
Inference of Single-Cell Phylogenies from Lineage Tracing

Data

Matthew G. Jones∗1, 3, 4, 6, Alex Khodaverdian∗2, Jeffrey J. Quinn∗3, 4, 5,

Michelle M. Chan3,4,5, Jeffrey A. Hussmann3,4,5, Robert Wang6,

Chenling Xu6, Jonathan S. Weissman†3, 4, 5, and Nir Yosef‡2, 7, 8

1Biological and Medical Informatics Graduate Program, University of California, San Francisco, CA, USA

2Department of Electrical Engineering and Computer Science and Center for Computational Biology, University of California, Berkeley,

Berkeley, CA, USA

3Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA, USA

4Howard Hughes Medical Institute, University of California, San Francisco, San Francisco, CA, USA

5Center for RNA Systems Biology, University of California, San Francisco, San Francisco, CA, USA

6Center for Computational Biology, University of California Berkeley, Berkeley, CA, USA

7Ragon Institute of Massachusetts General Hospital, MIT and Harvard, Cambridge, MA, USA

8Chan Zuckerberg Biohub Investigator

Abstract1

The pairing of CRISPR/Cas9-based gene editing with massively parallel single-cell readouts now2

enables large-scale lineage tracing. However, the rapid growth in complexity of data from these3

assays has outpaced our ability to accurately infer phylogenetic relationships. To address this,4

we provide three resources. First, we introduce Cassiopeia - a suite of scalable and theoretically5

grounded maximum parsimony approaches for tree reconstruction. Second, we provide a simulation6

framework for evaluating algorithms and exploring lineage tracer design principles. Finally, we7

generate the most complex experimental lineage tracing dataset to date - consisting of 34,5578

human cells continuously traced over 15 generations, 71% of which are uniquely marked - and9

use it for benchmarking phylogenetic inference approaches. We show that Cassiopeia outperforms10

traditional methods by several metrics and under a wide variety of parameter regimes, and provide11

insight into the principles for the design of improved Cas9-enabled recorders. Together these should12

broadly enable large-scale mammalian lineage tracing efforts. Cassiopeia and its benchmarking13

resources are publicly available at www.github.com/YosefLab/Cassiopeia.14

∗Authors Contributed Equally
†Correspondence to: jonathan.weissman@ucsf.edu
‡Correspondence to: niryosef@berkeley.edu

1

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (whichthis version posted October 10, 2019. ; https://doi.org/10.1101/800078doi: bioRxiv preprint

www.github.com/YosefLab/Cassiopeia
https://doi.org/10.1101/800078
http://creativecommons.org/licenses/by-nc-nd/4.0/

Introduction1

The ability to track fates of individual cells during the course of biological processes such as2

development is of fundamental biological importance, as exemplified by the ground-breaking work3

creating cell fate maps in C. elegans through meticulous visual observation [49, 11]. More recently,4

CRISPR/Cas9 genome engineering has been coupled with high-throughput single-cell sequencing5

to enable lineage tracing technologies that can track the relationships between a large number6

of cells over many generations (Figure 1a, [39]). Generally, these approaches begin with cells7

engineered with one ore more recording “target sites” where Cas9-induced heritable insertions8

or deletions (“indels”) accumulate and are subsequently read out by sequencing. A phylogenetic9

reconstruction algorithm is then used to infer cellular relationships from the pattern of indels.10

These technologies have enabled the unprecedented exploration of zebrafish [38, 42, 47, 53] and11

mouse development [31, 7].12

However, the scale and complexity of the data produced by these methods are rapidly becom-13

ing a bottleneck for the accurate inference of phylogenies. Specifically, traditional algorithms for14

reconstructing phylogenies (such as Neighbor-Joining [44] or Camin-Sokal [5]) have not been fully15

assessed with respect to lineage tracing data and may not be well suited for analyzing large-scale16

lineage tracing experiments for several reasons. First, traditional algorithms were developed for17

the cases of few samples (in this case cells) and thus scalability is a major limitation (Supple-18

mentary Figure 1). Second, these algorithms are not well suited to handle the amount of missing19

data from lineage tracing experiments, which can result from either large Cas9-induced resections20

that remove target sites (“heritable dropout”) or incomplete capture of target sites (“stochastic21

dropout”). Together, these technical issues necessitate the development of an adaptable approach22

for reconstructing single-cell phylogenies and an appropriate benchmarking resource that can aid23

in the development of such algorithms.24

Ideally, an algorithm for phylogeny inference from lineage tracing data would be robust to25

experimental parameters (e.g. rate of mutagenesis, the number of Cas9 target sites), scalable to at26

least tens of thousands of cells, and resilient to missing data. In this study, we introduce Cassiopeia:27

a novel suite of three algorithms specifically aimed at reconstructing large phylogenies from lineage28

tracing experiments with special consideration for the Cas9-mutagenesis process and missing data.29

Cassiopeia’s framework consists of three modules: (1) a greedy algorithm (Cassiopeia-Greedy),30

which attempts to construct trees efficiently based on mutations that occurred earliest in the31

experiment; (2) a near-optimal algorithm that attempts to find the most parsimonious solution32

using a Steiner-Tree approach (Cassiopeia-ILP); and (3) a hybrid algorithm (Cassiopeia-Hybrid)33

that blends the scalability of the greedy algorithm and the exactness of the Steiner-Tree approach34

to support massive single-cell lineage tracing phylogeny reconstruction. To demonstrate the utility35

of these algorithms, we compare Cassiopeia to existing methods using two resources: first, we36

benchmark the algorithms using a custom simulation framework for generating synthetic lineage37

2

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (whichthis version posted October 10, 2019. ; https://doi.org/10.1101/800078doi: bioRxiv preprint

https://doi.org/10.1101/800078
http://creativecommons.org/licenses/by-nc-nd/4.0/

tracing datasets across varying experimental parameters. Second, we assess these algorithms using1

a new reference in vitro lineage tracing dataset consisting of 34,557 cells over 11 clonal populations.2

Finally, we use Cassiopeia to explore experimental design principles that could improve the next3

generation of Cas9-enabled lineage tracing systems.4

Results5

Cassiopeia: A Scalable Framework for Single-Cell Lineage Tracing Phy-6

logeny Inference7

Typically, phylogenetic trees are constructed by attempting to optimize a predefined objective over8

characters (i.e. target sites) and their states (i.e. indels) [57]. Distance-based methods (such as9

Neighbor-Joining [44, 18, 40] or phylogenetic least-squares [6, 17]) aim to infer a weighted tree that10

best approximates the dissimilarity between nodes (i.e., the number of characters differentiating11

two cells should be similar to their distance in the tree). Alternatively, character-based methods12

aim to infer a tree of maximum parsimony [16, 12]. Conventionally, in this approach the returned13

object is a rooted tree (consisting of observed “leaves” and unobserved “ancestral” internal nodes)14

in which all nodes are associated with a set of character states such that the overall number of15

changes in character states (between ancestor and child nodes) is minimized. Finally, a third16

class of methods closely related to character-based ones takes a probabilistic approach over the17

characters using maximum likelihood [14, 41] or posterior probability [27] as an objective.18

We chose to focus our attention on maximum parsimony-based methods due to the early19

success of applying these methods to lineage tracing data [42, 38] as well as the wealth of theory20

and applications of these approaches in domains outside of lineage tracing [35]. Our framework,21

Cassiopeia, consists of three algorithms for solving phylogenies. In smaller datasets, we propose22

the use of a Steiner-Tree approach (Cassiopeia-ILP) [59] for finding the maximum parsimony23

tree over observed cells. Steiner Trees have been extensively used as a way of abstracting network24

connectivity problems in various settings, such as routing in circuit design [22], and have previously25

been proposed as a general approach for finding maximum parsimony phylogenies [37, 54]. To adapt26

Steiner-Trees to single-cell lineage tracing, we devised a method for inferring a large underlying27

“Potential Graph” where vertices represent unique cells (both observed and plausible ancestors)28

and edges represent possible evolutionary paths between cells. Importantly, we tailor this inference29

specifically to single-cell lineage tracing assays: we model the irrereversibility of Cas9 mutations30

and impute missing data using an exhaustive approach, considering all possible indels in the31

respective target sites (see methods). After formulating the Potential Graph, we use Integer32

Linear Programming (ILP) as a technique for finding near-optimal solutions to the Steiner Tree33

problem. Because of the NP-Hard complexity of Steiner Trees and the difficult approximation of34

the Potential Graph (whose effect on solution stability is assessed in Figure S1), the main limitation35

3

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (whichthis version posted October 10, 2019. ; https://doi.org/10.1101/800078doi: bioRxiv preprint

https://doi.org/10.1101/800078
http://creativecommons.org/licenses/by-nc-nd/4.0/

of this approach is that it cannot in practice scale to very large numbers of cells.1

To enable Cassiopeia to scale to tens of thousands of cells, we apply a heuristic-based greedy2

algorithm (Cassiopeia-Greedy) to group cells using mutations that occurred early in the lineage3

experiment. Our heuristic is inspired by the idea of “perfect phylogeny” [50, 34] - a phylogenetic4

regime in which every mutation (in our case, Cas9- derived indels) occurred at most once. For the5

case of binary characters (i.e., mutated yes/ no without accounting for the specific indel), there6

exists an efficient algorithm [24] for deciding whether a perfect phylogeny exists and if so, to also7

reconstruct this phylogeny. However, two facets of the lineage tracing problem complicate the8

deduction of perfect phylogeny: first, the “multi-state” nature of characters (i.e. each character9

is not binary, but rather can take on several different states; which makes the problem NP-Hard)10

[4, 48]; and second, the existence of missing data [25]. To address these issues, we first take a11

theoretical approach and prove that since the founder cell (root of the phylogeny) is unedited12

(i.e. includes only uncut target sites) and that the mutational process is irreversible, we are able to13

reduce the multi-state instance to a binary one so that it can be resolved using a perfect-phylogeny-14

based greedy algorithm. Though Cassiopeia-Greedy does not require a perfect phylogeny, we15

also prove that if one does exist in the dataset, our proposed algorithm is guaranteed to find16

it (Theorem 1). Secondly, Cassiopeia-Greedy takes a data-driven approach to handle cells with17

missing data (see Methods). Unlike Cassiopeia-ILP, Cassiopeia-Greedy is not by design robust18

to parallel evolution (i.e. “homoplamsy”, where a given state independently arises more than19

once in a phylogeny in different parts of the tree). However, we demonstrate theoretically that in20

expectation, mutations observed in more cells are more likely to have occurred fewer times in the21

experiment for sufficiently small, but realistic, ranges of mutation rates (see Methods; Figure S2),22

thus supporting the heuristic. Moreover, using simulations, we quantify the precision of this greedy23

heuristic for varying numbers of states and mutation rates, finding in general these splits are24

precise (especially in regimes of low mutation rate and realistically large numbers of possible indel25

outcomes; see Methods and Figure S3). Below, we further discuss simulation-based analyses that26

illustrate Cassiopeia-Greedy’s effectiveness with varying amounts of parallel evolution (Figure S4).27

While Cassiopeia-ILP and Cassiopeia-Greedy are suitable strategies depending on the dataset,28

we can combine these two methods into a hybrid approach (Cassiopeia-Hybrid) that covers a far29

broader scale of dataset sizes (Figure 1b). In this use case, Cassiopeia-Hybrid balances the sim-30

plicity and scalability of the multi-state greedy algorithm with the exactness and generality of the31

Steiner-Tree approach. The method begins by splitting the cells into several major clades using32

Cassiopeia-Greedy and then separately reconstructing phylogenies for each clade with Cassiopeia-33

ILP. This parallel approach on reasonably sized sub-problems (∼ 300 cells in each clade) ensures34

practical run-times on large numbers of cells (Figure S5). After solving all sub-problems with the35

Steiner Tree approach, we merge all clades together to form a complete phylogeny.36

4

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (whichthis version posted October 10, 2019. ; https://doi.org/10.1101/800078doi: bioRxiv preprint

https://doi.org/10.1101/800078
http://creativecommons.org/licenses/by-nc-nd/4.0/

A Simulation Engine Enables a Comprehensive Benchmark of Lineage1

Reconstruction Algorithms2

To provide a comprehensive benchmark for phylogeny reconstruction, we developed a framework3

for simulating lineage tracing experiments across a range of experimental parameters. In particular,4

the simulated lineages can vary in the number of characters (e.g. Cas9 target sites), the number5

of states (e.g. possible Cas9-induced indels), the probability distribution over these states, the6

mutation rate per character, the number of cell generations, and the amount of missing data. We7

started by estimating plausible “default” values for each simulation parameter using experimental8

data (discussed below and indicated in Figure 2). In each simulation run, we varied one of the9

parameters while keeping the rest fixed to their default value. The probability of mutating to10

each state was found by interpolating the empirical distribution of indel outcomes (Figure S6, see11

Methods). Each parameter combination was tested using a maximum of 50 replicates or until12

convergence, each time sampling a set of 400 cells from the total 2D cells (where D is the depth of13

the simulated tree).14

We compare the performance of our Cassiopeia algorithms (Cassiopeia-ILP, -Greedy, and15

-Hybrid) as well as an alternative maximum-parsimony algorithm, Camin-Sokal (previously used16

in lineage tracing applications [38, 42]), and the distance-based algorithm Neighbor-Joining. We17

assess performance using a combinatoric metric, “Triplets Correct” (Figure S7, see Methods),18

which compares the proportion of cell triplets that are ordered correctly in the tree. Importantly,19

this statistic is a weighted-average of the triplets, stratified by the depth of the triplet (measured by20

the distance from the root to the Latest Common Ancestor (LCA); see Methods). As opposed to21

other tree comparison metrics, such as Robinson-Foulds [43], we reason that combinatoric metrics22

[10] more explicitly address the needs of fundamental downstream analyses, namely determining23

evolutionary relationships between cells.24

Overall, our simulations demonstrate the strong performance and efficiency of Cassiopeia.25

Specifically, we see that the Cassiopeia suite of algorithms consistently finds more accurate trees26

as compared to both Camin-Sokal and Neighbor-Joining (Figure 2a-e, Figure S8a-e). Furthermore,27

not only are trees produced with Cassiopeia more accurate than existing methods, but also more28

parsimonious across all parameter ranges - serving as an indication that the trees reach a more29

optimal objective solution (Figure S9). Importantly, we observe that Cassiopeia-Hybrid and -30

Greedy are more effective than Neighbor-Joining in moderately large sample regimes (Figure S10).31

Notably, Cassiopeia-Greedy and -Hybrid both scale to especially large regimes (of up to 50,00032

cells) without substantial compromise in accuracy (S12). In contrast, Camin-Sokal and Cassiopeia-33

ILP could not scale to such input sizes (Figure S5).34

These simulations additionally grant insight into critical design parameters for lineage record-35

ing technology. Firstly, we observe that the “information capacity” (i.e. number of characters and36

possible indels, or states) of a recorder confers an increase in accuracy for Cassiopeia’s modules37

5

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (whichthis version posted October 10, 2019. ; https://doi.org/10.1101/800078doi: bioRxiv preprint

https://doi.org/10.1101/800078
http://creativecommons.org/licenses/by-nc-nd/4.0/

but not necessarily Camin-Sokal and Neighbor-Joining (Figures 2a,d). This is likely because the1

greater size of the search space negatively affects the performance of these two algorithms (in other2

contexts referred to as the “curse of dimensionality” [52]). In addition to the information capac-3

ity, we find that indel distributions that tend towards a uniform distribution (thus have higher4

entropy) allow for more accurate reconstructions especially when the number of states is small or5

the number of samples is large (Figure S11). Unsurprisingly, the proportion of missing data causes6

a precipitous decrease in performance (Figure 2e). Furthermore, in longer experiments where the7

observed cell population is sampled from a larger pool of cells, we find that the problem tends to8

become more difficult (2c).9

Furthermore, these results grant further insight into how Cassiopeia-Greedy is affected in10

regimes where parallel evolution is likely: such as in low information capacity regimes (e.g. where11

the number of possible indels is less than 10, Figure 2d), or with high mutation rates (Figure 2b).12

To strengthen our previous theoretical results suggesting that indels observed in more cells are13

more likely to occur fewer times and earlier in the phylogeny (Figure S2), we explored how parallel14

evolution affects Cassiopeia-Greedy empirically with simulation. Specifically, we simulated trees15

with varying numbers of parallel evolution events at various depths and find overall that while per-16

formance decreases with the number of these events, the closer these events occur to the leaves, the17

smaller the effect (Figure S4). Furthermore, we find that under the “default” simulation parame-18

ters (as determined by the experimental data; Figures S6 and 3), Cassiopeia-Greedy consistently19

makes accurate choices of the first indel event by which cells are divided into clades (Figure S3b).20

Practically, the issue of parallel evolution can be addressed to some extent by incorporating21

state priors (i.e. probabilities of Cas9-induced indel formation). Ideally, Cassiopeia-Greedy would22

use these priors to select mutations that are low-probability, but observed at high frequency. Theo-23

retically, this would be advantageous as low-probability indels are expected to occur fewer times in24

the tree (Eq. 1); thus if they appear at high frequency at the leaves, it is especially likely that these25

occurred earlier in the phylogeny. Furthermore, our precision-analysis indicates that Cassiopeia-26

Greedy’s decisions are especially precise if it chooses an indel with a low prior (Figure S3). To27

incorporate these priors in practice, we selected a link function (i.e. one translating observed28

frequency and prior probability to priority) that maximized performance for Cassiopeia-Greedy29

(Figure S13; see Methods). After finding an effective approach for integrating prior probabilities,30

we performed the same stress tests, and found that in cases of likely parallel evolution the priors31

confer an increase in accuracy (e.g. with high mutation rates; Figure S14), especially in larger32

regimes (Figure S12).33

Here, we have introduced a flexible simulator that is capable of fitting real data, and thus34

can be used for future benchmarking of algorithms. Using this simulator and a wide range of35

parameters, we have demonstrated that Cassiopeia performs substantially better than traditional36

methods. Furthermore, these simulations grant insight into how Cassiopeia’s performance is mod-37

6

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (whichthis version posted October 10, 2019. ; https://doi.org/10.1101/800078doi: bioRxiv preprint

https://doi.org/10.1101/800078
http://creativecommons.org/licenses/by-nc-nd/4.0/

ulated by various experimental parameters, suggesting design principles that can be optimized to1

bolster reconstruction accuracy.2

An In Vitro Reference Experiment Allows Evaluation of Approaches on3

Empirical Data4

Existing experimental lineage tracing datasets lack a defined ground truth to test against, thus5

making it difficult to assess phylogenetic accuracy in practice. To address this, we performed an in6

vitro experiment tracking the clonal expansion of a human cell line engineered with a previously7

described lineage tracing technology [7]. Here, we tracked the growth of 11 clones (each with non-8

overlapping target site sets for deconvolving clonal populations) over the course of 21 days (approx.9

15 generations), randomly splitting the pool of cells into two plates every 7 days (Figure 3a; see10

Methods). At the end of the experiment, we sampled approximately 10, 000 cells from the four final11

plates. This randomized plate splitting strategy establishes a course-grained ground truth of how12

cells are related to each other. Here, cells within the same plate can be arbitrarily distant in their13

lineage, however there is only a lower bound on lineage dissimilarity between cells in different plates14

(since they are by definition at least separated by the number of mutations that have occurred15

since the last split). Thus, it is expected to see some cells more closely related across plates than16

within (Figure 3a, right), and indels relating these cells across plates are likely to have occurred17

before the split. However, on average we expect cells within the same plate to be closer to each18

other in the phylogeny than cells from different plates.19

Our lineage recorder is based on a constitutively expressed target sequence consisting of20

three evenly spaced cut sites (each cut site corresponding to a character) and a unique integration21

barcode (“intBC”) which we use to distinguish between target sites and thus more accurately22

relate character states across cells (Figure S15a). The target sites are randomly integrated into23

the genomes of founder cells at high copy number (on average 10 targets per cell or a total of24

30 independently evolving characters; Figure 3b, S16c). We built upon the processing pipeline in25

our previous work [7] to obtain confident indel information from scRNA-seq reads (see Methods,26

Figure S16, Figure S15). In addition, we have added modules for the detection of cell doublets27

using the sets of intBCs in each clone, and have determined an effective detection strategy using28

simulations (see Methods, Figure S17). Additionally, we take a data-driven approach for estimating29

the prior probabilities of indels (see Methods; Figure S18) as other approaches recently proposed30

[33, 9] may be affected by cell-type and sequence context.31

After quality control, error-correction, and filtering we proceeded with analyzing a total of32

34, 557 cells across 11 clones. This diverse set of clonal populations represent various levels of indel33

diversity (i.e. number of possible states, Figure 3c), size of intBC sets (i.e. number of characters,34

Figure 3b and Figure S16c), character mutation rates (Figure 3d, see Methods), and proportion35

of missing data (Figure 3e, see Methods). Most importantly, this dataset represents a significant36

7

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (whichthis version posted October 10, 2019. ; https://doi.org/10.1101/800078doi: bioRxiv preprint

https://doi.org/10.1101/800078
http://creativecommons.org/licenses/by-nc-nd/4.0/

improvement in lineage tracing experiments: it is the longest and most complex dataset to date1

in which the large majority of cells are uniquely marked (71%), indicating a rich character state2

complexity for tree building.3

We next reconstructed trees for each clone (excluding two which were removed through4

quality-control filters; see Methods) with our suite of algorithms, as well as Neighbor-Joining and5

Camin-Sokal (when computationally feasible). For both Cassiopeia-Greedy and Cassiopeia-Hybrid6

methods, we also compared tree reconstruction accuracy with or without prior probabilities. The7

tree for Clone 3, consisting of 7,289 cells, along with its character matrix and first split annotations8

(i.e. whether cells were initially split into plate 0 or plate 1, denoted as the plate ID), is presented in9

Figure 4. Interestingly, we find that certain indels indeed span the different plates, thus indicating10

that Cassiopeia-Greedy chooses early indels to serve as splits. Moreover, the character matrix and11

the nested dissection of the tree demonstrate the abundant lineage information encoded in this12

clone – 96% of the 7,289 observed cells are marked uniquely.13

By keeping track of which plate each cell came from we are able to evaluate how well the14

distances in a computationally-reconstructed tree reflect the distances in the experimental tree.15

Thus, we test the reconstruction ability of an algorithm using two metrics for measuring the16

association between plate ID and substructure – “Meta Purity” and “Mean Majority Vote” (see17

Methods). Both are predicated on the assumption that, just as in the real experiment, as one18

descends the reconstructed tree, one would expect to find cells more closely related to one another.19

