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Single-nucleus RNA-seq identifies Huntington Disease astrocyte states 

Abstract  

Huntington Disease (HD) is an inherited movement disorder caused by expanded CAG repeats in the 

Huntingtin gene.  We have used single nucleus RNASeq (snRNASeq) to uncover cellular phenotypes 

that change in the disease, investigating single cell gene expression in cingulate cortex of patients 

with HD and comparing the gene expression to that of patients with no neurological disease.  In this 

study, we focused on astrocytes, although we found significant gene expression differences in 

neurons, oligodendrocytes, and microglia as well.  In particular, the gene expression profiles of 

astrocytes in HD showed multiple signatures, varying in phenotype from cells that had markedly 

upregulated metallothionein and heat shock genes, but had not completely lost the expression of 

genes associated with normal protoplasmic astrocytes, to astrocytes that had substantially 

upregulated GFAP and had lost expression of many normal protoplasmic astrocyte genes as well as 

metallothionein genes. When compared to astrocytes in control samples, astrocyte signatures in HD 

also showed downregulated expression of a number of genes, including several associated with 

protoplasmic astrocyte function and lipid synthesis. Thus, HD astrocytes appeared in variable 

transcriptional phenotypes, and could be divided into several different “states”, defined by patterns of 

gene expression.  Ultimately, this study begins to fill the knowledge gap of single cell gene expression 

in HD and provide a more detailed understanding of the variation in changes in gene expression 

during astrocyte “reactions” to the disease. 

 

Key words:  Huntington disease, astrocytes, gene expression, cingulate cortex, single-cell RNA-

sequencing 
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Introduction 

Huntington Disease (HD), a neurodegenerative disorder caused by CAG repeats in the Huntingtin 

gene, leads to the accumulation of the mutant protein and an associated neuronal degeneration and 

gliosis [34].  Although Huntingtin is expressed in all cell types, the neuropathology of the disease 

shows substantial variation.  For instance, there are caudal-rostral and medial-lateral gradients of 

severity in the neostriatum [60], and relative sparing of the nucleus accumbens in advanced grade 

HD [47]. Neuronal degeneration in the isocortex involves the motor and sensory cortices but relatively 

spares the superior parietal lobule [37], and in some patients, the anterior cingulate cortex is also 

involved, and cortical layers III, V, and VI are especially vulnerable [48].  

Understanding the differences in microenvironment between affected and relatively resistant 

regions may illuminate the cellular and molecular mechanisms underlying vulnerability and resilience 

to neurodegeneration. Astrocytes, in particular, are a key to maintaining the neuronal 

microenvironment, and display regional variation across the dorsal-ventral, rostral-caudal, and 

medial-lateral axes according to developmentally-determined domains [58]. Additionally, astrocytes 

exhibit intra-regional heterogeneity.  For example, subpial and white matter astrocytes contain more 

glial fibrillary acidic protein (GFAP) and CD44 than protoplasmic astrocytes but lower levels of 

protoplasmic astrocyte markers, such as glutamate transporters and glutamine synthetase [54].  

Astrocytes in the affected regions of the HD brain show a “reactive” state, generally defined by 

histochemistry or by an increase in GFAP [51, 61], but also by a decrease in the expression and 

protein levels of the major astrocytic glutamate transporter, EAAT2 [2,9].  In mouse models of HD, 

expression of mutant Huntingtin (mHTT) in astrocytes leads to decrease in the expression of the 

glutamate transporter [6], and the failure to buffer extracellular potassium and glutamate leads to 

neuronal hyper-excitability and a HD-like phenotype, which is reversed by restoration of astrocytic 

membrane conductance [56].  In addition, astrocytes in HD contribute to an inflammatory environment 
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[16, 26], which likely participates in the progression of the pathology.  Thus, there is substantial 

evidence that astrocytes play a primary role in the evolution of HD.   

Whereas bulk transcriptome-wide studies have provided important insights into molecular 

changes in HD [1, 14, 15, 22, 28, 38], bulk samples comprise a mixture of cell types, so astrocyte-

specific signatures in HD may be obscured.  Single cell RNA sequencing (scRNAseq) is a powerful 

technique to interrogate cellular heterogeneity [7, 44]. Although brain banks house hundreds of frozen 

postmortem brain specimens, technical difficulties limit the application of scRNAseq to these 

samples. However, this is not a limitation of single nucleus RNA sequencing (snRNASeq), which 

accurately elucidates cellular heterogeneity in a manner comparable to whole/cytoplasmic scRNAseq 

[24], and can be applied to frozen brain tissue [21]. This technique has been used to identify multiple 

novel, regionally-diversified cortical excitatory and inhibitory neuronal sub-types [23]. Recently, 

massively parallel snRNASeq using droplet technology revealed cellular heterogeneity in the human 

postmortem cortex and hippocampus [11, 17]. The disease-specific cell-type specific transcriptional 

signatures were described in oligodendroglia in multiple sclerosis [18] and multiple cell types in 

Alzheimer Disease [31] and microglia in Alzheimer disease [39].  

In this study, we performed snRNASeq of fresh frozen cingulate cortex from Grade III/IV HD 

patients and compared the results to those from non-neurological control patients to examine single 

cell differences in gene expression. We have focused here on astrocytes, although we found 

significant differences in all cell types.   We examined the cingulate cortex, which is often affected in 

HD patients, because the cortical pathology is less severe than the neostriatal pathology, and 

because there is little known about cortical astrocyte pathology in HD.  Finally, we focused on Grade 

III/IV to identify astrocyte gene expression changes in an intermediate stage of evolution rather than 

at an end stage.     

Overall, we found substantial heterogeneity in astrocyte signatures, with clear differences in 

population structure between control and HD tissue samples. In particular, the “reactive” astrocytes in 

HD could be divided into several different “states”, defined by patterns of gene expression.  These 
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ranged from astrocytes that had markedly upregulated metallothionein (MT) and heat shock genes, 

but had not completely lost the expression of genes associated with protoplasmic astrocytes, to 

astrocytes that had substantially upregulated GFAP and had lost expression of many normal 

protoplasmic genes as well as the MT genes.  The variation in astrocytes is not surprising, given that 

HD is a degenerative disease that progresses over years and one would not expect all astrocytes to 

respond synchronously during the course of the disease.   

Studies like this one will begin to fill the knowledge gap of single cell gene expression in HD 

and give us a more detailed understanding of the variation in changes in gene expression during 

astrocyte “reactions.”  Furthermore, network building from these gene sets will help define interacting 

genes and important regulatory genes behind reactive astrocyte states.    

 

Methods 

Dissection of the cingulate cortex from frozen tissue 

Postmortem anterior cingulate cortex specimens frozen during autopsy from control and grade III/IV 

HD were obtained from the New York Brain Bank. Four cases (two HD and 2 control) were selected 

for snRNAseq and 12 cases (6 and 6) for bulk RNAseq, all with RNA integrity numbers of > 7.  

Cortical wedges measuring ~5 x 4 x 3 mm were dissected on a dry ice cooled stage and processed 

immediately as described below.  A table of the cases and controls used is provided in Table 1. 

 

Single nucleus RNAseq 

 Nuclei were isolated as described in [21]. Briefly, cortical tissue was homogenized in a Dounce 

homogenizer with 10-15 strokes of the loose pestle and 10-15 strokes of the tight pestle on ice in a 

Triton X-100 based, sucrose containing buffer. The suspension from each sample was filtered 

through a BD Falcon tubes with a cell strainer caps (Becton Dickinson, cat. no. 352235), washed, re-

filtered, washed, followed by a cleanup step using iodixanol gradient centrifugation. The nuclear pellet 
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was then re-suspended in 1% BSA in nuclease-free PBS (containing RNAse inhibitors) and titrated to 

1000 nuclei/�l. The nuclear suspensions were processed by the Chromium Controller (10x 

Genomics) using single Cell 3’ Reagent Kit v2 (Chromium Single Cell 3’ Library & Gel Bead Kit v2, 

catalog number: 120237; Chromium Single Cell A Chip Kit, 48 runs, catalog number: 120236; 10x 

Genomics).  

 

Sequencing and raw data analysis 

Sequencing of the resultant libraries was done on Illumina NOVAseq 6000 platformV4 150bp paired 

end reads. Alignment was done using the CellRanger pipeline (10X Genomics) to GRCh38.p12 

(refdata-cellranger-GRCh38-1.2.0 file provided by 10x genomics). Count matrices were generated 

from BAM files using default parameters of the DropEst pipeline [42]. Filtering and QC was done 

using the scater package [32]. Nuclei with percent exonic reads from all reads in the range of 25-75% 

were included. Nuclei with percent mitochondrial reads aligning to mitochondria genes of more than 

14% were excluded. Genes were filtered by keeping features with >10 counts per row in at least in 31 

cells.  

 

Normalization and data-cleanup 

The count matrix was normalized by first running the quickcluster function, then estimating sizefactors 

by calling scran::computeSumFactors() function with default options and clusters set to clusters 

identified by calling quickcluster function. Scater::normalize function was then used to generated 

normalized counts. Of note, batch effects were taken into account when normalizing the data (Scater 

package in R).  Doublet identification was done using scran::doubletCells function  with default 

options, and cells with doublet score of >=1.5 were excluded. A total of 5199 cells passed QC at this 

point (C5382: 893 nuclei, H5575: 646 nuclei (Batch1), and C 5404: 1096 nuclei, H5493: 2151 nuclei 

(Batch 2)). We filtered low-quality nuclei using the percentage of the cell-lineage specific genes that 
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are expressed (Identity score – see below). If the cell’s identity score was less than 20%, a nucleus 

was considered low-quality and was excluded. A total of 4786 nuclei remained after this step. 

 

Clustering and classification of nuclei 

Clustering, cell-lineage assignment, and sub-clustering was done as follows. First, an unsupervised 

pre-clustering step was performed to split the nuclei into small pre-clusters. Second, the pre-clusters 

were assigned a class using gene set enrichment analysis and GO term enrichment analysis of the 

pre-cluster markers. Third, mixed pre-clusters (with mixed enrichment scores for lineage genes) were 

identified, and the nuclei within these clusters were assigned to new pre-clusters based on their 

highest identity score (see below). Fourth, the pre-clusters were agglomerated into master classes 

(Astrocytes, Neurons, Microglia, Endothelial cells, Oligodendrocytes, and Oligodendrocyte Precursor 

Cells (OPCs). Finally, master classes were sub-clustered using the SC3 clustering algorithm. These 

steps are described in Supplementary Figure 7 and in detail below. 

 

Pre-clustering 

First, dimensionality reduction methods including tSNE and PCA (prcomp) were conducted using 

functions provided in scater package. Briefly, dimensionality reduction by tSNE was done using 

scater::runtSNE() or runPCA() functions. For runPCA() function, a random seed was set (12345) and 

theta was set to default (0.5). Multiple perplexity levels were tested –a level of 527 was empirically 

chosen. We then used an unbiased clustering approach using shared nearest neighbor utilizing the 

scran::buildSNNGraph() function, with dimensionality reduction set to "TSNE". Multiple K values were 

tested (6-16) and the number of pre-clusters generated was examined. K=6 yielded 35 discrete pre-

clusters, with the least number of mixed pre-clusters (based on results from the cell classifier- below). 

