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Abstract

One of the most useful models in population genetics is that of a selective sweep and the consequent hitch-
hiking of linked neutral alleles. While variations on this model typically assume constant population size,
many instances of strong selection and rapid adaptation in nature may co-occur with complex demography.
Here we extend the hitch-hiking model to evolutionary rescue, where adaptation and demography not only co-
occur but are intimately entwined. Our results show how this feedback between demography and evolution
determines – and restricts – the genetic signatures of evolutionary rescue, and how these differ from the
signatures of sweeps in populations of constant size. In particular, we find rescue to harden sweeps from
standing variance or new mutation (but not from migration), reduce nucleotide diversity both at the selected
site and genome-wide, and increase the range of observed Tajima’s D values. For a given rate of population
decline, the feedback between demography and evolution makes all of these differences more dramatic under
weaker selection, where bottlenecks are prolonged. Nevertheless, it is likely difficult to infer the co-incident
timing of the sweep and bottleneck from these simple signatures, never-mind a feedback between them.
Temporal samples spanning contemporary rescue events may offer one way forward.

Introduction

The simple models used to predict the genetic signatures of selective sweeps have been incredibly helpful
in understanding and identifying population genetic signals of adaptation (e.g., Maynard Smith and Haigh,
1974; Kaplan et al., 1989; reviewed in Stephan, 2019). These models are usually based on constant-sized,
Wright-Fisher populations. Meanwhile, many instances of adaptation – and thus selective sweeps – in nature
will co-occur with complex demography. In fact, many of the most well-known examples of selective sweeps
have arisen following a rather extreme and sudden change in the environment (e.g., after the application of
insecticides, Sedghifar et al., 2016, or antimalarial drugs, Nair et al., 2003), which could have simultaneously
imposed sharp demographic declines. Attempts to capture such complex demographic scenarios typically
impose qualitatively appropriate changes in population size (e.g., Hermisson and Pennings, 2005). Indeed, a
number of studies have explored the genetic signatures of selective sweeps during demographic bottlenecks
(e.g., Innan and Kim, 2004; Teshima et al., 2006; Wilson et al., 2014). However, these demographies are
nearly always chosen in the absence of an explicit population model and independently of evolution.

Here we model selective sweeps in a scenario where demography and adaptive evolution are not indepen-
dent. In particular we model an instance of evolutionary rescue (Gomulkiewicz and Holt, 1995; reviewed in
Bell, 2017), where a sudden environmental change causes population decline that is reverted by a selective
sweep. Under this framework, rescue is a simultaneous demographic bottleneck and selective sweep, where
each affects the other. First, because the mean absolute fitness of the population changes with the beneficial
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allele’s frequency, the depth and duration of the bottleneck depends on the dynamics of the selective sweep,
i.e., evolution affects demography. Second, the probability that the beneficial allele establishes depends on
the rate of population decline, i.e., demography affects evolution. Together, this feedback between demogra-
phy and evolution restricts the range of dynamics that are possible, and therefore also restricts the range of
genetic signatures we should expect to observe. Our goal here is to describe the range of genetic signatures
that (this model of) evolutionary rescue allows, to help elucidate how rescue may obscure inferences of past
selection and demography and to identify patterns that could be used to infer rescue in nature.

Most theory on evolutionary rescue to date (reviewed in Alexander et al., 2014) has focused on the
probability of rescue. Recently, however, some attention has been given to the dynamics of population
size (Orr and Unckless, 2014), the probability of soft sweeps (Wilson et al., 2017), and the genetic basis of
adaptation (Osmond et al., 2019) given rescue in haploid or asexual populations. Here we extend this line of
thinking to three modes of rescue in diploid, sexual populations, and use coalescent theory and simulations of
whole chromosomes to examine the genetic signatures at linked, neutral loci. Our focus is on three common
genetic signatures: the number of unique lineages of the beneficial allele that establish (i.e., the softness of
the sweep), the pattern of nucleotide diversity around the selected site (i.e., the dip in diversity), and the
pattern of Tajima’s D around the selected site (i.e., skews in the site-frequency spectrum). We explore three
modes of rescue, where the beneficial allele arises from either standing genetic variance, recurrent de novo
mutation, or migration. For each mode of rescue we derive the expected forward-time dynamics and resulting
genetic signatures and compare these to predictions for populations of constant size as well as to individual-
based simulations. Qualitatively, we find that rescue causes faster, harder sweeps that produce wider, deeper
dips in diversity and more extreme values of Tajima’s D. Due to the feedback between demography and
evolution, the effect of rescue on the signatures of selective sweeps, relative to the signatures in populations
of constant size, becomes more pronounced as the selection coefficient, and thus the probability of rescue,
gets smaller.

Methods and results

Data availability statement

Code used to derive and plot all results presented below (Python scripts and Mathematica notebook) is
available at https://github.com/mmosmond/rescueCoalescent.git under an MIT licence.

Deterministic trajectories

Consider a population of size N(t), with a beneficial allele, A, at frequency p(t) and an ancestral allele, a, at
frequency q(t) = 1−p(t). Assume non-overlapping generations and let WAA, WAa, and Waa be the absolute
fitness (expected number of offspring) of each genotype. Then with random mating the expected change in
allele frequency (equation 5.2.13 in Crow and Kimura, 1970) and population size in one generation is

∆p(t) ≡ p(t+ 1)− p(t) = p(t)q(t)
(WAA −WAa)p(t) + (WAa −Waa)q(t)

W (t)

∆N(t) ≡ N(t+ 1)−N(t) = (W (t)− 1)N(t),

(1)

with W (t) the population mean fitness.
Here we are interested in the scenario where a population composed of primarily aa genotypes is declining

at some rate d, i.e., Waa = 1− d. The beneficial allele, A, is then assumed to act multiplicatively with the
fitness of the ancestral background, such that WAa = (1−d)(1 +hs) and WAA = (1−d)(1 + s). Throughout
the text we assume additivity at the selected locus, h = 1/2, such that with weak selection the allele frequency
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(c.f., equation 5.3.12 in Crow and Kimura, 1970) and population dynamics can be approximated by

p(t) ≈
[
1 +

1− p(0)

p(0)
e−(s/2)t

]−1

N(t) ≈ N(0)e[(1+s)(1−d)−1]t

[
p(0)

p(t)

]2(1−d)

.

(2)

These equations make the feedback between evolution and demography in this model clear. The allele
frequency dynamics depend only on relative fitnesses (Equation 1), Wi/W (t), and thus can depend on
demography only through initial allele frequency (Equation 2). In contrast, demography depends on mean
fitness (Equation 1) and thus is strongly influenced by changes in allele frequency (Equation 2).

Conditioning on rescue

Above we have considered only the deterministic dynamics. We are, however, primarily concerned with a
stochastic event – the establishment of a rare beneficial allele. In rescue we are particularly interested in only
those instances where the beneficial allele establishes (otherwise the population is extinct), which creates a
bias away from the deterministic trajectory. As shown in Maynard Smith (1971) (see Orr and Unckless, 2014,
for an application to evolutionary rescue), we can approximate this bias by replacing the true initial allele
frequency, p(0), in the deterministic predictions (Equations 1–2) by this true value divided by the probability
of establishment. In essence, dividing initial allele frequencies by the probability of establishment implies
that an allele escaping random loss when rare will initially increase much faster than expected before settling
into its deterministic trajectory.

Assuming alleles do not interact (i.e., a branching process), a single copy of an allele that is expected to
leave 1 + ε copies in the next generation with a variance of σ2 has an establishment probability of (Allen,
2010, p. 172, see also Feller, 1951, equation 5.7)

ρ = 1− e−2ε/σ2

. (3)

For example, in a Wright-Fisher population of size N a rare allele with selection advantage s is expected
to leave 1 + s copies, with a variance of 1 + s + O(1/N). Thus ε = s and, in a large population with weak
selection, σ2 ≈ 1, such that the probability of establishment is roughly 1− e2s (Fisher, 1999, p. 80) or nearly
2s (Haldane, 1927). In our case, ε = WAa−1 = (1+hs)(1−d)−1 ≈ hs−d and σ2 depends on the particular
choice of lifecycle (e.g., see Supplementary text: Probability of establishment and effective population size
in the simulated lifecycle). When h = 1 and σ2 = 1 we recover the probability of establishment in an
exponentially growing or declining population, ρ ≈ 2(s− d) (Otto and Whitlock, 1997).