In this sense, we utilize these two metrics for testing homogeneous cell labels below a certain20

internal node in a tree, which we refer to as a “clade”.21

We use these statistics to evaluate reconstruction accuracy for Clone 3 with respect to the first22

split labels (i.e. plate 0 or 1, Figure 5). In doing so, we find that Cassiopeia-Greedy and -Hybrid23

consistently outperform Neighbor-Joining. We find overall consistent results for the remainder of24

clones reconstructed (Figure S19, Figure S20), although Cassiopeia’s modules have the greatest25

advantage in larger reconstructions.26

Overall, we anticipate that this in vitro dataset will serve as a valuable empirical benchmark27

for future algorithm development. Specifically, we have demonstrated how this dataset can be28

used to evaluate the accuracy of inferred phylogenies and illustrate that Cassiopeia outperforms29

Neighbor-Joining. Moreover, we demonstrate Cassiopeia’s scalability for reconstructing trees that30

are beyond the abilities of other maximum parsimony-based methods like Camin-Sokal as they31

currently have been implemented.32

Generalizing Cassiopeia to Alternative & Future Technologies33

While previous single-cell lineage tracing applications have proposed methods for phylogenetic re-34

construction, they have been custom-tailored to the experimental system, requiring one to filter35

out common indels [47] or provide indel likelihoods [7]. We thus investigated how well Cassiopeia36

8

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (whichthis version posted October 10, 2019. ; https://doi.org/10.1101/800078doi: bioRxiv preprint

https://doi.org/10.1101/800078
http://creativecommons.org/licenses/by-nc-nd/4.0/

generalizes to other technologies with reconstructions of data generated with the GESTALT tech-1

nology [38, 42] (Figure 6a, Figure S21). Comparing Cassiopeia’s algorithms to Neighbor-Joining2

and Camin-Sokal (as applied in these previous studies [38, 42]), we find that Cassiopeia-ILP con-3

sistently finds the most parsimonious solution. While parsimony is not a direct measure of tree4

accuracy, it is a direct measure of solution optimality and clearly demonstrates Cassiopeia’s effec-5

tiveness for existing alternative lineage tracing technologies.6

After establishing Cassiopeia’s generalizability, we turned to investigating plausible next-7

generation lineage tracers. Recently, base-editing systems (Figure 6b) have been proposed to8

precisely edit A > G [19], C > T [36, 20] or possibly C > N (N being any base as in [26]).9

The promise of base-editing lineage recorders is three-fold: first, a base editor would increase the10

number of editable sites (as compared to the ones that rely on Cas9-induced double-strand breaks11

[7, 38, 47]) although at the expense of number of states (at best 4, corresponding to A, C, T,12

and G). Second, a base-editing system would theoretically result in less dropout, since target site13

resection via Cas9-induced double-strand breaks is far less likely [36]. Third, it is hypothesized14

that base-editors would be less cytotoxic as it does not depend on inducing double strand breaks15

on DNA (although this relies on effective strategies for limiting off-target base-editing of DNA16

and RNA [56]). To evaluate the application of base editors for lineage tracing, we tested the17

performance of Cassiopeia in high-character, low-state regimes as would be the case in base editing18

(Figure 6b, see Methods). Using simulations with parameters deduced by a recent base editor19

application [26], we demonstrate that there appears to be an advantage of having more characters20

than states (Figure 6b). This suggests that base-editors may be a promising future direction for21

lineage tracing from a theoretical perspective.22

Another potentially promising design consideration concerns the range of character muta-23

tion rates and their variability across different target sites – a parameter that can be precisely24

engineered [30]. In this design, one would expect the variability to help distinguish between early25

and late branching points and consequently achieve better resolution of the underlying phylogeny26

[51, 31, 32]. We simulated “Phased Recorders” (Figure S22) with varying levels of target-site cut-27

ting variability and observe that this design allows for better inference when the distributions of28

mutation probabilities are more dispersed (Figure S22b). This becomes particularly useful when29

one can integrate accurate indel priors into Cassiopeia.30

Overall, these results serve to illustrate how Cassiopeia and the simulation framework can31

be used to explore experimental designs. While there inevitably will be challenges in new imple-32

mentations, these analyses demonstrate theoretically how design parameters can be optimized for33

downstream tree inference. In this way, the combination of our algorithms and simulations enables34

others to explore not only new algorithmic approaches to phylogenetic reconstruction but also new35

experimental approaches for recording lineage information.36

9

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (whichthis version posted October 10, 2019. ; https://doi.org/10.1101/800078doi: bioRxiv preprint

https://doi.org/10.1101/800078
http://creativecommons.org/licenses/by-nc-nd/4.0/

Discussion1

In this study, we have presented three resources supporting future single-cell lineage tracing tech-2

nology development and applications. Firstly, we described Cassiopeia, a scalable and accurate3

maximum parsimony framework for inferring high-resolution phylogenies in single-cell lineage trac-4

ing experiments. Next, we introduced a simulation framework for benchmarking reconstruction5

methods and investigating novel experimental designs. Finally, we generated the largest and most6

diverse empirical lineage tracing experiment to date, which we present as a reference for the sys-7

tematic evaluation of phylogeny inference on real lineage tracing data. With the combination of8

these three resources, we have demonstrated the improved scalability and accuracy of Cassiopeia9

over traditional approaches for single-cell lineage tracing data and have explored design principles10

for more accurate tracing. To ensure broad use, we have made a complete software package, in-11

cluding the algorithms, simulation framework, and a processing pipeline for raw data, all publicly12

available at www.github.com/YosefLab/Cassiopeia.13

Though we illustrate that Cassiopeia provides the computational foundation necessary for14

future large-scale lineage tracing experiments, there are several opportunities for future improve-15

ment. Firstly, the inclusion of prior probabilities increases Cassiopeia’s performance only when16

parallel evolution is likely (e.g. with a high per-character mutation rate or in low character-state17

regimes). While maximum parsimony methods are attractive due to their non-parametric nature,18

future studies may build on our work here by developing more powerful approaches for integrating19

prior mutation rates into maximum likelihood [14, 41] or Bayesian inference [28] frameworks, per-20

haps relying on recent literature that seeks to predict indel formation probabilities [8, 2]. Secondly,21

confidence values for internal branches are not provided in this algorithm primarily due to the infea-22

sibility of sampling enough trees from these large tree state-spaces (naturally, we hypothesize that23

this will also limit existing likelihood phylogeny approaches). Recent work adapting traditional24

bootstrapping to large trees [15]) or quantifying how well edges impose compatibility of characters25

[3] may be useful in determining confidence values. Thirdly, there exists a promising opportunity26

in developing new approaches for dealing with the amount of missing data. Determining a model27

which explicitly distinguishes between stochastic and heritable (e.g. from Cas9 cuts that remove28

the entire target site) missing data may increase tree accuracy. Alternatively, adapting supertree29

methods (such as the Triple MaxCut algorithm [46]) for lineage tracing data may be an interesting30

direction as they have been effective for dealing with missing data (but only when this missing31

data is randomly distributed [55]). Fourthly, while we provide theoretical and empirical evidence32

for our greedy heuristic, we note that there are opportunities for developing other heuristics - for33

example, by considering mutations in many characters rather than a single mutation as we do or34

using a distance-based heuristic.35

The ultimate goal of using single-cell lineage tracers to create precise and quantitative cell36

fate maps will require sampling tens of thousands of cells (or more), possibly tracing over sev-37

10

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (whichthis version posted October 10, 2019. ; https://doi.org/10.1101/800078doi: bioRxiv preprint

www.github.com/YosefLab/Cassiopeia
https://doi.org/10.1101/800078
http://creativecommons.org/licenses/by-nc-nd/4.0/

eral months, and effectively inferring the resulting phylogenies. While recent studies [45] have1

highlighted the challenges in creating accurate CRISPR-recorders, our results suggest that with2

adequate technological components and computational approaches complex biological phenomena3

can be dissected with single-cell lineage tracing methods. Specifically, we show that Cassiopeia4

and the benchmarking resources presented here meet many of these challenges. Not only does Cas-5

siopeia provide a scalable and accurate inference approach, but also our benchmarking resources6

enable the systematic exploration of stronger algorithms as well as more robust single-cell lineage7

tracing technologies. Taken together, this work forms the foundation for future efforts in building8

detailed cell fate maps in a variety of biological applications.9

11

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (whichthis version posted October 10, 2019. ; https://doi.org/10.1101/800078doi: bioRxiv preprint

https://doi.org/10.1101/800078
http://creativecommons.org/licenses/by-nc-nd/4.0/

References

[1] Britt Adamson, Thomas M. Norman, Marco Jost, Min Y. Cho, James K. Nuñez, Yuwen

Chen, Jacqueline E. Villalta, Luke A. Gilbert, Max A. Horlbeck, Marco Y. Hein, Ryan A.

Pak, Andrew N. Gray, Carol A. Gross, Atray Dixit, Oren Parnas, Aviv Regev, and Jonathan S.

Weissman. A multiplexed single-cell crispr screening platform enables systematic dissection

of the unfolded protein response. Cell, 167(7):1867 – 1882.e21, 2016.

[2] Felicity Allen, Luca Crepaldi, Clara Alsinet, Alexander J. Strong, Vitalii Kleshchevnikov,

Pietro De Angeli, Petra Páleńıková, Anton Khodak, Vladimir Kiselev, Michael Kosicki, An-

drew R. Bassett, Heather Harding, Yaron Galanty, Francisco Muñoz-Mart́ınez, Emmanouil

Metzakopian, Stephen P. Jackson, and Leopold Parts. Predicting the mutations generated by

repair of cas9-induced double-strand breaks. Nature Biotechnology, 37:64 EP –, Nov 2018.

[3] Elizabeth S. Allman, Laura S. Kubatko, and John A. Rhodes. Split scores: A tool to quantify

phylogenetic signal in genome-scale data. Systematic Biology, 66(4):620–636, 2017.

[4] Hans L. Bodlaender, Mike R. Fellows, and Tandy J. Warnow. Two strikes against perfect

phylogeny. In W. Kuich, editor, Automata, Languages and Programming, pages 273–283,

Berlin, Heidelberg, 1992. Springer Berlin Heidelberg.

[5] Joseph H. Camin and Robert R. Sokal. A method for deducing branching sequences in phy-

logeny. Evolution, 19(3):311–326, 1965.

[6] L. L. Cavalli-Sforza and A. W. F. Edwards. Phylogenetic analysis: Models and estimation

procedures. Evolution, 21(3):550–570, 1967.

[7] Michelle Chan, Zachary D Smith, Stefanie Grosswendt, Helene Kretzmer, Thomas Norman,

Britt Adamson, Marco Jost, Jeffrey J Quinn, Dian Yang, Alexander Meissner, and Jonathan S

Weissman. Molecular recording of mammalian embryogenesis. bioRxiv, 2018.

[8] Wei Chen, Aaron McKenna, Jacob Schreiber, Yi Yin, Vikram Agarwal, William Stafford

Noble, and Jay Shendure. Massively parallel profiling and predictive modeling of the outcomes

of crispr/cas9-mediated double-strand break repair. bioRxiv, 2018.

[9] Guohui Chuai, Hanhui Ma, Jifang Yan, Ming Chen, Nanfang Hong, Dongyu Xue, Chi Zhou,

Chenyu Zhu, Ke Chen, Bin Duan, Feng Gu, Sheng Qu, Deshuang Huang, Jia Wei, and Qi Liu.

Deepcrispr: optimized crispr guide rna design by deep learning. Genome Biology, 19(1):80,

Jun 2018.

[10] Douglas E. Critchlow, Dennis K. Pearl, and Chunlin Qian. The triples distance for rooted

bifurcating phylogenetic trees. Systematic Biology, 45(3):323–334, 1996.

12

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (whichthis version posted October 10, 2019. ; https://doi.org/10.1101/800078doi: bioRxiv preprint

https://doi.org/10.1101/800078
http://creativecommons.org/licenses/by-nc-nd/4.0/

[11] U Deppe, E Schierenberg, T Cole, C Krieg, D Schmitt, B Yoder, and G von Ehrenstein. Cell

lineages of the embryo of the nematode caenorhabditis elegans. Proceedings of the National

Academy of Sciences, 75(1):376–380, 1978.

[12] James S. Farris. Methods for computing wagner trees. Systematic Zoology, 19(1), 1970.

[13] J Felsenstein. Phylip (phylogeny inference package). Distributed by the author. Department

of Genome Sciences, University of Washington, Seattle.

[14] Joseph Felsenstein. Evolutionary trees from dna sequences: A maximum likelihood approach.

Journal of Molecular Evolution, 17(6):368–376, Nov 1981.

[15] Joseph Felsenstein. Confidence limits on phylogenies: An approach using the bootstrap.

39(4):783–791, 1985.

[16] Walter Fitch. Toward defining the course of evolution: Minimum change for a specific tree

topology. Systematic Zoology, 20(4), 1971.

[17] Walter M. Fitch and Emanuel Margoliash. Construction of phylogenetic trees. Science,

155(3760):279–284, 1967.

[18] O Gascuel and M Steel. Neighbor-joining revealed. Molecular Biology and Evolution,

23(11):1997–2000, 2006.

[19] Nicole M. Gaudelli, Alexis C. Komor, Holly A. Rees, Michael S. Packer, Ahmed H. Badran,

David I. Bryson, and David R. Liu. Programmable base editing of a*t to g*c in genomic dna

without dna cleavage. Nature, 551:464 EP –, Oct 2017. Article.

[20] Jason M. Gehrke, Oliver Cervantes, M. Kendell Clement, Yuxuan Wu, Jing Zeng, Daniel E.

Bauer, Luca Pinello, and J. Keith Joung. An apobec3a-cas9 base editor with minimized

bystander and off-target activities. Nature Biotechnology, 36:977 EP –, Jul 2018.

[21] Luke A. Gilbert, Max A. Horlbeck, Britt Adamson, Jacqueline E. Villalta, Yuwen Chen,

Evan H. Whitehead, Carla Guimaraes, Barbara Panning, Hidde L. Ploegh, Michael C. Bassik,

Lei S. Qi, Martin Kampmann, and Jonathan S. Weissman. Genome-scale crispr-mediated

control of gene repression and activation. Cell, 159(3):647 – 661, 2014.

[22] M Grotschel, A Martin, and R Weismanel. The steiner tree packing problem in vlsi design.

Mathematical Programming, 78:265–281, 1997.

[23] LLC Gurobi Optimization. Gurobi optimizer reference manual, 2018.

[24] Dan Gusfield. Efficient algorithms for inferring evolutionary trees. Networks, 21(1):19–28,

1991.

13

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (whichthis version posted October 10, 2019. ; https://doi.org/10.1101/800078doi: bioRxiv preprint

https://doi.org/10.1101/800078
http://creativecommons.org/licenses/by-nc-nd/4.0/

[25] Dan Gusfield. The multi-state perfect phylogeny problem with missing and removable data:

Solutions via integer-programming and chordal graph theory. Journal of Computational Bi-

ology, 17(3):383–399, 2010.

[26] Gaelen T. Hess, Laure Frésard, Kyuho Han, Cameron H. Lee, Amy Li, Karlene A. Cimprich,

Stephen B. Montgomery, and Michael C. Bassik. Directed evolution using dcas9-targeted

somatic hypermutation in mammalian cells. Nature Methods, 13:1036 EP –, Oct 2016. Article.

[27] John P. Huelsenbeck and Fredrik Ronquist. Mrbayes: Bayesian inference of phylogenetic trees.

Bioinformatics, 17(8):754–755, 2001.

[28] John P. Huelsenbeck, Fredrik Ronquist, Rasmus Nielsen, and Jonathan P. Bollback. Bayesian

inference of phylogeny and its impact on evolutionary biology. Science, 294(5550):2310–2314,

2001.

[29] Marco Jost, Yuwen Chen, Luke A. Gilbert, Max A. Horlbeck, Lenno Krenning, Grégory

Menchon, Ankit Rai, Min Y. Cho, Jacob J. Stern, Andrea E. Prota, Martin Kampmann,

Anna Akhmanova, Michel O. Steinmetz, Marvin E. Tanenbaum, and Jonathan S. Weissman.

Combined crispri/a-based chemical genetic screens reveal that rigosertib is a microtubule-

destabilizing agent. Molecular Cell, 68(1):210 – 223.e6, 2017.

[30] Marco Jost, Daniel A. Santos, Reuben A. Saunders, Max A. Horlbeck, John S. Hawkins,

Sonia M. Scaria, Thomas M. Norman, Jeffrey A. Hussmann, Christina R. Liem, Carol A.

Gross, and Jonathan S. Weissman. Titrating gene expression with series of systematically

compromised crispr guide rnas. bioRxiv, 2019.

[31] Reza Kalhor, Kian Kalhor, Leo Mejia, Kathleen Leeper, Amanda Graveline, Prashant Mali,

and George M. Church. Developmental barcoding of whole mouse via homing crispr. Science,

361(6405), 2018.

[32] Reza Kalhor, Prashant Mali, and George M. Church. Rapidly evolving homing crispr barcodes.

Nature Methods, 14:195 EP –, Dec 2016. Article.

[33] Hui Kwon Kim, Seonwoo Min, Myungjae Song, Soobin Jung, Jae Woo Choi, Younggwang

Kim, Sangeun Lee, Sungroh Yoon, and Hyongbum (Henry) Kim. Deep learning improves

prediction of crispr-cpf1 guide rna activity. Nature Biotechnology, 36:239 EP –, Jan 2018.

[34] Motoo Kimura. The number of heterozygous nucleotide sites maintained in a finite population

due to steady flux of mutations. Genetics.

[35] Bryan Kolaczkowski and Joseph W. Thornton. Performance of maximum parsimony and

likelihood phylogenetics when evolution is heterogeneous. Nature, 431(7011):980–984, 2004.

14

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (whichthis version posted October 10, 2019. ; https://doi.org/10.1101/800078doi: bioRxiv preprint

https://doi.org/10.1101/800078
http://creativecommons.org/licenses/by-nc-nd/4.0/

[36] Alexis C. Komor, Yongjoo B. Kim, Michael S. Packer, John A. Zuris, and David R. Liu.

Programmable editing of a target base in genomic dna without double-stranded dna cleavage.

Nature, 533:420 EP –, Apr 2016.

[37] Rong Lu, Norma F. Neff, Stephen R. Quake, and Irving L. Weissman. Tracking single

hematopoietic stem cells in vivo using high-throughput sequencing in conjunction with vi-

ral genetic barcoding. Nature Biotechnology, 29:928 EP –, Oct 2011. Article.

[38] Aaron McKenna, Gregory M. Findlay, James A. Gagnon, Marshall S. Horwitz, Alexander F.

Schier, and Jay Shendure. Whole organism lineage tracing by combinatorial and cumulative

genome editing. Science, 2016.

[39] Aaron McKenna and James A. Gagnon. Recording development with single cell dynamic

lineage tracing. Development, 146(12), 2019.

[40] R Mihaescu, D Levy, and L Pachter. Why neighbor-joining works. arXiv, 2006.

[41] Morgan N. Price, Paramvir S. Dehal, and Adam P. Arkin. Fasttree: Computing large minimum

evolution trees with profiles instead of a distance matrix. Molecular Biology and Evolution,

26(7):1641–1650, 2009.

[42] Bushra Raj, Daniel E. Wagner, Aaron McKenna, Shristi Pandey, Allon M. Klein, Jay Shen-

dure, James A. Gagnon, and Alexander F. Schier. Simultaneous single-cell profiling of lineages

and cell types in the vertebrate brain. Nature Biotechnology, 36:442 EP –, Mar 2018.

[43] D.F. Robinson and L.R. Foulds. Comparison of phylogenetic trees. Mathematical Biosciences,

53(1):131 – 147, 1981.

[44] N Saitou and M Nei. The neighbor-joining method: a new method for reconstructing phylo-

genetic trees. Molecular Biology and Evolution, 4(4):406–425, 1987.

[45] Irepan Salvador-Mart́ınez, Marco Grillo, Michalis Averof, and Maximilian J Telford. Is it

possible to reconstruct an accurate cell lineage using crispr recorders? bioRxiv, 2018.

[46] Gur Sevillya, Zeev Frenkel, and Sagi Snir. Triplet maxcut: a new toolkit for rooted supertree.

Methods in Ecology and Evolution, 7(11):1359–1365, 2016.

[47] Bastiaan Spanjaard, Bo Hu, Nina Mitic, Pedro Olivares-Chauvet, Sharan Janjuha, Nikolay

Ninov, and Jan Philipp Junker. Simultaneous lineage tracing and cell-type identification using

crispr-cas9-induced genetic scars. Nature Biotechnology, 36:469 EP –, Apr 2018.

[48] Michael Steel. The complexity of reconstructing trees from qualitative characters and subtrees.

Journal of Classification, 9(1):91–116, Jan 1992.

15

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (whichthis version posted October 10, 2019. ; https://doi.org/10.1101/800078doi: bioRxiv preprint

https://doi.org/10.1101/800078
http://creativecommons.org/licenses/by-nc-nd/4.0/

[49] J.E. Sulston, E. Schierenberg, J.G. White, and J.N. Thomson. The embryonic cell lineage of

the nematode caenorhabditis elegans. Developmental Biology, 100(1):64 – 119, 1983.

[50] Fumio Tajima. Infinite-allele model and infinite-site model in population genetics. Journal of

Genetics, 75(1):27, Apr 1996.

[51] Jeffrey P. Townsend. Profiling phylogenetic informativeness. Systematic Biology, 56(2):222–

231, 2007.

[52] Michel Verleysen and Damien François. The curse of dimensionality in data mining and time

series prediction. pages 758–770, 2005.

[53] Daniel E. Wagner, Caleb Weinreb, Zach M. Collins, James A. Briggs, Sean G. Megason, and

Allon M. Klein. Single-cell mapping of gene expression landscapes and lineage in the zebrafish

embryo. Science, 2018.

[54] J. F. Weng, I. Mareels, and D. A. Thomas. Probability steiner trees and maximum parsimony

in phylogenetic analysis. Journal of Mathematical Biology, 64(7):1225–1251, Jun 2012.

[55] Zhenxiang Xi, Liang Liu, and Charles C. Davis. The Impact of Missing Data on Species Tree

Estimation. Molecular Biology and Evolution, 33(3):838–860, 11 2015.

[56] Hui Yang, Yixue Li, Erwei Zuo, Yidi Sun, Wu Wei, Tanglong Yuan, Wenqin Ying, and Lars M.

Steinmetz. Base editing generates substantial off-target single nucleotide variants. bioRxiv,

2018.

[57] Ziheng Yang and Bruce Rannala. Molecular phylogenetics: principles and practice. Nature

Reviews Genetics, 13:303 EP –, Mar 2012. Review Article.

[58] Grace X. Y. Zheng, Jessica M. Terry, Phillip Belgrader, Paul Ryvkin, Zachary W. Bent, Ryan

Wilson, Solongo B. Ziraldo, Tobias D. Wheeler, Geoff P. McDermott, Junjie Zhu, Mark T.