K=6 was thus chosen for further clustering. We appreciate that using a highly nonlinear reduction 

such as tSNE as input for building a SNN graph is not preferable to using PCA. However, our 
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experience is that using tSNE reduced dimensions yielded fewer pre-clusters with mixed signatures 

of well-studied, known cell classes. Moreover, we used an independent method to ascertain the 

quality of the pre-clusters (see next section). 

We developed a simple algorithm to assign cell classes based on the highest proportion of 

cell-class specific genes (referred to thereafter as Cell classifier tool). The tool also classifies nuclei 

into master classes (Neurons, Astrocytes, Oligodendrocytes, OPCs, Microglia, and Endothelial Cells). 

More specifically, each nucleus is given an identity score that is equal to the percentage of genes that 

are expressed from a cell-class specific gene list. The gene lists used to classify nuclei are based on 

the literature [36, 66], modified, and are provided (Supplementary Table 1). Each nucleus is given 

identity scores for all 6 cell types: Neuron, Astrocyte, Oligodendrocyte, OPC, Microglia, and 

Endothelial. The cell is assigned the class (identity) for which it scores the highest identity score. 

Additionally, an ambiguity status is assigned based on whether the curve of identity scores is skewed 

(Unambiguous) towards the highest score versus flattened (Ambiguous). More specifically, if the sum 

of second and third highest identity scores is higher than 2X the highest identity score, the identity 

curve is flattened, and the cell is considered ambiguous. This helps identify problematic nuclei in 

mixed clusters - as explained in the section below. 

 

Pre-cluster identity assignment 

To assign pre-cluster identities, we used multiple approaches to ascertain pre-cluster and nuclei 

identities. First, we used the mean of normalized counts per gene per cluster to perform gene set 

enrichment analysis using the gsva R package ('gsva' method with kcdf="Gausian" and 

mx.diff=FALSE). We used cell-type specific genesets based on a literature search (provided in 

Supplementary Table 1 – the same as those used for the cell classifier tool). Second, we manually 

examined the top marker genes that differentiate pre-clusters and determined whether any pre-

clusters showed lineage-discordant marker genes. For example, if one pre-cluster was characterized 
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by oligodendrocytic (MBP, TMEM120, MOBP) as well as neuronal (CCK, MAP1B, BEX3, NRGN) or 

microglial (HLA-B, IBA1, C1QB) genes, a cluster was considered mixed. Finally, we also performed 

GO term enrichment analysis on the top marker genes and manually examined the terms that 

distinguished each cluster. Pre-cluster markers were discovered using the scran::findmarkers() 

function with default options.  

The majority of pre-clusters were homogeneous, and showed high enrichment scores in one 

lineage. However, some pre-clusters, like pre-clusters 2, 7, 27, and 17, were mixed, showing high 

enrichment scores for microglial and oligodendrocytic genes (2 and 17), or astrocytic and neuronal 

genes (7 and 27). Thus, we used supervised classification, as above, and re-assignment of the nuclei 

in the ambiguous clusters based on the maximum score assigned by the cell classifier scores 

(cluster_max_score). This resulted in the following pre-clusters: Microglia_r2_17, 

Oligodendrocyte_r2_17, Astrocyte_r2_17, Neuron_r17_2, Endothelial_r2, Astrocyte_r7_1, 

Astrocyte_r27_2, Neuron_r7_1, and Neuron_r27_2. In addition, cluster 31 showed mixed neuronal 

and microglial enrichment scores, but based on the cell classifier scores the majority of cells 51/59 

were designated as neurons, and only one cell was called microglial. (Astrocyte- 6, endothelial cells- 

0, Microglial-1, Neuron-51, Oligodendrocyte -1). Thus, this cluster was renamed as 31_Neuron. Note, 

for endothelial cells, only supervised assignment was able to detect a discrete cluster. 

Afterwards, clusters of the same lineage were conglomerated into master classes: Astrocytes 

(1064 nuclei), Endothelial cells (19), Microglia (147), Neuron (2085 nuclei), Oligodendrocytes (1230 

nuclei), and OPC’s (241 nuclei).  

For neuronal clusters, a minority of nuclei expressed astrocytic genes despite the neuronal 

identity being the highest as assigned based on the cell-classifier results. These cells had ambiguous 

scores per the cell classifier. Thus, all neuronal nuclei that were classified as ambiguous were 

excluded (219 nuclei), leaving 1866 nuclei for downstream analysis (to do SC3). GFAP and AQP4 

genes were excluded from the analysis of neuronal nuclei (the counts were re-normalized without 

reads from GFAP/AQP4 genes). 
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Consensus clustering using SC3 for sub-clustering 

To determine objectively the optimal way to cluster the astrocytic, oligodendrocytic, and neuronal 

nuclei, we used consensus clustering as described in the SC3 package [19]. Values for K (number of 

clusters in K-mean clustering) were empirically tested and silhouette widths average values for the 

resultant clusters were examined. For astrocytes K=6 was chosen as silhouette values were all above 

0.5 (except cluster 2, an HD astrocytic cluster with both GFAP expression and MT gene expression. 

We decided to keep this cluster as it made biological sense. Cluster markers (generated through the 

SC3 pipeline) were then generated using pairwise t-test. To find marker genes (SC3 package), a 

binary classifier was constructed as informed by the mean cluster expression values for each gene. 

Prediction accuracy was tested using the area under the receiver operating characteristic (AUROC) 

curve. Wilcoxon signed rank test p-values were assigned per gene. Here we used (AUROC) > 0.65 

and with the p-value < 0.05. Cluster markers were also generated using pair-wise t-test (as per scran 

library in R). Note, for the astrocytic sub-cluster gene list used to classify astrocytic nuclei, the 

following options were using for the scran::findmarkers() function: log fold change 0.5 and markers 

were detected in “any” direction. A selected list of astrocytic sub-cluster top gene markers and cell-

type cluster markers are provided in Table 2 and Supplementary Table 1, respectively. These lists 

were generated as follows: For each cluster, the log-fold change values for each gene were summed 

across the other clusters.  The genes were then ranked in descending order by these sums.  Genes 

with one or more negative log-fold changes or FDR-corrected p values>0.05 were excluded from the 

marker list, even if the sum of the log-fold changes was high. This imparts specificity to the markers 

selected for each cluster.  
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Supervised classification of astrocytes 

To classify astrocytic nuclei into astrocytic states, we used monocle 2.0 [57]. We used the following 

rules to assign astrocytes into four states based on log-transformed expression values: Quiescent- 

SLC1A2>= 2, MT2A <4, and GFAP < 3; State-1Q: SLC1A2>= 2, MT2A >=4, and GFAP < 3; State-

2R: SLC1A2< 2, MT2A >=4, and GFAP >=3; and State-3R: SLC1A2< 2, MT2A <4, and GFAP >=3. 

Events that did not meet any of the conditions, or met more than one condition were classified as 

unknown or ambiguous, respectively.  

 

Differential gene correlation analysis and gene Multiscale Embedded Gene Co-

Expression Network Analysis  

Differential gene correlation analysis and gene network analysis were done in DGCA [35] and 

MEGENA [52] R packages, respectively. In brief, the count matrix was filtered to keep the top 5% 

most highly expressed astrocytic genes by average using the filtergenes() function with the following 

options: filterTypes="mean" and filterCentralPercentile = 0.95. The resultant matrix had a total of 856 

genes. The DGCA pipeline was performed using the ddcorAll() function with the following options: 

adjust = "perm", nPerm = 100, nPairs = 1000. Visualization was done in ggplot2 [64]. Identification of 

astrocytic gene modules was done in MEGENA R package with default options (min size =10). GO 

term enrichment analysis of genes in the modules was done using the moduleGO() function in DGCA 

R package with a p value set at 0.05. Gene set variation analysis of module genes was done using 

the GSVA() R package as described below. 

 

Gene set variation analysis (GSVA) 

The average normalized count per gene per cluster was calculated. The resultant cluster-wise count 

matrix was used as input to the GSVA pipeline [12]. Gene sets used for various tests are provided in 

the supplementary material (Supplementary Table 1). The options used for performing the GSVA 
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pipeline are as follows: method= 'gsva', kcdf="Gaussian", mx.diff=FALSE. Heat maps were generated 

using the heatmap.2 in R function from the package gplots [63] and scores z-scaled were indicated.  

 

Bulk RNAseq 

RNA was extracted from cingulate cortical specimens using Trizol™ method. RIN values were 

determined, all samples had values>7.0. Sequencing was done on Illumina Hiseq 2000™ platform. 

Raw reads were aligned to the reference (GRCh38.p12) using STAR aligned [8]. Ribosomal RNA 

reads were removed using SortMeRNA [20]. For data analysis was done in R v 3.5 in Linux or 

Windows 10 environment. Genes with fewer than 10 reads per row were excluded. Principal 

component analysis of normalized variance stabilized counts (product of 

DESeq2::varianceStabilizingTransformation) in FactoMineR R package [25] revealed that the first two 

components explained 47.4% of the variance in the data, and that the variance was captured entirely 

in the first 11 components. Condition (HD versus control) was the variable that is best correlated 

with PC1 (eta2=0.62, cos2=0.88). After variance stabilization, library size was not correlated with 

PC1 (correlation coefficient 0.08). For differential gene expression and statistical analysis, EdgeR [33, 

46] with incorporating age and gender into the design matrix. The likelihood ratio test (LRT) method 

was used with an adjusted p value of 0.05 and an absolute log fold change threshold set at 1.4. 

Principal component analysis and visualization were done using DESeq2 package [30]. Sample 

distances were calculated from normalized counts (DESeq2) using the Manhattan metric using the 

dist() function from base package in R (v3.5.2). pheatmap from pheatmap package was used for 

visualizing utilizing the ward method for clustering [45]. Gene Ontology term analysis was done in 

gProfiler web platform (https://biit.cs.ut.ee/gprofiler/gost) by supplying an ordered query and 

determine statistical significance using the Benjamini-Hochberg FDR method (p<0.05). The terms 

shown in the Figures are selected based on ordering the results based on 
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negative_log10_of_adjusted_p_value followed by the ratio of the shared of number of genes enriched 

in a term to that of the total number of genes in the GO term (desc(intersection_size/term_size)).  

 

Quantitative PCR 

Total RNA was extracted from brain specimens using TRIzol reagent (Invitrogen, Carlsbad, CA, 

USA). RNA concentration and purity were determined using NanoDrop (Thermo Scientific™, MA). A 

bioanalyzer was used to determine RNA integrity. RNA was converted to cDNA using High capacity 

RNA-to-cDNATM kit (Thermo Fisher Scientific, Applied BiosystemsTM,MA). Specific qPCR primers 

were designed using Primer3 and from Primer Bank. Each 15 μL qPCR reaction contained 5ng of 

cDNA, 7.5 μL of 2- SsoAdvanced™ Universal SYBR® Green Supermix (Biorad, PA), 400nM of each 

primer and nuclease free water. The qPCR plates were read on a Mastercycler® RealPlex2 

(Eppendorf, NY). The reactions were done in triplicates. Relative gene expression was calculated 

using the delta delta Ct Pfaffl method with UBE2D2 and RPL13 as reference genes (Pfaffl MW. 