As mentioned above, the change in allele frequency (Equation 1), i.e., evolution, depends only on relative
fitness and therefore is not influenced by demography. However, now we see that conditioning on rescue will
cause the initial allele frequency, and hence evolution, to depend on absolute fitness (through ε), and hence on
demography. For example, the faster the rate of initial decline, d, the lower the probability of establishment
(because the growth rate of the heterozygote is lower). This causes larger effective initial allele frequencies
– and hence shorter selective sweeps – in populations that are rescued from more precipitous declines.

Simulations

The simulation details are described in full in Supplementary text: Simulation details. Briefly, the lifecycle
described in Supplementary text: Simulated lifecycle, with the addition of a hard carrying capacity at N(0),
was simulated in SLiM (Haller and Messer, 2019) with tree-sequence recording (Haller et al., 2019). We
simulated a 20 Mb segment of a chromosome, with all but one of the center loci neutral, with a per base
recombination rate of rbp = 2 × 10−8 and per base mutation rate at neutral loci of U = 6 × 10−9 (both
inspired by Drosophila estimates). A population was considered rescued when the beneficial mutation was
fixed and the population size had recovered to it’s initial size, N(0). Pairwise nucleodtide diversity and
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Tajima’s D were calculated directly from the tree sequences using msprime (Kelleher et al., 2016) and tskit

(Kelleher et al., 2018).

Forward-time results

Below we derive the effective initial allele frequency given rescue (allowing us to predict the forward-time
dynamics; see Conditioning on rescue) and the softness of the sweep given rescue, for three types of rescue:
from standing genetic variation, recurrent de novo mutation, or migration. To do so we must first compute
the probability of rescue, which we also report. Many similar results have been previously derived: Orr
and Unckless (2008) give the probability of rescue from standing genetic variation (haploid) or de novo
mutation (haploid and diploid); Orr and Unckless (2014) give the effective initial allele frequencies given
rescue from standing genetic variation or de novo mutation in a haploid model; and Wilson et al. (2017) give
the probability of a soft sweep given rescue from de novo mutation in a haploid model. Nevertheless, we
include the diploid versions of these results below for completeness, and because they are needed to describe
the genetic signatures of rescue that follow.

Rescue from standing genetic variation (SGV)

We first consider rescue from genetic variation that is present at the time of the environmental change,
ignoring further mutations. To avoid complicating the presentation here we assume the initial number
of beneficial alleles is given; treating the initial number as a random variable requires conditioning the
distribution on a successful sweep (Hermisson and Pennings, 2017).

Given there are initially κ � N(0) copies of the beneficial allele, the number that establish is roughly
binomially distributed with κ trials and success probability ρ. The probability of rescue is the probability
that at least one establishes,

P SGV
rescue = 1− (1− ρ)κ. (4)

Conditioning on rescue, it is therefore as if the true initial allele frequency, κ/(2N(0)), is inflated by a factor,
1/P SGV

rescue, i.e., the beneficial allele quickly jumps to frequency (c.f., equation S1.4 in Orr and Unckless, 2014)

pSGV
0|rescue =

κ

2N(0)

1

P SGV
rescue

, (5)

after which it follows its deterministic trajectory. This same conditioning applies in a population of constant
size (i.e., d = 0). As the decline rate, d, increases, the probability a copy establishes, ρ, and hence the
probability of rescue, P SGV

rescue, declines, making the conditioning stronger. This causes selective sweeps to get
started faster as d increases, implying that, for a given s, rescue sweeps are faster than those in populations
of constant size.

Figure 1 compares our numerical (Equation 1) and analytical (Equations 2) approximations against
individual-based simulations. This shows that the numerical predictions do a reasonably good job in cap-
turing the median simulation dynamics (we use the median as taking the mean of the non-linear trajectories
distorts their shape), especially with larger selection coefficients and more initial copies of the beneficial
allele. For smaller selection coefficients and fewer initial copies of the beneficial allele we overestimate allele
frequency and population size (e.g., panel D). The reasons for this are two-fold. On the one hand we tend
to underestimate the probability of establishment with small selection coefficients; beneficial alleles with
smaller selection coefficients can exist at low numbers – before securing establishment – for a longer period
of time (Maruyama and Kimura, 1974, e.g., with s = 0.13 and d = 0.05 we have WAa ≈ 1.01, so that such an
allele can persist for up to ∼ (WAa − 1)−1 ≈ 100 generations before establishing or going extinct, Desai and
Fisher, 2007). The longer it takes a beneficial allele to establish the fewer copies of the ancestral allele that
exist when it does (in the case of rescue, d > 0), increasing the chance the beneficial allele will experience
some selection as a homozygote while establishing (where it has roughly twice the probability of survival
when d is small given h = 1/2). This is true even when we start with only a single copy of the beneficial
allele (as opposed to a model with constant population size, d = 0, where the ancestral allele only decreases
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in frequency if the beneficial allele increases in number), although this effect is strengthened when there are
initially more copies as some copies may reach substantial frequencies in the meantime, causing even greater
beneficial allele frequencies during establishment. On the other hand, conditioning on rescue has a larger
effect (on effective initial allele frequencies) when rescue is unlikely. This amplifies our underestimates of the
probability of establishment discussed above when there are initially fewer copies of the beneficial allele. The
analytical approximations, assuming weak selection, provide yet larger overestimates of allele frequency and
population size (due to the relatively large selection coefficients used, as expected in populations maladapted
enough to require evolutionary rescue).

Note that when the expected number of establishing copies, ρκ, is small, the probability of rescue is
roughly ρκ, so that the effective initial allele frequency, pSGV

0|rescue, is independent of the initial number of
copies, κ, implying that rescue tends to occur by a hard selective sweep, i.e., only one of the initial copies
establishes. For larger values of κ the effective initial frequency is not independent of κ and rescue can
occur by a soft selective sweep (Hermisson and Pennings, 2005), where multiple initial copies establish. The
probability that multiple copies establish is P SGV

rescue − κρ(1− ρ)κ−1, where κρ(1− ρ)κ−1 is the probability of
a hard sweep. Given rescue occurs from standing genetic variation, the probability it is due to a soft sweep
is therefore

P SGV
soft|rescue = 1− κρ

1− ρ
1− P SGV

rescue

P SGV
rescue

. (6)

In our two examples above this is 0 (when κ = 1) and ≈ 1 (when κ = 100). Between these two extremes we
find Equation 6 to provide reasonable estimates for small κ or large s, but to underestimate the probability
of a soft sweep otherwise (Figure 2A), when beneficial alleles can persist at low numbers long enough to
establish with some non-negligible probability of experiencing some selection as homozygotes (given d > 0).

More generally, as mentioned above, the number that establish is binomially distributed, and dividing
this by the probability of rescue then provides the distribution given rescue, which has expectation

E[number of copies that establish|rescue] =
κρ

P SGV
rescue

. (7)

Equation 7 also provides reasonable estimates for small κ or large s (Figure 2B).