Gregory, Joe Shuga, Luz Montesclaros, Jason G. Underwood, Donald A. Masquelier, Ste-

fanie Y. Nishimura, Michael Schnall-Levin, Paul W. Wyatt, Christopher M. Hindson, Rajiv

Bharadwaj, Alexander Wong, Kevin D. Ness, Lan W. Beppu, H. Joachim Deeg, Christopher

McFarland, Keith R. Loeb, William J. Valente, Nolan G. Ericson, Emily A. Stevens, Jerald P.

Radich, Tarjei S. Mikkelsen, Benjamin J. Hindson, and Jason H. Bielas. Massively parallel

digital transcriptional profiling of single cells. Nature Communications, 8:14049 EP –, Jan

2017. Article.

[59] Leonid Zosin and Samir Khuller. On directed steiner trees. In Proceedings of the Thirteenth

Annual ACM-SIAM Symposium on Discrete Algorithms, SODA ’02, pages 59–63, Philadel-

phia, PA, USA, 2002. Society for Industrial and Applied Mathematics.

16

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (whichthis version posted October 10, 2019. ; https://doi.org/10.1101/800078doi: bioRxiv preprint

https://doi.org/10.1101/800078
http://creativecommons.org/licenses/by-nc-nd/4.0/

Acknowledgments

The authors would like to thank the members of the Yosef and Weissman labs for their helpful

discussions in the development of this project. For sequencing, the authors thank Eric Chow and the

UCSF CAT for their help. This work was funded by NIH-NIAID grant U19 AI090023 (N.Y.), NIH

R01 DA036858 and 1RM1 HG009490-01 (J.S.W.), F32 GM125247 (J.J.Q), and Chan-Zuckerberg

Initiative 2018-184034. J.S.W. is a Howard Hughes Medical Institute Investigator. J.A.H. is the

Rebecca Ridley Kry Fellow of the Damon Runyon Cancer Research Foundation (DRG-2262-16).

M.M.C. is a Gordon and Betty Moore fellow of the Life Sciences Research Foundation.

Author Contributions

M.G.J., A.K., J.J.Q, N.Y, and J.S.W. contributed to the design of the algorithm, interpretation

of benchmarking results, and writing of the manuscript. A.K., C.X., and N.Y. conceived of the

multi-state greedy algorithm and Steiner-Tree adaptation for the phylogeny inference problem.

A.K. and M.G.J. implemented the algorithms and all code relevant to the project. M.G.J. and

A.K. conducted all stress tests on synthetic datasets. R.W. and A.K. conducted experiments and

theoretical work regarding the greedy heuristics robustness in lineage tracing experiments. J.J.Q.

generated the in vitro reference dataset. M.G.J., J.J.Q, M.C, and J.A.H. designed the processing

pipeline for empirical lineage tracing data. M.G.J. and J.J.Q processed the reference dataset and

M.G.J. reconstructed trees.

Author Information

Data will be deposited into GEO prior to publication. All software (including processing scripts) is

available on our public github repository: www.github.com/YosefLab/Cassiopeia. The authors

declare no competing interests.

17

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (whichthis version posted October 10, 2019. ; https://doi.org/10.1101/800078doi: bioRxiv preprint

www.github.com/YosefLab/Cassiopeia
https://doi.org/10.1101/800078
http://creativecommons.org/licenses/by-nc-nd/4.0/

1 Figure Legends1

Figure 1: A generalized approach to lineage tracing & lineage reconstruction. (a) The2

workflow of a lineage tracing experiment. First, cells are engineered with lineage tracing machin-3

ery, namely Cas9 that cuts a genomic target site; the target site accrues heritable, Cas9-induced4

indels (“character states”). Next, the indels are read off from single cells (e.g. by scRNA-seq)5

and summarized in a “character matrix”, where rows represent cells, columns represent individ-6

ual target sites (or “characters”) and values represent the observed indel (or “character state”).7

Finally, the character matrix is used to infer phylogenies by one of various methods. (b) The Cas-8

siopeia framework. Cassiopeia takes as input a “character matrix,” summarizing the mutations9

seen at heritable target sites across cells. Cassiopeia-Hybrid merges two novel algorithms: the10

“greedy” (Cassiopeia-Greedy) and “Steiner-Tree / Integer Linear Programming” (Cassiopeia-ILP)11

approaches. First, the greedy phase identifies mutations that likely occurred early in the lineage12

and splits cells recursively into groups based on the presence or absence of these mutations. Next,13

when these groups reach a predefined threshold, we infer Steiner-Trees, finding the tree of minimum14

weight connecting all observed cell states across all possible evolutionary histories in a “potential15

graph”, using Integer Linear Programming (ILP). Finally, these trees (corresponding to the maxi-16

mum parsimony solutions for each group) are returned and merged into a complete phylogeny.17

18

Figure 2: Cassiopeia algorithms outperform other phylogenetic reconstruction meth-19

ods on simulated lineages. Accuracy is compared between five algorithms (Cassiopeia-Greedy,20

-ILP, and -Hybrid algorithms as well as Neighbor-Joining and Camin-Sokal) on 400 cells. Phylogeny21

reconstruction accuracy is assessed with the Triplets correct statistic across several experimental22

regimes: (a) the number of characters; (b) mutation rate (i.e. Cas9 cutting rate); (c) depth of the23

tree (or length of the experiment); (d), the number of states per character (i.e. number of possible24

indel outcomes); and (e) the dropout rate. Dashed lines represent the default value for each stress25

test. Between 10 and 50 replicate trees were reconstructed, depending on the stability of triplets26

correct statistic and overall runtime. Standard error over replicates is represented by shaded area.27

28

Figure 3: An in vitro Reference Experiment.(a) A reference lineage tracing dataset was29

generated using the technology proposed in Chan et al. [7] to human cells cultured in vitro for30

∼ 15 generations. A total of 34, 557 cells were analyzed after filtering and error correction. (b-e)31

Summary of relevant lineage tracing parameters for each clonal population in the experiment: (b)32

the number of characters per clone; (c) number of states per target site; (d) the estimated muta-33

tion rate per target site; and (e) median dropout per target site. Gray shading denotes parameter34

regimes tested in simulations and red-dashed lines denote the default values for each synthetic35

benchmarks.36

37

18

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (whichthis version posted October 10, 2019. ; https://doi.org/10.1101/800078doi: bioRxiv preprint

https://doi.org/10.1101/800078
http://creativecommons.org/licenses/by-nc-nd/4.0/

Figure 4: Cassiopeia can reconstruct high-resolution phylogenetic trees from em-1

pirical lineage tracing data. The full phylogenetic tree for Clone 3 (a), consisting of 7,2892

cells, was reconstructed using Cassiopeia-Hybrid (with priors), and is displayed. The phylogram3

represents cell-cell relationships, and each cell is colored by sample ID at the first split (plate 0 or4

1). The character matrix is displayed with each unique character state (or ”indel”) represented5

by distinct colors. (Light gray represents uncut sites; white represents missing values.) Of these6

7,289 cells, 96% were uniquely tagged by their character states. (b-c) Nested, expanded views of7

the phylogram and character matrices. As expected, Cassiopeia correctly relates cells with similar8

character states, and closely related cells are found within the same culture plate.9

10

Figure 5: Cassiopeia builds highly accurate trees from large empirical datasets. The11

consistency between tree reconstructions are evaluated with respect to the first split, represented12

in (a). The Mean Majority Vote (b) and the Meta Purity test (c) were used for Cassiopeia-Hybrid13

and -Greedy (both with or without priors) and Neighbor-Joining. The statistics are plotted as a14

function of the number of clades at the depth of the test (i.e. the number of clades created by15

a horizontal cut at a given depth). All Cassiopeia approaches consistently outperform Neighbor-16

Joining by both metrics.17

18

Figure 6: Generalizing Cassiopeia & future design principles of CRISPR-enabled19

lineage tracers. (a) Cassiopeia generalizes to alternative lineage tracing methods, as illustrated20

with the analysis of data from GESTALT technology [38, 42]). In a comparison of parsimony21

across Camin-Sokal, Neighbor-Joining, and Cassiopeia’s methods, the Steiner-Tree approach con-22

sistently finds more parsimonious (i.e more optimal) solutions. (b) Exploring information capacity23

of recorders with base-editors. A theoretical base-editor was simulated for 400 cells and recon-24

structions with Cassiopeia-Hybrid, with and without priors. We compared the accuracy of the25

reconstructions to the simulated tree using the triplets correct statistic. We describe the perfor-26

mance of Cassiopeia-Hybrid as the number of characters was increased (and consequently number27

of states was decreased).28

29

Figure S1: Evaluation of the stability of the maximum neighborhood size parame-30

ter. The maximum neighborhood size is a central parameter provided by the user when inferring31

the potential graph necessary as input to the Steiner-Tree solver (see methods). Here, we bench-32

mark the stability of solutions with respect to several maximum neighborhood sizes using 10 trees33

with default parameters (40 characters, 40 states, 2.5% per-character mutation rate, depth of 11,34

and an average dropout rate of 17% per character). We quantify both the reconstruction accuracy35

with respect to the reconstructions found with the largest maximum neighborhood size (14, 00036

nodes) which displays a saturation at around 9, 000 nodes. To provide intuition for the accuracy of37

19

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (whichthis version posted October 10, 2019. ; https://doi.org/10.1101/800078doi: bioRxiv preprint

https://doi.org/10.1101/800078
http://creativecommons.org/licenses/by-nc-nd/4.0/

the potential graph (represented as the maximum distance to the ‘latest common ancestor‘ (LCA)1

which is dynamically solved for, given a maximum neighborhood size) we display the LCA allowed2

for each maximum neighborhood size parameter. In both figures, we display lines connecting the3

mean values; shaded regions are the standard deviation of the measurements across the 10 repli-4

cates.5

6

Figure S2: Observed Frequency of Mutations is Measure of True Mutation Count. The7

true number of occurrences of a mutation is estimated well by the observed frequency at leaves.8

We use a Linear Least Squares Estimate to quantify the relationship between the expected number9

of times a mutation occurred given the observed frequency at the leaves (Eq. 3). Using various10

rates for character and indel mutation rates (p and q, respectively) we show that this relationship11

is negative (i.e. greater observed frequencies tend to correspond to mutations that occurred few12

times near the top of the phylogeny) for a range of biologically-relevant values.13

14

Figure S3: Precision of Cassiopeia-Greedy First Split. (a) The precision of greedy splits15

of 400 cells was measured with varying mutation rates and states per character, wihtout dropout.16

For each pair of parameters (number of states and mutation rate), we measure precision as a17

function of the conditional probability of the selected (character, state) pair and the frequency of18

that mutation observed in the 400 cells. (The conditional probability for state j, q(j) is defined as19

Pr(χ → j|χ mutates)). Precision was defined as the proportion of true positives in the greedy20

split (see Methods). Each point indicates a replicate (100 per plot) and the heat represents the21

precision. (b) The density histogram (smoothed using a kernel density estimation procedure) of22

all first-split precision statistics from Cassiopeia-Greedy on default simulations (i.e. 40 characters,23

40 states, 2.5% mutation rate, 11 generations, 400 cells, and 18% dropout rate). We measured a24

median precision of 0.99 across all default simulations.25

26

Figure S4: Benchmarking of parallel evolution on the greedy heuristic. The greedy27

heuristic, inspired by algorithms to solve the case of perfect phylogeny (see methods), is impacted28

by two factors: (1) the number of parallel evolution events (i.e. the same mutation occurs more29

than once in the experiment) and (2) the depth from the root these mutations occur at. Here,30

each line represents a series of experiments increasing the number of ‘double mutations‘ (i.e. the31

simplest case of parallel evolution where a mutation occurs exactly twice) where the ‘latest com-32

mon ancestor‘ (LCA) is a set depth from the root.33

34

Figure S5: Time complexity of lineage reconstruction approaches. Time complexity,35

as measured in seconds, of each algorithm tested in this manuscript is compared using simulated36

datasets ranging from 100 cells to 10,000 cells. Default settings for the simulations were used37

20

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (whichthis version posted October 10, 2019. ; https://doi.org/10.1101/800078doi: bioRxiv preprint

https://doi.org/10.1101/800078
http://creativecommons.org/licenses/by-nc-nd/4.0/

(0.025 mutation rate, 40 characters, 10 states, and 0.18 median dropout rate). Cassiopeia was1

tested using default parameters of a maximum neighborhood size of 3000, time to converge of2

one hour, and a greedy cutoff of 200 cells. Cassiopeia was tested using 5 threads and 20 threads,3

illustrating the advantage of parallelizing the reconstruction algorithm. ILP, which was only run4

until 500 cells due to the infeasibility of running on larger datasets, was allowed 10000s to converge5

on a maximum neighborhood size of 20,000 (the default settings). Neighbor-Joining could not6

reconstruct a tree for 10,000 cells within 4 days when the reconstruction was terminated.7

8

Figure S6: Determination of mutation rates used in simulation. We use an interpo-9

lation of the empirical indel distribution as input for the conditional probability of a state arising10

given a mutation. (a) A comparison of the empirical and ‘splined‘ indel distributions; a zoomed11

in version is provided for comparison at low probabilities. (b-c) A comparison of three metrics12

between an observed clone (clone 3) and a simulated clone using inferred parameters. We used the13

number of character, states, per-character mutation rate, and dropout probabilities inferred from14

the empirical data; the indel formation rates were calculated using a polynomial spline function.15

(b) measures the ‘minimum compatibility distance‘ for all pair-wise character combinations (see16

methods). (c) compares the number of observable states per cell. (d) compares the number of17

observable states per character.18

19

Figure S7 Triplets Correct Statistic. Schematic for the Triplets Correct statistic, the combi-20

natorial metric used to compare between trees. In this metric, we compare the relative orderings21

of three leaves between two trees (e.g. the “Ground Truth” and a reconstruction). There are four22

possible ways that a triplet could be ordered here, based on the relationship between each leaf23

and the Latest Common Ancestor (LCA) of the triplet. The statistic tallies the number of correct24

triplets and reports this value weighted by the depth of the LCA from the root.25

26

Figure S8: Unthresholded Triplets Correct. The Triplets Correct statistic reported for27

synthetic benchmarks presented in Figure 2 without removing triplets whose LCA-depth was sam-28

pled deeply enough (by default, a given triplet at depth D is only considered if a sufficient number29

of triplets at depth D is observed). Here, the effective threshold is 0.30

31

Figure S9 Parsimony of reconstructed trees of 400 cell simulated datasets. Parsimony32

scores (or number of evolutionary events) for each reconstructed network presented in Figure 233

were calculated and compared across phylogeny reconstruction methods. Results are presented for34

the number of characters, the mutation rate, tree depth, number of states and dropout rate for all35

five algorithms used in this study. Standard error is represented by shaded area.36

37

21

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (whichthis version posted October 10, 2019. ; https://doi.org/10.1101/800078doi: bioRxiv preprint

https://doi.org/10.1101/800078
http://creativecommons.org/licenses/by-nc-nd/4.0/

Figure S10: Benchmarking of lineage tracing algorithms on 1000 cell synthetic datasets.1

Phylogeny reconstruction algorithms were benchmarked on simulated trees consisting of 1,000 cells.2

The number of characters, character-wise mutation rate, length of experiment or tree depth, num-3

ber of states, and dropout rate were tested. Due to scalability issues, only greedy, hybrid, and4

neighbor-joining were tested. Standard error is represented by shaded area.5

6

Figure S11 Reconstruction accuracy under over-dispersed state distributions. The7

effect of the indel distribution (i.e. the relative propensity for a given indel outcome) was explored8

in various regimes using a mixture model. Here, the mixture model consisted of mixing the inferred9

indel distribution with a uniform distribution between 0 and 1.0 with some probability θ (i.e. when10

θ = 1.0, the indel distribution was uniform). In all simulations, we used default parameters for11

the simulated trees unless stated otherwise (40 characters, 40 states, depth of 11, median dropout12

rate of 17%, and a character mutation rate of 2.5%). (a) displays the results of all five algorithms13

over 400 samples. (b) displays results for simulations over 1000 samples for hybrid, greedy, and14

neighbor-joining methods. (c) Simulations for 400 samples using 10 states rather than 40 states15

per character. Dashed lines represent reconstructions performed with priors. (d) Simulations over16

400 samples and 40 states, comparing results with and without priors. Dashed lines represent17

reconstructions performed with priors.18

19

Figure S12 Benchmarking of greedy and hybrid algorithms on large experiments.20

Triplets correct is used to measure the accuracy of reconstructions using both hybrid and greedy21

algorithms on large trees (up to 50, 000 cells). Of note, hybrid and greedy have comparable results22

on larger trees, which remain accurate even in these massive regimes. In addition, the knowledge23

of prior probabilities of particular states confers a large increase in accuracy.24

25

26

Figure S13: Determination of the indel prior transformation function. The effect of27

incorporating the prior probabilities of mutation events into the greedy algorithm is explored using28

synthetic datasets. The exact mutation probabilities used for simulations are used during recon-29

struction (i.e. the mutations drawn during simulation). Five possible transformations f(ni,j), rep-30

resenting an approximation of the future penalty of not choosing this mutation (see methods) were31

tested for incorporation with the priors. The transformations were: (i) Identity (f(ni,j) = ni,j), (ii)32

Log2 (f(ni,j) = log2(ni,j)), (iii) None (f(ni,j) = 1), (iv) Lower Bound (f(ni,j) = min(ni,j ,
N

20.0)),33

and (v) 3
4 root (f(ni,j) = (ni,j)

3
4). ni,j denotes the number of cells which report the mutation34

j in character i and N is the total number of samples. To test these transformations, we evalu-35

ated the resulting tree accuracy via Triplets Correct. Standard error is represented by shaded area.36

37

22

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (whichthis version posted October 10, 2019. ; https://doi.org/10.1101/800078doi: bioRxiv preprint

https://doi.org/10.1101/800078
http://creativecommons.org/licenses/by-nc-nd/4.0/

Figure S14: Incorporation of priors into Cassiopeia. A comparison of tree accuracy when1

using priors for both the greedy-only method and Cassiopeia. We compared performance as we2

varied the number of characters per cell, the mutation rate per character, the length of the ex-3

periment, the number of states per character, and the amount of missing data. Standard error is4

represented by shaded area.5

6

Figure S15: Quality control metrics for the target site sequencing library process-7

ing pipeline. (a) schematizes the target site library that is output from the lineage tracing8

experiment as described in [7]. Cells consist of multiple target sites, each of which contains 39

separate & independently targeted cut sites. Each target site is indexed by an integration barcode10

(intBC) for phasing of mutations. Each cell contains roughly 5-20 target sites (and on average 9),11

as determined by the number of unique intBCs observed after sequencing and processing. Target12

sites are read off of RNA transcripts where many RNA transcripts can correspond to a single13

target site, and each transcript is read several times. (b-e) present quality control metrics after14

the processing pipeline. Cells are ranked by the number of UMIs they contain and plotted in (b);15

(c) contains the number of reads per UMI; (d) contains the number of UMI per intBC; (e) is the16

concordance between reads per cellBC and UMIs per cellBC.17

18

Figure S16: Processing Pipeline for the in vitro dataset. (a) describes a flowchart of19

the processing pipeline taking as input the raw FASTQs from a sequencing run and converting the20

observed reads into final trees. Cellranger “count” [58] is used to map reads to dummy transcrip-21

tome (junk sequence that nothing will align to), filter cells, and read off the 10x cell barcodes and22

UMIs. The resulting BAM file is then passed through a series of cell filtering, UMI error correc-23

tion, and allele mapping before becoming the final allele table that can be converted to character24

matrices for clone reconstruction. See methods for more detailed information for each step. (b-c)25

present additional summary statistics for the final allele table. (b) displays the number of cells per26

clone; (c) shows the median number of intBCs observed in each clone.27

28

Figure S17: Identification of doublets using intBCs. IntBCs are used to identify dou-29

blets. (a-b) report the ability to identify doublets arising from the same clone, referred to as30

“intra”-doublets; (c-d) report the ability to identify doublets arising from different clones, re-31

ferred to as “inter”-doublets. Doublets were simulated using the final allele table and 200 “intra”-32

and “inter”-doublets were created in each of 20 replicates. Precision-recall curves for intra- and33

inter-doublet detection methods are presented in (a) and (b), respectively. (c) and (d) present34

the F-measure (defined as the weighted harmonic mean between precision and recall) of detection35

methods for intra- and inter-doublets, respectively. Red-dashed lines denote the optimal decision36

rule for doublet detection. Standard error is represented by shaded area.37

23

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (whichthis version posted October 10, 2019. ; https://doi.org/10.1101/800078doi: bioRxiv preprint

https://doi.org/10.1101/800078
http://creativecommons.org/licenses/by-nc-nd/4.0/

1

Figure S18: Estimation of Prior Probabilities for Tree Reconstruction. Prior prob-2

abilities to be used during tree reconstruction can be determined from both a bulk assay and3

independent clonal populations. Prior probabilities of mutations were determined by calculating4

the proportion of unique intBCs that report a particular indel (see methods). The bulk assay5

consisted of several independent clones with non-overlapping intBCs grown over the course of 286

days. (a-c) report the correlation of indel formation probabilities between various time points in7

the bulk experiment. A strong correlation is observed between all time points: 7 and 14 (a), 148

and 28 (b) and 7 and 28 (c). Indel formation probabilities can also be calculated using the int-9

BCs from each clone as independent measurements. Using this method, (d) reports the correlation10

between this lineage-group specific probability calculation and the last time point of the bulk assay.11

12

Figure S19: Evaluation of algorithms on in vitro lineage tracing clones, First Split.13

Trees were reconstructed for the remaining clones in the in vitro dataset that consisted of more14

than 500 unique cell states. LG2, LG4, LG6, and LG8 passed this threshold and were reconstructed15

with Cassiopeia (with and without priors), greedy-only (with and without priors) and Neighbor-16

Joining. The statistics provided were taken with respect to the first split ID (see methods). For17

both Cassiopeia with and without priors, we used a cutoff of 200 cells and each instance of the ILP18

was allowed 5000s to converge on a maximum neighborhood size of 6000.19

20

Figure S20: Evaluation of algorithms on in vitro lineage tracing clones, Second Split.21

Trees were reconstructed for the remaining clones in the in vitro dataset that consisted of more22

than 500 unique cell states. LG2, LG4, LG6, and LG8 passed this threshold and were reconstructed23

with Cassiopeia (with and without priors), greedy-only (with and without priors) and Neighbor-24

Joining. The statistics provided were taken with respect to the second split ID (see methods). For25

both Cassiopeia with and without priors, we used a cutoff of 200 cells and each instance of the ILP26

was allowed 5000s to converge on a maximum neighborhood size of 6000.27

28

Figure S21: Parsimony scores from reconstructions of the GESTALT datasets. (a)29

Raw and (b) normalized parsimony scores for the parsimony scores from the GESTALT datasets.30

Camin-Sokal, Neighbor-Joining, Cassipeia-Greedy, -Hybrid, and -ILP were run on datasets from31