2001). Statistical analysis was done using one-tailed Mann Whitney U test. The GFAP primers were 

AGGTCCATGTGGAGCTTGAC (forward) and GCCATTGCCTCATACTGCGT (reverse) and ACTNB 

primers were CTGGAACGGTGAAGGTGACA (forward) and AAGGGACTTCCTGTAACAATGCA 

(reverse) [65].  

 

Human brain tissue processing, histology, in situ hybridizations, and 

immunohistochemistry 

Standard H&E and Cresyl violet histochemical stains were done in the histology core at the 

Department of Pathology and Cell Biology at Columbia University. The cases and controls used are 

provided in Table 1. Standard chromogenic and fluorescent Immunohistochemistry was done as 

described previously in Sosunov A et al. 2014 in paraffin-embedded formalin-fixed tissue sections or 

fresh frozen sections briefly fixed in 4% PFA, for 10 min (4o C) in 4% PFA in PBS. Paraffin sections 
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after deparaffinization were treated with Antigen Unmasking Solution according to the manufacturer’s 

recommendations (Vector Laboratories, Burlingame, CA). GFAP and Huntingtin dual 

immunohistochemical (IHC) stains were done using standard DAB and alkaline phosphatase dual 

staining on a Leica Bond™ auto-stainer. The following antibodies and dilutions were used GFAP 

(rabbit polyclonal, 1:1000, DAKO Z0034) or chicken polyclonal, Abcam Cat# ab4674, 1:300), CD44 

(rat monoclonal, 1:100, Millipore A020), glutamine synthetase (GS) (mouse monoclonal, 1:1000, 

Transduction Laboratories 610518), C3 (rabbit monoclonal, 1:200, Abcam Ab20999), metallothionein 

(MT) (mouse monoclonal, 1:200, Abcam ab12228), HTT (mouse monoclonal, 1:2000 Millipore 

MAB5492 1:2000), ALDH1L1 (mouse monoclonal, Encor Cat# MCA-2E7, 1:100), IBA1 (Wako # 019-19741 

Rabbit polyclonal, 1:300-1:500), LN3 (mouse monoclonal, 1;75, MP Biomedicals LLC, #69303). For 

fluorescent IHC, secondary antibody conjugated to fluorophores: anti-mouse Alexa Fluor 488 and 

594, anti-rabbit Alexa Fluor 488 and 594, and anti-chicken Alexa Fluor 620; all from goat or donkey 

(1:300, ThermoFisher Scientific, Eugene, OR) were applied for 1 hr RT. In situ hybridization was done 

using RNAscope™ multiplex fluorescent v2 (ACDbio cat no 323100) per the manufacturer’s protocol 

in 5-micron paraffin-embedded, formalin-fixed tissue sections. We used custom designed probes for 

GFAP and PLP-1 (cat no.’s 584791-C3 and 564571-C2, for GFAP and PLP-1, respectively). The 

probes were designed to cover all transcripts. We used an available probe for MBP (Cat. no. 

573051). Images were taken on a Zeiss 810 Axio confocal microscope. Brightfield and chromogenic 

images were taken on an Aperio LSM™ slide scanner at 20X (Brightfield). 

 

 

Results 

Major gene expression alterations in the HD cingulate cortex 

To explore gene expression alterations in the cingulate cortex, we analyzed bulk RNA expression 

profiles from six grade III and grade IV HD and six non-neurologic controls (Table-1). Analysis of 
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sample distance showed HD samples clustered together, except for one case of Juvenile onset HD 

(H3859) (Figure 1A). A recent report suggests that in juvenile HD the cerebral cortex is largely 

unchanged compared with controls (Tereshchenko A. et al 2019). We next performed differential 

gene expression analysis from bulk RNAseq specimens, and identified 3165 downregulated genes 

and 1835 upregulated genes at a Benjamini-Hochberg adjusted false discovery rate of 0.05 (Figure 

1B). Reactome pathways and GO terms enriched in the upregulated genes revealed an enrichment in 

HD of multiple immune response genes including complement, toll-like receptor signaling, and 

Interleukin pathways, featuring IL-13 and IL-10 (Figure 1D). In addition, genes involved in responses 

to metal ions, metal sequestration, and metallothionein binding were also enriched in HD. GO term 

analysis of genes reduced in HD revealed that the majority of these genes were associated with 

neuronal identity or function (Supplementary Figure 5D). This is further discussed in the 

Supplementary Results. A full list of the top differentially upregulated and downregulated genes in HD 

is provided in Supplementary Table 5. 

Next, we examined astrocytic genes that were differentially expressed in HD. We chose to 

look at the expression of astrocyte genes from Zamanian et al. and Liddelow et al. [26, 66], described 

as A1 (neurotoxic), A2 (neuroprotective), and pan-reactive astrocytic genes (Figure 1C). We found 

that a subset of A1, A2, and pan-astrocytic genes were significantly increased in HD, including GFAP, 

CD44, OSMR, FKBP5, STEAP4, and CXCL10 for pan-reactive genes, C3, SRGN, and GBP2 for A1 

genes, and EMP1, CD14, and CD109 for A2 genes. In contrast, the gene AMIGO2, an A1-specific 

gene, was reduced in HD. We next performed geneset enrichment analysis of select astrocytic 

genesets (astrocyte differentiation and astrocyte markers, [27] and found them enriched in HD 

(Figure 1E-F). Of note, there was significant heterogeneity in differential gene expression of 

astrocytic genes among HD cases. For example, RNA expression profiles from the aforementioned 

juvenile HD case (H3859) as well as another grade IV HD case (H4929) showed little upregulation of 

astrocytic genes (Figure 1C). We investigated this further using immunohistochemistry for astrocytic 

markers GFAP, GS, and ALDH1-L1 (Supplementary Figure 1G). The results showed no qualitative 
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changes in pattern of staining or densities of astrocytes in the cingulate cortex in case H3859 

compared to non-neurologic controls (Supplementary Figure 1G). Taken together, the data show 

major gene expression changes in the HD cingulate cortex, involving upregulation of immune genes 

as well as astrocytic genes.  

 

Single nucleus RNAseq from control and HD cingulate cortices identifies major 

cell types 

The results of the bulk RNAseq showed heterogeneity within the HD cases, with some cases not 

showing significant differences in expression of astrocytic genes compared to controls (T4929 and 

T3859). Moreover, a subset of A1 “neurotoxic”, A2 “neuroprotective”, and pan-reactive genes were 

increased HD, and it was not clear whether this represents a coexistent increase in A1 and A2 

astrocytes, versus increased expression of A1 and A2 genes in the same cells. To address the issue 

of astrocytic heterogeneity, we selected 2 HD (grade III) and 2 control cases, extracted nuclei from 

the cingulate gyrus, and then performed snRNAseq using the 10X Genomics Chromium™ droplet-

based single cell RNAseq platform (Figure 2A). 4786 nuclei passed quality control measures, of 

which 1989 were control and 2797 were HD nuclei, as shown in the t-distributed stochastic neighbor 

embedding (tSNE) plot in Figure 2B. We used both unsupervised clustering and supervised 

classification to identify cell types, including neurons, astrocytes, oligodendrocytes, OPCs, microglia, 

and endothelial cells (Figure 2C). Scaled normalized gene expression in individual nuclei per cell-

type displayed in a heatmap show distinct gene expression profiles among nuclei in different cell 

types (Figure 2D). Gene-set variation analysis of the average normalized gene expression per cell 

type against cell-type specific gene-sets derived from thorough assessment of the literature and 

genes from Gill B. et al. [10] (Supplementary Table 1A) show high enrichment of cell-type specific 

gene-sets in the classified cell types (Supplementary Figure 2A-B). The proportions of each cell 

type per condition are shown in Supplementary Figure 2C. While the proportions of astrocytes (24% 
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controls and 21% HD) and microglia (3% each) were comparable, the proportions of neurons (53% 

controls and 37% HD) and oligodendrocytes (15% controls and 33% HD) were divergent. We cannot 

ascertain whether this is due to technical versus biological effects. The numbers and proportions of 

nuclei per cell type per case are shown in Supplementary Figure 2D-E, respectively. 

 

Astrocytes in the HD cingulate cortex 

To investigate astrocytic changes in HD in the cingulate cortex, we focused on astrocytic nuclei 

(1064) and projected these nuclei into the tSNE space (Figure 3A). Control and HD astrocytic nuclei 

were separated in the tSNE space. We next performed sub-clustering using consensus k-means 

clustering in the SC3 package in R and identified six clusters, three control and three HD astrocytic, 

with minimal overlap between the conditions (Figure 3B and Supplementary video 1). We next 

identified cluster-specific markers using the SC3 package pairwise gene Wilcoxon signed test with 

p.value of 0.05, Holm’s method for p.value adjustment, and area under receiver operator curve 

(AUROC) 0.65 (Figure 3C). We then examined differentially expressed genes in HD astrocytes 

versus control astrocytes. 1645 genes were downregulated in HD while 607 genes were increased 

(exact p value and Adjusted Benjamini-Hochberg adjusted p.value < 0.05). Analysis of enriched gene 

ontology terms and Reactome pathways showed the top gene ontology molecular function terms 

included terms related to heat shock protein binding, unfolded protein binding, MHC binding, and 

metal ion binding, while enriched Reactome pathways included response to metal ions, 

metallothionein binds metals, and Heat-shock factor 1 (HSF-1) dependent transactivation (Figure 

3D).In contrast molecular function gene ontology terms enriched in downregulated astrocytic genes 

included terms related to symporter activity, amino acid binding, and neurotransmitter:Sodium 

symporter, while enriched Reactome pathways included Notch signaling and cholesterol biosynthesis 

(Figure 3E). A list of differentially expressed genes in HD versus control astrocytes as well as the full 

results of GO term enrichment analysis are provided in Supplementary Table 2A-B. A selected list 
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of astrocytic sub-cluster marker genes is provided in Table 2. The full results of differential gene 

expression between each sub-cluster against all other sub-clusters is provided in the Supplementary 

data. 

Since Liddelow et al. [26] showed that astrocytes in the HD caudate nucleus expressed 

markers of a putative neurotoxic state (A1 state), we compared the cingulate cortex to the caudate 

using an antibody to C3 – a marker of the A1 astrocytic state. We confirmed that numerous cells 

morphologically consistent with astrocytes in the caudate nucleus of HD grades (III and IV) were C3 

positive compared to controls. Double immunostaining for C3 and GFAP (Supplementary Figure 

3D) as well as C3 and LN3 (microglial marker), showed immunopositivity for C3 in GFAP-positive 

astrocytes, and minimal immunopositivity in microglia (Supplementary Figure 3C, D). In contrast, 

immunostaining in the cingulate cortex showed C3 labeling of neurons in controls and HD cases, but 

no astrocyte labeling, with no clear differences (Supplementary Figure 3A-B). Together, these 

findings confirm previous reports of the A1-astrocytic marker C3 immunopositivity in striatal 

astrocytes in HD, but, in contrast, show minimal astrocytic labeling with C3 in the HD cingulate cortex.  