Rescue by de novo mutation (DNM)

When there are few copies of the beneficial allele at the time of environmental change rescue may depend on
mutations arising de novo at the selected site during population decline. To predict the allele frequency and
population size dynamics in this scenario we then need to derive the waiting time until the first successful
rescue mutation. The first successful rescue mutation arrives according to a time-inhomogeneous Poisson
process with rate, λ(t) = 2N(t)uρ, where 2N(t) = 2N(0)e−dt describes the decline in the number of copies
of the ancestral allele. Thus the probability that a rescue mutation has established by time T (i.e., the

cumulative distribution of the waiting time) is F (T ) = 1 − e−
∫ T
0
λ(t)dt. Taking the limit as time goes to

infinity then gives the probability of rescue (c.f., equation 10 in Orr and Unckless, 2008)

PDNM
rescue = lim

T→∞
F (T ) = 1− e−2N(0)uρ/d. (8)

Following Orr and Unckless (2014), taking the derivative of F (T ) and dividing by the probability of rescue
gives the probability distribution function for the arrival time of the first establishing rescue mutation given
rescue, f(t). While the first establishing mutation is still rare it will grow exponentially at rate ρ/2, and
conditioned on its establishment will very quickly reach 1/ρ copies. Integrating over the possible arrival
times then gives the expected number of copies of this successful mutation at time t since the environmental
change,

∫∞
0

(e(t−τ)ρ/2/ρ)f(τ)dτ . Dividing by its expected size at time t, exp(ρt/2), and the total number of
alleles at the time of environmental change, 2N(0), it is therefore as if the successful mutation was present
at the time of environmental change, with frequency

pDNM
0|rescue =

1

2N(0)

1

ρ

(−2N(0)uρ/d)−ρ/(2d) [Γ(1 + ρ/(2d),−c)− Γ(1 + ρ/(2d))]

1− exp(2N(0)uρ/d)
, (9)
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Figure 1: Allele frequency, p(t), and population size, N(t), during a selective sweep from standing genetic
variance in evolutionary rescue (blue; d = 0.05) or in a population of roughly constant size (red; d = 0 such
that E[N(t)] = N(0), not shown). The thick solid curves are the numerical predictions (Equation 1) and the
dashed curves are the analytic approximations (Equation 2), after replacing the true initial allele frequency,
p(0) = κ/[2N(0)] with pSGV

0|rescue (Equation 5). The thinnest curves are 100 replicate simulations (rescue only

for clarity), with the median trajectory slightly thicker (often obscured by predictions).
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Figure 2: (A) The probability more than one initial copy of the beneficial allele establishes given rescue
(blue; d = 0.05) or fixation (red; d = 0) and (B) the expected number of initial copies that have descendants
at the time of rescue (or fixation), each as functions of the initial number of copies of the beneficial allele,
κ. The curves are Equations 6 (panel A) and 7 (panel B). Each point is based on 100 replicate simulations
where rescue (or fixation) was observed. Error bars are standard errors. Parameters: N(0) = 104.

where Γ(z) is the gamma function (equation 6.1.1 in Abramowitz and Stegun, 1972) and Γ(a, x) is the
incomplete gamma function (equation 6.5.3 in Abramowitz and Stegun, 1972). The factor 1/ρ > 1 increases
the effective initial frequency, because we have conditioned on establishment, while the last factor decreases
the effective initial frequency, because we must wait for the mutation to arise. When the expected number
of rescue mutations, 2uN(0)ρ/d, is small this expected number cancels out and the last factor becomes
approximately d/(d + ρ/2), which is independent of mutational input (Orr and Unckless, 2014). That is,
conditioning on unlikely rescue, rescue mutations arise earlier in populations that decline faster.

In a population of constant size, N = N(0), mutations arrive at a time-homogeneous rate, λ = 2N(0)uρ
and the probability distribution of the waiting time until the first successful mutation is a simple exponential,
f(t) = λe−λt. Integrating the expected number of copies of the allele over the waiting times shows that the
waiting time factor in a population of roughly constant size is 4N(0)u/(1 + 4N(0)u), which, in constrast to
rescue, depends strongly on mutational input but is independent of establishment probability, ρ.

Figure 3 compares our numerical (Equation 1) and analytical (Equations 2) approximations against
individual-based simulations. As with rescue from standing genetic variance (Figure 1), with small selection
coefficients we tend to overestimate allele frequencies and population sizes by ignoring beneficial homozygotes
and thus underestimating of the probability of establishment. This is an even bigger issue with rescue by
de novo mutation, where a weakly selected beneficial allele can not only exist at low numbers for a large
number of generations before establishing, but can also arise when the number of ancestral alleles is already
considerably lowered (especially so when the mutation rate is small). Our predictions do better with larger
selection coefficients, where beneficial alleles quickly establish or go extinct.
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Figure 3: Allele frequency, p(t), and population size, N(t), during a selective sweep from de novo mutation
in evolutionary rescue (blue; d = 0.05) and in a population of roughly constant size (red; d = 0). The thick
solid curves are the numerical predictions (Equation 1) and the dashed curves are the analytic approximations
(Equation 2), using pDNM

0|rescue (Equation 9) as the initial allele frequency, p(0). See Figure 1 for details.
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We can also calculate the probability of a soft sweep from recurrent mutation. Taking into account
the beneficial alleles present at time t, the rate at which additional copies arise and establish is λ(t) =
2N(t)q(t)uρ(t), where 2N(t)q(t) is the number of ancestral alleles at time t and ρ(t) is the probability
of establishment, which changes with allele frequency because this influences the genotypes the new allele
experiences. Thus the number of mutations that arise and fix is Poisson with rate

∫∞
0
λ(t)dt, allowing

us to write down an equation for the probability of a soft sweep. To gain intuition we make a very rough
approximation, assuming q(t) ≈ 1 while mutations are arriving (i.e., when N(t) is still large), so that ρ(t) ≈ ρ
and we get the same Poisson rate we derived above for the first successful mutation,

∫∞
0
λ(t)dt ≈ 2N(0)uρ/d,

providing us with the probability distribution for the number of mutations that establish. Dividing the
expected number of establishing mutations by the probability of rescue, the expected number that establish
given rescue is

E[number of mutations that establish|rescue] = PDNM
rescue + log(1− PDNM

rescue)(1− PDNM
rescue). (10)

This is analogous to the result in a model with haploid selection (c.f., equation 7 in Wilson et al., 2017).
Ignoring density-dependence, our approximation will underestimate the number of establishing mutations
when h 6= 0 since selection in heterozygotes will prolong the persistence of the a allele (creating more
opportunity for mutation) and establishment probabilities will rise with the frequency of the beneficial A
allele (because more AA genotypes are then created, as discussed in the case of standing genetic variation
above). At the same time, if the carrying capacity is reached before fixation, our simple form of density-
dependence will introduce additional genetic drift and hence tend to reduce the number of mutations that
establish. In the end we find our rough approximation to underestimate the number of establishing mutations
(Figure 4B), suggesting that our underestimate of the probability of establishment has a larger effect than
the excess drift brought about by the carrying capacity for these parameter values.

With these same approximations the probability of a soft selective sweep given rescue (i.e., the probability
more than one copy establishes) is

PDNM
soft|rescue = 1 + log(1− PDNM

rescue)
1− PDNM

rescue

PDNM
rescue

, (11)

as in a haploid population (equation 8 in Wilson et al., 2017). As with the expected number of establishing
copies (Equation 10), we see this approximation is an underestimate in diploid populations (Figure 4A). On
a related note, Wilson et al. (2017) reasoned that, because soft sweeps are expected when rescue is likely
while hard sweeps are expected when rescue is rare, population bottlenecks will tend to be more extreme
when rescue occurs by a hard selective sweep (and thus it might be easier to detect soft sweeps from patterns
at linked neutral loci, as bottlenecks could hide the signal). Here we show the importance of conditioning
on rescue, which roughly equalizes the bottleneck sizes across scenarios with very different probabilities of
rescue (e.g., compare Figure 3A and B, or C and D, where the probability of rescue differs by an order
of magnitude), potentially making hard sweeps easier to detect due to their greater effect on local gene
genealogies (see below).

Rescue by migrant alleles (MIG)

In Supplementary text: Rescue by migrant alleles (MIG) we derive approximations for allele frequency
and population size dynamics given rescue by migrant alleles entering the population at a constant per
generation rate m. There are close similarities here with rescue by mutation, and so we largely relegate this
case to the appendix. However, with migration as opposed to mutation, the rate at which new copies of the
beneficial allele arise does not decline with the number of ancestral alleles. This increases the probability
that beneficial alleles will establish when the population is closer to extinction, when compared to rescue by
mutation, especially under smaller migration rates. This effect is amplified by the fact that the probability
of establishment also increases as the number of ancestral alleles declines. Under sufficiently small migration
rates, simulations show that the beneficial allele starts to sweep later but increases in frequency faster than
the deterministic expectation (Figure S6). Here we enter a different regime, which we do not explore.
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Figure 4: (A) The probability more than one mutation establishes given rescue (blue; d = 0.05) or fixation
(red; d = 0) and (B) the expected number of unique mutational lineages of the beneficial allele that exist at
the time of rescue (or fixation), each as functions of the mutation rate at the selected locus, u. The blue curves
are Equations 11 (panel A) and 10 (panel B). The red curves are from Ewens’ sampling formula (equation
11 (panel A) and equation 12 (panel B) in Pennings and Hermisson, 2006a, with θ = 2Ne(0)u = 8N(0)u/7
and n = 2N(0)). Each point is based on 100 replicate simulations where rescue (or fixation) was observed.
Error bars are standard errors. Parameters: N(0) = 104.