Raj et al [42] and McKenna et al [38]. Raw parsimony scores are calculated as the number mu-32

tations present in a phylogeny (summing over the mutations along every edge of the tree). The33

normalized scores correspond to z-scores for each dataset.34

35

Figure S22: “Phased Recorder” leverages variability across target sites. (a) Design36

concept of the “Phased Recorder.” (a) We simulated a “phased” editor, where each character is37

24

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (whichthis version posted October 10, 2019. ; https://doi.org/10.1101/800078doi: bioRxiv preprint

https://doi.org/10.1101/800078
http://creativecommons.org/licenses/by-nc-nd/4.0/

mutated at variable rates. (b-c) We varied the amount each character could very across 5 differ-1

ent experiments and simulated using two different indel formation rate models. Each cell had 502

characters with 10 states per character and a mean dropout of 10%. The amount of mutation3

variability is described with the ratio between the maximum and minimum mutation rates (µmax

µmin
).4

Standard error is represented by shaded area. (b) Model 1 consists of drawing indels from a neg-5

ative binomial distribution NB(5, 0.5) where there are few “rare” indels. (c) Model 2 consists of6

drawing indels from the splined distribution of the empirical dataset’s indel formation rates, as7

used in other synthetic benchmarks.8

25

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (whichthis version posted October 10, 2019. ; https://doi.org/10.1101/800078doi: bioRxiv preprint

https://doi.org/10.1101/800078
http://creativecommons.org/licenses/by-nc-nd/4.0/

Methods1

In vitro lineage tracing experiment2

Plasmid design and cloning3

The Cas9-mCherry lentivector, PCTXX (to be added to Addgene), was designed for stable, con-4

stitutive expression of enzymatically active Cas9, driven by the viral SFFV promoter, insulated5

with a minimal universal chromatin opening element (minUCOE), and tagged with C-terminal,6

self-cleaving P2A-mCherry. PCTXX is derived from pMH0001 (Addgene Cat#85969, active7

Cas9) with the BFP tag exchanged with mCherry. The P2A-mCherry tag was PCR amplified8

from pHR-SFFV-KRAB-dCas9-P2A-mCherry (Addgene Cat #60954; forward: GAGCAACG-9

GCAGCAGCGGATCCGGAGCTACTAACTTCAG; reverse: ATATCAAGCTTGCATGCCTGCAGGTC-10

GACTTACTACTTGTACAGCTCGTCCATGC) and inserted using Gibson Assembly (NEB) into11

SbfI/BamHI-digested pMH0001 (active Cas9). Resulting plasmid was used for lentiviral produc-12

tion as described below.13

14

The Target Site lentivector, PCT48 (to be added to Addgene), was derived from the reverse15

lentivector PCT5 (to be added to Addgene) containing GFP driven by the EF1a promoter. The16

sequence of the 10X amplicon with most common polyA location is the following:17

18

AATCCAGCTAGCTGTGCAGCNNNNNNNNNNNNNNATTCAACTGCAGTAATGCTACCT19

CGTACTCACGCTTTCCAAGTGCTTGGCGTCGCATCTCGGTCCTTTGTACGCCGAAAA20

ATGGCCTGACAACTAAGCTACGGCACGCTGCCATGTTGGGTCATAACGATATCTCTG21

GTTCATCCGTGACCGAACATGTCATGGAGTAGCAGGAGCTATTAATTCGCGGAGGAC22

AATGCGGTTCGTAGTCACTGTCTTCCGCAATCGTCCATCGCTCCTGCAGGTGGCCTA23

GAGGGCCCGTTTAAACCCGCTGATCAGCCTCGACTGTGCCTTCTAGTTGCCAGCCAT24

CTGTTGTTTGCCCCTCCCCCGTGCCTTCCTTGACCCTGGAAGGTGCCACTCCCACTG25

TCCTTTCCTAATAAAAAAAAAAAAAAAAAAAAAAA26

27

where N denotes our 14bp random integration barcode. PCT5 was digested with SfiI and EcoRI28

within the 3’UTR of GFP. The Target Site sequence was ordered as a DNA fragment (gBlock,29

IDT DNA) containing three Cas9 cut-sites and a high diversity, 14-basepair randomer (integration30

barcode, or intBC). The fragment was PCR amplified with primers containing Gibson assembly31

arms compatible with SfiI/EcoRI-digested PCT5 (forward: GATGAGCTCTACAAATAATTAAT-32

TAAGAATTCGTCACGAATCCAGCTAGCTGT; reverse: GGTTTAAACGGGCCCTCTAGGC-33

CACCTGCAGGAGCGATGG). The amplified Target Site fragment was inserted into the digested34

PCT5 backbone using Gibson Assembly. The assembled lentivector library was transformed into35

26

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (whichthis version posted October 10, 2019. ; https://doi.org/10.1101/800078doi: bioRxiv preprint

https://doi.org/10.1101/800078
http://creativecommons.org/licenses/by-nc-nd/4.0/

MegaX competent bacterial cells (Thermo Fisher) and grown in 1L of LB with carbenicillin at1

100 µg/mL. Lentivector plasmid was recovered and purified by GigaPrep (Qiagen), and used for2

high-diversity lentiviral production as described below.3

4

The triple-sgRNA-BFP-PuroR lentivector, PCT61 (to be added to Addgene), is derived from5

pBA392 (to be added to Addgene) as previously described [1, 29] containing three sgRNA cas-6

settes driven by distinct U6 promoters and constitutive BFP and puromycin-resistance markers7

for selection. Importantly, the three PCT61 sgRNAs are complementary to the three cut-sites in8

the PCT48 Target Site. To slow the cutting kinetics of the sgRNAs to best match the timescale9

involved in the in vitro lineage tracing experiments [7], the sgRNAs contain precise single-basepair10

mismatches that decrease their avidity for the cognate cut-sites [21]. The triple-sgRNA lentivector11

was cloned using four-way Gibson assembly as described in [29]. Resulting plasmid was used for12

lentiviral production as described below.13

Cell culture, DNA transfections, viral preparation, and cell line engineer-14

ing15

A549 cells (human lung adenocarcinoma line, ATCC CCL-185) and HEK293T were maintained in16

Dulbecco’s modified eagle medium (DMEM, Gibco) supplemented with 10% FBS (VWR Life17

Science Seradigm), 2 mM glutamine, 100 units/mL penicillin, and 100 µg/mL streptomycin.18

Lentivirus was produced by transfecting HEK293T cells with standard packaging vectors and19

TransIT-LTI transfection reagent (Mirus) as described in ([1]). Target Site (PCT48) lentiviral20

preparations were concentrated 10-fold using Lenti-X Concentrator (Takara Bio). Viral prepara-21

tions were frozen prior to infection. Triple-sgRNA lentiviral preparations were titered and diluted22

to a concentration to yield approximately 50% infection rate.23

24

To construct the lineage tracing-competent cell line, A549 cells were transduced by serial lentiviral25

infection with the three lineage tracing components: (1) Cas9, (2) Target Site, and (3) triple-26

sgRNAs. First, A549 cells were transduced by Cas9 (mCherry) lentivirus and mCherry+ cells27

were selected to purity by fluorescence-activated cell sorting on the BD FACS Aria II. Second,28

A549-Cas9 cells were transduced by concentrated Target Site (GFP) lentivirus and GFP+ cells29

were selected by FACS; after sorting, Target Site infection and sorting were repeated two more30

times for a total of three serial lentiviral transfections, sorting for cells with progressively higher31

GFP signal after each infection. This strategy of serial transfection with concentrated lentivirus32

yielded cells with high copy numbers of the Target Site, which were confirmed by quantitative33

PCR. Third, A549 cells with Cas9 and Target Site were transduced by titered triple-sgRNA (BFP-34

PuroR) lentivirus and selected as described below.35

27

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (whichthis version posted October 10, 2019. ; https://doi.org/10.1101/800078doi: bioRxiv preprint

https://doi.org/10.1101/800078
http://creativecommons.org/licenses/by-nc-nd/4.0/

In vitro lineage tracing experiment, single-cell RNA-seq library prepa-1

ration, and sequencing2

One day following triple-sgRNA infection, cells were trypsinized to a single-cell suspension and3

counted using an Accuri cytometer (BD Biosciences). Approximately 25 cells were plated in a4

single well of a 96-well plate. Seven days post-infection, cells were trypsinized and split evenly5

into two wells of a 96-well plate. Cells stably transduced by triple-sgRNA lentivirus were selected6

by adding puromycin at 1.5 µg/mL on days 9 and 11 post-infection; puromycin-killed cells were7

removed by washing the plate with fresh medium. After 14 days, cells were trypsinized and split8

evenly for a second time into four wells of a 6-well plate. Finally, after 21 days in total, cells from9

the four wells were trypisinized to a single-cell suspension and collected.10

11

Cells were washed with PBS with 0.04% w/v bovine serum albumin (BSA, New England Bio-12

labs), filtered through 40 µm FlowMi filter tips filter tips (Bel-Art), and counted according to13

the 10x Genomics protocol. Approximately 14,000 cells per sample were loaded (expected yield:14

approximately 10,000 cells per sample) into the 10x Genomics Chromium Single Cell 3’ Library15

and Gel Bead Kit v2, and cDNA was reverse-transcribed, amplified, and purified according to the16

manufacturer’s protocol. Resulting cDNA libraries were quantified by BioAnalyzer, yielding the17

expected size distribution described in the manufacturer’s protocol.18

19

To prepare the Target Site amplicon sequencing library, resulting amplified cDNA libraries were20

further amplified with custom, Target Site-specific primers containing P5/P7 Illumina adapters and21

sample indices (forward: CAAGCAGAAGACGGCATACGAGATXXXXXXXXGTCTCGTGGGCTCG-22

GAGATGTGTATAAGAGACAGAATCCAGCTAGCTGTGCAGC; reverse: CAAGCAGAAGACG-23

GCATACGAGATXXXXXXXXGTCTC GTGGGCTCGGAGATGTGTATAAGAGACAGGCATG-24

GACGAGCTGTACAAGT; “X” denotes sample indices). PCR amplification was performed using25

Kapa HiFi HotStart ReadyMix, as in [1], according to the following program: melting at 95oC for26

3 minutes, then 14 cycles at 98oC for 15 seconds and 70oC for 20 seconds. Approximately 12 fmol27

of template cDNA were used per reaction; amplification was performed in quadruplicate to avoid28

PCR-induced library biases, such as jack-potting. PCR products were re-pooled and purified by29

SPRI bead selection at 0.9x ratio and quantified by BioAnalyzer.30

31

Target Site amplicon libraries were sequenced on the Illumina NovaSeq S2 platform. Due to32

the low sequence complexity for the Target Site library, a phiX genomic DNA library was spiked in33

at approximately 50% for increased sequence diversity. The 10x cell barcode and unique molecular34

identifier (UMI) sequences were read first (R1: 26 cycles) and the Target Site sequence was read35

second (R2: 300 cycles); sample identities were read as indices (I1 and I2: 8 cycles, each). Over36

550M sequencing clusters passed filter and were processed as described below.37

28

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (whichthis version posted October 10, 2019. ; https://doi.org/10.1101/800078doi: bioRxiv preprint

https://doi.org/10.1101/800078
http://creativecommons.org/licenses/by-nc-nd/4.0/

Processing Pipeline1

Read Processing2

Each target site was sequenced using the Illumina Nova-seq platform, producing 300bp long-read3

sequences. The Fastq’s obtained were quantitated using 10x’s cellranger suite, which simultane-4

ously corrects cell barcodes by comparing against a whitelist of 10x’s approved cell barcodes.5

6

For each cell, a consensus sequence for each unique molecule identifier (UMI) was produced by7

collapsing similar sequences, defined by those sequences differing by at most one Levenshtein dis-8

tance. A directed graph is constructed, where sequences with identical UMI’s are connected to9

one another if the sequences themselves differ by at most one Levenshtein distance. Then, UMI’s10

in this network are collapsed onto UMI’s that have greater than or equal number of reads. This11

produces a collection of sequences indexed by the cell barcode and UMI information (i.e. there is12

a unique sequence associated with each UMI).13

14

Before aligning all sequences to the reference, preliminary quality control is performed. Specif-15

ically, in cases where UMI’s in a given cell still have not been assigned a consensus sequence, the16

sequence with the greatest number of reads is chosen. Cells are then filtered based on the number17

of reads and UMIs observed, and finally a filtered file in Fastq format returned.18

Allele Calling19

Alignment is performed with Emboss’s Water local alignment algorithm. Optimal parameters20

were found by performing a grid search of gap open and gap extend parameters on a set of 1,00021

simulated sequences, comparing a global and local alignment strategy. We found a gap open22

penalty of 20.0 and a gap extension penalty of 1.0 produced optimal alignments. The “indels”23

(insertions and deletions resulting from the Cas9 induced double-strand break) at each cut site in24

the sequences are obtained by parsing the cigar string from the alignments. To resolve possible25

redundancies in indels resulting from Cas9 cutting, the 5’ and 3’ flanking 5-nucleotide context is26

reported for each indel.27

UMI Error Correction28

To correct errors in the UMI sequence either introduced during sequencing, PCR preparation, or29

data processing, we leverage the allele information. UMIs are corrected within groups of identical30

cell barcode-integration barcode pairs (i.e. we assume that only UMIs encoding for the same intBC31

in a given cell can be corrected). We reason that ideally, for a given integration barcodes, a cell32

will only report one sequence, or allele. Within these “equivalence classes,” UMIs that differ by at33

most 1 Levenshtein distance (although this number can be user-defined) are corrected towards the34

29

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (whichthis version posted October 10, 2019. ; https://doi.org/10.1101/800078doi: bioRxiv preprint

https://doi.org/10.1101/800078
http://creativecommons.org/licenses/by-nc-nd/4.0/

UMI with a greater number of reads.1

Cell-based Filtering2

With the UMI corrected and indels calculated, the new “molecule table” is subjected to further3

quality control. Specifically, UMIs are filtered based on the number of reads, integration barcodes4

(denoting a particular integration site) are error corrected based on a minimum hamming distance5

and identical indels (referred to as alleles), and in the case where multiple alleles are associated6

with a given integration barcode a single allele is chosen based on the number of UMIs associated7

with it.8

Calling Independent Clones9

Collections of cells part of the same clonal population, are identified by the set of integration10

barcodes each cell contains. Because all cells in the same clone are clonal, we reasoned that cells11

in the same clone should all share the same set of integration barcodes that the progenitor cell12

contained. Because of both technical artifacts (e.g. sequencing errors, PCR amplification errors)13

and biological artifacts (e.g. bursty expression, silenced regions) however, rather than looking for14

sets of non-overlapping sets, we perform an iterative clustering procedure. We begin by selecting15

the intBC that is shared amongst the most cells and assign any cell that contains this barcode to a16

cluster and remove these cells from the pool of unassigned cells. We perform this iteratively until17

at most k percent (in our case defined as .5% of cells are unassigned, which we assign to a “junk”18

clone.19

Using the set of integration barcodes for each clone, we are able to identify doublets that20

consist of cells from different clones. Finally, after identifying doublets, to further filter out low21

quality integration barcodes, for each clone integration barcodes that are not shared by at least22

10% of cells in a given clone are filtered out, producing the final allele table.23

Filtering of clones for Reconstruction24

We filtered out clones upon two criteria: firstly, we removed clone 1 as we deduced that it had two25

defective guides; secondly, we removed lineages that reported fewer than 10% unique cells (thus26

removing clone 7). The remainder of clones were reconstructed.27

Estimation of Per Character Mutation Rates28

To estimate mutation rates per clone, we assume that every target site was mutated at the same29

rate and independently of one another across 15 generations. Assuming some mutation rate, p, per30

character, we know that the probability of not observing a mutation in d generations is (1 − p)d31

in a given character and that the probability of observing at least 1 mutation in that character is32

30

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (whichthis version posted October 10, 2019. ; https://doi.org/10.1101/800078doi: bioRxiv preprint

https://doi.org/10.1101/800078
http://creativecommons.org/licenses/by-nc-nd/4.0/

1−(1−p)d. Then, giving this probability 1−(1−p)d = m can be used as a probability of observing1

a mutated character in a cell and model the number of times a character appears mutated in a cell2

as a binomial distribution where the expectation is simply nm where n is the number of characters.3

Said simply, given this model, one would expect to see nm characters mutated in a cell). In this4

case, the empirical expectation is the mean number of times a given character appeared mutated5

in a cell (averaged across all cells), which we denote as K and propose that6

K = nm = n ∗ (1− (1− p)d)

and thus p, the mutation rate, is7

p = 1− (1−K/n)d

Bulk Cutting Experiment to Determine Prior Probabilities8

of Indel Formation9

Two and four days following triple-sgRNA (PCT61) infection, infected cells were selected by10

adding puromycin at 1.5 µg/mL; puromycin-killed cells were removed by washing the plate with11

fresh medium. Cells were split every other day, and 500k cells were collected on days 7, 14,12

and 28. Frozen cell pellets were lysed and the genomic DNA was extracted and purified by13

ethanol precipitation. The PCT48 Target Site locus was PCR amplified from genomic DNA14

samples (forward: TCGTCGGCAGCGTCAGATGTGTATAAGAGACAGAATCCAGCTAGCT-15

GTGCAGC; reverse: GTCTCGTGGGCTCGGAGATGTGTATAAGAGACAGTCGAGGCTGATCAGCG)16

and further amplified to incorporate Illumina adapters and sample indices (forward: AATGAT-17

ACGGCGACCACCGAGATCTACACXXXXXXXXTCGTCGGCAGCGTCAG; reverse: CAAGCA-18

GAAGACGGCATACGAGATXXXXXXXXGTCTCGTGGGCTCGGAG; “X” denotes sample in-19

dices). The subsequent amplicon libraries were sequenced on an Illumina MiSeq (paired end, 30020

cycles each). Sequencing data was analyzed as described below.21

Determining Prior Probabilities of Indel Formation22

To determine the prior probabilities of edits, we leverage the fact that we have access to a large23

set of target sites (or intBCs) with a similar sequence (apart from the random barcode at the 5’24

end); namely, a total of 117 intBC across the 11 clones. To compute the prior probability for a25

given indel, we compute the empirical frequency of observing this mutation out of all unique edits26

observed. Specifically, we compute the prior probability of a given indel s, qs as the following:27

qs =
f(s)

|I|

31

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (whichthis version posted October 10, 2019. ; https://doi.org/10.1101/800078doi: bioRxiv preprint

https://doi.org/10.1101/800078
http://creativecommons.org/licenses/by-nc-nd/4.0/

where f(s) is the number of intBC’s that had s in at least one cell and |I| is the number of intBCs1

that are present in the dataset.2

3

As further support for this method, we used the bulk experiment consisting of many separately4

engineered A549 cells, as described in the previous section. The advantage of the bulk experiment5

is that we have access to substantially more intBCs (> 10k), thus providing a more robust estima-6

tion of qs. We therefore employed the same approach to estimate indel formation rates from the7

bulk data and find that the resulting rates correlate well with the indel rates estimated from the8

single cell lineage tracing experiment (Figure S18).9

Doublet Detection10

Methods to Detect Doublets11

We hypothesized that doublets could come in two forms and that we could use various compo-12

nents of the intBC data structure to identify them. Namely, doublets could be of cells from the13

identical clone, here dubbed “intra-doublets”, or doublets could be of cells from separate clones,14

here dubbed “inter-doublets.”15

16

In the case of “intra-doublets”, we can utilize the fact that these cells will have a large over-17

lap in their set of intBCs but will report “conflicting” alleles for each of these intBCs. Thus, to18

identify these doublets, we calculate the percentage of UMIs that are conflicting in each cell. Ex-19

plicitly, for each cell we iterate over all intBCs and sum up the number of UMIs that correspond to20

an allele that conflicts with the more abundant allele for a given intBC; we then use the percentage21

of these UMIs to identify doublets. We perform this after all UMI and intBC correction in hopes22

of calling legitimate conflicts.23

24

To deal with “inter-doublets”, we developed a classifier that leverages the fact that cells from25

different clones should have non-overlapping intBC sets. While this is the ideal scenario, often26

times intBCs are shared between clones for one of two reasons (1) the clustering assignments are27

noisy or (2) the transfections of intBCs resulted in two cells receiving the same intBC, even though28

cells are supposed to be progenitors of separate clones. Our strategy is thus: for each cell ci ∈ C29

calculate a “membership statistic”, mi,k for each clone lk ∈ L. The membership statistic is defined30

as so:31

mi,k =

∑
j∈Ik δ(i, j)p(j, k)∑
j∈Ik(p(j, k))

where Ik is the set of intBCs for the clone lk and p(j, k) is the prevalence rate of the intBC32

j in lk. We use δ(i, j) as an indicator function for whether or not we observed the intBC j in the33

32

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (whichthis version posted October 10, 2019. ; https://doi.org/10.1101/800078doi: bioRxiv preprint

https://doi.org/10.1101/800078
http://creativecommons.org/licenses/by-nc-nd/4.0/

cell ci. Intuitively, this membership statistic is a weighted similarity for how well the cell fits into1

each clone, where we are weighting by how much we are able to trust the intBC that is observed2

in the cell. To put all on the same scale, we normalize by total membership per cell, resulting in3

our final statistic, m′i,k =
mi,k∑k

k′=0
mi,k′

We then filter out doublets whose m′ for their classified clone4

falls below a certain threshold.5

Simulation of Doublets6

We simulated two datasets to test our methods for identifying doublets and to find the optimal7

criterion on which to filter out doublets. To test this strategy, we took a single clone from our8

final Allele Table (the table relating all cells and their UMIs to clones) and formed 200 doublets9

by combining the UMIs from two cells. We generated 20 of these datasets, and noted which cells10

were artificially introduced doublets.11

12

Contrary to the strategy for simulating doublets from the same clone, we created artificial “inter”13

doublets from the final Allele Table by combining doublets from two different clones. Similarly, we14

generated 20 synthetic datasets each with 200 of these artificial doublets.15

Identification of Decision Rule16

To identify the optimal decision rule for calling both types of doublets, we tested decision rules17

ranging from 0 to 1.0 at 0.05 intervals and calculated the precision and recall at each of these rules.18

Taking these results altogether, we provide an optimal decision rule where the F-measure (or the19

weighted harmonic mean of the precision and recall) of these tests is maximal.20

Algorithmic Approaches For Phylogenetic Reconstruction21

One way to approach the phylogenetic inference problem is to view each target site as a “char-22

acter” that can take on many different possible “states” (each state corresponding to an indel23

pattern induced by a CRISPR/Cas9 edit at the target site). Formally, these observations can be24

summarized in a “character matrix”, M ∈ Rn,m, which relates the n cells by a set of characters25