  

Multiple genes are differentially correlated in HD and control cortical astrocytes  

We examined the gene-expression heatmap for the 6 astrocyte clusters (Figure 3C).  Clusters 1, 2, 

and 5 were from HD cortex, while 3, 4, and 6 were from control cortex. It is apparent that the control 

clusters 3 and 4 express high levels of genes associated with protoplasmic astrocytes, like FGFR3, 

GLUL, and SLC1A2, although there are differences from cluster to cluster and from cell to cell, and 

control cluster 6 shows high levels of GFAP.  The HD clusters 1 and 2 express high levels of MT 

genes (MT1F, MT1E, and MT1G.), as well as GFAP, although MT genes were generally more highly 

expressed in cluster 1 than in cluster 2 or cluster 5 and GFAP was more highly expressed in cluster 2 

and 6 than in cluster 1.  We provide the full differential gene expression between astrocytic clusters in 

a Supplementary Data file (Supplementary_Data_2). 
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Given this heterogeneity of gene expression, we set out to identify how astrocytic genes are 

co-regulated.  We performed differential gene correlation analysis between the top 5% most highly 

expressed astrocytic genes on average using the DGCA R package. The results revealed the MT 

genes were highly correlated with each other, and the correlation was significantly stronger in HD 

astrocytes than in control astrocytes (Figure 5A). Moreover, there were differences in the correlation 

of many gene pairs between control and HD astrocytes. For instance, multiple MT genes were 

negatively correlated with GFAP, including MT1G, MT1F, MT1E, and MT2A in HD astrocytes. 

However, these gene pairs were either not correlated or only minimally positively correlated with 

GFAP in control nuclei (Figure 5A and Supplementary Table 3). As an example, a scatter plot 

showing the expression of the GFAP and MT1G in control and HD astrocytes reveals that the two 

genes are negatively correlated (Figure 5B); with Pearson correlation coefficient of 0.21 in HD and 

0.18 in control astrocytes (adjusted p value of difference <0.0001). In contrast, MT genes MT1F and 

MT2A were positively correlated with genes associated with protoplasmic astrocytes including 

SLC1A3 in HD, but negatively correlated in control astrocytes (Pearson correlation coefficients of 

0.14 (HD) and -0.14 (Control) for MT2A - adjusted p value of difference < 0.01, and 0.1 (HD) and -

0.14 (Control) for MT1F -adjusted p value of difference < 0.05 – Supplementary Table 3).  

 These analyses of HD and control astrocytes reveal a heterogeneity of gene expression 

phenotypes in both the HD and control populations that would not have been detected without 

snRNA-seq.  The heterogeneity also adds a layer of complexity both to the populations of astrocytes 

in control cortex as well as to the populations of astrocytes reacting to a disease.   

 

Gene co-expression network analysis in HD and control astrocytes 

Next, we aimed to identify gene networks in which subsets of astrocyte genes were linked to each 

other.   We used the Multiscale Embedded Gene Co-Expression Network Analysis (MEGENA, [52]). 

A usual application involves building gene networks in the control condition, and examining how the 
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network structure changes in the test condition. However, given that control and HD astrocytes 

clustered separately, and there were significant gene expression changes between the two 

conditions, we decided to use all astrocytes from both conditions for gene network analysis. This 

allowed discovering both condition-specific and shared gene networks. Application of the algorithm 

produced 15 gene clusters (modules). The network hierarchy structure is shown in Figure 5C. The 

modules on the same arm of the hierarchy tree shared many genes. For example, modules 3 and 10, 

modules 22 and 26, as well as modules 9 and 20, shared many genes (Supplementary Table 4A-B, 

which details all the module genes and hub genes).  Examples of modules are shown in Figure 5D.  

We then correlated each module with one or more of the 6 astrocyte clusters.  To indicate the 

functional characteristics of the modules, we used Gene Ontology term enrichment analysis to 

ascribe “Molecular Function” gene ontologies that were enriched in each of the modules. Modules 9 

and 20 were mostly enriched in the HD cluster 1 (compare Figures 5E and F) and have genes 

associated with molecular function gene ontology terms like amyloid beta binding and low-density 

lipoprotein particle receptor binding – genes known to be associated with reactive astrocytes in 

Alzheimer’s disease [31, 50]. Module 7 was also most enriched in cluster 1 and has genes enriched 

for GO terms related to metal binding (see above regarding MT genes). Modules 6 and 16 are 

enriched in the HD cluster 5, and include genes enriched for GO terms related to epithelial-

mesenchymal transition, RNA-mediated gene silencing, and DNA binding (Figure 5E-F and 

Supplementary Table 4C-D). Modules 4, 12, 22, and 26 are enriched in control cluster 3 and have 

genes enriched in GO terms related to regulation of neurotransmitter levels, autophagy, sodium ion 

transport (Module 12), and cell-cell signaling. Module 5 was most enriched in control cluster 6 and 

has genes involved in protein transport, localization, and biosynthesis. Module 17 was enriched in 

control cluster 4 and has genes enriched for GO terms related to nucleotide triphosphatase, 

pyrophosphatase, and hydrolase activity. Shared between HD cluster 2 and control cluster 4 are 

Modules 3 and 10, which have genes enriched for GO terms related to aerobic respiration, nucleotide 

metabolism, and ATP biosynthesis. Of interest, Module 13 was enriched in control astrocytic clusters 
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Astrocyte_3 and Astrocyte_4 (Figure 5F), and showed enrichment for GO terms relating to fatty acid 

biosynthetic process, fatty acid binding, long-chain fatty acid biosynthetic process, and prostaglandin 

biosynthetic process (Supplementary Table 4C-D). Conversely, Module 20 was enriched in HD 

cluster Astrocyte_1 and less so in control cluster Astrocyte_4. This module was enriched for GO 

terms relating to lipid metabolic process, phospholipid binding, and lipid transport (Supplementary 

Table 4C-D). The top gene ontologies per module are provided in Supplementary Table 4D. Thus, 

in most cases, the network modules appear distinct for either control or HD astrocytes, although there 

is some overlap.  Molecular function analysis further highlights the heterogeneity of both control and 

HD astrocyte populations.   

 

Validation of astrocytic gene expression changes in HD 

The snRNASeq analysis revealed significant differences in astrocyte gene expression between HD 

and controls.  We wanted to validate these gene expression differences and therefore conducted 

immunohistochemical and in situ hybridization studies in HD and control cingulate cortices (Figure 4). 

To quantify astrocytic activation in the HD cingulate cortex we measured the cell density of GFAP 

immunopositive cells (Figure 4A). We found that the number of GFAP immunopositive cells was 

increased in grade III/VI HD compared to control (Figure 4C and see Supplementary Methods). We 

also confirmed that the GFAP transcript levels were indeed increased in the HD cingulate cortex 

using rt-qPCR (Figure 4D).  Moreover, we quantified the optical density of the GFAP signal in 

fluorescently immune-stained sections as a surrogate for protein content in each astrocyte 

(Supplementary Methods). We found that GFAP levels as measured by GFAP signal optical density 

was increased in HD astrocytes (34.98 +/- 1.92 arbitrary units; mean +/- standard error of the mean 

(sem)) compared to controls (19.83 +/- 1.95 arbitrary units; mean +/- sem, p < 0.001).  

Because HD is caused by HTT mutations, we examined HTT transcript levels in astrocytes in 

control and HD patients. We found that levels of HTT RNA were reduced in HD astrocytes 
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(Supplementary results).  We next wanted to ascertain whether HTT accumulates in HD astrocytes. 

Therefore, we double stained sections with the GFAP antibody and an antibody for wild-type HTT to 

detect HTT aggregates in astrocytes. We found that HTT does indeed aggregate in HD astrocytes 

(Figure 4B) mainly in layers V and VI. These data suggest that astrocytic reactivity in HD may at least 

be partly cell-autonomous, or possibly that astrocytes phagocytose HTT aggregates from the 

surrounding neuropil. 

Next, we validated the increase in MTs in HD astrocytes, using immunohistochemistry in the 

HD cingulate cortex versus controls (Figure 4E). The results showed more HD astrocytes co-

expressed MT; with 45.57 +/- 25.58% of GFAP positive or ALDH1L1 positive astrocytes co-labeling 

with MT compared to 10.24 +/- 7.64% of control astrocytes (mean +/- standard deviation, p = 0.043, 

one-sided t-test). Additionally, we found that levels of MT were also increased in HD astrocytes 

compared to control astrocytes. More specifically, we measured MT fluorescent signal (optical 

density) and found it was increased in HD astrocytes (24.33 +/- 1.76 arbitrary units; mean +/- sem) 

compared to controls (12.3 +/- 1.14 arbitrary units; mean +/- sem, p < 0.001). These results show that 

both more HD astrocytes expressed MT, and that they expressed higher levels of MT, confirming the 

snRNAseq results. Note that these MT+/GFAP+ astrocytes are likely to represent HD cluster 2, 

which, as noted above, expresses the highest levels of MT genes.  

To identify cluster 1 astrocytes, which express little GFAP but relatively elevated levels of MT, 

we used a pan-astrocytic marker, ALDH1L1, in triple immunohistochemical preparations. We showed 

that astrocytes in HD cluster 1 are indeed identifiable in the HD cingulate cortex, with low to 

undetectable GFAP levels and immunopositivity for MT (Supplementary Figure 8). These are 

contrasted to cluster 2 astrocytes which show dual-immunopositivity for GFAP and MT 

(Supplementary Figure 8 and Figure 4E).  

Interestingly, we noted co-expression of proteolipid protein (PLP-1), a myelin gene, and GFAP 

in HD cluster 5 (Figure 3C). We verified this in the tissue sections using in situ hybridization. The 

results showed that while PLP-1 and MBP were co-expressed in oligodendrocytes in the cortex and 
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the white matter, GFAP and PLP-1 were co-expressed in a subset of astrocytes in the HD cortex (n=5 

cases examined, Figure 4F). In contrast, only one case from 4 controls showed rare PLP-1 co-

expression with GFAP in the cortex. Notably, gene expression analyses did not reveal other 

oligodendrocyte genes, including OPALIN, MOG, MAG, CA2, CD82, OMG MYRF, SOX10, and 

NAFSC, implying that the GFAP+ astrocytes were not upregulating a coordinated transcriptional 

program of oligodendrocyte maturation.   

 

Three astrocytic states of reactivity in HD 

A simplified view of astrocytic gene expression profiles reveals patterns based on the expression of 

protoplasmic astrocytic genes, reactive astrocytic genes, and MTs. We performed a supervised 

classification of astrocytes based on expression of MT2A, GFAP, and SLC1A2.The results show 

three distinct astrocytic states in HD and control astrocytes. Astrocytes with low levels of MT2A, low 

GFAP and high SLC1A2 were classified as Quiescent. Astrocytes with high levels of MT2A, low 

GFAP and high SLC1A2 were classified as state-1Q – for quiescent astrocytes with early reactive 

features. Astrocytes with high levels of MT2A, high GFAP and lowSLC1A2 were classified as state2-

R – for reactive astrocytes with high MTs. Astrocytes with lower levels of MT2A, high GFAP and 

lowSLC1A2 were classified as state3-R – for reactive astrocytes with lower MTs (Figure 6A). As 

expected, unclassified states are also seen. These represent astrocytes that did not meet any of the 

classification criteria (“unknown” type of astrocytes), or astrocytes that met more than one category 

(“ambiguous”). Possibly, these may represent transitional states. We then examined the relative 

preponderance of these astrocytic states in control versus HD (Figure 6B). We found that the 

Quiescent state is abundant in control astrocytes (49.3%), but low in HD (1.6%). In contrast, states1-

Qand 2-R were more abundant in HD (37.4% and 14.0% in HD versus 21% and 1.4% in control). 

