}, where
i, j ∈ {1, . . . , N}, was assigned to one of k clusters. In
this list of edges, each node appeared N − 1 times (we
excluded self-connections). Region i’s participation in
cluster c was calculated as:

pic =
1

N − 1

∑
j 6=i

δ(gij , c) (2)

where gij ∈ {1, . . . , k} was the cluster assignment of
the edge linking nodes i and j and δ(x, y) is the Kronecker
delta, whose value is 1 if x = y and zero otherwise.
By definition,

∑
c pic = 1, and we can treat the vector

pi = [pi1, . . . , pik] as a probability distribution. The en-
tropy of this distribution measures the extent to which
region i’s community affiliations are distributed evenly
across all communities (high entropy and high overlap)
or concentrated within a small number of communities
(low entropy and low overlap). We calculate this entropy
as:

hi = −
∑
c

pic log2 pic. (3)

To normalize this measure and bound it to the interval

[0, 1], we divide by log2 k. We refer to this measure as
community entropy and interpret this value as an index
of overlap.
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FIG. S1. Effect of in-scanner motion on co-fluctuation time series. The edge time series shown Fig. 4a is typical and
consistent with what we observed in other subjects. One of the most salient features of the edge time series is their sparse
temporal structure. Rather the exhibiting smooth and continuous fluctuations over time, the edge time series exhibit long
periods of quietude punctuated by large “events” when many edges simultaneously exhibit large shifts in amplitude. This
pattern is not unlike typical framewise displacement plots, where excessive head motion is rarely sustained over long periods
of time. This raises the concern that edge time series events are simple reflections of in-scanner head motion. To address this
concern, we calculated the correlation of event amplitude at each time point (RMS eFC) with the instantaneous estimates of
relative motion RMS. If the events were associated with in-scanner motion, we would expect the correlation to be strong and
positive. We performed this procedure for all 100 subjects in the HCP dataset and for each of the four scans, independently.
We carried out three versions of this analysis. In the first (labeled “no censoring”), we retained all volumes. In the other two
we excluded volumes for which motion was greater than 0.1 mm and 0.2 mm, respectively. We found that, in general, the
correlation of edge amplitude motion was weak. Without censoring, the median correlation across all 400 HCP scans was 0.008
with an interquartile range of [−0.039, 0.038]. With censoring, this distribution was narrowed slightly, so that the median value
was still close to zero (0.01 in the case of censoring based on 0.1 mm and 0.2 mm) but with interquartile ranges of [−0.014, 0.045]
and [−0.012, 0.041]. Collectively, these results suggest that the observed events not direct consequences of in-scanner motion.

FIG. S2. Comparison of group-averaged eFC across datasets. Here, we show two-dimensional histograms comparing
the similarity of group-averaged eFC matrices for each of the three datasets: Human Connectome Project, Midnight Scan Club,
and the Healthy Brain Network Serial Scanning Initiative.
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FIG. S3. Effect of global signal regression on eFC. Here, we show two-dimensional histograms comparing the similarity of
group-averaged eFC from the HCP dataset preprocessed with global signal regression (36 parameter) and without (ICA-FIX).

FIG. S4. Within- versus between-subject similarity of eFC in HBN and HCP datasets. In the main text we
showed, using data from the Midnight Scan Club, that eFC was more similar within subjects than between subjects. Here,
we show analogous plots for the other two datasets: the Health Brain Network Serial Scanning Initiative and the Human
Connectome Project. Panel a shows between- and within-subject similarity for the HBN dataset. Panels b and c depict an
analogous figure for HCP data. Panel b calculates between- and within-subject similarity treating all four scans (REST1 LR,
REST1 RL, REST2 LR, and REST2 RL) independently, whereas panel c shows similarity measures for combined REST1 LR
+ REST1 RL and REST2 LR + REST2 RL. Note that in all cases, the differences of between- and within-subjects similarity
were statistically significant (maximum p-value of p ≈ 10−6)

FIG. S5. Co-assignment probability at different values of k. In the main text we showed the the matrix of co-assignment
probabilities. In that figure, we reordered the rows and columns to highlight communities detected with k = 10. To do so, we
truncated the upper limit on the co-assignment probability matrix to correspond with the k = 10 communities. Here, we show
the same matrix with k = 2, k = 4, k = 6, k = 8, and k = 12 and without a truncated upper limit.
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FIG. S6. Effect of varying k on cluster structure. In the main text we detected clusters when the number of clusters was
fixed at k = 10. Here, we show examples of clusters detected when k = 2, k = 4, k = 6, k = 8, and k = 12.

FIG. S7. Comparison of normalized entropy across datasets. In the main text, we showed the normalized entropy – a
measure of cluster overlap – for the HCP dataset. Here, we show the same measure for all three datasets. All plots correspond
to k = 10 clusters.
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FIG. S8. Effect of varying k on cluster overlap. In the main text, we showed normalized entropy with the number of
clusters fixed at k = 10. In panel a, we show the same metric as we vary the number of clusters from k = 2, k = 4, k = 6,
k = 8, and k = 12. Panel b shows matrix representations of the cluster assignments used to estimate normalized entropy.

FIG. S9. Comparison of normalized entropy from group-averaged data with single-subject data. In the main text,
we showed the normalized entropy – a measure of cluster overlap – for the HCP dataset estimated by clustering a group-averaged
eFC matrix that had undergone a dimension reduction step. Here, we show the similarity of that entropy pattern with entropies
obtained from complete (i.e. no dimension reduction) single-subject data from the HCP dataset. (a) Mean normalized entropy
pattern after averaging subject-level entropies. (b) Scatterplot showing the relationship of the subject average normalized
entropy with the group-representative normalized entropy estimated in the main text. (c) Correlation coefficients (similarity)
of single-subject entropies with the group-representative pattern described in the main text. The median similarity across all
subjects was a correlation of r = 0.49.
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