χ = {χ1, ...,χm} where each character χi can take on some ki possible states. Here, each sample,26

or cell, can be described as a concatenation of all of their states over characters in a “character27

string”. From this character matrix, the goal is to infer a tree (or phylogeny), where leaf nodes rep-28

resent the observed cells, internal nodes represent ancestral cells, and edges represent a mutation29

event.30

We first propose an adaption of a slow, but accurate, Steiner-Tree algorithm via Integer31

Lineage Programming (ILP) to the lineage tracing phylogeny problem. Then, we propose a fast,32

heuristic-based greedy algorithm which simultaneously draws motivation from classical perfect phy-33

33

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (whichthis version posted October 10, 2019. ; https://doi.org/10.1101/800078doi: bioRxiv preprint

https://doi.org/10.1101/800078
http://creativecommons.org/licenses/by-nc-nd/4.0/

logeny algorithms, and the fact that mutations can only occur unidirectionaly from the unmutated,1

or s0 state. Lastly, we combine these two methods and present a hybrid method, which presents2

better results than our greedy approach, yet remains feasible to run over tens of thousands of cells.3

Adaptation to Steiner Tree Problem4

Steiner Trees are a general problem for solving for the minimum weight tree connecting a set of5

target nodes. For example, if given a graph G = (V,E) over some V vertices and E edges, finding6

the Steiner-Tree over all v ∈ V would amount to solving for the minimum spanning tree (MST)7

of G. While there exist polynomial time algorithms for the minimum-spanning tree, the general8

Steiner Tree problem, where the set of targets T ⊆ V is designated, is NP-hard.9

Previously, Steiner-Trees have been suggested to solve for the maximum parsimony solution10

to the phylogeny problem. Here, the graph would consist of all possible cells (both observed and11

unobserved) and each edge would consist of a possible evolutionary event connecting two states (e.g.12

a mutation). Generally, given a set of length-l binary “character-strings” (recall that these are the13

concatenation of all character states for a given sample), we can solve for the maximum parsimony14

solution by finding the optimal Steiner Tree over the 2l hypercube (i.e. graph). As a result, by15

converting our multi-state characters to binary characters via one hot encoding, theoretically, we16

should be able to compute the most parsimonious tree which best explains the observed data.17

However, in practice this method turns out to be infeasible, as we deal with hypercubes of size18

O(2mn), where m is the number of characters, and n is the number of states. In the following,19

we will propose a method for estimating the underlying search space, providing us with a feasible20

solvable instance and a formulation of an Integer-Linear Programming (ILP) problem to solve for21

the optimal Steiner-Tree.22

Approximation of Potential Graph23

We first begin by constructing a directed acyclic graph (DAG) G, where nodes represent cells. We24

then take the source nodes, or nodes with in-degree 0, of G, and for each pair of source nodes,25

consider the latest common ancestor (LCA) they could have had. This LCA has an unmutated26

state for character χi if they disagree across two source nodes, and the same state as the two27

source nodes if they agree in value. If the edit distance between these two cells is below a certain28

threshold d, we add the LCA to G, along with directed edges to the two source nodes, weighted by29

the edit distance between the parent and the source. We repeat this process until only one node30

remains as a source: the root.31

One may think that this step explodes with O(n2) complexity at each stage, where n is the32

number of source nodes in each prior stage, as we consider all pairs of source nodes. However, we33

note that the number of mutations per latest common ancestor is always less than both children,34

and therefore, we eventually converge to the root. Therefore, when dealing with several hundred35

34

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (whichthis version posted October 10, 2019. ; https://doi.org/10.1101/800078doi: bioRxiv preprint

https://doi.org/10.1101/800078
http://creativecommons.org/licenses/by-nc-nd/4.0/

cells, the potential graph is feasible to calculate.1

Furthermore, to add scalability to the approximation of the Potential Graph, we allow the2

user to provide a “maximum neighborhood size” which will be used to dynamically solve for the3

optimal LCA distance threshold d to use. One may think of this as the maximum memory or time4

allowed for optimizing a particular problem. Since the size of the Potential Graph can grow quite5

large in regards to the number of nodes, we iteratively create potential graphs for various threshold6

d and at each step ensure that the number of nodes in the network does not exceed the maximum7

neighborhood size provided. If at any point the number of nodes does exceed this maximum size,8

we return the potential graph inferred for an LCA threshold of d− 1.9

Formulation of Integer Linear Programming Problem10

Given our initial cells, S , the underlying potential graph drawn from such cells, G, and the final11

source node, or root, r from G, we are interested in solving for T = SteinerTree(r, S,G). We12

apply an integer linear programming (ILP) formulation of Steiner Tree, formulated in terms of13

network flows, with each demand being met by a flow from source to target. Below we present14

the Integer Linear Programming formulation for Steiner Tree. We use Gurobi [23], a standard ILP15

solver package16

minimize
∑

(u,v)∈E

dbuv · w(u, v)

subject to
∑

(u,v)∈E

duv −
∑

(v,w)∈E

dvw = 0 ∀v /∈ S ∪ {r}

∑
(r,w)∈E

drw = −|S|

∑
(u,s)∈E

dus = 1 ∀s ∈ S

dbuv ≥
duv
|S|

∀(u, v) ∈ E

duv ∈ {0, .., |S|} ∀(u, v) ∈ E

dbuv ∈ {0, .., 1} ∀(u, v) ∈ E

Each variable duv denotes the flow through edge (u, v), if it exists; each variable dbuv denotes17

whether (u, v) is ultimately in the chosen solution sub-graph. The first constraint enforces flow18

conservation, and hence that the demands are satisfied, at all nodes and all conditions. The second19

constraint requires |S| units of flow come out from the root. The third constraint requires that20

each target absorb exactly one unit of flow. The fourth constraint ensures that if an edge is used21

at any condition, it is chosen as part of the solution.22

23

Below we explicitly define the algorithm in pseudocode.24

35

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (whichthis version posted October 10, 2019. ; https://doi.org/10.1101/800078doi: bioRxiv preprint

https://doi.org/10.1101/800078
http://creativecommons.org/licenses/by-nc-nd/4.0/

1: function ilp-solver(cells = S)

2: Potential Graph G← BUILD-POTENTIAL-GRAPH(S)

3: if G == None then

4: return GREEDY-SOLVER(S)

5: r ← root of G

6: T ← STEINER-TREE(r,G, S) . Steiner Tree ILP Solver

7: return T

8: function build-potential-graph(cells = S, max lca length = k, max neighborhood size

= N)

9: T0 = None

10: for all d ∈ [1, k] do

11: T ← DiGraph()

12: for all s ∈ S do

13: T ← T ∪ {s}

14: sources← all source nodes in T

15: while len(sources) > 1 do

16: for all v1, v2 ∈ sources do

17: lca← latest common ancestor of v1, v2

18: if dist(lca, v1) + dist(lca, v2) ≤ d then

19: T ← T ∪ {(lca, v1), (lca, v2)}

20: sources← all source nodes in T

21: if len(sources) ≥ N then

22: return Td−1

23: Td ← T

24: return T

Stability Analysis of the Maximum Neighborhood Size Parameter1

To evaluate the stability of the user-defined maximum neighborhood size parameter, we assessed the2

accuracy of the reconstructions for parameters varying from 800 to 14, 000. We used trees simulated3

under default conditions (400 samples, 40 characters, 40 states per character, 11 generations, 2.5%4

mutation rate per character, and a mean dropout rate of 17%). The accuracy of trees were5

compared to the tree generated with a parameter of 14, 000 using the triplets correct statistic. We6

used 10 replicates to provide a sense for how stable a given accuracy is.7

In addition to providing measures of accuracy, we also provide the optimal LCA threshold8

36

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (whichthis version posted October 10, 2019. ; https://doi.org/10.1101/800078doi: bioRxiv preprint

https://doi.org/10.1101/800078
http://creativecommons.org/licenses/by-nc-nd/4.0/

d found for a given maximum neighborhood size during the inference of these potential graphs.1

Using these analysis, we found that a maximum neighborhood size of 10, 000 nodes seemed to be2

an ideal tradeoff between scalability and accuracy (as it is in the regime where accuracy saturates)3

for our default simulations. This corresponded to a mean LCA threshold, d, of approximately 5.4

Heuristic-Based Greedy Method5

On Perfect Phylogeny & Single Cell Lineage Tracing6

In the simplest case of phylogenetics, each character is binary (i.e. ki = 2, ∀i ∈ m) and can7

mutate at most once. This case is known as ”perfect phylogeny” and there exist algorithms (e.g.8

a greedy algorithm by Dan Gusfield [24]) for identifying if a perfect phylogeny exists over such9

cells, and if so find one efficiently in time O(mn), where m is the number of characters and n are10

the number of cells. However, several limitations exist with methods such as Gusfield’s algorithm.11

One potential problem in using existing greedy perfect phylogeny algorithms for lineage tracing is12

that they require the characters to be binary. Indeed, if the characters are allowed to take any13

arbitrary number of states, the perfect phylogeny problem becomes NP-hard. However, while the14

number of states (CRISPR/Cas9-induced indels at a certain target site) in lineage tracing data can15

be large, these data benefit from an additional restriction that makes it more amenable for analysis16

with a greedy algorithm. Below, we show that because the founder cell (root of the phylogeny)17

is unedited (i.e. includes only uncut target sites) and that the mutational process is irreversible,18

we are able to theoretically reduce the multi-state instance (as observed in lineage tracing) to a19

binary one so that it can be resolved using a greedy algorithm.20

A second remaining problem in using these perfect phylogeny approaches is that we cannot21

necessarily expect every mutation to occur exactly once. In theory, it may happen that the same22

indel pattern is induced in exactly the same target site on two separate occasions throughout a23

lineage tracing experiment, especially if a large number of cell cycles takes place. A final com-24

plicating factor is that these existing greedy algorithms often assume that all character-states are25

known, whereas lineage tracing data is generated by single-cell sequencing, which often suffers from26

limited sensitivity and an abundance of “dropout” (stochastic missing data) events.27

The Greedy Algorithm28

We suggest a simple heuristic for a greedy method to solve the maximum parsimony phylogeny29

problem, motivated by the classical solution to the perfect phylogeny problem and irreversibility30

of mutation. Namely, we consider the following method for building the phylogeny: Given a set of31

cells, build a tree top-down by splitting the cells into two subsets over the most frequent mutation.32

Repeat this process recursively on both subsets until only one sample remains.33

Formally, we choose to split the dataset into two subsets, Oi,j and Oi,j , such that Oi,j contains34

cells carrying mutation sj in χi, and Oi,j contains cells without sj in χi. We choose i, j based on35

37

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (whichthis version posted October 10, 2019. ; https://doi.org/10.1101/800078doi: bioRxiv preprint

https://doi.org/10.1101/800078
http://creativecommons.org/licenses/by-nc-nd/4.0/

the following criteria:1

i, j = arg max
i,j

ni,j

where ni,j is the number of cells that carry mutation sj in character χi. We continue this2

process recursively until only one sample exists in each subset. We note that this method operates3

over cells with non-binary states, solving the first of problems addressed earlier.4

A major caveat exists with methods such as the greedy method proposed by Gusfield, as5

well as the one proposed by us thus far: namely, they assume all character states are known (i.e.6

no dropout). However, in our practice, we often encounter dropout as a consequence of Cas97

cutting or stochastic, technical dropout due to the droplet-based scRNA-seq platform. To address8

this problem in our greedy approach, during the split stage, these cells are not initially assigned9

to either of the two subsets, Oi,j or Oi,j . Instead, for each individual sample which contains a10

dropped out value for chosen split character χi, we calculate the average percentage of mutated11

states shared with all other cells in Oi,j and Oi,j respectively, and assign the sample to the subset12

with greater average value.13

Appending the dropout resolution stage with the initial split stage, we present our greedy14

algorithm below in its entirety.15

1: function greedy-solver(cells = S, prior probabilities = p)

2: if len(S) = 1 then

3: return S

4: root← latest common ancestor across all S

5: i, sj ← maximally occurring character mutation pair in S weighted by priors p

6: Oi,j ← all cells in S with mutation sj in χi

7: Oi,j ← all cells in S without mutation sj in χi and without dropout for χi

8: Di ← all cells in S with dropout for χi . Note Oi,j ∪Oi,j ∪Di = S

9: for all s ∈ Di do

10: if s shares more mutated states on average with cells in Oi,j over Oi,j then

11: Oi,j ← Oi,j ∪ {s}

12: else

13: Oi,j ← Oi,j ∪ {s}

14: TL, TR ← GREEDY-SOLVER(Oi,j , p), GREEDY-SOLVER(Oi,j , p)

15: rL, rR ← root of TL, TR respectively

16: T ← TL ∪ TR ∪ {root}

17: T ← T ∪ {(root, rL), (root, rR)}

18: return T

38

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (whichthis version posted October 10, 2019. ; https://doi.org/10.1101/800078doi: bioRxiv preprint

https://doi.org/10.1101/800078
http://creativecommons.org/licenses/by-nc-nd/4.0/

Overall, this method is very efficient, and scales well into tens of thousands of cells. Below,1

we show via proof below that this algorithm can find perfect phylogeny if one exists.2

Cassiopeia-Greedy Algorithm Can Solve Multi-State Perfect Phylogeny3

Here we show that while not required, Cassiopeia can solve the multi-state perfect phylogeny4

problem optimally. Importantly, however, Cassiopeia’s effectiveness makes no assumption about5

perfect phylogeny existing in the dataset but rather leverages this concept to provide a heuristic6

for scaling into larger datasets.7

To show how Cassiopeia’s greedy method can solve perfect phylogeny optimally, we begin by8

introducing a few clarifying definitions prior to the main theorem. We define M as the original9

n cells by n character k-state matrix (i.e. entries ∈ {s0, . . . , sk−1}). We say M has a zero root10

perfect phylogeny if there exists a tree T over its elements and character extensions such that the11

state of the root is all zeros and every character state are mutated into at most once. In addition,12

we assume that all non-leaf nodes of T have at least two children (i.e. if they only have one child,13

collapse two nodes into one node). Finally, we offer a definition for character compatibility :14

Definition 1. (Character Compatibility). For a pair of binary characters, (χ1,χ2), where the15

sets (O1, O2) contain the sets of cells mutated for χ1 and χ2, respectively, we say that they are16

compatible if one of the following is true:17

• O1 ⊆ O218

• O2 ⊆ O119

• O1 ∩O2 = ∅20

This definition extends to multi-state characters as well, assuming they can be binarized.21

22

Before proving the main theorem, we first prove the following lemma:23

Lemma 1. If M has a perfect phylogeny, then the most frequent character, mutation pair appears24

on an edge from the root to a direct child node.25

Proof. WLOG let χi : s0 → sj denote the maximally occurring character, mutation pair within26

M . Suppose by contradiction that this mutation does not appear on an edge directly from root to27

a child, but rather on some edge (u, v) that is part of a sub-tree whose root r∗, is a direct child of28

the root. As r∗ has at least two children, this implies that the mutation captured from the root29

to r∗ must be shared by strictly more cells than χi : s0 → sj , thereby reaching a contradiction on30

χi : s0 → sj being the maximally occurring mutation.31

Theorem 1. The greedy algorithm accurately constructs a perfect phylogeny over M if one exists.32

39

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (whichthis version posted October 10, 2019. ; https://doi.org/10.1101/800078doi: bioRxiv preprint

https://doi.org/10.1101/800078
http://creativecommons.org/licenses/by-nc-nd/4.0/

Proof. We approach via proof by induction. As a base case, a single is trivially a perfect phylogeny1

over itself.2

Now suppose by induction that for up to n − 1 cells, if there exists a perfect phylogeny T3

over such cells, then the greedy algorithm correctly returns the perfect phylogeny. Consider the4

case of n cells. By the above lemma, we know we can separate these n cells into two subsets based5

on the most frequent character, mutation pair χi : s0 → sj , Oi,j and Oi,j , where Oi,j contains6

cells with mutation sj over χi, and Oi,j = M −Oi,j . By induction, the greedy algorithm correctly7

returns two perfect phylogenies over Oi,j and Oi,j , which we can merge at the root, giving us a8

perfect phylogeny over n cells.9

Accounting for Prior Probability of Mutations10

In most situations, the probability of mutation to each distinct state may not be uniform (i.e.

character χ1 mutating from the unmutated state s0 to state s4 may be twice as likely as mutating

to state s6). Therefore, we incorporate this information into choosing which character and mutation

to split over based on the following criteria:

i, j = arg min
i,j

pi(s0, sj)
f(ni,j)

where pi(s0, sj) is the probability that character χi mutates from the unmutated state s0 to sj

and f(ni,j) is some transformation of the number of cells that report mutation j in character i that

is supposed to reflect the future penalty (number of independent mutations of character i to state

j) we will have to include in the tree if we do not pick i, j as our next split. After a comparison of

5 different transformations (Supp Figure 4), we find that f(ni,j) = ni,j gives the best performance,

leaving us with the following criteria for splittings:

i, j = arg min
i,j

pi(s0, sj)
ni,j

A Hybrid Method for Solving Single Cell Lineage Tracing Phylogenies11

Due to the runtime constraints of the Steiner Tree Method, it is infeasible for such method to scale12

to tens of thousand of cells. Therefore, we build a simple hybrid method which takes advantage of13

the heuristic proposed in the greedy algorithm and the theoretical optimality of the Steiner Tree14

method.15

16

Recall that in the greedy method, we continued to choose splits recursively until only one sample17

was left per subset. In this method, rather than follow the same process, we choose a cutoff for18

each subset (e.g. 200 cells). Once a subset has reached a size lower than said cutoff, we feed19

each individual subset into the Potential Graph Builder and Steiner Tree solver, which compute an20

optimal phylogeny for the subset of cells. After an optimal subtree is found, we merge it back into21

40

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (whichthis version posted October 10, 2019. ; https://doi.org/10.1101/800078doi: bioRxiv preprint

https://doi.org/10.1101/800078
http://creativecommons.org/licenses/by-nc-nd/4.0/

the greedy tree. Therefore, we build a graph whose initial mutations are chosen from the greedy1

method, and whose latter mutations are chosen more precisely via the Steiner Tree approach.2

Below we present a pseudo-code algorithm for the hybrid method. We note the slight dif-3

ference in greedy from before. Namely, greedy additionally accepts a cutoff parameter, and in4

addition to returning a network built up to that cutoff, returns all subsets that are still needed to5

be solved.6

1: function Cassiopeia-Hybrid(cells = S, greedy cutoff = g)

2: T ,S ← GREEDY-SOLVER(S, g)

3: for all S′ ∈ S do

4: T ← T ∪ ILP-SOLVER(S′)

5: return T

This approach scales well when each instance of Steiner Tree is ran on an individual thread,7

and thus often takes only a few hours to run on several thousand cells.8

Theoretical Analysis of Parallel Evolution9

Estimating First and Second Moments of Double Mutations10

Expected Number of Double Mutations11

Under the framework of our simulation, we assume that each at each generation, every cell divides,12

and then each character of each cell undergoes random mutation independently. Let p be the13

probability that a particular character mutates, and q be the probability the character took on14

a particular mutated state given that it mutated. Let T be the true phylogenetic tree over the15

samples. According to our model, T must be a full binary tree, and the samples are leaves of16

T . Let X be the total number of times a particular mutation occurred in the T . Let Xu,v be an17

indicator variable for edge (u, v) such that:18

Xu,v =

1 if a mutation occurs on edge (u, v)

0 otherwise

Let h be the height of the T , which is equalled to the number of generations. If v is at depth d in19

T , then the probability that a mutation occurs at (u, v) is pq(1− p)d−1. Since there are 2d nodes20

41

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (whichthis version posted October 10, 2019. ; https://doi.org/10.1101/800078doi: bioRxiv preprint

https://doi.org/10.1101/800078
http://creativecommons.org/licenses/by-nc-nd/4.0/

at depth d, we have:1

E(X) =
∑

(u,v)∈T

E(Xu,v)

=
h∑
d=1

2dpq(1− p)d−1

=
2pq((2− 2p)h − 1)

1− 2p

(Eq. 1)

Let n = 2h is the number of cells in our sample. If p > 0.5, E(X) ≤ 2pq/(2p − 1), if p = 0.5,2

E(X) = 2pqh = O(log n), and if p < 0.5, E(X) = O(n
1

log2 2−2p). Moreover, for fixed h, E(X)3

has a single peak for p ∈ [0, 1], meaning that it increases with p for sufficiently small values of p,4

and always increases with q. Intuitively, this is because E(X) is small if 1) p is small enough that5

the character never mutates much throughout the experiment or 2) p is large enough that most6

mutations occur near the top of the tree, resulting in the extinction of unmutated cells early in the7

experiment. While E(X) peaks for values of p in between, it is always directly proportional to q8

because X is simply equalled to q time the number of times the character mutated.9

Variance of Double Mutations10

We can compute the variance as:

V ar(X) = E(X2)− E(X)2

= 2
∑

(u,v) 6=(u′,v′)

E(Xu,vXu′,v′) + E(X)− E(X)2

To compute E(Xu,vXu′,v′), we note that for a given pair of edges (u, v) and (u′, v′), such that

LCA(u, u′) is at depth d, u is at depth d + l, and u′ is at depth l + k, the probability that a

mutation occurred on both edges is p2q2(1− p)d+l+k. Thus, we have:∑
(u,v) 6=(u′,v′)

E(Xu,vXu′,v′) =
h−1∑
d=0

2d
h−d−1∑
k=0

h−d−1∑
l=0

2l+kp2q2(1− p)d+l+k

= p2q2
h−1∑
d=0

(2− 2p)d(
h−d−1∑
k=0

(2− 2p)k)2

=
p2q2

(2p− 1)2

h−1∑
d=0

(2p− 2)d((2p− 2)(h−d) − 1)2

≤ p2q2

(2p− 1)2

h−1∑
d=0

(2p− 2)2h−d

= (2p− 2)h+1 p2q2

(2p− 1)2

h−1∑
d=0

(2p− 2)d

≤ p2q2(2p− 2)2h+1

(2p− 1)3

Thus, we can bound the variance as follows:11

V ar(X) ≤ 2p2q2(2p− 2)2h+1

(2p− 1)3
+

2pq(1− (2− 2p)h)

2p− 1
− 4p2q2(1− (2− 2p)h)2

(2p− 1)2
(Eq. 2)

42

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (whichthis version posted October 10, 2019. ; https://doi.org/10.1101/800078doi: bioRxiv preprint

https://doi.org/10.1101/800078
http://creativecommons.org/licenses/by-nc-nd/4.0/

This means that in the case that p > 0.5:

V ar(X) ≤ 2p2q2

(2p− 1)3
+

2pq

2p− 1
− 4p2q2

(2p− 1)2

In the case that p = 0.5:

V ar(X) = O(h3) = O(log3(n))

In the case that p < 0.5:

V ar(X) = O(n
2

log2 2−2p)