State3-R was relatively low in both conditions, but more abundant in HD than control (7.9% versus 

2.5%).  
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The states of astrocyte reactivity correspond to specific astrocytic clusters (Figure 6C). For 

example, in contrast to the Quiescent astrocytic state, which was comprised of almost entirely control 

clusters, astrocytic state-1Q was mixed, with a major contribution from HD cluster 1 and smaller 

contributions from other astrocytic clusters. Moreover, state-2-R was primarily composed of HD 

clusters 1 and 2, while state-3-R was largely comprised of HD clusters 2 and 5. In summary, we find 

three reactive astrocytic states based on the expression of GFAP, SLC1A2, and MTs (Figure 6C). 

These states relate to reduction of expression of protoplasmic genes (e.g. SLC1A2, FGFR3, GLUL), 

and increased MTs in one reactive subset of astrocytes versus a preponderance of GFAP expression 

in another reactive subset.  

It is difficult to relate these states to the A1 versus A2 astrocytes. For starters, none of the 

“states” or clusters in the cingulate cortex showed C3 expression. Moreover, only 25 of 39 astrocytic 

genes described by the Barres group were detected by scnRNAseq, and only 3 were significantly 

increased in HD (GFAP, SRGN, and CD14). Taken together, we cannot ascribe an A1 versus A2 

phenotype to cingulate HD astrocytes.  

 

Gene expression analysis of non-astrocyte cells 

Although we have focused on astrocytes in this report, snRNAseq provided gene expression patterns 

of all other cell types, neurons, microglia, oligodendrocytes, oligodendrocyte precursors, and 

endothelial cells. We found differences in gene expression patterns for both neurons and microglia 

that distinguished HD from control cortex, and present these findings in the Supplement. For 

oligodendrocytes we have evidence that the heterogeneity of cells of the oligodendrocyte lineage is 

increased in HD, with a shift to less mature phenotype (manuscript in preparation). 
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Discussion 

The HD cingulate cortex contains multiple reactive states of astrocytes.  

One of the most notable findings in this study is that there are multiple states of astrocyte reactivity, 

rather than a single reactive state.  This is not surprising, given that HD is a long-term, progressive 

disease in which the neuropathology does not evolve in synchrony.  HD cluster 1 showed high levels 

of MT gene expression, and relatively low GFAP expression.  In contrast, HD cluster 5 showed high 

GFAP expression and relatively low MT gene expression. Intermediate levels of MTs and GFAP were 

the hallmark of HD cluster 2. In all HD astrocytes, the mRNA levels of glutamate transporters SLC1A2 

and SLC1A3 expressed in quiescent astrocytes were reduced, implying that HD astrocytes 

downregulate genes central to some critical astrocytic functions.  It is tempting to speculate that these 

states reflect a temporal sequence of astrocyte reactivity, and that one progresses to another over 

time, so that the highest GFAP astrocytes that have lost many normal genes as well as MTs 

represent an end stage of reactivity.  We do not have definitive evidence that this is so. However, 

when we analyzed striata from these same brains we saw a greater proportion of astrocytes in this 

possible end stage state (unpublished data), given the far high degree of neuronal degeneration in 

striatum than cingulate.  Additional evidence from examining HD cases with different grades of 

severity as well as evidence from experimental models such as astrocyte lineage tracing experiments 

in conditional HD mice models are needed to query this possibility further. Alternatively, difference in 

astrocytic reactive states may reflect spatial differences in astrocyte localization in cortical layers with 

variable susceptibility to neurodegeneration, such as susceptible layers III, V, and VI versus resilient 

layer II [48]. 

 The presence of high expression of MT genes, as well as anti-oxidant genes in HD cluster 1 

may suggest that this astrocyte “state - State 1Q” is protective.  In fact, these astrocytes may be 

protective of neurons and also of themselves, an “astro-protective” state.  Resolving how this state 

relates to the A2 state is an interesting matter, however, it is not possible to evaluate this putative 
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relationship without additional experimentation. Are both states underpinned by the same molecular 

signaling pathways, such as STAT3 activation for example? Or are these states divergent? Such 

questions are intriguing and will be the subject of future work. 

 

The control cingulate cortex also contains a heterogeneity of astrocytes.  

Not only did we find a heterogeneity of astrocyte phenotypes in the HD cortex, we also found 

variation in astrocyte populations in the control cortex, based on the gene expression profiles.    For 

example, astrocyte cluster 6 appears different from both 3 and 4 in that it has higher levels of GFAP, 

CRYAB, FOS, JUNB, ID2 and ID3 and lower levels of GLUL, SLC1A2, and SLC1A3, indicating that 

astrocytes of this group have downregulated protoplasmic astrocyte genes and upregulated “reactive” 

genes.  Clusters 3 and 4 also show differential gene expressions.  The heterogeneity of astrocyte 

gene expression must be validated and explored in depth in the future.  However, it does raise the 

possibility that there is a significant amount of astrocyte heterogeneity in the control cortex.  We do 

not know if this heterogeneity is fixed, or whether gene expression variations are transient, depending 

on such factors as neuronal activity or local blood flow, for example.  Furthermore, the presence of 

astrocytes with “reactive” markers in a “control” cortex may well reflect an individual’s age, past 

medical history or terminal illness, even in patients without histories of neurological diseases.   

 

HD astrocytes upregulate metallothionein genes.  

MT genes are thought to confer neuroprotection. Levels of MTs are increased in multiple injuries 

including ischemia, heavy metal exposure, infection, and neurodegeneration in AD [49].  Mathys 

and colleagues investigated the frontal cortex of human late onset Alzheimer disease using 

snRNAseq and showed expression of MT2A, MT1G, and MT1E in astrocytic cluster Ast1 [31].  

Mice deficient in MT1/2 show impaired repair and wound healing after freeze injury, with 

increased microglia/macrophage infiltration, astrocytosis, and apoptosis [41]. Neuronal survival 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted October 10, 2019. ; https://doi.org/10.1101/799973doi: bioRxiv preprint 

https://doi.org/10.1101/799973
http://creativecommons.org/licenses/by-nc-nd/4.0/


Single-nucleus RNA-seq identifies Huntington Disease astrocyte states 

was compromised in MT1/2 knockout mice after middle cerebral artery occlusion [62]). 

Conversely, mice overexpressing MT1 showed increased resilience to ischemic damage in the 

same model of injury [59]. The evidence suggests that upregulation of MTs maybe a protective 

response to injury and we propose that it may be so in HD astrocytes.  As we have noted 

above, upregulation of MTs may not only be neuroprotective but also astro-protective. A recent 

study of HD is also consistent with upregulation of MT genes. Lin, L et al. [29]. examined 

transcriptional signatures in the motor cortex (BA4) of grade 2-3 HD showed that GO terms 

involved in Response to Cadmium Ion (GO0071276), Zinc ion (GO0071294, GO0010034) were 

increased, while Cholesterol synthesis was reduced (e.g. GO0006695). These data are 

consistent with our results in HD astrocytes and suggest that upregulation of MTs in reactive 

astrocytes is a pan-disease reactive response. It is known that oxidative stress is a 

characteristic of the HD brain [53]. The fact that MTs are involved in combating oxidative stress, 

and that they are upregulated in HD astrocytes, impart a potential neuroprotective role for this 

phenomenon, perhaps an A2-like state.   

 On another note, our data highlights fatty acid synthesis and lipid metabolism as key 

processes that are differentially regulated in HD astrocytes. We find that HD astrocytic clusters 

had downregulated genes that are associated with fatty acid and prostaglandin biosynthesis. 

Indeed, the gene PTGSD (Prostaglandin D2 Synthase) and FASN (Fatty Acid Synthase) were 

reduced in HD astrocytic clusters (Figure 3C and Supplementary Table 2C). Moreover, 

cholesterol biosynthesis was reduced in HD astrocytes (Figure 3E). In contrast, lipid binding 

and metabolism were processes enriched in genes characteristic of HD astrocytic cluster 1 

(Module 20 - Figure 5F and Supplementary Table 4C-D).  

 

Astrocyte Modules 
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Analyzing astrocytic gene expression in terms of gene modules provides a useful way to 

examine correlated genes and hub genes. The latter may be prioritized in functional studies 

such as overexpression and knockdown/knockout studies. We constructed the modules using 

all astrocytes, from control and HD brains.  Had we constructed modules from HD and control 

astrocytes separately, the network structures would have been different. For example, 

module_26, a module harboring many protoplasmic genes, would likely have been devoid of 

CRYAB, a gene upregulated in reactive states. The strength of our approach; combining both 

control and HD astrocytes, is that it allows us to discover both HD and control modules as well 

as shared modules, such as module_3 (shared between clusters Astrocyte_2 and Astrocyte_4). 

Genes in this module relate to oxidative phosphorylation and Wnt signaling (Figure 6C). 

A summary of gene expression differences between astrocytic clusters in different states 

of reactivity summarized as modules is shown in Figure 6C. Control astrocytic clusters 

Astrocyte_3 and Astrocyte_4 are represented in quiescent and state1-Q, and are enriched in 

genes described by modules 22, 28, 10, and 17, which harbor genes involved in glutamate 

transport, GABA receptors, autophagy, glycolysis, cell respiration, and synaptic function. HD 

cluster 1 is represented in states 1-Q and 2-R, while HD cluster 2 is represented in states 2-R 

and 3-R. Both clusters are enriched in genes of module_7 (MTs). Conversely, HD cluster 5is 

represented mainly in state 3-R and is enriched in module16, harboring genes involved in 

mesenchymal differentiation, DNA damage, and negative regulation of transcription. Overall, we 

present complementary views to understand gene expression changes in HD astrocytes in the 

cingulate cortex, using unsupervised clustering, supervised classification, and gene network 

analysis.   

 

Is HD astrocyte pathology cell-autonomous? 
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Whether the astrocytic reactivity in HD is a cell autonomous reaction or a secondary reaction 

to neurodegeneration, or both, is yet to be determined. We provide evidence that HTT indeed 

accumulates in astrocytes in the HD cortex. These HTT aggregates are seen in a minority of HD 

astrocytes, primarily in layers V and VI of the cingulate cortex, where neurodegeneration is most 

pronounced [13]. We also provide evidence that neuronal loss and dysfunction is evident in the HD 

cingulate cortex (See Supplement) 

Thus, astrocytic reactivity in HD may indeed be secondary to neuronal loss. However, the 

astrocytic dysfunction may also contribute to neuronal loss and dysfunction. HD transgenic mouse 

studies that target mHTT to astrocytes exhibit neuronal loss, suggesting that mutant HTT expressed 

in astrocytes alters homeostatic functions and precipitates neuronal dysfunction and loss. Restoration 

of astrocytic function ameliorates the HD phenotype and prolongs survival in vivo [56]. Additional 

evidence from the HD mouse model R6/2 indicates that chimeric mice engrafted with control human 

glia including astrocytes exhibited slower disease progression. Conversely, control mice engrafted 

with HD glia including astrocytes exhibited impaired motor coordination [4]. Thus, it is possible that 

astrocytic dysfunction in HD maybe partly cell autonomous and partly secondary to neuronal 

dysfunction. Future studies to correlate the cortical locale of reactive HD astrocytes with the 

transcriptional phenotype may also help to answer this question.  