We wait until the coalescent has been introduced to explore soft sweeps under migration (see The number
of successful migrants).

The structured coalescent

To explore the genetic patterns created by evolutionary rescue we next flip our perspective and think back-
wards in time, starting from a random sample of chromosomes at the time the beneficial allele fixes. Focusing
on a neutral locus that is recombination distance r from the selected site, we are interested in calculating
the rate of coalescence, the rates of recombination and mutation off the selected background, and the rate
of migration out of the population. If our sample of alleles has k distinct ancestors on the selected back-
ground τ generations before fixation, these rates are approximately (table 1 in Hudson and Kaplan, 1988;
equation 16 in Pennings and Hermisson, 2006a; see Supplementary text: Deriving the structured coalescent
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for derivations)

pcoal(k, τ) =

(
k

2

)
1

2N ′e(τ)p′(τ)

prec(k, τ) = kr[1− p′(τ)]

pmut(k, τ) = k
u[1− p′(τ)]

p′(τ)

pmig(k, τ) = k
m

2N ′(τ)p′(τ)
,

(12)

where p′(τ) = p(T−τ), N ′(τ) = N(T−τ), and N ′e(τ) = Ne(T−τ) are the allele frequency, census population
size, and effective population size, respectively, τ generations before fixation, with fixation occurring in
generation T .

With slow changes in population size, N(t− 1) ≈ N(t) and the mean number of gametes contributed to
the next generation by each gamete in the current generation is 2. The inbreeding (and variance) effective
population size, Ne(t), is then roughly (4N(t) − 2)/(σ2 + 2) (equation 7.6.4.3 in Crow and Kimura, 1970),
where σ2 is the variance in the per capita number of gametes contributed to the next generation. Therefore,
in a large population, N(t)� 1, the ratio of the effective size to the census size is roughly

Ne(t)

N(t)
≈ 4

2 + σ2
, (13)

where σ2 depends on the particular lifecycle (e.g., see Supplementary text: Probability of establishment and
effective population size in the simulated lifecycle).

The number of successful migrants

Before moving on, note that Equation 12 (together with Equation 13 when σ2 is constant) shows that
the per generation probability of migration and coalescence depend on population size and beneficial allele
frequency in the same way. This similar form implies that the relative rates at which lineages coalesce
and migrate at the selected site does not depend on the population size and allele frequency. Pennings
and Hermisson (2006a) used this fact to show that, in an ideal population of constant size, the number of
unique migrant haplotypes contributing to a present day sample, as well as their proportions, is described by
Ewens’ sampling formula (pages 334ff in Ewens, 2004) when we replace θ with 2m. Powerfully, this results
holds even in non-ideal populations of changing size (as briefly noted by Pennings and Hermisson, 2006a,
p. 1081-1082) – including during evolutionary rescue – as long as the relationship between the effective and
census population sizes remains the same (i.e., Ne(t)/N(t) is constant; we now replace θ with 2mNe/N in
Ewens’ sampling formula). Thus the softness of a sweep from migration depends only on the migration rate
and variance in gamete numbers (σ2, which determines Ne/N ; Equation 13), and is the same during rescue
as it is in a population of constant size. The analogous result for rescue by de novo mutation does not hold
(as it does for a population of constant size, Pennings and Hermisson, 2006a), since the rate of mutation is
not inversely proportional to population size (Equation 12).

Here we use just two properties of Ewens’ sampling formula, the expected number of unique migrants
among a sample of size n (page 336 in Ewens, 2004)

E[number of unique migrants |n] =
n∑
j=1

2mNe/N

j − 1 + 2mNe/N
(14)

and the probability this is more than two is (equation 10.9 in Ewens, 2004)

PMIG
soft|rescue(n) = 1−

n−1∏
j=1

j

j + 2mNe/N
. (15)

Figure 5 shows that these formulas perform very well, even when we sample the entire population (n =
2N(0)).
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Figure 5: (A) The probability that more than migrant allele establishes given rescue (d = 0.05; blue) or
fixation (d = 0; red) and (B) the expected number of unique lineages of the beneficial allele that exist at the
time of rescue (or fixation), each as functions of the migration rate, m. The yellow curves are Equations 15
(panel A) and 14 (panel B) using n = 2N(0). Each point is based on 100 replicate simulations where rescue
(or fixation) was observed. Error bars are standard errors. Parameters: N(0) = 104.

The timing of coalescence

We now use Equation 12 to calculate the probability that the most recent event is τ generations before
fixation and is either coalescence, recombination, mutation, or migration. Letting i, j ∈ {coal, rec,mut,mig},
the probability that i is the most recent event, and occurs τ generations before fixation, is (c.f., equation 6
in Pennings and Hermisson, 2006b)

Pi(k, τ) = pi(k, τ)

∏
j 6=i

[1− pj(k, τ)]

 τ−1∏
l=0

∏
j

[1− pj(k, l)]


≈ pi(k, τ) exp

−∑
j

∫ τ

0

pj(k, l)dl

 ,

(16)

i.e., the waiting time for an inhomogeneous exponential random variable. The approximation assumes the
pi(k, τ) are small enough such that at most one event happens each generation, with small probability, and
the changes in the pi(k, τ) from one generation to the next are small enough that we can approximate a sum
across τ with an integral. As a technical aside, to speed computation we analytically solve the integrals and
then numerically evaluate Equation 16 under the assumption of weak selection and exponential population
growth (Equation 2); in contrast, the simulations impose a hard carrying capacity of N(0), creating a
discrepancy when the bottleneck is finished long before the sweep (d � s � 1). The fixation time, T , is
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approximated by solving p(T ) = 1− 1/[2N(0)] using Equation 2, and thus also assumes weak selection.
Figures 6–7 and S7 show the probability and timing of the relevant coalescent events for a sample of

size 2 at a linked neutral locus, Pi(2, τ), for evolutionary rescue from standing genetic variation, recurrent
mutation, and migration. It compares these rescue scenarios to selective sweeps in populations of constant size
(d = 0). From this we can make a number of observations: 1) the bottleneck during rescue pushes coalescent
times towards the present, so that the distributions of coalescence and recombination times overlap more, 2)
the bottleneck during rescue increases the overall probability of coalescence, which reduces the probability
of recombination or mutation off the sweep (compare areas under broken curves in Figures 6–7), 3) the
bottleneck during rescue pushes migration times towards the present and increase the overall probability
of migration (because a larger proportion of the population then descends from a migrant), and 4) the
difference between the rescue model and the constant population size model is larger under weaker selection.
This latter point nicely illustrates the coupling between demography and evolution in rescue; while weaker
selection creates a slower sweep and hence more time for recombination off, it also slows population recovery
in the case of rescue, leading to longer and deeper bottlenecks that counteract the additional time provided
for recombination.

Genetic signatures at linked neutral loci

We now use the Pi(k, τ) to describe patterns of genetic variation at linked neutral loci in a random sample
of chromosomes at (or not long after) the time of fixation. Under rescue from standing genetic variance, we
assume each of the κ initial copies has independently arose via mutation in the recent past, which assumes
the allele was sufficiently deleterious before the environmental change (c.f., Prezeworski et al., 2005). We
neglect the migration case as this requires a number of assumptions about the history of the metapopulation,
e.g., how and when the sweeps occurred in the neighbouring patches, historical migration rates, etc.

Genetic diversity

One classic pattern of genetic variation produced by a selective sweep is a dip in genetic diversity around the
selected site (Maynard Smith and Haigh, 1974; Kaplan et al., 1989). Here we consider the average number
of nucleotide differences between two randomly sampled sequences, π (Tajima, 1983), focusing on sequences
of length 1 (i.e., heterozygosity).