Least Squares Linear Estimate & Negative Correlation Between Fre-1

quency and Number of Double Mutations2

To justify the greedy, we must show that if a mutation occurs frequently, then it is likely to have3

occurred less times throughout the experiment. Let Y be the frequency of a particular mutation4

in the samples. We estimate X given Y using the least squares linear estimate (LLSE) as follows:5

L(X|Y) = E(X) +
CoV (X,Y)

V ar(Y)
(Y − E(Y)) (Eq. 3)

Since CoV (X,Y) = E(XY)−E(X)E(Y), we need only to compute E(XY), which we do by

expressing X and Y in terms of the same indicators:

Y =
1

2h

∑
(u,v)∈T

2depth(v)Xu,v

As a sanity check, it can easily be verified that E(Y) = q(1− (1− p)h) by computing E(Y) using

these indicators:

E(Y) = 2−h
h∑
d=1

2d(1− p)d−1pq ∗ 2h−d

= pq
h∑
d=1

(1− p)d−1

= q(1− (1− p)h)

43

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (whichthis version posted October 10, 2019. ; https://doi.org/10.1101/800078doi: bioRxiv preprint

https://doi.org/10.1101/800078
http://creativecommons.org/licenses/by-nc-nd/4.0/

Thus, we can compute E(XY) similar to how we computed E(X2) for Variance.1

E(XY) = 2−hE((
∑

(u,v)∈T

Xu,v)(
∑

(u,v)∈T

2depth(v)Xu,v))

= 2−h
(

2
∑

(u,v) 6=(u′,v′)

2depth(v)E(Xu,vXu′,v′) +
∑

(u,v)∈T

2depth(v)E(X2
u,v)
)

= 2 ∗ 2−h
h−1∑
d=0

2d
h−1∑
k=0

h−1∑
l=0

2l+kp2q2(1− p)d+l+k ∗ 2h−d−l−1 + E(Y)

= p2q2
h−1∑
d=0

h−d−1∑
k=1

h−d−1∑
l=0

(1− p)d(2− 2p)k(1− p)l + E(Y)

=
pq2

1− 2p

h−1∑
d=0

(2− 2p)h−d − 1)(1− (1− p)h−d)(1− p)d + E(Y)

=
pq2

1− 2p

(
2(2− 2p)h(1− 2−h)− (2− 2p)(1− p)h((2− 2p)h − 1)

1− 2p

− 1− (1− p)h

p
+ h(1− p)h

)
+ E(Y)

(Eq. 4)

Assuming that is p < 1− 1/
√

2 ≈ 0.29 (based on our estimation of Cas9-cutting rates, this seems

to be a biologically relevant probability), we have:

lim
h→∞

CoV (X,Y) =
(

2− 2− 2p

1− 2p

)pq2(2(1− p)2)h

1− 2p

= −∞

since 2 < (2− 2p)/(1− 2p) when p < 0.5.2

3

V ar(Y) can be computed using the same indicators:4

V ar(Y) = 2
∑
i,j

E(YiYj) +
∑
i

E(Y 2
i)− E(Y)2

∑
i,j

E(YiYj) = 2−2h
h−1∑
d=0

2d(1− p)d(
h−d−1∑
k=0

2k(1− p)kpq ∗ 2h−d−k−1)2

=
q2

4

h−1∑
d=0

(
1− p

2
)d(

1− (1− p)h−d

p
)2

=
q2

4

h−1∑
d=0

(
1− p

2
)d − 2(1− p)h

2d
+

(1− p)2h

(2− 2p)d

=
q2

4

(2(1− (1−p
2)h)

1 + p
− 4(1− p)h(1− 2−h)+

(2− 2p)(1− p)2h(1− (1
2−2p)h)

1− 2p

)

(Eq. 5)

44

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (whichthis version posted October 10, 2019. ; https://doi.org/10.1101/800078doi: bioRxiv preprint

https://doi.org/10.1101/800078
http://creativecommons.org/licenses/by-nc-nd/4.0/

∑
i

E(Y 2
i) = 2−2h

h∑
d=1

2d(1− p)d−1pq ∗ 22(h−d)

=
pq

2

h−1∑
d=0

(
(1− p)

2
)d

=
pq(1− (1−p

2)h)

1 + p

Note that if p < 0.5, every term in V ar(Y) converges to a constant as h→∞. Thus, if (1− p)2 >1

0.5, then as the depth increases, X and Y become exponentially more negatively correlated. This2

means that for biologically relevant values of p, the frequency of a mutation in the samples is3

negatively correlated with number of times the mutation occurred, thus justifying the rationale of4

splitting the sample on more frequently occurring mutations.5

Simulation For Tracking the Evolution of a Particular Mutation6

To more efficiently simulate the number of occurrences of a particular mutation, we define {N1, N2, ...Nh}7

as a Markov chain, where Nt is the number of unmutated cells at generation t, and N1 = 1. Let8

At ∼ Bin(2Nt, p) be the number of cells that mutates at generation t, and Bt ∼ Bin(At, a) be the9

number of mutated cell that took on the particular state in question. The Markov chain evolves10

as Nt+1 = 2Nt −At. Note that we assume, in this model, that mutation can only occur after cell11

division. Thus we have X =
∑h
t=1Bt and Y =

∑h
t=1 2t−hBt.12

Assessing the Precision of Greedy Splits.13

To assess the precision of greedy splits, we first simulated 100 true phylogenies of 400 cells (without14

dropout) for all pairs of parameters in num states = {2, 10, 40} and pcut = {0.025, 0.1, 0.4}. For15

each network, we assessed the precision of the greedy split as follows:16

1. We used the criteria i, j = arg maxi,j ni,j to select the character χi and state j to split on17

(as Cassiopeia-Greedy would do). This group of cells that have a mutation j in character χi18

is called G.19

2. For define the a set of n subsets corresponding to cells that inherited the (character, state)20

pair (i, j) independently using the true phylogenies, and call this set S = (s1, s2, ..., sn) (this21

corresponds to there being n parallel evolution events for the (character, state) pair (i, j).22

3. We presume that the largest group of cells in S is the “true positive” set (let this be defined23

as s′ = arg maxs |si|. We then define the precision P as the proportion of true positives in24

the set G – i.e. P = |s′|
|G| .25

45

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (whichthis version posted October 10, 2019. ; https://doi.org/10.1101/800078doi: bioRxiv preprint

https://doi.org/10.1101/800078
http://creativecommons.org/licenses/by-nc-nd/4.0/

Statistics for IVLT Analysis1

Meta Purity Statistic2

To calculate the agreement between clades (i.e. the leaves below a certain internal node of the3

tree) and some meta-value, such as the experimental plate from which a sample came from, we can4

employ a Chi-Squared test. Specifically, we can compute the following statistic: considering some5

M clades at an arbitrary depth d, we find the count of meta values associated with each leaf in6

each clade, resulting in a vector of values mi comprised of these meta-counts for each clade i. We7

can form a contingency table summarizing these results, T , where each internal value is exactly8

mi,j - the counts of the meta item j in clade i. A Chi-Squared test statistic can be computed from9

this table.10

11

To compare across different trees solved with different methods, we report the Chi-Squared Test12

Statistic as a function of the number of clades, or degrees of freedom of the test.13

Mean Majority Vote Statistic14

The Mean Majority Vote statistic seeks to quantify how coherent each clade is with respect to its15

majority vote sample at a give depth. For a given clade with leaves Li where |Li| = n, where every16

leaf li,j corresponds to cell j in clade i has some meta label mj , the majority vote of the clade is17

v = argmaxm′∈M
∑
j∈n δ(j,m

′). Here M is the full set of possible meta values and δ(mj ,m
′) is18

an indicator function evaluating to 1 iff mj = m′. The membership of this clade is then simply19 ∑
j∈n δ(mj ,v)

n . Then, the mean membership is the mean of these membership statistics for all clades20

at a certain depth (i.e. if the tree were cut at a depth of d, the clades considered here are all the21

internal nodes at depth d from the root). By definition, this value ranges from 1
|M | to 1.0.22

As above, to compare across different trees solved with various methods, we report this mean23

membership statistic as a function of the number of clades.24

Triplets Correct Statistic25

To compare the similarity of simulated trees to reconstructed trees, we take an approach which26

compares the sub-trees formed between triplets of the terminal states across the two trees. To27

do this, we sample ∼ 10, 000 triplets from our simulated tree and compare the relative orderings28

of each triplet to the reconstructed tree. We say a triplet is “correct” if the orderings of the29

three terminal states are conserved across both trees. This approach is different from other tree30

comparison statistics, such as Robinson-Foulds [43], which measures the number of edges that are31

similar between two trees.32

To mitigate the effect of disproportionately sampling triplets relatively close to the root of the33

46

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (whichthis version posted October 10, 2019. ; https://doi.org/10.1101/800078doi: bioRxiv preprint

https://doi.org/10.1101/800078
http://creativecommons.org/licenses/by-nc-nd/4.0/

tree, we calculate the percentage of triplets correct across each depth within the tree independently1

(depth measured by the distance from the root to the Latest Common Ancestor (LCA) of the2

triplet). We then take the average of the percentage triplets correct across all depths. To further3

reduce the bias towards the few triplets that are sampled at levels of the tree with very few cells4

(i.e. few possible triplets), we modify this statistic to only take into account depths where there5

at least 20 cells. We report these statistics without this depth threshold in Figure S8.6

Application of Camin-Sokal7

We applied Camin-Sokal using the “mix” program in PHYLIP [13] as done for reconstructions for8

McKenna et al [38] and Raj et al [42]. To use “mix” we first factorized the characters into binary9

ones (thus ending up with
∑
i si binary characters total, where si is the number of states that10

character i presented). Then, we one-hot encoded the states into this binary representation where11

every position in the binary string represented a unique state at that character. We thus encoded12

every cell as having a 1 in the position of each binary factorization corresponding to the state13

observed at that character. If the cell was missing a value for character i, the binary factorization14

of the character was a series of ‘?’ values (which represent missing values in PHYLIP “mix”) of15

length si. Before performing tree inference, we weighted every character based on the frequency of16

non-zero (and non-missing values) observed in the character matrix. After PHYLIP “mix” found17

a series of candidate trees, we applied PHYLIP “consense” to calculate a consensus tree to then18

use downstream.19

Application of Neighbor-Joining20

We used Biopython’s Neighbor-Joining procedure to perform all neighbor joining in this manuscript.21

We begun similarly to the Camin-Sokal workflow, first factorizing all of the characters into a binary22

representation. Then, we applied the Neighbor-Joining procedure using the “identity” option as23

our similarity map.24

Application of Cassiopeia25

Reconstruction of simulated data26

We used Cassiopeia-ILP with a maximum neighborhood size of 10, 000 and time to converge of27

12, 600s. Cassiopeia-Hybrid used a greedy cutoff of 200, a maximum neighborhood size of 600028

and 5000s to converge. Cassiopeia-Greedy required no additional hyperparameters. Simulations29

with priors applied the exact prior probabilities used to generate the simulated trees.30

47

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (whichthis version posted October 10, 2019. ; https://doi.org/10.1101/800078doi: bioRxiv preprint

https://doi.org/10.1101/800078
http://creativecommons.org/licenses/by-nc-nd/4.0/

Reconstruction of in vitro clones1

. For both Cassiopeia-Hybrid with and without priors, we used a cutoff of 200 cells and each2

instance of Cassiopeia-ILP was allowed 12, 600s to converge on a maximum neighborhood size of3

10, 000. Cassiopeia-ILP was applied with a maximum neighborhood size of 10, 000 and a time to4

converge of 12, 600s.5

Simulation of Target Site Sequences for Alignment Benchmarking6

To determine an optimal alignment strategy and parameters for our target site sequence processing7

pipeline, we simulated sequences and performed a grid search using Emboss’s Water algorithm (a8

local alignment strategy). We simulated 5, 000 sequences. For each sequence, we begun with the9

reference sequence and subjected it to multiple rounds of mutagenesis determined by a Poisson10

distribution with λ = 3, and a maximum of 5 cuts. During each “cutting” event, we determined11

the outcomes as follows:12

1. Determine the number of Cas9 proteins localizing to the target site in this iteration, where13

ncas9 ∼ min(3, Pois(λ = 0.4)).14

2. Determine the site(s) to be cut by choosing available sites randomly, where the probability15

of being chosen is p = 1
nuncut

and nuncut is the number of sites uncut on that sequence.16

3. If ncas9 = 1, we determined the type of the indel by drawing from a Bernoulli distribution17

with a probability of success of 0.75 (in our case, a “success” meant a deletion and a “failure”18

meant an insertion). We then determined by drawing from a Negative Binomial Distribution19

as so: s ∼ min(30,max(1, NB(0.5, 0.1))). In the case of an insertion, we added random20

nucleotides of size s to the cut site, else we removed s nucleotides.21

4. In the case of ncas9 ≥ 2, we performed a resection event where all nucleotides between the22

two cut sites selected were removed.23

5. After a cut event, we appended the result of the Cas9 interaction to a corresponding CIGAR24

string25

Our Water simulations were exactly 300bp, possibly extending past the Poly-A signal, as26

would be the case reading off a Nova-seq sequencer.27

Upon simulating our ground truth dataset, we performed our grid search by constructing28

alignments with Water with a combination of gap open and gap extension penalties. We varied29

the gap open penalties between 5 and 50 and gap extension penalties between 0.02 and 2.02.30

To score resulting alignments, we compared the resulting CIGAR string to our ground truth31

CIGAR string for each simulated sequence. To do so, we first split each cigar string into “chunks”,32

corresponding to the individual deletions or insertions called. For example, for some CIGAR string33

48

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (whichthis version posted October 10, 2019. ; https://doi.org/10.1101/800078doi: bioRxiv preprint

https://doi.org/10.1101/800078
http://creativecommons.org/licenses/by-nc-nd/4.0/

40M2I3D10M , the chunks would be 40M , 2I, 3D, and 10M . Then, beginning with a max score1

of 1, we first deducted the difference between the number of chunks in the ground truth and the2

alignment. Then, in the case where the number of chunks were equal between ground truth and3

alignment, we deducted the percent nucleotides that differed between CIGARs. For example, if4

the ground truth was 100M and the alignment gave 95M , the penalty would be 0.05.5

To find the optimal set of parameters, we selected a parameter pair that not only scored6

very well, but also located in the parameter space where small perturbations in gap open and gap7

extension had little effect.8

Simulation of Lineages for Algorithm Benchmarking9

We simulated lineages using the following parameters:10

1. The number of characters to consider, C11

2. The number of states per character, S12

3. The dropout per characters, dc ∀c ∈ C13

4. The depth of the tree (i.e. the number of binary cell division), D14

5. The probability that a site can be mutated, p. This is a general probability of cutting15

6. The rate at which to subsample the data at the end of the experiment, M16

To simulate the tree, we begin by first generating the probability of each character mutating17

to a state, here represented as pc(0, s), ∀s ∈ S. In order to do this, we fit a spline function to18

the inferred prior probabilities from the lineage tracing experiment. (refer to the section entitled19

“Determining Prior Probabilities of Indel Formation” for information on how we infer prior prob-20

abilities). We then draw S values from this interpolated distribution. We then normalize these21

mutation rates to sum to p, therefore allowing in general a p probability of mutating a character22

and 1 − p probability of remaining uncut. In the case of the “State Distribution” simulations23

(Figure S11), we say that pc is distributed as:24

pc = θ ∗ Unif(0, 1) + (1− θ) ∗ F ′(x)

where F ′(x) is the interpolated empirical distribution and θ is the mixture component.25

Then, we simulate D cell divisions, where each cell division consists of allowing a mutation26

to take place at each character with probability p. In the case a mutation takes place, we choose27

a state to mutate to according to their respective probabilities. Importantly, once a character has28

been mutated in a cell, that character cannot mutate again.29

At the end of the experiment, we sample M percent of the cells resulting in 2D ∗M cells in30

the final lineage.31

49

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (whichthis version posted October 10, 2019. ; https://doi.org/10.1101/800078doi: bioRxiv preprint

https://doi.org/10.1101/800078
http://creativecommons.org/licenses/by-nc-nd/4.0/

We find that this method for simulating lineages (in particular the method for generating a1

set of priors on how likely a given state is to form) is able to closely recapitulate observed lineages2

(Figure S6).3

Metrics for Comparing Simulations to Empirical Data4

We used three metrics of complexity to compare simulated clones to real clones:5

• Minimum Compatibility Distance: For every pair of character, we define the Minimum Com-6

patibility Distance as the minimum number of cells to be removed to obtain compatibility7

(Def. 1).8

• Number of Observable States per Cell : The number of non-zero or non-missing values for9

each cell, across all characters (i.e. the amount of data that can be used for a reconstruction,10

per cell).11

• Number of Observable States per Character : The number of non-zero or non-missing values12

across for each character, across all cells.13

Parallel Evolution Simulations for Greedy Benchmarking14

As shown above, our greedy approach should accurately reconstruct a lineage if a perfect phylogeny15

exists. In order to better quantify how much our greedy algorithm’s performance is affected by16

parallel mutations, we decided to simulate ”near perfect phylogenies”, whereby we first began by17

simulating a perfect phylogeny, and afterwards introduced double mutated characters.18

Specifically, we begin by simulating perfect phylogenies with 40− k characters. We then fix19

a depth, d, and sample a node from said depth. We choose two grandchildren randomly from this20

node (one from each child) and introduce the same mutation on each of the edges from each child21

to grandchild, thereby violating the perfect phylogeny. We repeat this process k times. This thus22

creates an analysis, as presented in Figure S4, whereby accuracy can be evaluated as a function of23

both depth of parallel evolution, d, and the number of events that occurred, k.24

Simulation of “Base Editor” Technologies25

We used the simulation framework described above to simulate base-editor technologies. To explore26

the trade off between the number of states and the number of characters, we simulated trees with27

40, 50, 80, and 100 characters while maintaining the product of characters and states equal at 40028

(thus we had trees of 10, 8, 5, and 4 states per character, respectively). The dropout per character29

was set to 10%, the mutation rate per character was set to 1.04% (a previously observed mutation30

rate [26]), and a depth of 10 where 400 cells where sampled. For each character/state regime,31

we generated 10 trees for assessing the consistency of results. We use a negative binomial model32

(∼ NB(5, 0.5)) as the editing outcome distribution (i.e. state distribution).33

50

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (whichthis version posted October 10, 2019. ; https://doi.org/10.1101/800078doi: bioRxiv preprint

https://doi.org/10.1101/800078
http://creativecommons.org/licenses/by-nc-nd/4.0/

Simulation of “Phased Recorder” Technologies1

To simulate the phased recorder, we used 5 different experiments varying mutation rates across2

50 characters and 10 states per character. In each experiment, we chose a mutation rate for each3

character from one of 10 regimes, each differing in their relationship to the base mutation rate p0.4

To systematically implement this, mutation rate for χi is described as such:5

mi = p0 ∗ (1 + ej ∗ b
i

5
c)

where p0 = 0.025 and ej is a experiment scalar in e = {0, 0.05, 0.1, 0.25, 0.5}. This means that6

for characters 1− 5, mi = p0, for characters 6− 10, mi = ejp0, for characters 11− 15, mi = 2ejp0,7

etc. To summarize each experiment, we provide the ratio between the maximum and minimum8

mutation rates, which is by definition 1 + 10rj (because we had 50 characters). We compare two9

models of indel formation rates - the first being a negative binomial model (∼ NB(5, 0.5)), and10

the second being the spline distribution fit from empirical data.11

We simulated 10 trees per regime and reconstructed trees with Cassiopeia with and without12

priors.13

Reconstructions of GESTALT Datasets14

We downloaded data corresponding to the original GESTALT study [38] and the more recent15

scGESTALT study from https://datadryad.org/resource/doi:10.5061/dryad.478t9 and GSE105010,16

respectively. We created character matrices for input into Cassiopeia by creating pivot tables re-17

lating each cell the observed indel observed at each one of the 10 tandem sites on the GESTALT18

recorder. We then reconstructed trees from these character matrices using one of five algorithms:19

Camin-Sokal (used in the original studies), Neighbor-Joining, Cassiopeia’s greedy method, Cas-20

siopeia’s Steiner Tree method, and Cassiopeia’s hybrid method.21

For each reconstruction, we record the parsimony of the tree, corresponding to the number of22

mutations that are inferred along the reconstructed tree. We display these findings in Figure 6a,23

where we have Z-normalized the parsimonies across the methods for each dataset to enable easier24

visualization of relative performances.25

Visualization of Trees26

To visualize trees we use the phytools R package. Colors in the heatmap denote a unique mutation,27

gray denotes an uncut site, and white denotes dropout.28

51

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (whichthis version posted October 10, 2019. ; https://doi.org/10.1101/800078doi: bioRxiv preprint

https://doi.org/10.1101/800078
http://creativecommons.org/licenses/by-nc-nd/4.0/

Figure 1

unique indels
(“character states”)

inferred
state change

A

B

C

D

summarized character matrix

E

F

G

characters

ce
lls

H

A

C

B

D

G

F

E

H

reconstructed phylogenetic tree

infer phylogeny
from character matrix

lineage tracing in cells

collect targets
from single cells

Cas9 +
sgRNA

genomic DNA
“target” heritable indels

(“character states”)

dsDNA break
and repair

+

a

b
character matrix greedy merge treesSteiner Tree / ILP

subdivide samples by
shared character state (*)

use ILP to solve Steiner Tree
potential graph

graft subtrees from ILP
together to form complete tree

assemble matrix
of character states for each cell

x1 x2 x3 x4 x5

x1 x2 x3 x4 x5*

*
x1 x2 x3 x4 x5

characters

ce
lls

A

B

C

D

E

F

G

H

E

F

G

H

A

B

C

D

A

C

B

D

G

F

E

H

formulate a potential graph
over all allowable transition states

find most parsimonious solution by
solving for a Steiner Tree on the potential graph

by integer linear programming

observed
cell states

inferred possible
ancestral states

E H F G

C

A B D

E H F GE H F G

Figure 1: A generalized approach to lineage tracing & lineage reconstruction.