Our data on neuronal gene expression profiles on the bulk RNAseq level and the single cell 

level as well as neuronal estimates show major transcriptional and cellular alterations. First, we show 

that large (pyramidal) neurons are depleted in the HD cingulate (as verified by histopathologic 

quantification). Second, we show that neuronal genes are downregulated in bulk RNAseq HD 

samples. For example, pathways involved in glutamate, GABA, neuropeptide Y neurotransmission 

were downregulated in HD. Finally, our snRNAseq show that glutamatergic neurons, in contrast to 

interneurons, cluster separately between control and HD. Moreover, neurons upregulate 

metallothioneins and pathways involved in heat-shock response, voltage-gated ion channels, and 

protein misfolding. Therefore, neuronal loss and dysfunction is evident in the HD cingulate cortex and 
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may underlie astrocytic reactivity, but it could also be at least partially secondary to astrocytic 

dysfunction.   

 

Upregulation of Inflammatory genes in the HD cingulate cortex 

The bulk RNAseq analysis showed upregulation of a number of inflammatory genes (see 

Supplementary data and Supplementary Figure 6).  Our findings highlight the activation of the 

innate immune system including toll-like receptor pathways. Multiple interleukin signaling pathways 

were enriched in HD including IL-4, IL-13, and IL-10. Of note, we found IL-10 to be significantly 

upregulated in HD versus controls. IL-10 has been previously reported to be elevated in the serum 

and CSF of HD patients [5]. 

 

Conclusions 

In summary, we show using snRNAseq from post-mortem human HD cingulate cortex, that 

astrocytic reactivity can be described in three states with different levels of GFAP, metallothionein 

genes, and quiescent protoplasmic genes. Immune pathways were prominently enriched in the HD 

cortex, although we were only able to detect them using bulk RNAseq.  There were significant gene 

expression differences between HD and control neurons, particularly in the excitatory neuron 

populations, along with neuronal loss. We have made our snRNAseq data available using an 

interactive web application found  here (https://vmenon.shinyapps.io/hd_sn_rnaseq/). 

 

Data availability 

Data for bulk RNAseq analysis is provided as a csv file with raw and normalized counts 

(Supplementary data).  Data for snRNAseq can be queried using an interactive web app: 

https://vmenon.shinyapps.io/hd_sn_rnaseq/. All other data is available upon reasonable request.  
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Figure Legends 

Figure_1_Bulk_RNASEQ 

Transcriptomic analysis of Huntington disease cingulate cortex. Total RNA sequencing was 

done on 6 grade III/IV and 6 control cingulate cortices. A) Sample distance (Manhattan method) 

heatmap clustered using the Ward method.  B) Mean-Expression plot showing log2 fold-change (LFC 

-HD versus control) on the y-axis, and mean normalized counts on the x-axis. Significantly 

differentially expressed genes are shown in red and blue for upregulated and downregulated genes, 

respectively. C) Differential gene expression heatmap of select astrocytic genes as described in 
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Liddelow et al. [26], with controls (Con) denoted by the red bar, and HD by the blue. Asterisks next to 

gene names indicate significance (Benjamini-Hochberg adjusted p value < 0.05 and absolute log fold 

change >= 1.5). A1, A2, and pan-reactive astrocytic genes are denoted. Asterisks below case 

numbers indicate which cases were selected for single cell nuclear RNAseq. D) Representative GO 

ontology term analysis showing significantly increased Reactome pathways in HD cases from bulk 

RNAseq (using the gProfiler web-platform, Benjamini-Hochberg adjusted p-values set at < 0.05). E-F) 

Gene set enrichment analysis of select astrocytic genes (Astrocyte markers Lien ES et al. 2007 and 

Astrocyte_differentiation -GO0048708). Normalized enrichment scores (NES) are shown. 

 

Figure 2:  

Single cell nucleus RNAseq of the cingulate cortex in Control and HD. A) Experimental scheme; 

first, cingulate cortex was dissected, nuclei were extracted and visualized using DAPI nuclear stain 

under a fluorescence microscope to ascertain membrane integrity. The nuclei were subjected to 10X 

chromium single cell RNAseq workflow involving encapsulation of nuclei in oil droplets along with 

enzymes and barcoded beads, followed by cDNA synthesis and library preparation, and finally, 

sequencing. B) Three-dimensional t-distributed stochastic neighbor embedding (tSNE) plot showing 

individual nuclei (Points, n = 4786) colored as red (Control) or blue (HD), reduced into three 

dimensions. C) Three dimensional tSNE plot showing the classification of the nuclei into neurons 

(Cyan), Oligodendrocytes (Green), Astrocytes (Orange), Oligodendrocyte precursor cells (OPC- 

Black), Microglia (Magenta), and endothelial cells (Purple). D) Gene expression heat map of z-scaled 

normalized counts showing nuclei (Columns) and specific cell-type markers (Rows), a subset of 

which are shown on the right. Condition (Con versus HD) and Cell-types are color-coded on the top 

as in panels B-C. 
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Figure 3:  

Transcriptomic analysis of astrocytic nuclei in control and HD. A) Three-dimensional t-

distributed stochastic neighbor embedding (tSNE) plot showing astrocytic nuclei (n = 1064 -469 

control and 595 HD) colored as red (Control) or blue (HD), reduced into three dimensions. B) Three 

dimensional tSNE plot showing the classification of the astrocytic nuclei into 6 sub-clusters using 

consensus k-means clustering (sc3 package). C) Gene expression heat map of cluster markers 

showing nuclei (Columns) and specific cell-type markers (Rows). Condition (Con versus HD) and 

Cell-types are color-coded on the top and bottom, respectively. Cluster-specific gene markers were 

identified using Wilcoxon signed rank test comparing gene ranks in the cluster with the highest mean 

expression against all others. p-values were adjusted using the “holm” method. The genes with the 

area under the ROC curve (AUROC) >0.65 and p-value<0.01 are shown as marker genes. D-E) GO 

term analysis of differentially expressed genes in HD versus control astrocytes identified using EdgeR 

likelihood ratio test with an adjusted p.value of 0.05. Significantly enriched GO terms at Benjamini-

Hochberg false discovery rate of 0.05 were identified. Selected Reactome pathways and Molecular 

function GO terms which are increased in HD astrocytes (D) and decreased in HD astrocytes (E) are 

shown. 

 

Figure 4: 

Validation of astrocytic activation in HD. A) Representative micrograph of GFAP-HTT dual 

immunohistochemical stain showing increased GFAP immunoreactivity in the HD cingulate cortex 

compared to control (scale bar = 50um, GFAP in red & HTT in brown). B) Representative images 

showing accumulation in HTT in the neuropil and in astrocytic in two HD cases (yellow arrows - scale 

bar = 20um). C) Quantification of A, showing increased GFAP immunoreactive cell density in the HD 

cingulate cortex, n=8 for control and 6 for HD (grade III and IV), P value = 0.012 (one-sided t-Mann-

Whitney U test). D)Real-time quantitative PCR showing relative expression of GFAP transcript in 
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grade III/IV HD (n=7 for HD and 6 for control) Delta CT value normalized to B-Actin transcript levels 

are shown. P value = 0.0154 (one-sided t-test). E) Representative fluorescent immunohistochemical 

stains showing GFAP (red), metallothionein (MT-green), and DAPI stained nuclei (blue) from a 

representative control and grade IV HD case. There is increased GFAP immune-positive cells in 

layers V/VI of the HD cingulate cortex, and large proportion of these astrocytes are MT positive, 

compared to control (scale bar = 60um).60um). F) In situ hybridization (RNAscope™) showing probes 

for MBP (red), GFAP (white), PLP1 (green), and DAPI-stained nuclei (blue). Note the co-localization 

of GFAP and PLP-1 (white arrows). An MBP positive PLP-1 positive Oligodendrocyte is indicated by 

the arrow head. (scale bar = 10um).  

Figure 5: 

A deeper look into astrocytic gene regulation in HD. A) Differential gene correlation analysis of 

the top 5% of genes in astrocytic nuclei by mean normalized expression (856 genes). Pearson 

correlation coefficients are shown and empirical p-values were calculated by a permutation test (100 

permutations) in DGCA package in R. Top gene-pairs that are significantly differentially correlated 

between HD and control astrocytes are labeled. B) Scatterplot of normalized expression of GFAP and 

MT1G (A representative metallothionein gene) in Control (left panel) and HD (Right panel) astrocytic 

nuclei. Pearson correlation coefficients are shown and are significantly different between control and 

HD. C) Hierarchy structure representing the astrocytic gene modules/networks (labeled here as c1_3, 

c1_5, … etc) as the output using Multiscale Embedded Gene Co-Expression Network Analysis 

(MEGENA). Clusters on the same line are more related to each other than clusters on different lines.  

D) Representative gene modules/networks, illustrating modules 9, 16, and 26.  Hub genes are shown 

as triangles, genes as nodes, different colors represent different networks in the same graph (Left 

panel – Mod9). E) Gene Ontology term enrichment analysis showing representative “Molecular 

Function” gene ontologies enriched in astrocytic gene modules. F) Gene set variation analysis 

showing enrichment scores of modules in different astrocytic clusters, condition is shown as colored 

bars on the top.  
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Figure 6:  

Three reactive astrocytic states in HD. A) Supervised classification of astrocytic nuclei based on 

normalized expression levels of GFAP, MT2A, and SLC1A2 in control (red) and HD (blue) presented 

as violin plots. Four states are noted: Quiescent, state1Q, state-2R, and state-3R. Ambiguous and 

unknown state represent cells that met more than one classification condition or none, respectively. 

B) Pie charts of the relative proportions of the astrocytic states in control and HD. C) Cartoon 

summary of the astrocytic states color coded as in (B) with respect to the expression of reactive 

genes such as CRYAB, GFAP, and MTs, as well as protoplasmic astrocyte genes such as SLC1A2, 

FGFR3, and GLUL. The lower panel shows the proportion of astrocytic clusters colored as described 

in the legend on the right (same as Figure 3A-C) in each of the quiescent and reactive states (as 

described in panels A-B). Top gene modules that characterize each astrocytic cluster are described.  
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Supplementary Data 
Supplementary Methods 

Quantification of cortical thickness and neuronal densities and 
statistical analysis 
 

To quantify cortical thickness, the boundary between the grey and white matter was first identified by 

a neuropathologist (OAD, JEG) on Hematoxylin and Eosin histochemical stain, Cresyl violet 

histochemical stain, and CD44 immunohistochemical stain. Whole slides were scanned and the 

images were analyzed in the Aperio™ eSlideManager. A set of lines orthogonal to the pial surface 

were drawn from the surface to the white matter, and the lengths of these lines were measured.  The 

cingulate cortex was divided into three adjacent regions; abutting the corpus callosum, the convexity 

of the cingulate gyrus facing the contralateral gyrus, and the sub-frontal surface of the dorsal side of 

the cingulate gyrus. Three to five measurements were taken per region.  Areas with staining artifact 

or tissue folding were excluded. The average cortical thickness for each region was calculated per 

case per stain. The number of cases examined was as follows: 4 control and 5 HD for CD44 

immunostain, 6-9 HD and 6-8 control for H&E, and 5-8 HD and 6-7 control Cresyl violet. Unpaired t-

test with unequal variance was performed to test significance.  