We first consider our expectation for π at a site that is far enough away from the selected site to
be unaffected by the sweep; this provides us with an expectation for the genome-wide average, which is
determined by the mutation rate at neutral loci and the population bottleneck. In particular, our expectation
for π at such a site in a population of constant effective size, Ne, is simply θ = 4NeU (Watterson, 1975),
with U the per base per generation mutation rate at neutral loci. Ignoring neutral mutation input during
the bottleneck, the π at a sufficiently loosely linked site is this neutral expectation times the probability a
sample of size two does not coalesce during the period of interest (in our case, from the time we take the
sample at the time of fixation, t = T , until the time of environmental change, t = 0). This is (c.f., equation
4 in Slatkin and Hudson, 1991 and equation 7 in Griffiths and Tavare, 1994)

E[π|unlinked] ≈ θ exp

(
−
∫ T

0

pcoal(2, τ)dτ

)
= θ exp

(
−
∫ T

0

1

2N ′e(τ)
dτ

)
. (17)

We next consider sites that are more closely linked to the selected locus, and are thus directly affected
by the selective sweep. To keep the analysis simple, we assume that if one of the sampled alleles recombines
or mutates off the beneficial background before the two samples coalesce then it is as if both samples were
on the ancestral background from the start and therefore coalesce with each other as if they were at an
unlinked locus (Equation 17). This assumption will be appropriate with large recombination and mutation
rates, where both samples will quickly recombine or mutate off the sweep, and with small recombination
and mutation rates, where coalescence will typically occur first. At moderate recombination and mutation
rates we will tend to underestimate diversity as the second recombination or mutation event will then take
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Figure 6: Timing of events in the history of a sample of size 2 at a linked neutral locus (r = 0.01) during a
selective sweep from standing genetic variation in evolutionary rescue (blue; d = 0.05) or in a population of
roughly constant size (red; d = 0 such that E[N(t)] = N(0)). The top panel gives the approximate backwards-
time dynamics (using Equation 2) for allele frequency p′(τ) (dashed; multiplied by N(0) to be on the same
scale as population size) and population size N ′(τ) (solid; rescue only). The stars are approximations of the
fixation times T (using Equation 2). The bottom panel gives the resulting timings (Equation 16).
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Figure 7: Timing of events in the history of a sample of size 2 at a linked neutral locus (r = 0.01) during a
selective sweep from de novo mutation in evolutionary rescue (blue; d = 0.05) or in a population of roughly
constant size (red; d = 0). See Figure 6 for details.
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place further back in the past, restricting the time over which the samples can coalesce. Finally, there is
also the possibility of no events occurring in the history of the sample during the sweep; if the sweep arose
from mutation (or migration) or from a single copy of the beneficial allele (κ = 1) then the sample must
coalesce, otherwise (i.e., if we start with more than one beneficial copy, κ > 1), under our assumption that
each copy of the beneficial allele among the standing variance has a unique mutational origin, the samples
are independent draws from a neutral population. Ignoring neutral mutations during the sweep, a simple
approximation for π at any location in the genome is then

E[π] ≈ E[π|unlinked] [Poff(2, T ) + P∅(2, T )δκ>1] , (18)

where Poff(k, T ) =
∫ T

0
[Prec(k, τ) + Pmut(k, τ)]dτ is the probability of recombination or mutation before

coalescence during the sweep, P∅(k, T ) = exp
(
−
∑
j

∫ T
0
pj(k, τ)dτ

)
is the probability that no events have

occurred in the history of the sample during the sweep (j ∈ {rec,mut, coal}), and δκ>1 is 1 if the sweep arose
from more than one copy of the beneficial allele (κ > 1) and 0 otherwise.

Figures S2-S3 compare our predictions of π after evolutionary rescue against both simulations and the
constant population size scenario (d = 0). While our predictions qualitatively match simulations, the ten-
dency of our deterministic approximations to overestimate population size when the probability of rescue is
small (Figures 1 and 3) causes us to overestimate diversity in these cases. To correct for this, in Figures
8-9 we replace our prediction for E[π|unlinked] (Equation 17) in the rescue scenario with the observed mean
diversity level (as a technical aside, because we only simulate a 40cM chromosome, much of which is affected
by the sweep, we do not use sites within 5cM of the selected locus in our average; including these sites would
have very little effect in larger genomes). A very similar result was achieved by converting the observed
population sizes to effective population sizes and computing the sum in Equation 17 (results not shown).
Using the observed mean diversity level is justified by the fact that genome-wide diversity can be measured
directly from data and is highly variable across populations (Tajima, 1983). In fact, unless the population
was sampled both before and after the selective sweep (or we have good estimates of its mutation rate and
long-term effective population size), the amount of background pairwise diversity tells us very little about
recent population size changes and all the information is contained in relative diversity (the diversity in a
window divided by genome-wide diversity). Figures S4-S5 show that our predictions of relative diversity
(E[π]/E[π|unlinked) closely match that observed in simulations.

Figures 8-9 and S4-S5 show that evolutionary rescue has three main effects relative to the constant
population case: 1) rescue can greatly reduce genome-wide diversity under sufficiently weak selection, where
bottlenecks are long and deep (by increasing T and decreasing Ne(τ); Equation 17), 2) rescue tends to
deepen dips in diversity when soft sweeps are possible, i.e., it hardens soft sweeps (by decreasing Poff(2, T )
at the selected site, r = 0; Equation 18), and 3) rescue generally produces wider dips in diversity due to
excess coalescence during the sweep (by decreasing Poff(2, T ) at a given r > 0; Equation 18).

Tajima’s D

Finally, we consider Tajima’s D statistic (Tajima, 1989), which measures the relative excess (positive D)
or deficiency (negative D) of intermediate frequency polymorphisms, relative to the standard neutral model
(i.e., constant population size, neutral evolution). Quantitative predictions of Tajima’s D require one to
consider samples of size greater than 2, which quickly becomes complicated with selection and complex
demography. Instead, here we discuss the expected qualitative patterns, based on intuition from the analysis
presented above, and compare these to simulation results.

First, hard selective sweeps tend to produce star-like gene genealogies, with most samples coalescing near
the beginning of the sweep and recombination allowing a few samples to coalesce much further back in time
(Kaplan et al., 1989). Hard sweeps therefore produce an excess of low frequency polymorphisms (Wakeley,
2009, p. 120), leading to negative D (Braverman et al., 1995). The larger the selection coefficient the more
star-like the genealogy (less time for coalescence or recombination during the sweep), and thus the more
negative D when conditioned on a hard sweep. However, with sufficient standing genetic variation or rates
of recurrent mutation or migration, larger selection coefficients will tend to cause softer selective sweeps
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Figure 8: Mean pairwise diversity, π, after a selective sweep from standing genetic variation during evolution-
ary rescue (blue; d = 0.05) or in a population of roughly constant size (red; d = 0 such that E[N(t)] = N(0)).
The thick curves are Equation 18; for rescue (blue) we use the observed mean diversity as θ. The thinnest
curves are 100 replicate simulations (rescue only for clarity) and the slightly thicker curves are simulation
means (often obscured by prediction). Parameters: N(0) = 104.

(Figures 2, 4, and 5). Soft selective sweeps allow samples to coalesce further back in time, before the start
of the sweep, even at the selected site. Such sweeps therefore tend to have less effect on neutral genealogies
and hence on D, although sufficiently soft sweeps can actually cause positive D, by allowing intermediate-
sized groups of samples to descend from different ancestors containing the beneficial allele (Pennings and
Hermisson, 2006b).

As linkage to the selected site decreases so too does this skew in genealogies. In the case of a constant
population size, D should asymptote to the neutral expectation of zero. In the case of rescue, however,
the bottleneck will cause an excess of intermediate frequency polymorphisms (Wakeley, 2009, p. 120), and
therefore D should asymptote at some positive value (more positive with more severe bottlenecks).

These patterns are borne out in simulations (Figures 10-11), where we see that rescue consistently causes
positive background D. When sweeps are guaranteed to be hard (κ = 1), D around the selected site is
similarly negative in both rescue and under a constant population size. When there is some possibility
for a soft sweep (all cases but κ = 1), rescue tends to harden the sweep (by reducing probabilities of
establishment, increasing coalescence, and reducing mutational input) and thus produce lower values of D
at the selected site. Together these patterns cause rescue to stretch out or even invert the pattern of D
observed in populations of constant size: under rescue, D tends to be greater away from the selected site
and lower at the selected site.
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Figure 9: Mean pairwise diversity, π, after a selective sweep from de novo mutation during evolutionary
rescue (blue; d = 0.05) or in a population of roughly constant size (red; d = 0). See Figure 8 for details.