52

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (whichthis version posted October 10, 2019. ; https://doi.org/10.1101/800078doi: bioRxiv preprint

https://doi.org/10.1101/800078
http://creativecommons.org/licenses/by-nc-nd/4.0/

c

Figure 2

d

a

e

�

��

��

� � � � �
�

�
�

�
�

� � �

�

�

�

�
�

�

�

�
�

�
�

� �
�

�

�
� �

�

�

�

�
� �

� �

�

�
� �

� � �
� �

�

�

�
�

�

� �

�
�

�

�

� � �

�

� � �
�

�

�

�

��
�

� � �

�
�

� � � �
�

� �

0 25 50 75 100

Tr
ip

le
ts

 C
or

re
ct

States per Character

Number of States

0.00

0.25

0.50

0.75

1.00

�

�

�

�
�

�

�

�

�

�

� �

�
�

�

�
� �

� �

�

�

�

�

�

� �

�
�

�

20 40 60

Tr
ip

le
ts

 C
or

re
ct

Characters

Number of Characters

0.00

0.25

0.50

0.75

1.00

�

�

�
�

�

� �

�

�

�

�

�

�

�
�

� �
�

�

�

�
� �

� �

� �

�

�
�

� �

� �

�

�

�

�

� � �

�
�

� �

0.025 0.050 0.075 0.100

b

Tr
ip

le
ts

 C
or

re
ct

Mutation Rate

Mutation Rate

0.00

0.25

0.50

0.75

1.00

�
�

�
�

�

�

� � � �
�

�

� �

� �
� �

� �

� � �

�

� �

� � �
�

9 10 11 12 13 14

Tr
ip

le
ts

 C
or

re
ct

Number of Generations

Tree Depth

0.00

0.25

0.50

0.75

1.00

�

�
�

�

�

�

�
� �

�

�

�

�

� �

�

�

�
�

�
�

�

�
�

�
� �

�
� �

�

� �

�

�

�

�

� �

�

�

�

�

�

�

�

�
�

� � �

�
�

�

�

�
�

�

�

�

0.00 0.25 0.50 0.75

Missing Data Rate

Percent of Missing Data

Tr
ip

le
ts

 C
or

re
ct

0.00

0.25

0.50

0.75

1.00 Algorithm
�

�

�

�

Cassiopeia-Greedy

Cassiopeia-Hybrid

Cassiopeia-ILP

Neighbor−Joining

� Camin−Sokal

Figure 2: Cassiopeia algorithms outperform other phylogenetic reconstruction methods

on simulated lineages.

53

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (whichthis version posted October 10, 2019. ; https://doi.org/10.1101/800078doi: bioRxiv preprint

https://doi.org/10.1101/800078
http://creativecommons.org/licenses/by-nc-nd/4.0/

Number of Characters

Clonal Population
1 2 3 4 5 6 7 8 9 10 11

N
um

be
r o

f C
ha

ra
ct

er
s

0

10

20

30

40

50

60

intBC Dropout

Clonal Population
1 2 3 4 5 6 7 8 9 10 11

M
ed

ia
n

in
tB

C
 D

ro
po

ut
 (%

)

0

80

60

40

20

Mutation Rate

Clonal Population
1 2 3 4 5 6 7 8 9 10 11

Es
tim

at
ed

 M
ut

at
io

n
R

at
e

(p
er

 c
ha

ra
ct

er
 p

er
 g

en
er

at
io

n)

0.12

0.10

0.08

0.06

0.04

0.02

0.00

a

b c Number of States per Target Site

Clonal Population
1 2 3 4 5 6 7 8 9 10 11

M
ed

ia
n

N
um

be
r o

f S
ta

te
s

pe
r T

ar
ge

t S
ite

100

101

102

d e

plate ~10 cells

grow ~5 generations

split

grow ~10 generations

plate 0 plate 1

initial plate

collect, single-cell seq,
and analyze ~40,000 cells

expected tree topology

plate 0
plate 1

initial plate

split

Figure 3

Figure 3: An in vitro reference experiment

54

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (whichthis version posted October 10, 2019. ; https://doi.org/10.1101/800078doi: bioRxiv preprint

https://doi.org/10.1101/800078
http://creativecommons.org/licenses/by-nc-nd/4.0/

Figure 4: Cassiopeia can reconstruct high-resolution phylogenetic trees from empirical

lineage tracing data.

55

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (whichthis version posted October 10, 2019. ; https://doi.org/10.1101/800078doi: bioRxiv preprint

https://doi.org/10.1101/800078
http://creativecommons.org/licenses/by-nc-nd/4.0/

�

� �
� � � � � � � �������

�

�
�

� � � � � � � ��������

�
�

�

� � � � � � � �������

�

�

� � � � � � � ������

�

�

�

�

�

�

�

�

�
�

�

�

�

�

�

�
�
��

������������

10 10,000100 1000

0.6

0.9

0.8

0.7

1.0

a
Figure 5

Mean Majority Vote of Clades

M
ea

n
M

em
be

rs
hi

p

Number of Clades at Depth of Test

Split 1
C

hi
. S

q.
 T

es
t S

ta
t

Number of Clades at Depth of Test

�

�
�

�

�
� � � � � �������

�
�

�

�

�
� � � � � ��������

�
�

�

�

�
� � � � � �������

�
�

�

�

�
� � � � ������

�
�

� �

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�
�
�����������

Chi. Squared Test for Meta Purity

10 10,000100 1000

0

2000

4000

6000

Algorithm

�

�

�

Cassiopeia-Hybrid, Priors
Cassiopeia-Greedy, No Priors

�

�

Cassiopeia-Greedy, Priors
Neighbor−Joining

Cassiopeia-Hybrid, No Priors

Figure 5: Cassiopeia builds highly accurate trees from large empirical datasets.

56

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (whichthis version posted October 10, 2019. ; https://doi.org/10.1101/800078doi: bioRxiv preprint

https://doi.org/10.1101/800078
http://creativecommons.org/licenses/by-nc-nd/4.0/

�

�

�

�

�

�

�

�

0.5

0.6

0.7

Figure 6

Number of Characters

Tr
ip

le
ts

 C
or

re
ct

Base Editor Simulation

a

Number of States

�

�

Cassiopeia-Hybrid, No Priors
Cassiopeia-Hybrid, Priors

b

dCas9 +
cytidine deaminase

+ sgRNA
genomic DNA

+
C

C-to-U base editing U

heritable C-to-T mark T

marked mRNA AAAT

40 10050 80
10 48 5

Z1 (
Raj

et
al)

Z2 (
Raj

et
al)

Z3 (
Raj

et
al)

GESTALT (M
cK

en
na e

t a
l)

Greedy

Hybrid

Steiner−Tree / ILP

Neighbor−Joining

Camin−Sokal

Parsimony

Improved
Parsimony

Figure 6: Generalizing Cassiopeia & future design principles of CRISPR-enabled lin-

eage tracers.

57

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (whichthis version posted October 10, 2019. ; https://doi.org/10.1101/800078doi: bioRxiv preprint

https://doi.org/10.1101/800078
http://creativecommons.org/licenses/by-nc-nd/4.0/

� �

�
�

�

�

�

�
� �

0.75

0.80

0.85

0.90

0.95

1.00

5000 10000

�

�

�

�

�
� �

�

�

�

�

� �
� �

0

2

4

6

5000 10000

Reconstruction Accuracy vs.
 Maximum Neighborhood Size Parameter

Tr
ip

le
ts

 C
or

re
ct

Maximum Neighborhood Size

Distance to Latest Common Ancestor by
Maximum Neighborhood Parameter

Maximum Neighborhood Size

LC
A

D
is

ta
nc

e

Default
Parameter Default

Parameter

Figure S1: Stability analysis of maximum neighborhood size parameter for Steiner Tree

approach.

58

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (whichthis version posted October 10, 2019. ; https://doi.org/10.1101/800078doi: bioRxiv preprint

https://doi.org/10.1101/800078
http://creativecommons.org/licenses/by-nc-nd/4.0/

p = 0.01

p = 0.05

p = 0.09

q = 0.1 q = 0.5 q = 0.9

Frequency of Mutations Observed in Samples

N
um

be
r

of
 O

cc
ur

re
nc

es
 o

f M
ut

at
io

n
in

 T
ru

e
P

hy
lo

ge
ny

0

1000

2000

3000

10−0.6 10−0.4 10−0.2 100
0

500

1000

1500

10−1.2 10−1 10−0.8 10−0.6 10−0.4 10−0.2 100

0

100

200

300

10−3 10−2.5 10−2 10−1.5 10−1 10−0.5 100

0

500

1000

1500

2000

10−0.8 10−0.6 10−0.4 10−0.2 100

0

300

600

900

1200

10−1 10−0.5 100

0

50

100

150

200

250

10−2 10−1.5 10−1 10−0.5

300

400

500

600

10−1.4 10−1.2 10−1 10−0.8 10−0.6 10−0.4 10−0.2

100

200

300

10−1.5 10−1 10−0.5

30

50

70

10−3 10−2.5 10−2 10−1.5 10−1 10−0.5

Empirical Regression LLSE
Regression Type

Figure S2: Observed Frequency of Mutations is Measure of True Mutation Count.

59

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (whichthis version posted October 10, 2019. ; https://doi.org/10.1101/800078doi: bioRxiv preprint

https://doi.org/10.1101/800078
http://creativecommons.org/licenses/by-nc-nd/4.0/

Precision

pcut = 0.025

Nstates = 2

Nstates = 10

Nstates = 40

pcut = 0.20pcut = 0.10a

b First-Split Precision of Cassiopeia-Greedy
in Default Simulations

Precision

D
en

si
ty

Figure S3: Precision of Cassiopeia-Greedy First Split.

60

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (whichthis version posted October 10, 2019. ; https://doi.org/10.1101/800078doi: bioRxiv preprint

https://doi.org/10.1101/800078
http://creativecommons.org/licenses/by-nc-nd/4.0/

●
●

●

●

●
●

●
● ●

●

●

●

●

● ●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ●
● ● ● ● ● ●

● ● ● ●
●

● ●

●
●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

●

●

●

●

●

● ●

●
●

●

●

●

●

●

●

0.6

0.7

0.8

0.9

1.0

0 10 20 30
Num Double Mutations

Tr
ip

le
ts

 C
or

re
ct

LCA

●

●

●

●

●

●

1

2

3

4

5

6

Triplets Correct, PP

Figure S4: Benchmarking of parallel evolution on the greedy heuristic.

61

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (whichthis version posted October 10, 2019. ; https://doi.org/10.1101/800078doi: bioRxiv preprint

https://doi.org/10.1101/800078
http://creativecommons.org/licenses/by-nc-nd/4.0/

> 4 days

Figure S5: Time complexity of lineage reconstruction approaches

62

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (whichthis version posted October 10, 2019. ; https://doi.org/10.1101/800078doi: bioRxiv preprint

https://doi.org/10.1101/800078
http://creativecommons.org/licenses/by-nc-nd/4.0/

0.00

0.25

0.50

0.75

1.00

0.0000 0.0025 0.0050 0.0075 0.0100

Inferred Probabiliy of Indels

D
en

si
ty Type

Empirical

Splined

Empirical vs Splined Probability Functions, Zoomed

0.00

0.25

0.50

0.75

1.00

0.00 0.05 0.10
Inferred Probabiliy of Indels

D
en

si
ty Type

Empirical

Splined

Empirical vs Splined Probability Functions

R
ea

l

Simulated

Minimum Compatibility Distance QQ Plot

Number of Observable States per Cell
R

ea
l

Simulated

Simulated

R
ea

l

Number of Observable States per Character

a

d

b

c

Figure S6: Determination of mutation rates used in simulation.

63

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (whichthis version posted October 10, 2019. ; https://doi.org/10.1101/800078doi: bioRxiv preprint

https://doi.org/10.1101/800078
http://creativecommons.org/licenses/by-nc-nd/4.0/

A B C

A B C A BC AB C A B C

Ground Truth

Possible Reconstructions

Figure S7: Triplets Correct Statistics.

64

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (whichthis version posted October 10, 2019. ; https://doi.org/10.1101/800078doi: bioRxiv preprint

https://doi.org/10.1101/800078
http://creativecommons.org/licenses/by-nc-nd/4.0/

�
�

�
�

�
� �

�
� �

� � �
�

�

�

� �

�

�
�

�

�

� �
�

� �

�

�

�

� �

� � �

�

�

�

�
�

�
�

�

�
�

�

�
�

�

�

�
� �

�

�

�

�

�
� �

�

�

�

� �
�

�
�

�
�

�

�

�

�

�

�

�
�

�
�

�
�

�
�

�

�
�

�

�

0 25 50 75 100

�

� �

� �

�

�

�

�
� �

�

�

�
� � �

�
�

�

�
�

�
�

� �
�

�

� �

�

�

�

�

�

�

� �
�

�

�
�

�

�

�

�

�
�

� �

�
�

�

� �

�

�
�

�

�

0.00 0.25 0.50 0.75

�
�

� �
�

�

� �

�

�

�

�

� �

�

� � �

�

� �

�

� �
�

� �

�

�

� �

�
�

�

�

�

�

�

� �

�

�

�
� �

0.025 0.050 0.075 0.100

�

�

�

�
�

�

�

�

�

�

�

�

�

�
�

�

�
�

�
�

�

�

� �

�

� �

�

�

�

20 40 60

c

d

a

e

Tr
ip

le
ts

 C
or

re
ct

States per Character

Number of States

0.00

0.25

0.50

0.75

1.00

Tr
ip

le
ts

 C
or

re
ct

Characters

Number of Characters

0.00

0.25

0.50

0.75

1.00

b

Tr
ip

le
ts

 C
or

re
ct

Mutation Rate

Mutation Rate

0.00

0.25

0.50

0.75

1.00

Tr
ip

le
ts

 C
or

re
ct

Number of Generations

Tree Depth

0.00

0.25

0.50

0.75

1.00

Missing Data Rate

Percent of Missing Data

Tr
ip

le
ts

 C
or

re
ct

0.00

0.25

0.50

0.75

1.00 Algorithm
�

�

�

�

Cassiopeia-Greedy

Cassiopeia-Hybrid

Cassiopeia-ILP

Neighbor−Joining

� Camin−Sokal

�

�
�

�

�

�

�
� � �

�
�

�

�

�
� � �

�
�

�
�

� �

�

�

� �
� �

9 10 11 12 13 14

Figure S8: Unthresholded Triplets Correct Statistics.

65

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (whichthis version posted October 10, 2019. ; https://doi.org/10.1101/800078doi: bioRxiv preprint

https://doi.org/10.1101/800078
http://creativecommons.org/licenses/by-nc-nd/4.0/

�

� �

�

�

�

�

�

�
� �

�

�

� �
� � �

�

�

�
� � �

�

�

�
� �

�

40

60

80

20 40 60

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�
�

�

�

�

�

�

�

�

�
�

�

�

�

�

�

�

�

�
�

�

50

100

150

200

0.025 0.050 0.075 0.100

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

30

60

90

120

9 10 11 12 13 14

�

�
��

� � � �
�

�
� � � �

�

� � �

�

�

�

�

�

�

�

�

�

�

� �

� �
�

�
�

�

�
�

��� � �
�

� �
� � � � � �

� �

����� � �
�

� �
� � � � � �

�
�

�
���� � �

�
� �

� � � � � �
�

�

40

60

80

100

0 25 50 75 100

�

�

�

�

�

�

�

�

�

�
�

�

�

�

�
�

�
�

� �
�

�

�

�

� � � � � � � � �
�

� �

� � �
�

� � � � � � � �� � � � � � � � � �
�

�

40

60

80

100

0.00 0.25 0.50 0.75

Algorithm
�

�

�

�

�

Camin−Sokal

Cassiopeia-Greedy

Cassiopeia-Hybrid

Cassiopeia-ILP

Neighbor−Joining

Mutation RateCharacters

Tree Depth States per Character

Missing Data Rate

Number of Characters Mutation Rate

Number of Generations Number of States

Dropout Rate

Pa
rs

im
on

y

Pa
rs

im
on

y

Pa
rs

im
on

y

Pa
rs

im
on

y

Pa
rs

im
on

y

Figure S9: Parsimony of reconstructed trees of 400 cell simulated datasets

66

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (whichthis version posted October 10, 2019. ; https://doi.org/10.1101/800078doi: bioRxiv preprint

https://doi.org/10.1101/800078
http://creativecommons.org/licenses/by-nc-nd/4.0/

�
�

� �

� �

�

�

�

�

�

�

� � � �

�
�

�

�
�

�

�

�

�

�

�
�

�

� �

�
� �

�

�0.25

0.50

0.75

1.00

0.00 0.25 0.50 0.75

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

� �

0.25

0.50

0.75

1.00

20 40 60

�

� � � �
�

� �
��

� � � �
�

� �

�

�

�

�

�

�

� �

� �

0.25

0.50

0.75

1.00

0.025 0.050 0.075 0.100

� � � �
��

�
� � �

�
�

� � �
0.25

0.50

0.75

1.00

10 11 12 13 14

�

�

��
�

�

�
�

�

�
�

� �
�

�
�

�
�

�

�

�

�

�

�

�
�

�
�

�
�

�
�

� � �
�

�
�

��

�

�

�
� �

� � � �
�

�

�

�

�0.25

0.50

0.75

1.00

0 25 50 75 100

Number of Characters

Tr
ip

le
ts

 C
or

re
ct

Mutation Rate
Tr

ip
le

ts
 C

or
re

ct

Number of States

Tr
ip

le
ts

 C
or

re
ct

Number of Generations

Tr
ip

le
ts

 C
or

re
ct

Proportion of Missing Data

Tr
ip

le
ts

 C
or

re
ct

Mutation RateCharacters

�

�

�

Algorithm

Cassiopeia-Greedy

Cassiopeia-Hybrid

Neighbor-Joining

Tree Depth States per Character

Missing Data Rate

Figure S10: Benchmarking of lineage tracing algorithms on 1000 cell synthetic datasets.

67

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (whichthis version posted October 10, 2019. ; https://doi.org/10.1101/800078doi: bioRxiv preprint

https://doi.org/10.1101/800078
http://creativecommons.org/licenses/by-nc-nd/4.0/

�

�
� � �

�

�

�

�
� �

�

�

�

�

�

�

�

�
�

�
�

�
�

�

�

�
�

�

�

0.00 0.25 0.50 0.75 1.00

Tr
ip

le
ts

 C
or

re
ct

Mixture Component (θ)

400 Samples

0.25

0.50

0.75

1.00

� �

� �

� �

�
�

�
�

� �

�

�

�

�

�
�

�

�
�

�

� �

0.00 0.25 0.50 0.75 1.00

0.00

0.25

0.50

0.75

1.00

Tr
ip

le
ts

 C
or

re
ct

Mixture Component (θ)

Reduced States

�

�

�

�
�

�

�

�

�

�

� �

� �
� � � �

0.00 0.25 0.50 0.75 1.00

�

�
�

�
�

��

� �
�

� �

�

�

�

�
�

�
�

�

�
�

�
�

0.00 0.25 0.50 0.75 1.00

Tr
ip

le
ts

 C
or

re
ct

Mixture Component (θ)

0.00

0.25

0.50

0.75

1.00

Incorporation of Priors

Algorithm
�

�

�

�

�

Camin−Sokal

Cassiopeia-Greedy

Cassiopeia-Hybrid

Cassiopeia-ILP

Neighbor−Joining

0.25

0.50

0.75

1.00

Tr
ip

le
ts

 C
or

re
ct

Mixture Component (θ)

Algorithm
�

�

�

Cassiopeia-Greedy

Cassiopeia-Hybrid

Neighbor−Joining

1000 Samples

Algorithm

�

�

No Priors

Priors

Cassiopeia-Greedy

Cassiopeia-Hybrid

a b

c d

Figure S11: Reconstruction accuracy under over-dispersed state distributions.

68

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (whichthis version posted October 10, 2019. ; https://doi.org/10.1101/800078doi: bioRxiv preprint

https://doi.org/10.1101/800078
http://creativecommons.org/licenses/by-nc-nd/4.0/

�

�

�

�

�
� �

�

�
�

�

�

�

�

�

�
� �

�

�

�

�
�

�

�

�

�
�

�

�

�

�

�

�

�

�

� �

�

�

0.00

0.25

0.50

0.75

1.00

0 10000 20000 30000 40000 50000

Priors
NoPrior

Prior

Scalabillity & Accuracy of Algorithms in Large Regimes

Algorithm

Number of Cells

Tr
ip

le
ts

 C
or

re
ct

Scalability & Accuracy of Cassiopeia in Large Regimes

�

�

Cassiopeia-Greedy

Cassiopeia-Hybrid

Figure S12: Benchmarking of greedy and hybrid algorithms on large experiments.

69

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (whichthis version posted October 10, 2019. ; https://doi.org/10.1101/800078doi: bioRxiv preprint

https://doi.org/10.1101/800078
http://creativecommons.org/licenses/by-nc-nd/4.0/

�

�
� �

�

�

�

�

�

�
�

�

�

�

�

�

�
�

�

�
�

�

�

�

�

�

�

�

�
�

�

�

�

� �

�

�

�

�
�

�

�

� �

�

0.75

0.80

0.85

0.025 0.050 0.075 0.100

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

0.800

0.825

0.850

20 40 60

0.775

Tr
ip

le
ts

 C
or

re
ct

Number of Characters

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

0.65

0.70

0.75

0.80

0.85

9 10 11 12 13 14

�

�

�

�

�

�

�

�

�
�

�

� �
� �

�

�

�

�

�

�

�

�

�

�

�
�

�
�

�
�

�
�

�
�

�

�

�

�

�

�

�

�

�

� �

�

� �
� �

�

�
�

�

�

�

�

�

�

�

�

� �

�

� �
�

�
�

� �

�

�

�

�

�

�

�

�

�
�

�

�
�

�
�

�
�

�

0.5

0.6

0.7

0.8

0.9

0 25 50 75 100

Characters Mutation Rate

Mutation Rate

Tr
ip

le
ts

 C
or

re
ct

Transform
�

�

�

�

�

Identity

Log2

None

Lower Bound

3/4 Root

Tr
ip

le
ts

 C
or

re
ct

Number of Generations

Number of States

Tr
ip

le
ts

 C
or

re
ct

States

Depth of Tree

�
�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�
�

�

�

�

�

�

�

� �

�

�

� �

�

�
�

�

�

�

� �

�

�

�

�
�

�

�

�

�

�

�
�

�

�

�

�
�

�
�

�

�

�

0.6

0.7

0.8

0.9

0.00 0.25 0.50 0.75
Proportion of Missing Data

Tr
ip

le
ts

 C
or

re
ct

Dropout Rate

Figure S13: Determination of the indel prior transformation function.

70

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (whichthis version posted October 10, 2019. ; https://doi.org/10.1101/800078doi: bioRxiv preprint

https://doi.org/10.1101/800078
http://creativecommons.org/licenses/by-nc-nd/4.0/

� � � �
� �

� � �

�

�

�
� � �

� � �

�

� � �
�

�

� �
�

�

�

�

�
�

�

� � �

0.00

0.25

0.50

0.75

1.00

0.025 0.050 0.075 0.100

�

�

�

�
�

�

�

� �
� �

� �
� �

� �
�

�

�

�
� �

�

�

�

� �
�

�
�

�

� � �
�

�

�

�

�
�

�

� �

� � �

�
� �

�
� � �

�

�

� �
�

�

�

�

� � �

�

�

�

� � �
�

0.00

0.25

0.50

0.75

1.00

0 25 50 75 100

�
�

�

�
� �

�

�

�

�

�

�

�
�

�

�
�

�

� �

�

� �

�

0.00

0.25

0.50

0.75

1.00

20 40 60

�

�

�

�

�

�

�

�

� �

�

�

�

�

�

�

� �

�

�

�

�

�

�

0.00

0.25

0.50

0.75

1.00

9 10 11 12 13 14

�
�

�

�
� � �

� �

�

�

�

� � �

�

� � �

�

�

�

�

� �

�

�

�
�

�

�
�

�

�

�

� �
�

�

�

�

�

�

�

�

�

0.00

0.25

0.50

0.75

1.00

0.00 0.25 0.50 0.75

Algorithm

�

�

No Priors

Priors

Cassiopeia-Greedy

Cassiopeia-Hybrid

Tr
ip

le
ts

 C
or

re
ct

Characters

Number of Characters

Mutation Rate

Tr
ip

le
ts

 C
or

re
ct

Mutation Rate

States

Tr
ip

le
ts

 C
or

re
ct

Number of States

Depth of Tree

Tr
ip

le
ts

 C
or

re
ct

Number of Generations
Dropout Rate

Proportion of Missing data

Tr
ip

le
ts

 C
or

re
ct

Figure S14: Incorporation of priors into Cassiopeia.