For quantification of nuclear densities in whole slide images of Cresyl violet stained sections 

scanned at 20X, we used a semi-automated method using Qupath v0.2 (Bankhead P et al. 2017). We 

employed a multi-step approach to first count cells in a ROI, agglomerate (bin) cells counts based on 

cell area, divide by total count, and finally express these counts as proportions of cells in given area 

range to the total count. In brief, images were loaded under the “bright field (other)” setting. The 

staining vector was estimated for each image from a representative region of interest (ROI), excluding 

unrecognized colors. The Cresyl violet signal was largely identified in the range of Hematoxylin. Next, 

a script to automate watershed cell detection was used with the following parameters based on 
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“Optical density sum”: Background radius 8�m, Sigma 1.5�m, maximum area 600�m2, Threshold 

0.2, smooth cell boundaries = True, and separate by shape = False. The results were collected for 3-

6 ROI per image. Areas with tissue folds, staining artifact, or blood vessels were excluded. One 

image from each patient was used. The results were loaded in R v3.6. An empirical threshold of the 

mean nuclear hematoxylin intensity and sum nuclear hematoxylin intensity was determined to 

exclude cells/events that represented tangential cuts through cells or background noise. The mean 

nuclear sum and mean hematoxylin intensity were first normalized. The threshold was determined 

based on inspecting values from 4 images (and validated in the remaining images). All events were 

first filtered by the threshold determined for the sum of the hematoxylin intensity, followed by the 

threshold determined for the mean nuclear hematoxylin intensity. Next, the events of nuclear area 

(Hematoxylin) were tallied and grouped based on 5 quantiles based on the range of nuclear areas. 

The counts per case were normalized by the total event count per case to get the relative proportions 

of nuclei in each of the 5 quantiles of area ranges and analyzed by a two-way ANOVA with an 

unbalanced design (n= 9 for control and 8 for HD), and ANOVA type set at “III”. The test was 

performed in R, with the counts per area range as the dependent variable, and the area ranges and 

Conditions as explanatory variables, with an interaction term between area ranges and Condition. 

Tuckey test for posthoc testing was done and statistical results were only reported for results of the 

interaction comparisons.  

For quantification of GFAP + cell densities in GFAP/HTT double stained or GFAP single 

immunostained slides, we counted cells with an area exceeding an empirically-determined threshold, 

which corresponds to astrocytes with increased GFAP-immunopositive cell area- associated with 

reactive astrocytosis. The following script was used in QuPath v0.2: 

runPlugin('qupath.imagej.detect.cells.WatershedCellDetection', '{"detectionImageBrightfield": "Optical 

density sum",  "requestedPixelSizeMicrons": 0.5,  "backgroundRadiusMicrons": 30.0,  

"medianRadiusMicrons": 2.5,  "sigmaMicrons": 2.0,  "minAreaMicrons": 40.0,  "maxAreaMicrons": 

600.0,  "threshold": 0.8,  "maxBackground": 3.0,  "watershedPostProcess": false,  "excludeDAB": 
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false,  "cellExpansionMicrons": 7.672413793103447,  "includeNuclei": true,  "smoothBoundaries": 

true,  "makeMeasurements": true}'). For DAB stained slides, the following empirically determined 

setting were used: runPlugin('qupath.imagej.detect.cells.WatershedCellDetection', 

'{"detectionImageBrightfield": "Optical density sum",  "requestedPixelSizeMicrons": 0.5,  

"backgroundRadiusMicrons": 10.0,  "medianRadiusMicrons": 1.5,  "sigmaMicrons": 1.5,  

"minAreaMicrons": 40.0,  "maxAreaMicrons": 600.0,  "threshold": 0.4,  "maxBackground": 2.0,  

"watershedPostProcess": false,  "excludeDAB": false,  "cellExpansionMicrons": 7.67,  "includeNuclei": 

true,  "smoothBoundaries": true,  "makeMeasurements": true}'). The counts and areas of regions of 

interests were entered into a Table into R. Cell densities were calculated. Mann-Whitney U test (one-

sided) was used to calculate statistical significance.  

 

Quantification of GFAP and MT optical density 

Quantification of the levels of GFAP and MT immunoreactivity was performed on the images obtained 

with confocal microscope from triple (GFAP/MT/ALDH1L1) stained sections. Images (merged from 

the z-stacks of adjacent 6 optical planes [1024 × 1024 pixel resolution, observed area 606 × 606 μm 

of a 40x field] captured at a z plane distance of 0.4 μm from each other) were transferred into Image J 

(public domain), grayscaled for each channel, and optical density (OD) was determined in a circle 

area (diameter 30 μm) centered at the cell nuclei. Only astrocytes with clearly outlined nuclei profiles 

(DAPI staining) were taken into consideration. At least 5 images from randomly selected gray matter 

areas from 3 cases of HD and 3 cases of control cingulate cortex were used for quantification. A total 

of 79 cells (HD) and 49 (control) cells were analyzed. An unpaired two-tailed t-test was used for 

statistical comparison.  
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Supplementary Results 

Neuronal loss and transcriptional alterations in the HD cingulate 
cortex 
Here we present neuronal data, since neuronal pathology in HD has been the major object of most 

studies.  First, to determine the extent of neurodegeneration in our samples of cingulate cortex, we 

examined the cortical thickness in different histochemical stains of control and HD tissue. The results 

showed no significant difference in cortical thickness of the anterior cingulate gyrus between control 

and HD cases as quantified with a CD44 immunohistochemical stain (Supplementary Figure 1A-B), 

an H&E histochemical stain (Supplementary Figure 1A, 1C-D), and a Cresyl violet histochemical 

stain (Supplementary Figure 1C, 1E-F).  Next, we quantified the relative proportions of nuclei of 

different sizes in Cresyl Violet stained sections of the cingulate cortex (Supplementary Figure 4A). 

We categorized the nuclear areas into 5 quantiles. Larger nuclear areas corresponded to pyramidal 

neurons, whereas smaller areas were either glial or small neuronal nuclei (Supplementary Figure 

4B). We next conducted a two-way ANOVA analysis of the proportion of nuclei in each area bin 

between control and HD. Although there were no overall significant effects of the Condition (F ratio: 

1.2036 and p value 0.317) or Area range (F ratio 0 and p value 1), there is significant crossover 

interaction (F ratio of 17.635 and p value 4.72e-10).  The proportion of nuclei in an area range (bin) is 

the opposite, depending on the condition (Supplementary Figure 4C). More specifically, the 

proportion of nuclei within a 13.5-30.8µm2range were increased in HD (Adjusted p value 1.7 e-4), 

while the proportion of nuclei with areas greater than 104 µm2were decreased in HD compared to 

control (Adjusted p value 7.6 e-6 – Supplementary Figure 4C). The increased proportion of small 

nuclei could reflect a shrinkage of larger cells or a greater proportion of small, glial cells, or both.  We 

have independent evidence that the proportion of cells of the oligodendrocyte lineage is increased, 

and is accompanied by a shift to less mature oligodendrocytes (manuscript in preparation). 

We first analyzed our bulk RNASeq data, examining the gene ontology terms and Reactome 

pathways enriched in genes downregulated in HD. The majority of terms relate to neuronal identity 
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(synapse, neuron part, neuron projection, axon part, dendrite tree, and growth cone, for eg.) or 

neuronal function (GABA receptor complex, regulation of catecholamine secretion, dopamine 

transport, AMPA glutamate receptor activity, and neuropeptide receptor activity). These GO terms are 

presented in Supplementary Figure 4D. Together, these data suggest that neuronal numbers and 

function are reduced in these HD cingulate cortex samples.  

We then analyzed snRNASeq findings.  A total of 1866 neuronal nuclei passed quality control. 

When neuronal nuclei were placed in a tSNE plot, we distinguished 9 different neuronal clusters 

(Supplementary Figure 5A).  HD clusters and control clusters were largely separated, with some 

overlap (Supplementary Figure 5B). A differential gene expression analysis (volcano plot) revealed 

a number of up- and down-regulated genes in comparing HD neurons with control neurons. The 

former included MT and heat shock protein genes, as we found in astrocytes, the latter included 

somatostatin and NPY (Supplementary Figure 5C).  Analysis of enriched gene ontology terms and 

Reactome pathways showed the top gene ontology molecular function terms of genes increased in 

HD included terms related to MTs, metal binding, heat-shock factor 1 (HSF-1) dependent 

transactivation, misfolded protein binding, molecular chaperones, and, interestingly, voltage gated ion 

channel activity (Supplementary Figure 5D).  Gene ontology terms of genes decreased in HD 

included those related to translation initiation and elongation, selenoamino acid metabolism, 

regulation of SLITs and ROBOs, structural constituents of ribosomes, and neuropeptide receptor 

binding (Supplementary Figure 5E).  A list of differentially expressed genes in HD versus control 

neurons as well as the full results of GO term enrichment analysis are provided in Supplementary 

Table 6B-C. A list of the top neuronal cluster markers is provided in Supplementary Table 7. 

Differential gene expression of the neuronal clusters was displayed in a heat map 

(Supplemental Figure 5F).  Clusters 1, 2, and 3 show high expression of genes characteristic of 

inhibitory interneurons (for example, VIP, GAD1, CALB2, SST).  Clusters 4-9 are relatively much 

lower in these transcripts, and higher in a set of other transcripts (for eg. SLC17A7, NGRN, CHN1, 

SNCA, NEFL, GRIN1, TMSB10, BASP1), associated with excitatory neurons.  However, an 
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inspection of the heat map does show gene expression differences that vary among these clusters, 

suggesting significant variation in populations of excitatory neurons.  The clusters that correspond to 

inhibitory neurons contain mixtures of cells from control and HD brains, while clusters from excitatory 

neurons are divided up much more clearly between control and HD brains. This suggests that 

changes in excitatory neuron gene expression is more affected by HD than inhibitory neuron gene 

expression.  We validated that a number of the transcripts that we found associated with the neuronal 

clusters were indeed expressed by neurons by referring to in situ hybridizations from the Allen Brain 

Atlas (Supplementary Figure 5G).   

 

A subset of Microglial genes is captured by single nuclei RNAseq in 
the cingulate HD cortex 
Because of the inflammatory gene expression in HD and because both astrocytes and microglia 

contribute to inflammation, we are presenting findings on microglial gene expression.  Investigation of 

microglial gene expression in bulk RNAseq data based on a list of specific microglial genes from Patir 

et al [40] showed a significant increase in multiple immune genes (Supplementary Figure 6A). 