Discussion

Here we have explored genetic signatures of evolutionary rescue by a selective sweep. By allowing demography
to depend on the absolute fitness of the genotypes that comprise the population we explicitly invoke a
feedback between demography and evolution. This feedback restricts the range of dynamics, and thus the
signatures, that one should expect to observe. We find that, because the probability of establishment for
an allele with a given selective advantage is reduced in declining populations (Equation 3; see also Otto
and Whitlock, 1997), selective sweeps causing rescue are expected to be harder than those in populations
of constant size when sweeps arise from standing genetic variance or recurrent mutation (Figures 2 and 4;
consistent with Wilson et al., 2014 and Wilson et al., 2017). Further from the selected locus, the demographic
bottleneck experienced during rescue increases rates of coalescence relative to mutation and recombination
(Figures 6-7), creating wider dips in diversity and lower diversity genome-wide (Figures 8-9; consistent with
Innan and Kim, 2004). Tajima’s D captures both the hardening of the sweep and the bottleneck, causing
D to generally reach both higher and lower values under rescue (Figures 10-11). These differences between
evolutionary rescue and standard sweeps all become larger under weaker selection (i.e., when the heterozygote
has a smaller growth rate, s/2 − d � 1) as the slower sweeps that result imply deeper, longer bottlenecks
during rescue. In contrast to standing variance or mutation, when sweeps arise from a constant rate of
migration demography has no affect on the number of beneficial alleles that establish (as briefly noted by
Pennings and Hermisson, 2006a) and thus rescue has no affect on the hardness of the sweep (Figure 5).
Further, because the rates of coalescence and migration are both inversely proportional to the number of
beneficial alleles N(t)p(t) at the selected site (Equation 12, Figure S7), the distribution of the number and
frequency of migrant haplotypes spanning the selected site is given by Ewens’ sampling formula (Ewens,
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Figure 10: Tajima’s D after a selective sweep from standing genetic variation during evolutionary rescue
(blue; d = 0.05) or in a population of roughly constant size (red; d = 0 such that E[N(t)] = N(0)). Thin
curves show 100 replicate simulations (rescue only for clarity) and thicker curves show simulation means.
Parameters: N(0) = 104.

1972), with mutation replaced by migration (Pennings and Hermisson, 2006a). As we move away from the
selected site recombination breaks apart these migrant haplotypes, leading to patterns of nucleotide diversity
that depend on the migration rate and history of the two populations. If the migration rate is low we should
expect an excess of migrant haplotypes at the site of the selective introgression and, if the divergence between
the migrant and focal population is high, the so-called “volcano” pattern of diversity (Setter et al., 2019),
where diversity is maximized at an intermediate distance from the selected site due to a more balanced
presence of both migrant and non-migrant alleles.

Evolutionary rescue has been explored theoretically (e.g., Gomulkiewicz and Holt, 1995; Uecker and Her-
misson, 2016; Anciaux et al., 2018) and observed repeatedly in both experiments (e.g., Bell and Gonzalez,
2009; Lindsey et al., 2013; Ramsayer et al., 2013) and in host-pathogen systems in nature (e.,g., Wei et al.,
1995; Feder et al., 2016). More recently, a number of studies have used genetic data to suggest that evolution-
ary rescue has occurred in the wild, including crickets becoming song-less to avoid parasitoid flies (Pascoal
et al., 2018, reviewed in McDermott, 2019), killifish deleting receptors to tolerate pollution (Oziolor et al.,
2019), hares moulting brown instead of white to avoid predation in snowless winters (Jones et al., 2018), bats
altering hibernation to survive white-nose syndrome (Gignoux-Wolfsohn et al., 2018), and tall waterhemp
evolving herbicide resistance (Kreiner et al., 2019). In nearly all of these cases there is strong evidence of
a recent selective sweep by a very beneficial allele. Genetic evidence for a demographic bottleneck, on the
other hand, is generally lacking, although genome-wide reductions in nucleotide diversity and increases in
Tajima’s D, relative to non-stressed populations, are sometimes detected (Oziolor et al., 2019). This begs
the question of whether one can infer evolutionary rescue from genetic data alone, which would greatly help
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Figure 11: Tajima’s D after a selective sweep from de novo mutation during evolutionary rescue (blue;
d = 0.05) or in a population of roughly constant size (red; d = 0 such that E[N(t)] = N(0)). See Figure 10
for details.

in assessing the relevance of rescue in nature. Strong support for rescue would come from the coincident
timing of a sweep and bottleneck, which is difficult given the imprecise time estimates from a genetic sample
collected from a single time point. Sampling before and after the potential rescue event would therefore be
highly advantageous in determining co-occurrence. However, it should be noted that even if the sweep and
bottleneck appear to have co-occurred, this correlation in timing does not imply it was caused by a feedback
between demography and evolution. It is, of course, difficult to say in any case – without observing replicate
populations go extinct or performing experiments – whether extinction would have occurred (or will occur)
without adaptive evolution, as required by the strict definition of evolutionary rescue. We therefore need
more experiments (such as Rêgo et al., 2019) that explore the genetic consequences of verified rescue to
confirm the theoretical results presented here and help develop a robust signal of rescue to compare patterns
from natural populations to.

A strength of the above analysis is that we have explicitly modelled a feedback between demography and
evolution, restricting the range of genetic signatures we consequently expect to observe. To take a recent
example, Harris et al. (2018) have claimed that the lower reductions in genetic diversity within HIV popula-
tions adapting to less efficient drugs (as observed by Feder et al., 2016) could be due to weaker bottlenecks or
slower sweeps rather than sweeps being softer, i.e. arising from multiple mutations. Fortunately, in this case
genetic time-series data were available to show that the ability of HIV to reliably adapt on a short time-scale
necessitates mutation rates and selection coefficients that imply adaptation by soft sweeps is likely (Feder
et al., 2018). Formally modeling a feedback between demography and evolution also helps narrow the relevant
parameter range. For example, under a haploid version of the model explored here (as is applicable to HIV)
the minimum population size during rescue by new mutations is N(0)s(2N(0)s)−d/s/(s− d) (equation 22 in
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Orr and Unckless, 2014). Thus, for a given N(0) and s the minimum population size is e lnS/(2s), where
S = 2N(0)s, implying that the minimum population size consistent with the model is roughly proportional
to 1/s. The imposed feedback between demography and evolution therefore precludes simultaneously slow
sweeps and large bottlenecks (for example negating the two smallest bottleneck sizes in figure 3A of Harris
et al., 2018 and constraining one to the upper right portion of figure 3A-B in Feder et al., 2018). While it is
very likely in this case that soft sweeps are indeed the cause of the pattern (Feder et al., 2018), incorporating
an explicit model of how demography and evolution interact could help focus future debates.

The model presented here is but one model of evolutionary rescue, which involved a number of important
assumptions. One of these is that the beneficial allele acts multiplicatively with the ancestral background,
so that its marginal fitness is affected by the decline rate of the ancestral genotype. This in turn caused
the dynamics of the sweep, once started, to depend only on relative fitness (Equation 1) while also making
the probability of establishment (Equation 3) depend on the initial rate of population decline. If, instead,
the absolute fitness of the heterozygote and mutant homozygote were independent of the initial decline
rate, say 1 + hs′ and 1 + s′, then the reverse would be true; the dynamics of the sweep would depend on
the initial rate of population decline while the probability of establishment would not. We expect these
effects would, however, largely cancel out. In any case, because our results depend primarily on the absolute
and relative fitness of the heterozygote, the alternative model just described may closely match the model
analyzed in detail here when hs is replaced by (hs′ + d)/(1 − d). A second key assumption we have made
is that the beneficial allele acts additively with the ancestral allele at that locus (h = 1/2). Alternative
forms of dominance will impact our results. At one extreme, a completely recessive beneficial allele (h = 0)
is unlikely to establish, making rescue nearly impossible in outcrossing populations (Uecker, 2017). At the
other extreme, complete dominance will greatly increase the probability of establishment and rescue (Uecker,
2017), as well as population mean fitness and thus population size. All else equal, we therefore expect rescue
to have less effect on the signatures of selective sweeps relative to those in populations of constant size when
the rescuing allele is more dominant. Given that the marginal fitness of the beneficial allele will not depend
on allele frequency under complete dominance, the model will behave much more like a haploid model,
where simple predictions of allele frequency and population size are more accurate (Orr and Unckless, 2014).
Finally, it is of course possible to model rescue under much more complex lifecycles and population structure
(e.g., as expected for the evolution of malarial drug resistance; Kim et al., 2014), at least using simulations.
More complex lifecycles, such as those of parasites like Plasmodium and HIV, could cause the bottleneck
to have additional impacts on the resulting genetic signature. For example, our populations are obligate
sexual out-crossers, such that the probability of recombination does not depend on the population size (c.f.,
Equation 12), as everyone must mate with some one. However, with selfing and/or facultative sex (genetic
exchange), rates of recombination could be lower at lower population densities, which would increase the
impact of bottlenecks on resulting genetic signatures.