71

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (whichthis version posted October 10, 2019. ; https://doi.org/10.1101/800078doi: bioRxiv preprint

https://doi.org/10.1101/800078
http://creativecommons.org/licenses/by-nc-nd/4.0/

a

ATTCAACTGCAGTAATGCTACCTC

cells target sites transcripts reads
intBC-A

intBC-C

intBC-B

intBC-D

intBC-E

AAAAA

AAAAA

AAAAA

AAAAA

UMI-A

UMI-B

UMI-C

UMI-D

cellBC-A

cellBC-C

cellBC-B

ATTCAACTGAAGTAATGCTACCTC
ATTCAACTGCAGTAATGCTACNNN
ATTCAACTGCAGTAATGCTACCTC
ATTCAACTGCAGTATTGCTAGCTC
ATTCAACTGCAGTAATGCTACCTC
ATTCAACTGCAGTAATGCTACCTC
ATTCAACTGCAGTAATGCTACCTC
CTTCAACTGCAGTAATGCTACCTC
ATTCAACTGCGATAATGCTACCTC
ATTCAACTGCAGTAATGCTACCTC
ATTCAACTGCAGTAATGCTAGCTC

b
c

d e

Figure S15: Quality control metrics for the target site sequencing library processing

pipeline.

72

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (whichthis version posted October 10, 2019. ; https://doi.org/10.1101/800078doi: bioRxiv preprint

https://doi.org/10.1101/800078
http://creativecommons.org/licenses/by-nc-nd/4.0/

Raw FASTQs

cellranger count: error-correct cellBC against white-list

R1: cellBC + UMI; R2: Target Site (intBC, indel characters)

possort.BAM

collapse: collapse reads within cellBC+UMI and error-correct R2

R2 with cellBC (error-corrected) and UMI metadata

Collapsed FASTQ

align: to reference Target Site sequence

R2 (collapsed, error-corrected) with cellBC & UMI metadata

SAM

callAlleles: extract intBC from R2; parse CIGAR string into indel characters (alleles)

R2 (and alignment CIGAR) with cellBC & UMI metadata

umiTable

collapse: error-correct UMI

Indel characters per UMI

filterUMIs: remove UMIs with low reads/UMI

error-correct intBCs

moleculeTable

assignLineageGroups: define lineage groups by intBC overlap

Indel characters per molecule

collectAlleles: remove lineage-group inconsistent intBCs; strip conflicting alleles

filterCells: remove cells with low UMI/cellBC;
remove cells with with low intBC-coverage

alleleTable Indel characters per intBC

treeReconstruction: build trees from alleleTable

filterCells: remove cells with low reads/cellBC and low UMIs/cellBC

Intra-Doublet Detection: detect & remove intra-doublets

Inter-Doublet Detection: detect & remove inter-doublets

a b

d

c

Population Size

Clonal Population

Clonal Population

Clonal Population

Proportion of Unique Cells

Number of Integrations

Figure S16: Processing pipeline for in vitro dataset.

73

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (whichthis version posted October 10, 2019. ; https://doi.org/10.1101/800078doi: bioRxiv preprint

https://doi.org/10.1101/800078
http://creativecommons.org/licenses/by-nc-nd/4.0/

�

�
�

�

�

�

�

�

�0.00

0.25

0.50

0.75

0.0 0.1 0.2 0.3 0.4

�

�

�

������

0.2

0.4

0.6

0.8

1.0

0.00 0.25 0.50 0.75 1.00

a b

c d

Intra-Doublet Detection Precision-Recall Curve

Recall

Pr
ec

is
io

n

F
M

ea
su

re

Fraction of Con�icting intBCs

F-Measure by Decision Rule for Intra-Doublets

Optimal decision
rule

�

�

�

�

�

�

�

�

�

�

� �
�

�

� �

�

0.0

0.2

0.4

0.6

0.25 0.50 0.75

�� �

�

�

�

�

�

�
�

���

�

��
�

0.00

0.25

0.50

0.75

1.00

0.00 0.25 0.50 0.75 1.00

Inter-Doublet Detection Precision-Recall Curve

Recall

Pr
ec

is
io

n

F
M

ea
su

re

Membership Criterion Cuto�

F-Measure by Decision Rule for Inter-Doublets

Figure S17: Identification of doublets using intBCs

74

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (whichthis version posted October 10, 2019. ; https://doi.org/10.1101/800078doi: bioRxiv preprint

https://doi.org/10.1101/800078
http://creativecommons.org/licenses/by-nc-nd/4.0/

a b

c d

Figure S18: Estimation of Prior Probabilities for Tree Reconstruction

75

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (whichthis version posted October 10, 2019. ; https://doi.org/10.1101/800078doi: bioRxiv preprint

https://doi.org/10.1101/800078
http://creativecommons.org/licenses/by-nc-nd/4.0/

� �

�

�

�

�

�
�

�

�
� � � ����

�

�
�

�

�

�

�

�
�

�
�

� �����

�
�

�

�

�

�

�

�

�
� � � �����

�

�
�

�

�

�

�

�

�

�
����

�
�

�
�

�

�

�

�

�

�

�

�

� �
�

������������

0

500

1000

1500

2000

2500

10 100 1000

�

�

�

�

�
�

� ���

�

�

�

�

�

�
�

����

�

�

�

�

�

�
����

�

�

�

�

�

����

�

�

�

�

�

�

�

�

�

�

�

�
�

�
� ������

0

500

1000

1500

10 100 1000

� �

� � � � � � �

� � � � �� ���

� �

� � � � � �

� � ����

� �

� � � � � �

�

� � � � ���

� �

� � � �

�

� � � ��

� � �

�

�

�

�
�

� � � � � ������������

0

250

500

750

1000

1250

10 100 1000

�

�

�

�

�

� � � � � � � � ��������

�

�

�

�

�

� � � � � � ����������

�

�

�

�

�

� � � � � � ���������

�

�

�

�

� �
� � � � �������

�

�

�
�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�
�
���������

2000

4000

6000

8000

10 100 1000 10000

Chi. Squared Test for Meta Purity

Ch
i.

Sq
. T

es
t S

ta
t

Ch
i.

Sq
. T

es
t S

ta
t

Ch
i.

Sq
. T

es
t S

ta
t

Ch
i.

Sq
. T

es
t S

ta
t

Number of Clades at Depth of Test

Number of Clades at Depth of Test

Number of Clades at Depth of Test

Number of Clades at Depth of Test

Clone 2

Clone 4

Clone 5

Clone 8

Clone 6

Clone 10

Clone 11

�

�

�

�
� �

� � � � � � � ����

�

�

�

�

�

�
�

� � � � � �����

�

�

�

� �
� �

� � � � � �����

�

�

�

�

�

�
� � � � ����

�
�

� �

�

�

�

�

�

�
� � � � � ������������

0.00

0.25

0.50

0.75

1.00

10 100 1000

�

�

� � � � � ���

�

�

�
� � � � ����

�

�

� � � � ����

�

�
� � � ����

�
�

�

�

�

�

�

�

� � � � � � � ������

0.00

0.25

0.50

0.75

1.00

10 100 1000

� � � � � � � � � � � � � �� ���� � � � � � � � � � ����� � � � � � � � � � � � � ���� � � � � � � � � � ��� � �
� � � � � � � � � � ������������

0.00

0.25

0.50

0.75

1.00

10 100 1000

�

� �

�
�

� � � � � � � � ��������

�

�

�
�

�
� � � � � � ����������

�

� �

�

�
� � � � � � ���������

�

�

�
�

� � � � � � �������

�

�

�
�

�

� �

�
�

�
�

� � � � � � � � ��������������

0.00

0.25

0.50

0.75

1.00

10 100 1000 10000

Mean Majority Vote of Clades

M
ea

n
M

em
be

rs
hi

p
M

ea
n

M
em

be
rs

hi
p

M
ea

n
M

em
be

rs
hi

p

Number of Clades at Depth of Test

Number of Clades at Depth of Test

Number of Clades at Depth of Test
M

ea
n

M
em

be
rs

hi
p

M
ea

n
M

em
be

rs
hi

p
M

ea
n

M
em

be
rs

hi
p

M
ea

n
M

em
be

rs
hi

p

Ch
i.

Sq
. T

es
t S

ta
t

Ch
i.

Sq
. T

es
t S

ta
t

Ch
i.

Sq
. T

es
t S

ta
t

Number of Clades at Depth of Test

Number of Clades at Depth of Test

Number of Clades at Depth of Test

Number of Clades at Depth of Test

Number of Clades at Depth of Test

Number of Clades at Depth of Test

Number of Clades at Depth of Test

Split 1

Algorithm
�

�

�

�

�

�

Cassiopeia-Hybrid, No Priors
Cassiopeia-Hybrid, Priors
Cassiopeia-Greedy, No Priors
Cassiopeia-Greedy, Priors

Neighbor−Joining
Camin−Sokal

� Cassiopeia-ILP

�

�

�

�

�

�

�

�
� � � �����

�

�

� �

� � � � �
� �� ��

�

�

�

� �

� � � � � ��

�
�

� � � � � � � ��

�

�

�

� �
�

�

� �� ���

�

�

�

�

� � �

� � � � �
� ��

�

�

�

�

�

�

� � � � � � � � � � � ����� ����

0

500

1000

1500

2000

10 100 1000

�

�

�
�

�

� �
� � � � �����

�

�
�

�

� � � � � � �� ��

�

�

�

�

�
� � � � � ��

�
�

� � � � � � � ��

�

� �

� � � � � �� ���

�

�

�

� �

� �
� � � � � � ��

�
�

� � �
�

� � � � � � � � � � � ����� ����

0.00

0.25

0.50

0.75

1.00

10 100 1000

Meta
Puri

ty

�

�

�
�

�
� � � � � � ���

�

�

� � � � � � � � � ����

�

�
� �

� � � � � � ����

�

�

� �
� � � � � ���

�

�

�

�
� � ����

� �
�

�
� � � � � � � ������

�

�

�
�

�
� � � � � � � � � � � � ��������

0.00

0.25

0.50

0.75

1.00

3 10 30 100 300

�

�
�

�

� � � � � � � ���

�

�
�

� � � � � � � � ����

�

�

�
�

� � � � � � ����

�

�
�

�
� � � � � ���

�

�

�

�

� �
����

� �

�

�
� � �

� � � � ������

�
�

�

�

�

� �
� �

�
� �

� � � � � ��������

0

100

200

300

400

500

3 10 30 100 300

�

�

�

�

�

�

� � � � ��

�

�

�
�

� � � � � �

�

�

�

�

�

�

� � � ��

�

�

�

�

� � � � �

�

�

�

� �

�

�

�

� � � �����

�

�

� �

�

�

� � � � � � ��

�

�

�

�

�

�

�

� � �
�

� � � � �����

0

50

100

3 10 30 100

�

�

�

� �

�
� � � � ��

�

�

�
�

� � � � � �

�

�

�
�

� �
� � � ��

�

�

�

�

� � � � �

�

�

� � �

� � � � � � �����

�

�

�

�
�

�
� � � � � � ��

�
�

�

�
�

� �
� � � � � � � � �����

0.00

0.25

0.50

0.75

1.00

3 10 30 100

Figure S19: Evaluation of algorithms on in vitro lineage tracing clones, First Split

76

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (whichthis version posted October 10, 2019. ; https://doi.org/10.1101/800078doi: bioRxiv preprint

https://doi.org/10.1101/800078
http://creativecommons.org/licenses/by-nc-nd/4.0/

� �

� �
�

�
�

�

�

�

�

�

�

�
�

���

� �

�
�

�
�

�

�

�

�

�
���

� �

�
�

�
�

�
�

�

�

�

�

�

���

� �

�
�

�
�

�

�

�

�
�
�

� � �

�

�

�

�

�

�

�

�

�

�

�
�
�

��
���
����

0

1000

2000

3000

10 100 1000

�

�

�

�

�

�

�

�
��

�

�

�

�

�

�

�

�
���

�

�

�

�

�

�

�
�
��

�

�

�

�

�

�

��
�

�
�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�
��
��

0

1000

2000

3000

4000

5000

10 100 1000

� �
�

�

�

�

�

�

�

�

�

�

�

�
���

�
�

�

�

�

�

�

�

�

�

�

�

�

��
��

� �
�

�

�

�

�

�

�

�

�

�

�
����

�
�

�

�

�

�

�

�

�

�

�

���

� � �
�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�
�
��
�����

0

2000

4000

6000

10 100 1000

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�
�
�����

�

�

�

�

�

�

�

�

�

�

�

�

�
�
�������

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�
�
����

�

�

�

�

�

�

�

�

�

�

�

�
�����

�
�

� � �
�

�
�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�
�
���
�����

0

5000

10000

15000

20000

25000

10 100 1000 10000

Chi. Squared Test for Meta Purity

Clone 2

Clone 4

Clone 5

Clone 8

Ch
i.

Sq
. T

es
t S

ta
t

Ch
i.

Sq
. T

es
t S

ta
t

Ch
i.

Sq
. T

es
t S

ta
t

Ch
i.

Sq
. T

es
t S

ta
t

Number of Clades at Depth of Test

Number of Clades at Depth of Test

Number of Clades at Depth of Test

Number of Clades at Depth of Test

Clone 6

Clone 10

Clone 11

Number of Clades at Depth of Test

Number of Clades at Depth of Test

Number of Clades at Depth of Test

Ch
i.

Sq
. T

es
t S

ta
t

Ch
i.

Sq
. T

es
t S

ta
t

Ch
i.

Sq
. T

es
t S

ta
t

�

�

�

�

�

�

�
� � �

�
�

� �� ���

� �

�

�

�

�

�

�
� � ����

�
�

�

�

�

�
� � � � � �

� ���

� �

�

�

�

�
� �

�
� ��

�
� �

�

�

�

�

�

�
�

� � � ������������

0.00

0.25

0.50

0.75

1.00

10 100 1000

�

�

�

�

�
� � ���

�

�

�

�

�
�

� ����

�

�

�

�

�
�

����

�

�

�

�
�

����

�

�

�

�

�

�

�

�

�

�

�
�

� � � ������

0.00

0.25

0.50

0.75

1.00

10 100 1000

�

�

�

�
� �

�
�

�

�

�
�

� ����

�

�

�

�

�

�

�

�

�

�
�

� �����

�

�

�

�
�

�
�

�

�

�
�

� �����

�

�

�

�

�

�

�

�

�
� ����

�
�

�
�

�

�

�

�

�

�

�

�
�

�
� ������������

0.00

0.25

0.50

0.75

1.00

10 100 1000

�

�

�

�

�

�

�

�

�

�
� � � ��������

�

�

�

�

�

�

�

�

�
�

�
����������

�

�

�

�

�

�

�

�

�
�

� ���������

�

�

�

�

�

�

�

�
�

� �������

�

�

�
�

�

�

�

�

�

�

�

�

�
�

�
�

�
�

� �
���

����������

0.00

0.25

0.50

0.75

1.00

10 100 1000 10000

Mean Majority Vote of Clades

M
ea

n
M

em
be

rs
hi

p
M

ea
n

M
em

be
rs

hi
p

M
ea

n
M

em
be

rs
hi

p
M

ea
n

M
em

be
rs

hi
p

Number of Clades at Depth of Test

Number of Clades at Depth of Test

Number of Clades at Depth of Test

Number of Clades at Depth of Test

M
ea

n
M

em
be

rs
hi

p

Number of Clades at Depth of Test

Number of Clades at Depth of Test

M
ea

n
M

em
be

rs
hi

p
M

ea
n

M
em

be
rs

hi
p

Split 2

�

�

�

�

�

�

�

�

�

�

�

�
�����

�

�

�

�

�

�

�

�

�

�

�

�
������

�

�

�

�

�

�

�

�

�

�

�

���
���

�

�

�

�

�

�

�

�

�

�

�
����

� � � �
�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�
��
��������

0

5000

10000

15000

20000

10 100 1000 10000

Ch
i.

Sq
. T

es
t S

ta
t

Number of Clades at Depth of Test

Clone 3 �

�

�

�

�

�
�

�
� � �������

�

�

�

�

�

�
�

� � �
��������

�

�

�

�

�
�

�
�

� � �������

�

�

�

�
� �

�
� � ������

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�
�

�
��

����������

0.4

0.6

0.8

1.0

10 100 1000 10000

M
ea

n
M

em
be

rs
hi

p

Number of Clades at Depth of Test

Algorithm
�

�

�

�

�

�

Cassiopeia-Hybrid, No Priors
Cassiopeia-Hybrid, Priors
Cassiopeia-Greedy, No Priors
Cassiopeia-Greedy, Priors

Neighbor−Joining
Camin−Sokal

� Cassiopeia-ILP

�

�

�

�

�
�

�

�

�

�

�

�
����

�

�

� �

�

�

�

�

�

�

�
�

��

�

�

�

�
�

�

�

�

�

�

��

�
�

�
�

�

�

�

�

�

��

�

�
�

�

�

�

�

�

�

�

�
�
�

�

�

�

�

�
�

�

�

�

�

�

�

�

��

�

�

�

�

�

�

�
�

�

�

�

�

�

�

�

�

�

�
���

�

����

0

2000

4000

6000

10 100 1000

�

�

�

�
� �

�

�

�
�

� �����

�

�

�

�

�

� � �

�

�
�� ��

�

�

�

�

�

�

�

� � � ��

�

�

�

�

�

� � � � ��

�

�

�

�

� � � �
�� ���

� �

� �
�

�

�

�

�
� � �

� ��

�

�

�

�
�

�

�

�
�

�
�

�
�

� � � � ����� ����

0.00

0.25

0.50

0.75

1.00

10 100 1000

Number of Clades at Depth of Test

�

�

�

�

�

�

�

�

�

�

�
��

�

�

�
�

�

�

�

�

�

�

�

� ����

�

�

�

�

�

�

�

�

�

�
����

�

�

�

�

�

�

�

�

�

��
�

�

�

�

�

�

�

�
���

� �

�

�

�
�

�

�

�

�

�

�
��

���

�
�

�

�

�

�
�

�

�

�

�

�

�

�

�

�

�
����

����

0

500

1000

1500

3 10 30 100 300

�

�

�

�

�

�

�
�

�

�
� ���

�

�

�

�
�

�

�

�
�

�
� ����

�

�

�

�

�
�

�

�

�
� ����

�
�

�

�

�

�

�
�

� ���

�

�

�

�

�

�
����

�
�

�

�

�
�

�

�

�
�

�
������

�

�

�

� �

� �

� � � � �
�

�
�

� � ��������

0.00

0.25

0.50

0.75

1.00

3 10 30 100 300

�
�

�

�

�

�

�

�

�

�

��

�

�

�

�

�

�

�

�

� �

�
�

�

�

�

�

�

�

�

��

�

�

�

�

�

�

�

� �

�

�

�

�

�

�

�

�

�

�
� ��

�
��

�
�

�

�
�

�

�

�

�

�

�

� ��

�

�
�

�

�

�

�

�

�

�

�

� �

�

�
�

����

0

100

200

300

400

3 10 30 100

�

�

�

�

�

�

�

�

�

�
��

�

�

�

�

�

�

�
�

� �

�

�

�

�

�
�

�

� �

��

�

�

�

�

�
�

�

� �

�
�

�

�

�

�
�

� �
� � �����

�

�
�

�

�

�
�

� �

�

� � ��

�

�

�

�
�

�
�

� �

�
�

�
�

�
� �����

0.00

0.25

0.50

0.75

1.00

3 10 30 100

Figure S20: Evaluation of algorithms on in vitro lineage tracing clones, Second Split77

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (whichthis version posted October 10, 2019. ; https://doi.org/10.1101/800078doi: bioRxiv preprint

https://doi.org/10.1101/800078
http://creativecommons.org/licenses/by-nc-nd/4.0/

−1

0

1

0

500

1000

1500

2000

Algorithm
Camin−Sokal

Cassiopeia-Greedy

Cassiopeia-Hybrid

Neighbor−Joining

Cassiopeia-ILP

N
or

m
al

iz
ed

 P
ar

si
m

on
y

R
aw

 P
ar

si
m

on
y

Raw Parsimony Scores for
GESTALT Datasets

Normalized Parsimony Scores for
GESTALT Datasetsa b

Z1 (
Raj

et
al)

Z2 (
Raj

et
al)

Z3 (
Raj

et
al)

GESTA
LT

 (M
cK

en
na

 et
 al

)

Z1 (
Raj

et
al)

Z2 (
Raj

et
al)

Z3 (
Raj

et
al)

GESTA
LT

 (M
cK

en
na

 et
 al

)

Figure S21: Parsimony Scores, Normalized and Raw, for GESTALT Reconstructions

78

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (whichthis version posted October 10, 2019. ; https://doi.org/10.1101/800078doi: bioRxiv preprint

https://doi.org/10.1101/800078
http://creativecommons.org/licenses/by-nc-nd/4.0/

�

�

�

�

�

�

�

�

�

�

0.75

0.80

0.85

0.90

Tr
ip

le
ts

 C
or

re
ct

Phased Recorder Simulation - Model 1

�

�

Cassiopeia-Hybrid, No Priors

Cassiopeia-Hybrid, Priors

site 1 site 2 site 3

“Phased” Target Site

slow
moderate

fast

cutting
rate:

1 1.5 2 3.5 6
μmax

μmin

�

�

�

�

�

�

�

�

�

�

0.80

0.85

0.90

0.95

�

�

Cassiopeia-Hybrid, No Priors

Cassiopeia-Hybrid, Priors

1 1.5 2 3.5 6
μmax

μmin

Tr
ip

le
ts

 C
or

re
ct

Phased Recorder Simulation - Model 2

a

b c

Figure S22: Simulations of Phased Recorder

79

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (whichthis version posted October 10, 2019. ; https://doi.org/10.1101/800078doi: bioRxiv preprint

https://doi.org/10.1101/800078
http://creativecommons.org/licenses/by-nc-nd/4.0/

	Figure Legends