Multiple immune pathways were enriched in HD including IL-4, IL-10, and IL-13 signaling (Figure 

1D). There is significant heterogeneity between HD cases; with the signature being largely driven by 

two HD cases (5300 and 5575). The genes increased in HD included TLR, HLA, Fc Gamma 

receptors, and complement factor genes. We investigated the individual transcriptional profiles from 

snRNAseq of HD cases 5575 and 5493 and controls 5382 and 5404. We identified 147 nuclei as 

microglia (3.7% of total nuclei, Supplementary Figure S6B). Control and HD nuclei clustered 

separately (Supplementary Figure S6C). Differential gene expression analysis showed 148 genes to 

be differentially expressed at a false discovery rate of 0.25 (Supplementary Figure S6D-E). From 

the differentially expressed genes, seven genes were found to be also upregulated in the bulk 

RNAseq data (SPP1, CD163, SLC11A1, VSIG4, HLA-DRB5, FCGR3A, MS4A6A). Three genes were 

downregulated compared with the bulk RNAseq (CSF3R, CSF2RA, and TREM2). Note this data 
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reflect gene expression in nuclei from two HD cases and two controls, as opposed to n=6 per group in 

bulk RNAseq. The results indicate that with our approach, detecting microglial gene alterations at the 

single nucleus level might not be as sensitive as bulk RNA sequencing. The genes used in the 

heatmap of Supplementary Figure 6 are provided in Supplementary Table 7. 

A limitation we note in our study is that we detected only a small number of microglial nuclei.  

The paucity of microglial nuclei and the sparsity of nuclear reads likely explains why we did not detect 

many differentially expressed microglial genes. In addition, only one of the two HD donor brain 

samples showed large upregulation of microglia reads in the bulk RNAseq analysis. Thus, our 

approach may not be powered to illuminate transcriptional alterations of microglia at the single 

nucleus level. That being said, we still found alterations of the immune system using the bulk RNAseq 

data.    

HD modifier genes expression in neurons and astrocytes 
We investigated the expression of HD modifier genes in neurons and astrocytes (Gem-HD 

consortium, 2015). We note that while there were no detected changes in the expression of HTT 

between control and HD neurons, HD astrocytes overall expressed lower levels of HTT (log fold 

change = -0.439, FDR=0.0189). Next, we turned our attention to neurons. We detected no significant 

changes in the expression of HD modifier genes FAN1, RRM2B, or UBR5 in HD neurons versus 

control (Supplementary table 6A). Conversely, the expression of MLH1 was significantly reduced in 

HD neurons compared with controls (log fold change = -0.449, FDR = 2.99 E-5; Supplementary 

Table 6A). The expression of MLH1 was mostly noted in the control neuronal clusters 7 and 8 

(excitatory neurons – data not shown). The picture is different in astrocytes (Supplementary Tables 

2C). We found, the expression of both MTMR10 and UBR5 were reduced in HD astrocytes compared 

to controls (MTMR10 log fold change = -0.409, FDR = 0.014, UBR5 log fold change -0.673, FDR = 

3.18 E-5). The expression of FAN1 or RRM2B showed no significant difference between HD and 

control astrocytes. Interestingly, HTT, UBR5, and MLH1 were not differentially expressed between 

HD and controls at our threshold in bulk RNAseq (absolute log fold change levels > 0.5). In contrast, 
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MTMR10 was significantly increased (log fold change = 0.89 and FDR=0.015 - Supplementary 

Table 5). In conclusion, the data reveals significant difference between HD astrocytes and neurons at 

the single nucleus level; HD astrocytes expressed lower levels of HTT and the disease modifiers 

UBR5 and MTMR10. Conversely, HD neurons did not show significant changes in HTT, but showed 

overall lower expression of the disease modifier MLH1. These changes were not reflected in 

differential gene expression changes in bulk RNAseq, which is a representation of both gene 

expression per cell type as well as cell type proportions. This may underlie the differences we see in 

MTMR10, MLH1, UBR5, and HTT in snRNAseq versus bulk RNAseq. 

 

Cell type-specific markers derived from nuclear transcripts 
 

We provided a list of astrocyte sub-cluster markers (“Consensus clustering using SC3 for sub-

clustering”, above, and Table 2). We also derived sets of cell type cluster markers (Supplementary 

Table 1C). For this, we used the cell-type gene lists from neurons, astrocytes, microglia, 

oligodendrocytes, OPCs, and endothelial cells.  Note that there are many overlaps between this list 

and the original, literature-based, list we used for the Cell Classifier (Supplementary Table 1B), but 

some genes appear in one but not the other.  These differences may result from different levels of 

transcripts in the nucleus vs. cytoplasm and nucleus combined (for single cell RNASeq).   

 

Supplementary Figure Legends 
Supplementary Figure 1: 

Cortical thickness of the cingulate in HD. Representative images of cortical thickness 

measurements performed in sections stained for CD44 (A), Hematoxylin and Eosin (H&E) (C), and 

Cresyl violet (E). Bar graphs showing average cortical thickness in individual cases in in the CD44 

immunostain (B), with two regions quantified highlighted in blue and red. Bar graphs showing average 
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cortical thickness of control and HD sections stained for H&E (D) and Cresyl violet (F). The regions 

quantified in the cingulate cortex are color-coded in the images, which is reflected in the bar graphs. 

No significant differences were identified between control and HD using unpaired t-tests. N =4 control 

and 5 HD for CD44 immunostain, 6-9 HD and 6-8 control for H&E, and 5-8 HD and 6-7 control Cresyl 

violet.  G) Immunohistochemical staining for GFAP, Glutamine Synthetase (GS), and ALDH1L1 of a 

representative control and the Juvenile Huntington (T3859). Images are shown at 5X, and insets at 

20X. Scale bars: 500μm, inset scale bar: 50μm. 

 

Supplementary Figure 2: 

Related to Figure 2. Gene set variation analysis (GSVA) of the average normalized expression 

of all nuclei in one cell-class/type. Cell-type specific gene sets derived from the literature (A OA 

and JEG) and Gill et al. [10] (B) are shown in the rows. Cell-types are shown in columns. The z-

scaled enrichment scores of the cell-type averages are shown in the heat maps (A-B). The 

proportions of cell-types in Control (Right) and HD (Left) nuclei. Percentages per cell-type are shown 

in the pie chart (C). Bar-plots of count of nuclei per cell-type per case (D). Barplots of the proportions 

of cell-type per case (C=Control, H=HD) (E). 

 

Supplementary Figure 3: 

Complement factor 3 (C3) immunostaining in the HD caudate and cingulate. A-B) Micrographs 

of immunostaining for C3 in the cingulate cortex (A) and caudate nucleus (B) of control and HD grade 

III/IV taken at 10X (100X total magnification). The boxed areas are shown at 40X in the lower panels 

(400X total magnification). C-D) Dual immunostaining for C3 (green) and GFAP (red -C) or LN3 (red – 

D) in the caudate nucleus of a representative HD case (C). Nuclei stained with DAPI are shown in 

blue. Scale bars indicate ####. A total of 3-4 cases per group were examined.  
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Supplementary Figure 4: 

Neuronal loss and dysfunction in the HD cingulate cortex. A) Representative images of crystal 

violet stained cingulate cortex sections from a control case and a grade 4 HD. The subcortical white 

matter is shown in the lower right corner. Note the relative abundance of the small “glial” nuclei in the 

HD cortex. Scale bar = 100um. B) Representative images of cells with large nuclear area (5th quantile 

>104 um2) in the upper row and cells with small nuclear area (1st quantile <30.8 um2) in the lower row. 

These areas correspond to neurons and glia, respectively. C) Quantification of the relative 

proportions of nuclei quantified (y-axis) within different area ranges (x-axis). Boxplots are shown in 

addition to points representing individual cases. Clue indicates HD and red controls. N=9 for control 

N=8 for HD. ***: p value < 0.001, *****: p value < 0.000001. D) GO term and Reactome pathway 

enrichment analysis of genes significantly downregulated in HD in the bulk RNAseq analysis of the 

cingulate cortex. All of the pathways shown are significantly enriched after Benjamini-Hochberg False 

discovery rate correction (<0.05). The source of the GO term is color coded. P value of enrichment is 

represented by the length of the bar per gene ontology.  

 

Supplementary Figure 5: 

Differential gene expression patterns in neurons. A) tSNE plot showing 9 different neuronal 

clusters.  B) Here we divided up nuclei in the tSNE plot into HD (blue) and control (red).   Some of the 

clusters appear relatively homogeneous with respect to condition, while others appear more mixed.  

C) Differential gene expression as a volcano plot, showing some of the highly differentially expressed 

genes.  D) GO terms and Reactome pathway enrichment analysis of genes significantly increased in 

HD over all neurons.  E) GO terms and Reactome pathway enrichment analysis of genes significantly 

decreased in HD over all neurons. The source of the GO term is color coded.  P value of enrichment 

is represented by the length of the bar.  F) Gene expression heat map of cluster markers showing 

nuclei (Columns) and specific genes (Rows). Condition (Con versus HD) and neuronal clusters are 
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color-coded on the top and bottom, respectively. Cluster-specific gene markers were identified using 

Wilcoxon signed rank test comparing gene ranks in the cluster with the highest mean expression 

against all others. p-values were adjusted using the “Holm” method.  G) Examples of in situ 

hybridization of 4 of the neuronal genes (© 2010 Allen Institute for Brain Science. Allen Human Brain 

Atlas. Available from: human.brain-map.org).  Scale bars: GOT1 100�m, others 200�m.  

 

Supplementary Figure 6:  

Microglial gene expression alterations in the cingulate cortex. A) Differential gene expression 

heatmap showing a subset of significantly differentially expressed microglial genes in control and HD 

cingulate cortex – cingulate cortex shown in red in the top right pictogram (Microglial gene list was 

adapted from Patir et al [40]). B) Principle component analysis plot of microglia nuclei. Control nuclei 

are shown in red, HD in blue. C) Clustering of control (circles) and HD (triangles) nuclei shows they 

cluster separately. Colors denote clusters as determined by SC3 consensus clustering (K=2). D) 

Differential genes expression of between control and HD microglial nuclei displayed as a volcano plot 

with significance set at p<0.05 – genes with –log10 p value (LogPV) of >3 are shown in blue, and 

those with -logPV of >3 and log2 fold change >2 are shown in red. Analysis was performed in EdgeR 

using the likelihood ratio test. E) Differential genes expression heatmap between control (red bar) and 

HD (blue bar) nuclei showing significantly differentially expressed genes (-log10 p value scale shown 

on the left). Significance was determined using Kruskal-Wallis test (p<0.05). 

 

Supplementary Figure 7: 

Outline of the snRNAseq analysis pipeline. Briefly, filtered raw un-clustered data is pre-clustered 

using a shared nearest neighbor algorithm. The pre-clusters are classified into cell classes/lineages 

using gene set enrichment analysis for specific lineage genes and examining GO terms of the top 

pre-clusters markers. Next, mixed pre-clusters are identified and the cells in these pre-clustered are 
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re-classified based on the cell-specific lineage-scores (Cell classifier tool). Next, clusters of the same 

lineage are agglomerated and cell-classes/lineages are analyzed in isolation from the remaining cell 

classes using SC3 consensus clustering into sub-clusters (Astrocyte sub-clusters are shown as an 

example). These sub-clusters are used for downstream analysis.   

Supplementary Figure 8:  

Validation of astrocytic sub-clusters. Confocal Immunofluorescence images of the cingulate cortex 

of an HD brain. GFAP (green), ALDH1L1 (red), MT (cyan), DAPI (white) are shown. A merged panel 

is displayed on the right. The arrow indicates a GFAP+ALDH1L1+MT+ astrocyte (example of 

Astrocytic Cluster 2). The arrowhead indicates a GFAP-ALDH1L1+MT+ astrocyte (example of 

Astrocytic Cluster 1). Scale bar = 20�m. Single optical planes are shown.  
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