Evolutionary rescue is only one example of a myriad of processes where demography and evolution feed-
back on one another. This approach – combining forward-time eco-evolutionary models with coalescent
theory to predict genetic signatures – could be used in many other scenarios. For instance, adaptive col-
onization of new habitat (a.k.a., adaptive niche expansion) is a closely related process for which a similar
approach has already been taken (Kim and Gulisija, 2010). As in the case of rescue, explicitly modelling the
feedback between demography and evolution in adaptive niche expansion changes the expected signatures
left behind by selective sweeps as compared to Wright-Fisher populations. Such an approach is interesting
from a conceptual point-of-view, improving our understanding of how eco-evolutionary dynamics affect ge-
netic signatures. But further, given the computational power and simulation platforms available today, it
is no longer necessary to restrict oneself to Wright-Fisher populations; researchers may now simulate under
much more ecologically-realistic models.
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Supplementary text: Simulated lifecycle

Let ni(t) be the number of individuals with genotype i ∈ {aa,Aa,AA} at the beginning of generation t, with
N(t) =

∑
i ni(t) the total population size. We assume viability selection, where genotype i survives with

probability Vi ∈ [0, 1], occurs before reproduction. Each surviving individual then “mothers” B offspring,
each with a randomly chosen mate (possibly oneself), and each mating produces a single offspring. Letting
pj,k(i) be the probability a mating between genotypes j and k produces an offspring with genotype i, the
expected number of individuals of genotype i at the beginning of generation t+ 1 is then

ni(t+ 1) =
∑
j,k

ñj(t)B
ñk(t)

Ñ(t)
pj,k(i), (S1)

where ñi(t) = ni(t)Vi is the expected number of individuals with genotype i and Ñ(t) =
∑
i ñi(t) is the

expected population size after viability selection.
Assuming fair Mendelian transmission, the expected number of A alleles in generation t + 1 is nAa(t +

1) + 2nAA(t+ 1) = WAanAa(t) + 2WAAnAA(t), with Wi = ViB, which we refer to as the fitness of genotype
i. Given that the total number of alleles is expected to be 2N(t + 1) = 2

∑
i ni(t)Wi = 2N(t)W (t), where

W (t) is the mean fitness at the beginning of generation t, the expected frequency of allele A in generation
t+ 1 is

p(t+ 1) =
1
2WAapAa(t) +WAApAA(t)

W (t)
, (S2)
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where pi(t) = ni(t)/N(t) is the frequency of genotype i in generation t. Thus the allele frequency dynamics
are the same as those in a population of constant size with relative fitnesses Wi (equation 5.2.3 in Crow and
Kimura, 1970). Further, one can use Equation S2 to show that the genotype frequencies are expected to
remain in Hardy-Weinberg proportions, allowing us to capture the dynamics of the whole system by tracking
only the expected changes in the frequency of allele A and total population size, which are given in Equation
1.

Supplementary text: Probability of establishment and effective
population size in the simulated lifecycle

In our simulated lifecycle the number of copies that a rare allele in generation t, with a viability of Vi,
contributes to the next generation is distributed like X(Y + Z), where X is Bernoulli with expectation Vi
(survival), Y is binomial with B trials and probability of success 1/2 (number of offspring mothered and
Mendelian segregation), and Z is binomial with parameters BN(t) and (1/N(t))/2 (randomly chosen as a
father and Mendelian segregation). Thus the expected number of copies contributed to the next generation
is Wi = BVi and the variance is Wi(3 + 4B − 4Wi)/4 + O(1/N(t)). We therefore have ε = Wi − 1 and,
with weak selection, σ2 ≈ (4B − 1)/4, allowing us to calculate the probability of establishment (Equation
3). Throughout we use B = 2, giving σ2 ≈ 7/4, meaning there is nearly twice as much drift in our model as
compared to a Wright-Fisher population (under weak selection and large population sizes).

We can also use σ2 ≈ 7/4 to approximate the effective population size (Equation 13), implyingNe(t)/N(t) ≈
4/7.

Supplementary text: Simulation details

Forward-time simulations were performed in SLiM (version 3.3; Haller and Messer, 2019) with tree-sequence
recording (Haller et al., 2019). We simulated the life-cycle described in Supplementary text: Simulated
lifecycle with the addition of a hard carrying capacity at N(0); after viability selection and reproduction, if
there were more than N(0) offspring we randomly chose N(0).

We simulated 20 Mb chromosomes with the selected locus one of the centre bases, all other sites were
considered neutral. We assumed a per base recombination rate of rbp = 2 × 10−8 (i.e., 2 cM/Mb; e.g.,
Mackay et al., 2012) and per base mutation rate at neutral loci of U = 6× 10−9 (e.g., Haag-Liautard et al.,
2007). The recombination rate between two loci n bases apart was calculated as the probability of an odd
number of crossover events assuming n independent Bernoulli trials, r = (1− (1− 2rbp)

n)/2 ≈ (1− e2rbpn)/2
(equation 3 in Haldane, 1919), i.e., no crossover interference.

A population was considered rescued when the beneficial mutation was fixed and the population size had
recovered to N(0). Once a population was rescued we used msprime (Kelleher et al., 2016) to recapitate the
population (simulate the neutral coalescent back in time from the start of the forward-time simulation, until
all sites had fully coalesced) using an effective population size of Ne(0).

From a random sample of chromosomes in the population at the time it was considered rescued, av-
erage pairwise nucleotide diversity (Tajima’s π) and Tajima’s D were calculated across 100 adjacent non-
overlapping windows (i.e., each of length 200 Kb, i.e., 0.4 cM) using the diversity() and Tajimas_D()

functions in tskit (Kelleher et al., 2018). We use a sample size of 100 chromosomes throughout.
For comparison we also run simulations with a constant expected population size, by setting d = 0. In

this case the ancestral genotype aa has an absolute fitness of 1, meaning that any realized population size
trajectory will be a random walk (in our case with an upper boundary at N(0)), and that extinction is assured
in the long-term. However, with the parameter values used here (large initial population size and relatively
fast onset of the selective sweeps), population sizes decline only slightly before remaining constant at the
carrying capacity once the sweep has started in earnest (since the mutants have fitnesses ≥ 1). We chose
to use this setup as the constant population size comparison (rather than, say, a Wright-Fisher population)
because it allows us to keep the same variance in gamete and offspring numbers (affecting the probability of
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establishment and the rate of coalescence; see Supplementary text: Simulation details) as well as the same
census population size (affecting initial allele frequency, p(0)) as in the case of rescue.

Supplementary text: Rescue by migrant alleles (MIG)

It is also possible for rescue to occur through the immigration of beneficial alleles. Assuming that the number
of migrant alleles that replace a resident allele each generation is Poisson with mean m, the waiting time
until the first successful migrant is exponential with rate λ = mρ. Given the population is expected to
persist for log(N(0))/d generations, the probability of rescue is therefore roughly the probability the first
successful migrant arrives by then,

PMIG
rescue = 1−N(0)−mρ/d. (S3)

Dividing the waiting time distribution by the probability of rescue then gives the waiting time distribution
conditioned on rescue, f(t). Using the approach we have taken in Rescue by de novo mutation (DNM), the
effective initial frequency of the beneficial allele given rescue is

pMIG
0 =

1

2N(0)

1

ρ

2m
(
1− (1− PM

rescue)N(0)−ρ/(2d)
)

(1 + 2m)PM
rescue

. (S4)

When the migration rate is small this last factor is nearly independent of m (analogous to the mutation
case). In a population of constant size the waiting time to the first successful migrant allele is simply
exponential with rate λ = mρ, giving a waiting time factor 2m/(1 + 2m), which is strongly dependent on m
but independent of ρ.

Figure S6 compares our numerical (Equation 1) and analytical (Equations 2) approximations against
individual-based simulations. We see the predictions do fairly well for larger values of m, but very poorly for
small m. In the latter case the first successful migrant allele tends to arrive once the population is so small
that beneficial homozygotes are regularly produced during establishment, causing us to greatly underestimate
the probability of establishment (and thus overestimate allele frequencies and population size), as well as
the rate of allele frequency increase.

Figure S7 shows the timing of migration relative to recombination and coalescence (Equation 16). As
with rescue from standing genetic variance or mutation (Figures 6-7), the bottleneck increases the overall
coalescence rate and shifts its timing closer to fixation, overlapping more with recombination. Migration
scales with coalescence (Equation 12) and is thus similarly increased and shifted.

Supplementary text: Deriving the structured coalescent

Let the allele frequency and population size τ generations before the present be p′(τ) and N ′(τ). Following
Pennings and Hermisson (2006a), we artificially subdivide the time within a generation, to be able to identify
any period between two successive events (Figure S1). We now go about deriving Equation 12.

Migration

The number of migrant alleles that arrive each generation is Poisson with mean m. Given that there are
2N ′(τ − 1)p′(τ − 1) beneficial alleles in the next generation, the probability that any one is a new migrant
is therefore P = m/[2N ′(τ − 1)p′(τ − 1)] ≈ m/[2N ′(τ)p′(τ)], where the approximation assumes the number
of beneficial alleles changes little from one generation to the next. The probability that at least one of k
beneficial alleles is a migrant is 1− (1− P )k, which, with rare migration, is approximately

pmig(k, τ) = k
m

2N ′(τ)p′(τ)
. (S5)

For a given probability of being replaced by a migrant allele, the rate of migration in a diploid model is half
that of the haploid model (equation 15 in Pennings and Hermisson, 2006a, replacing M with m) as there
are twice as many resident alleles.
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selection

τ ,τ − 1

recombination
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syngamy

τ−2/5

mutation

τ−3/5

migration

τ−4/5

census

Figure S1: Life-cycle and time notation.

Mutation

The number of beneficial alleles after mutation, 2N ′(τ −4/5)p′(τ −4/5), is the number before mutation plus
the number of new mutants

2N ′(τ − 4/5)p′(τ − 4/5) = 2N ′(τ − 3/5)p′(τ − 3/5) + u2N ′(τ − 3/5)[1− p′(τ − 3/5)]. (S6)

Because the population size does not change during mutation, N ′(τ − 4/5) = N ′(τ − 3/5), the frequency of
beneficial alleles after mutation is simply

p′(τ − 4/5) = p′(τ − 3/5) + u[1− p′(τ − 3/5)]. (S7)

The probability a beneficial allele is a new mutant is therefore u[1 − p′(τ − 3/5)]/p′(τ − 4/5), which, using
the previous equation, is equivalent to

P =
u[1− p′(τ − 4/5)]

(1− u)p′(τ − 4/5)
. (S8)

The probability that at least one of k beneficial alleles is a new mutant is 1−(1−P )k, which, when mutation
is rare, is approximately ku[1 − p′(τ − 4/5)]/p′(τ − 4/5). With little change in allele frequency from one
generation to the next this is

pmut(k, τ) = ku
1− p′(τ)

p′(τ)
. (S9)

This is equivalent to the haploid result (e.g., equation 5 in Pennings and Hermisson, 2006a) as both the
mutation rate and number of alleles are multiplied by the ploidy level, which cancels.

Coalescence

Considering k beneficial alleles at the time of census, and ignoring any migration or mutation, the probability
of at least one coalescence event is then(

k

2

)
1

2N ′e(τ − 2/5)p′(τ − 2/5)
, (S10)
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where N ′e(τ−2/5) is the effective population size at the time of syngamy. When allele frequency and effective
population size changes little from one generation to the next this is roughly

pcoal(k, τ) =

(
k

2

)
1

2N ′e(τ)p′(τ)
. (S11)

This is half the rate observed in a haploid model with the same population size (equation 5 in Pennings and
Hermisson, 2006a) as there are twice as many alleles in a diploid population.

Recombination

Consider a neutral locus at recombination distance r from the selected site. Assuming weak selection such
that the survivors of viability selection remain in Hardy-Weinberg proportions, the number of alleles linked
to the beneficial allele after recombination is

2N ′(τ − 2/5)p′(τ − 2/5) = 2N ′(τ − 1/5)p′(τ − 1/5) [p′(τ − 1/5) + [1− p′(τ − 1/5)] (1− r)]
+N ′(τ − 1/5)[1− p′(τ − 1/5)]p′(τ − 1/5)r.

(S12)

The first term on the right hand side is the number currently linked to the beneficial allele multiplied by
the probability of being in a beneficial homozygote plus the probability of being in a heterozygote but not
recombining. The second term on the right hand side is the number not currently linked with the beneficial
allele times the probability of being in a heterozygote and recombining onto the beneficial background. The
probability an allele on the beneficial background after recombination was not there before is then

P =
2N ′(τ − 1/5)[1− p′(τ − 1/5)]p′(τ − 1/5)r

2N ′(τ − 2/5)p′(τ − 2/5)
, (S13)

which, because recombination does not change allele frequency or population size, is

P =
2N ′(τ − 1/5)[1− p′(τ − 1/5)]p′(τ − 1/5)r

2N ′(τ − 1/5)p′(τ − 1/5)

= [1− p′(τ − 1/5)]r.

(S14)

The probability at least one of k alleles on the beneficial background recombines off is 1− (1− P )k, which,
when recombination is rare, is approximately kr[1 − p′(τ − 1/5)]. Assuming allele frequency changes little
through one bout of selection this is kr[1 − p′(τ)]. Finally, assuming migration, mutation, and coalescence
are rare, the probability that none of k beneficial alleles migrates or mutates times the probability none
coalesce times the probability at least one of the k linked alleles recombines off is roughly (table 1 in Hudson
and Kaplan, 1988)

prec(k, τ) = kr[1− p′(τ)]. (S15)
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Supplementary figures
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Figure S2: Mean pairwise diversity, π, after a selective sweep from standing genetic variation during
evolutionary rescue (blue; d = 0.05) or in a population of roughly constant size (red; d = 0 such that
E[N(t)] = N(0)). The dashed curves are Equation 18. See Figure 8 for additional details.
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Figure S3: Mean pairwise diversity, π, after a selective sweep from de novo mutation during evolutionary
rescue (blue; d = 0.05) or in a population of roughly constant size (red; d = 0). The dashed curves are
Equation 18. See Figure 8 for additional details.
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Figure S4: Relative mean pairwise diversity, π/π, after a selective sweep from standing genetic variation
during evolutionary rescue (blue; d = 0.05) or in a population of roughly constant size (red; d = 0 such
that E[N(t)] = N(0)). The thick curves are E[π]/E[π|unlinked] (Equation 18). The thinnest curves are 100
replicate simulations (rescue only for clarity) and the slightly thicker curves are simulation means (often
obscured by prediction). Parameters: N(0) = 104.
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Figure S5: Relative mean pairwise diversity, π/π, after a selective sweep from de novo mutation during
evolutionary rescue (blue; d = 0.05) or in a population of roughly constant size (red; d = 0). See Figure S4
for details.
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Figure S6: Allele frequency and population size during a selective sweep from migration in evolutionary
rescue (blue; d = 0.05) or in a population of roughly constant size (red; d = 0). See Figure 1 for details.
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Figure S7: Timing of events in the history of a sample of size 2 at a linked neutral locus (r = 0.01) during a
selective sweep from migration in evolutionary rescue (blue; d = 0.05) or in a population of roughly constant
size (red; d = 0). See Figure 6 for details.
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